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We introduce a two layer network model for social coordination incorporating two relevant ingredients: a)
different networks of interaction to learn and to obtain a pay-off, and b) decision making processes based
both on social and strategic motivations. Two populations of agents are distributed in two layers with
intralayer learning processes and playing interlayer a coordination game. We find that the skepticism about
the wisdom of crowd and the local connectivity are the driving forces to accomplish full coordination of the
two populations, while polarized coordinated layers are only possible for all-to-all interactions. Local
interactions also allow for full coordination in the socially efficient Pareto-dominant strategy in spite of
being the riskier one.

S
everal mechanisms and models have been implemented to explain the collective social behavior that arises
from the interactions among individuals. The own experience and the experiences of others play an
important role in determining the people choices in almost all human interactions. Imitation has been a

widespread mechanism of human decision-making. Imitation of of common behavior reflects social influence in
the individual, while imitation by others of a successful individual is of strategic nature1–4. Strategic interactions
are often modeled by Game Theory. A relevant game theoretical model that describes many real-life interactions
in which the best course of action is to conform to a consensus is the coordination game. The challenge of such
model is how to coordinate among its multiple Nash equilibria5. This issue has been addressed in several works
focusing on coordination games in a network framework6–9. However, two relevant aspects of this context have
been largely unexplored.

First, the study of a kind of interactions in which individuals distinguish according to their roles between people
with whom they play to obtain a payoff and those from whom they learn to update their strategies. An appropriate
framework is needed to deal with the possibility that people may identify the kind of interaction they have with
their partners. Such situations are very common and pertinent in real-life interactions. For example, the inter-
actions between and within firms and consumers, employers and employees, governments and citizens, teachers
and students, parents and children, medical doctors and patients. There individuals interact across groups and
receive a payoff for such interactions (for instance parents with children) and look inside their group to learn and
update their strategies (for instance parents learn from other parents and children learn from other children).
What we have are the situations in which two populations are differentiated by the role that their individuals
perform. In simple models of social networks individuals are unable to encompass different types of relationships.
They play with and learn from the same set of neighbors. A different class of networks that have layers in addition
to nodes and links, has been growing in popularity because of being a better description of a real networked
society. The study and analysis of multilayer networks is relatively recent even though layered systems were
examined decades ago in disciplines like sociology and engineering10–12, for a complete review see13. Here we
propose a two-layer network in which inside each layer, individuals update their strategies by a rule of learning
and across layers individuals receive an aggregate payoff by playing a coordination game. Most previous studies of
games in multilayer networks14–17 consider playing the game inside the layers while we consider game theory
interactions across layers. In a recent work18 the authors consider a two-layer network wherein one network layer
is used for the accumulation of payoffs playing a social dilemma game and the other is used for strategy updating.
There, each agent is simultaneously located on both layers. In contrast, in our two-layer network, each agent is
located in just one layer. Therefore, there are two learning networks, one in each layer, and a playing network
across the two layers.

The second aspect refers to elucidate what happens when people make decisions heeding simultaneously social
and strategic motivations4. In situations that call for accomplishing social efficiency and consensus two forces
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influence agent’s choices: the strategic reasoning and the social pres-
sure of the environment. In the sociological context, Granovetter19

proposed a model in which a certain amount of social pressure is
necessary for a person to adopt a new idea, product or technology.
Opinion, innovation spreading and social learning models have been
dealing with this issue measuring the social pressure as the number of
contacts that have already adopted the newness19–22. Here, we con-
sider that the influence of social pressure is related with the degree of
doubts about the strategies currently being played. Traditionally, the
degree of doubts is measured as the subjective belief about the con-
sequences of a certain action23. However, we assume doubts as a
social factor influencing choices in strategic environments. Then,
the doubts of an agent about how well she is playing depend on
the popularity of her current strategy in her learning network. Our
approach of doubts is inspired by the work of24. They introduce an
evolutionary model of doubt-based selection dynamics. As well as24,
we assume that the agents measure their doubts by observing the
choices made by their fellow agents. Real-life interactions and labor-
atory experiments25–27 provide clear evidence of the importance of
analyzing evolutionary dynamics based on social and strategic fac-
tors. For instance, in4,28 the authors explore the interplay between
strategic and social imitative behaviors in a coordination problem on
a social network and in a networked Prisoners’ Dilemma respect-
ively. In these works agents can evolve by a mixed dynamics of the
voter model22,29 and the unconditional imitation. One of the main
results in coordination games on complex networks is that the inter-
play of social and strategic imitation drives the system towards global
consensus while neither social or strategic imitation alone does. Our
approach aims to deal with these two important aspects mentioned
above and verify the circumstances in which the complexity of such
social and strategic behavior leads to the consensus on the whole
society.

