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Abstract. In this work we briefly review the Kovtun-Son-Starinet (KSS) computation of the ratio
n/s for quantum field theories with gravitational dual and the related conjecture that it is bound
from below by 1/47. We discuss the validity of the bound and the nature of its possible violations,
its relevance for RHIC, its connection with phase transitions and other related issues.

Keywords: Viscosity over Entropy Density, KSS Holographic Conjecture, Heavy Ion Collisions.
PACS: 11.15.Pg, 12.38.Mh, 25.75.q, 51.20.+d

INTRODUCTION

Probably one of the most astonishing and relevant discoveries of the last decade in the-
oretical physics was the AdS/CFT (Anti de Sitter/Conformal Field Theory) correspon-
dence [1]. This powerful tool makes it possible to get deep insights into the dynamics of
strongly interacting gauge theories with a gravity dual in the limit N, — oo and A — oo,
where N, is the number of colors and A is the ’t Hooft coupling g?N,. According to
this holographic correspondence it is possible to relate some black-brane configurations
in higher dimensions to certain four dimensional conformal Quantum Field Theories
(CFT) at finite temperature. The thermodynamic properties such as temperature and en-
tropy of the CFT can thus be obtained from the corresponding Bekenstein definitions
for the black-brane. Moreover, not only the thermodynamics but also the hydrodynamic
behavior of the black-brane horizon can be identified with the CFT hydrodynamics. In
particular, by using the AdS/CFT correspondence it has been possible to compute, for a
very large class of four dimensional theories with gravity duals, the ratio [2]
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where 7] is the shear viscosity and s is the entropy density, dimensionally both scaling as
[E3] in natural units. From the CFT point of view, the standard relativistic hydrodynamic
equations [3], d,T#¥ = 0 for T*", the energy momentum tensor, can be understood as
the effective theory describing the dynamics of the CFT at large distance and time [4].
Following the philosophy of the effective theories it is possible to expand the energy-
momentum tensor in powers of the space-time derivatives. To zeroth order we get the
well known ideal fluid equations. Dissipative processes require going to the next order
where diffusion coefficients such as the shear viscosity 1, the bulk viscosity { and
the heat conductivity k appear together with other possible diffusion coefficients D;.
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From the linearized equation of motion in momentum space at this order one can get the
dispersion relation of the mechanical excitations, which are two transverse modes with

_ .. n
(k) = z—ngPk , (2)

(where € is the energy density and P the pressure) and one sound mode

i (4 K
o) =c—3 (51+¢) 75 ®
where ¢; = \/dP/de is the speed of sound. The imaginary part in the right hand-side
entails a damping of the corresponding mode, and its size therefore measures the ability
of the fluid to dissipate perturbations. Since for vanishing chemical potential we have
the thermodynamic equation € + P = T's, /s governs the right hand side and is a good
way to characterize the intrinsic ability of a system to relax towards equilibrium [5],
especially for { = 0 which is, in particular, the case of CFT.

COMPUTING 1 /s FROM THE ADS/CFT CORRESPONDENCE

How is it possible to compute the diffusion coefficients? The traditional way is by
using kinetic theory, more precisely the Boltzmann equation or its quantum version, the
Uehling-Uhlenbenck equation, written in terms of the elastic cross-sections, and which
can be solved by the Chapman-Enskog method to first order in the perturbation out of
equilibrium [6]. When can we then apply these kinetic theory methods?

The main condition is that the mean free path must be much larger than the interaction
distance, which typically occurs for low density, weakly interacting, systems. Then one
can find the well known and somewhat counter-intuitive result establishing that the
greater the interaction, the lesser the viscosity.