Results
Model description. In this paper we consider a two-layer network in
which each individual is connected to two different social networks,
the interlayer network or playing network, and the intralayer
network or learning network, see Fig. 1. In the playing network,
each player interacts according to a coordination game with each
of her neighbors using the same action for all those games. A normal
form representation of this two-person, two-strategy coordination

game is shown in Table 1. We focus our analysis in two parametric
settings, a pure or symmetric coordination game in which a 5 d 5 1
and b 5 0 and a general or asymmetric coordination game in which
a 5 1, d 5 2 and b . 0. The profiles (L, L) and (R, R) are the two Nash
equilibria in pure strategies in both settings. Now, in the general
coordination game the agents get a higher payoff by playing (R, R),
the Pareto (payoff) dominant equilibrium while for b . 1 they risk
less by coordinating on (L, L), called the risk dominant equilibrium.
Games of this type are more interesting than their fully symmetrical
versions as it is added a confidence problem when the socially
efficient solution is also the riskier one.

Doubts and the parameter T. In the learning network, we propose
an evolutionary update rule that heeds strategic thinking and the
doubts that are generated by the popularity of the strategies. In
order to describe this aspect in detail we provide some definitions.
As Cabrales and Uriarte24, we assume that the doubts felt by an agent
are related to the proportion of individuals with whom they interact
who are equally using the same strategy. Our approach differs from24

since while those authors assume that the agents are endowed with a
doubt function, we assume that they are endowed with a quantity T
that calibrates their level of doubts about the collective wisdom of
crowd, T g [0, 1]. This parameter T is in the same line of the
threshold value in19. Just as in24, we may distinguish two broad
types of population, each corresponding to a doubtful behavior. A
herding population, for T , 0.5, is a population in which agents rely
on the wisdom of crowd. As a consequence, they are strongly
influenced by the popularity of the current strategies of their
partners. A skeptical population, for T $ 0.5, is a population in
which agents are very suspicious of the wisdom of crowd: they are
slightly influenced by the popularity of the current strategies of their
partners. In the updating process, each player i observes the
proportion of agents, di, who are playing the opposite strategy to
hers in her learning neighborhood. Then, she measures how
popular her strategy is, comparing di with T. For instance, when
di . T, player i has doubts about the popularity of the strategy she
is currently playing.

The degree of dissatisfaction. The evolution on time of the strategies
derives from the levels of dissatisfaction felt by the agents. The
criterion that defines the level of satisfaction of an agent is based
on two key points: how well she is doing in terms of the payoff
obtained in her playing network and how popular her current
strategy is in her learning network. Our approach of satisfaction is
quite different from24 where they justify the choice of an index of
dissatisfied agent via a model of (correlated) similarities relations and
from9 that define a quantity called satisfaction based on the strengths
of the links. In our approach we distinguish four categories of agents
as described in Table 2, where pi is the aggregate payoff of agent i and
ni is her degree in the playing network.:

The value of b is derived from the parametric setting of the class of
coordination game played. Since in the pairwise interaction of pure
coordination games each player gets a payoff of 1 by coordinating
and 0 otherwise, then b 5 1 for such game. The equality pi 5 ni

means that the player i coordinates with all her neighbors in the
playing network: then we say that agent i is strategically satisfied.
In the case of a general coordination game, b 5 2 and an agent is
strategically unsatisfied when she fails to coordinate with all her

Figure 1 | Sketch of a multilayer network that we consider in this paper.
The nodes are connected to each other in a pairwise manner both inside of

the layers and between the layers for two populations A and B. Dotted lines

describe the playing network (i.e. interlayer edges) and the solid lines

describe the learning network (intralayer edges). The black nodes describe

the agents playing strategy L and white nodes the agents playing strategy R

in a coordination game.

Table 1 | Pay-off matrix for a general two-person, two-strategy
coordination game

L R

L a,a 0,-b
R -b,0 d,d
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neighbors on the socially efficient solution, i.e. the Pareto dominant
strategy. This will happen when in a time step pi , 2ni. When di , T
the proportion of neighbors in her learning network who play the
same strategy as she does is high enough so that player i feels socially
satisfied with her current strategy. Then, the level of satisfaction of an
agent i is: S (satisfied) when she is both socially (di , T) and stra-
tegically (pi 5 bni) satisfied, is P1 or P2 (partially satisfied) when she
is either socially (di . T) or strategically (pi , bni) unsatisfied and is
U (unsatisfied) when she is both socially (di . T) and strategically (pi

, bni) unsatisfied.

The strategic update rule. We propose a synchronous update rule in
which each player can change her current strategy according to her
level of satisfaction. Namely,

1. If her level of satisfaction is S, she remains with the same strategy.
2. If her level of satisfaction is P1 or P2, she imitates the strategy of

her best performing neighbor in her learning network when such
neighbor has received a larger payoff than the player herself,
otherwise she remains with the same strategy.

3. If her level of satisfaction is U, she changes her current strategy.

This rule might resemble the well-known unconditional imitation
(UI) update rule introduced in30. When agents follow the (UI) update
rule, they seek to maximize their payoffs imitating the most success-
ful individuals. However, the first important difference in our update
rule is that individuals change their strategies conditional to their
social or strategic dissatisfaction. Some experimental results show
evidence of the use of the (UI) rule by individuals but also provide
evidence that other social factors are influencing the updating pro-
cess25–27. Other important difference is the environment in which
learning takes place. Since individuals discriminate from whom they
learn and with whom they play, this update rule only takes place in
the learning networks. The proposed update rule aims to capture the
individual behavior in a complex real life situation. Having setting
out our strategic and social framework, we now turn to describe the
evolutionary dynamics. At each elementary time step, each player
plays the coordination game with each one of her interlayer neigh-
bors. Once the game is over and a payoff is assigned to each player,
each agent, observing her intralayer neighbor,s might change her
strategy according to her level of dissatisfaction. The process is
repeated setting payoffs to zero.

Simulation settings. The size of the populations A and B during
simulations is NA 5 NB 5 1000. The numerical results are
obtained for random (Erdös- Rényi, ER) networks and fully
connected networks. In the learning networks, kAA and kBB

represent the mean degree (average number of links per node) for
population A and B respectively. In the playing network, the mean
degree kAB corresponds to the average number of links per node
across populations A and B. The two strategies of the coordination
games are L and R which are initially uniformly randomly distributed
with proportion 0.5.

Results for pure coordination games. As a benchmark, it is helpful
to remind the final configuration of a structured population playing a
pure coordination game with the (UI) as update rule. The topology
will define the outcome of such population. For instance, for a
complete network, referred also as a fully connected network, in
which each agent interact with every other agent, full coordination

is reached in one time step, while for a social network displaying local
connectivity, such as the random (ER) network, the system evolves to
a non-coordinated frozen state. For the study of our model we focus
on these two network topologies. Our simulation results show that
the combination of strategic and social factors in a multilayer
network drives the system to quite different outcomes than those
ones. Before displaying the results, we need to clarify what a
complete network means in our context of multilayer network. A
complete network here implies that every agent plays with every
other agent in the playing network and learns from every other
agent in the learning network. Agents still discriminate between
with whom they play and from whom they learn. Moreover an
absorbing state in this framework is a state of intralayer
coordination. In this state the agents are socially satisfied since
inside each layer the same strategy is spreading all over the network.
A state of interlayer coordination is a state of intralayer coordination
in which the strategy displayed in one layer coincides with the strategy
reached in the other layer: agents are socially and strategically satisfied.
However, when the strategy in one layer is the opposite to the one in
the other layer, the social satisfaction of agents makes the strategies to
remain unchanged, and the configuration of a polarized two-layer
network is an absorbing state of the dynamics. In summary, a state
of interlayer coordination implies a state of intralayer coordination.
but the reciprocal is not necessarily fulfilled. Both interlayer
coordination (or full coordination) and intralayer coordination are
absorbing states of the dynamics.