From a more modern prospective, it is possible to use the so called Kubo formulae.
The corresponding shear viscosity (for short, viscosity in the following) can be obtained
by analyzing linear response theory and coupling the fluid to gravity by using an appro-
priate lightly curved space-time background. Then one can find
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This equation can be used to compute 1 /s in the context of the AdS/CFT correspon-
dence. In order to do that one starts from a CFT with gravity dual. For example for
N =4,SU(N,) Super Yang-Mills one can consider the metric in five-dimensional AdS

r2

4 2
T, R
ds* = — | = (1=2 )di* +d* +dy* +d2 | + ——— dr*. 5
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The dual theory is a CFT at temperature 7' equal to the Hawking temperature of the
black-brane and Bekenstein entropy S = A /4Gy, where A is the (hyper)area of the black-
brane horizon located at r = ry. Now, following Klebanov [7], consider a graviton polar-

ized in the x-y direction and propagating perpendicularly to the brane. The absorption
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cross-section of the graviton by the brane measures, in the dual CFT, the imaginary part
of the retarded Green’s function of the operator coupled to the metric i.e. the energy-
momentum tensor. Then it is possible to find
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n (6)
where ¢(0) is the graviton absorption cross-section at zero energy. This cross-section
can be computed classically by using linerized Einstein equations and it turns out equal
to the horizon area so that one finally arrives to the formula shown in Eq.(1). Quite
remarkable is that the result then does not depend on the particular form of the metric.
It is the same for Dp, M2 and M5 branes. Basically the reason is the universality of the
graviton absorption cross-section.

THE CONJECTURE OF KOVTUN, SON AND STARINETS

From the result for the 1/s ratio for theories with a gravity dual, Kovtun, Son and
Starinets (KSS) proposed the conjecture that, for a very wide class of systems, including
those that can be described by a sensible (i.e. ultraviolet complete) quantum field theory,
the above ratio has the lower bound

n 1

s = ar ™
There are several pieces of evidence supporting this conjecture. The first one is based
on the Heisenbeg uncertainty principle and kinetic theory. The viscosity is proportional
to the energy density € and the mean free time 7. On the other hand the entropy density
is proportional to the number density n. Therefore 11/s ~ €t/n ~ ET where E is the
average particle energy. Thus, from the Heisenberg principle for time-energy, we obtain
the bound modulo the numerical constant.

Another important hint to establish the bound comes from the computation done by
Buchel, Liu and Starinets [8] where they obtained the leading correction to the 71/s
parameter in inverse powers of the °t Hooft coupling using the o corrected low energy
effective action for the type IIB string theory, dual to the 4" =4, SU(N.) SYM. They
found the beautiful result

n 1 135£(3)

Pl 1+8(2g2Nc)3/2+m , ®)
where {(z) is the Riemann §-function so that {(3) = 1.2020569... is the Apéry constant.
Therefore the correction to the ratio 17 /s is positive and diverges for the "t Hooft coupling
A approaching zero, and saturates the bound for A growing to infinity. Assuming a
smooth extrapolation between the two regimes one can infer the validity of the bound
for any value of A. Finally, we have knowledge of no fluid that undercomes the bound.
For all fluids examined so far, the 1 /s ratio is well above the bound for the range of
measured temperatures and pressures. This includes also superfluid helium and even
trapped °Li at strong coupling [9].
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An obvious consequence of the KSS conjecture (if correct), is the absence of perfect
fluids in Nature, since the entropy density will only vanish at absolute zero. Is this phys-
ically acceptable? Of course, ideal fluids have been a source of interesting paradoxes.

Already in non relativistic fluid dynamics one encounters the d’ Alembert paradox (an
ideal fluid with no boundaries exerts no force on a body moving through it, i.e. there is
no lift force). From it follows the unconformable impossibility of flying or swimming.
Of course, the difficulty disappears if there are no perfect fluids.

As a more recent conceptual difficulty of ideal fluids, we recall that it has been pointed
out that the accretion of an ideal fluid onto a black hole could violate the Generalized
Second Law of Thermodynamics [10], suggesting a possible connection between this
law and the KSS bound.

In conclusion, the existence of a minimum viscosity would put to rest a number of
problems in fluid mechanics, so the bound is not unwelcome by theorists.