The final configurations of the system can be described by the intra
(inter) active links defined as the number of links connecting agents
with different choices in the playing (learning) network. Figure 2
shows the average of the proportions of active links nA(T), inter
layers between populations A and B and intra layer for each popu-
lation, A and B, for T g [0.4, 1] in the fully connected network (left
panel) and in the random (ER) network (right panel). We find that
for herding populations, T , 0.5, the final configuration of the sys-
tem is a state of non-coordination in both the learning network
(intralayer) and the playing network (interlayer) for the fully con-
nected network and the random (ER) network. Too much sensitivity
to the social pressure plays against the intralayer, and therefore, the
interlayer coordination in any of these two network topologies. Such
non-coordination state is the one in which the proportions of the
strategies in population A and B fluctuate over 0.5, see the left panel
of Fig. 4. However, in the case of skeptical populations, T $ 0.5, the
system always reaches intralayer coordination both in the fully con-
nected and in the random (ER) networks. However, for interlayer
coordinations, we observe coordination on all realizations of the
process in the case of random (ER) networks, while interlayer coor-
dination is only reached in half of the realizations in the fully con-
nected network. Figure 3 shows the number of realizations in which
the system reaches a state of interlayer coordination on the strategy L
and R and a interlayer non-coordination state for T g [0.4, 1]. For
T . 0.5, we observe that in the fully connected network (left panel),
agents fully coordinate either in L or R half of the realizations. The
steady state of non interlayer coordination is a completely polarized
multilayer network in which all agents in population A play the
opposite strategy of all agents in B, see the right panel of Fig. 4. In
the case of random (ER) networks (right panel of Fig. 3) a state of
interlayer coordination either in L or R is always reached for T . 0.5.
Comparison of this result with the one for fully connected networks
highlights the role of local interactions to reach consensus or full

Table 2 | Degrees of satisfaction

S P1 P2 U

playing network pi 5 bni pi 5 bni pi , bni pi , bni

learning network di , T di . T di , T di . T
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coordination: While with all-to-all interactions (fully connected net-
works) interlayer coordination is only reached in half of the realiza-
tions, the presence of local interactions (ER networks) leads always to
full (interlayer) coordination for skeptical populations (T . 0.5).

Results for general coordination games. To cover a better unders-
tanding of this multilayer model, we extend our analysis to a general
coordination game setup whose normal form representation is shown
in Table 1 with a 5 1, d 5 2 and b . 0. Due to their social and strategic
implications this class of games has been studied analytically in an
evolutionary framework31,32 and by the numerical simulations on
several network topologies6–8. Previous numerical results have shown
that in a fully connected network, the agents using the (UI) update rule
tend to coordinate on (L, L), the risk dominant equilibrium whenever
b . 1 and in the case of a complex network, the (UI) update rule leads
to frozen disordered configurations. In our multilayer model with the

dynamic update rule based on social and strategic implications, our
numerical results are again quite different from these previous results
and also are determined by the doubtful behavior of the populations.
The same analysis made in the last section for pure coordination games
leads too to the same conclusion that states of intralayer coordination
are absorbing states of the dynamics. The state of interlayer coor-
dination is another absorbing state that implies intralayer coordination.

As already seen in the previous section of pure coordination
games, also in the general coordination games the herding popula-
tions are not able to reach intralayer coordination neither for fully
connected nor for random (ER) networks. In contrast to Ref. 33
where the ‘‘wisdom of groups’’ promotes cooperative behavior in
social dilemmas, in coordination games the sensitivity to the social
pressure is a detrimental factor in any of the two network topologies.
Similarly, for skeptical populations, the final configuration of intra-
layer coordination is always reached and depending on the network

Figure 2 | Average over 500 realizations of the densities of intralayer active links for each population A and B and interlayer active links between
A and B for each T g [0.4, 1] with NA 5 NB 5 1000 in a fully connected network (left panel) and in a random (ER) network with kAA 5 kBB 5 kAB 5 10
(right panel).

Figure 3 | Number of realizations, out of a total of 500 realizations, that the populations A and B reach coordination using strategy R (blue), using
strategy L (green) and are not able to coordinate (red) as function of T for a fully connected network(left panel) and kAA 5 kBB 5 kAB 5 10 (right panel).
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topology the state of interlayer coordination is also accomplished. As
an example, Fig. 5 shows the densities of intralayer and interlayer
active links for a general coordination game with b 5 1.1. For T . 0.5,
the system reaches interlayer coordination almost 70% of the realiza-
tions in the fully connected network (left panel of Fig. 5). This pro-
portion is higher than the 50% observed in the case of the pure
coordination games. In the random (ER) network, the final config-
uration of the system is always of interlayer coordination, see right
panel of Fig. 5.

The main point at issue here is whether Pareto-dominant equilib-
rium can be coordinated by the agents. In the game theoretical
approach, the coordination on the risk-dominant equilibrium (L,L)
is unavoidable whenever b . 1. In our framework, skeptical indivi-
duals are those able to reach intralayer or interlayer coordination,
however the key point is to find out whether such coordination favors
the desirable socially efficient outcome, that is the (R,R) Pareto dom-
inant coordination. First, let us analyze what happens in the complete
multilayer network. As the initial strategies are uniformly randomly

distributed with proportion 0.5, almost all individuals are at least
strategically unsatisfied and willing to change their strategies.
According to the update rule, an unsatisfied agent who is playing L
in a fully connected network will change her strategy to R only when

bv

2
pL

{3 where pL is the proportion of agents playing L in her

learning network. Due to the initial conditions pL < 0.5 the para-
meter b must be approximately lesser than 1 to make agents who are
playing L change to R. Panel (a) of Fig. 6 shows, for a fully connected
network, the number of realizations that the system reaches inter-
layer coordination on L, on R, and intra but not interlayer coordina-
tion as function of b. We observe that as b increases, the number of
realizations reaching interlayer coordination on L increases. As a
consequence, the rate of coordination on the Pareto dominant equi-
librium (R, R) decreases with b, with the most likely coordination
shifting from Pareto dominance to risk dominance around b*5 1, as
expected. Noteworthy that the range of values of b in which the state
of polarized layers can be reached is also around b 5 1, where the two

Figure 4 | Time series of the proportion of agents playing L in A (blue) and L in B (red) in a random (ER) network with kAA 5 kBB 5 kAB 5 1000 and T
5 0.3 (left panel) and T 5 0.8 (right panel).

Figure 5 | For a general coordination game with b 5 1.1, average over 500 realizations of the densities of intralayer active links for each population A
and B and interlayer active links between A and B for T g [0.4, 1] in a fully connected network (left panel) and a random (ER) network with
kAA 5 kBB 5 kAB 5 10 (right panel).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7776 | DOI: 10.1038/srep07776 5



Nash equilibria have the same expected payoff. In panels (b) and (c)
of Fig. 6 for ER networks, we show that such threshold b* in which
the chance of coordination on R starts to decrease is higher the lower
the average number of links per node is. The effect of locality not only
favors interlayer coordination over only intralayer coordination
(polarized layers) but also favors Pareto dominant coordination. In
our numerical simulations (not shown) we find that already for kAA

5 kBB 5 kAB 5 10 the agents manage to coordinate on the Pareto
dominant equilibrium (R, R) for any value of b g [0.5, 2], overcom-
ing the frozen disordered configurations reported in previous works.
The strong effect of locality is due to the possibility that pR . T for an
agent who is playing L. In such case she will be totally unsatisfied and
will switch her strategy to R. In our multilayer model, the locality for
skeptical populations is the driving force that favors interlayer coor-
dination on the socially efficient outcome, that is the Pareto dom-
inant strategy.

Discussion
In this paper we have introduced a multilayer network model in
which agents of two populations play and learn in two disaggregated
networks and update their strategies heeding social and strategic
motivations. A network between the two populations is for playing
according to a coordination game. There each agent receives an
aggregate payoff as a result of her interaction with each of her playing
neighbors. The other network is for learning in which each agent can
update her game strategy motivated by a feeling of social or strategic
dissatisfaction. When an agent is unsatisfied either socially or stra-
tegically, she can update her strategy imitating the strategy of the
most successful neighbor. The agent searches for such neighbor
looking inside her own population. We have shown that the degree
of social pressure calibrated by the level of doubts plays an important
role in the networks topologies considered. The skepticism about the
wisdom of crowd and the locality of interactions are the driving forces
for collaboration and social efficiency in both pure and general coor-
dination games.

For pure coordination games in a skeptical environment, each
population evolves towards a coordinated state in both fully con-
nected and random (ER) networks. However, in fully connected net-
works (non-local interactions) the populations eventually may
coordinate each other in the opposite strategy leading to a polarized
multilayer network. In the case of general coordination games the
challenge is to elucidate whether the Pareto-dominant strategy, the
socially efficient outcome, can be established in the populations.
Previous results in well-mixed and structured populations tend to
favor the risk-dominant equilibrium in the parametric setting in
which the Pareto dominant equilibrium is also the riskier one. In

contrast, our simulation results show that the skepticism and the
local connectivity allow the populations to coordinate on the
Pareto-dominant equilibrium even in the riskier setting.
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26. Grujić, J., Fosco, C., Araujo, L., Cuesta, J. A. & Sánchez A. Social experiments in the
mesoscale: Humans playing a spatial Prisoner’s Dilemma. PLoS ONE 5(11),
e13749 (2010).
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