THE RHIC CASE

The 3834 m long Relativistic Heavy Ion Collider (RHIC) is operated at the Brookhaven
National Laboratory (BNL) for, among others, Au+Au collisions (A= 197), and can
reach a center of mass energy per nucleon of E = 200 GeV with a luminosity . =
2 % 10%° cm™2 s~!. It has four experiments called STAR, PHENIX, BRAHMS and
PHOBOS. We highlight some (preliminary) results from RHIC:

« Thermochemical models describe well the different particle yields fitting to 7 =
177 MeV and baryon chemical potential tp =29 MeV for Ecy = 200 GeV per
nucleon.

« From observed transversity and rapidity distributions, the Bjorken model predicts
an energy density at time 7p = 1 fm of 4 GeV fm—> whereas the critical density is
about 0.7 GeV fm 3, i.e. the matter created may be well above the threshold for
Quark Gluon Plasma (QGP) formation.

« A surprising amount of collective flow is observed in the outgoing hadrons [11],
both in the single particle transverse momentum distribution (radial flow) and in
the asymmetric azimuthal distribution around the beam axis (elliptic flow).

For our purposes, the main conclusions derivable from these preliminary results are:

« Fluid dynamics with very low viscosity reproduces the measurements of radial and
elliptic flow up to transverse momenta of 1.5 GeV.

« Collective flow is probably generated early in the collision, probably in the QGP
phase before hadronization. The QGP seems to be more strongly interacting than
expected on the basis of perturbative QCD and asymptotic freedom (hence the low
viscosity). An alternative exists, fast, instability-driven, equilibration [12].

+ Some preliminary estimations of 71 /s based on elliptic flow [11, 13] and transverse
momentum correlations [14] seem to be compatible with value close to 0.08 (the
KSS bound). This would make it the most perfect fluid known.
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CAN THE KSS BOUND BE VIOLATED?

Several avenues to theoretically break the KSS bound have been pursued. If one tries to
undercome a bound on 7 /s, the possible strategies are to either decrease the viscosity
at fixed entropy density, or to increase the entropy density at fixed viscosity. We now
briefly comment on these attempts and their status.

Increase the Entropy Mixing Several Species

This possibility was realized already in [15] and has been exploited in detail in [16] not
without some controversy [17]. The basic idea is that in principle it could be possible to
avoid the KSS bound in a non-relativistic system with constant cross section and a large
number g of non-identical, degenerate particles, by increasing the Gibbs mixing entropy.

It is possible that the KSS bound applies only to systems that can be obtained from
a “sensible” (UV complete) QFT. Is it possible to find a non-relativistic system coming
from a sensible QFT that violates the KSS bound for large degeneracy? As an interesting
example we can consider the case of a massive Non Linear Sigma Model (NLSM) based
on the coset SO(g+1)/SO(g). Then in the non relativistic limit it is possible to find [18]

n_ 80v2m f* m 1

s 11 m*T ) (logng?%) ’

©))

where m is the mass of the g degenerated pseudo Goldstone bosons, f is the NLSM scale
parameter, n is the particle number density and A is the thermal de Broglie wavelength
A = +/2m/mT. The above result is valid only in the region T < m, nA> < gand m ~ f.
Inside this region the KSS bound is satisfied provided g is not very large, but it fails if g
is exponentially large.

The NLSM is not an UV complete theory but in principle we have at least two ways
to complete it.

First, simply QCD, since the above NLSM is the lagrangian of Chiral Perturbation
Theory at the lowest order with g = 3 for Ny = 2 degenerated quarks since SU(2) x
SU(2)/SU(2) = SO(4)/SO(3). This corresponds to having three Goldstone bosons
(pions). Then it would appear that increasing the number of the QCD flavors, which
implies increasing the number of Goldstone bosons, one could undermine the KSS
bound according to the formula above. However this is not the case since, as it is
well known, one cannot increase the QCD flavor number without changing the sign
of the derivative of the 8 function at the origin, B(g) = —g>(11 —2N;/3)/167> + ..
(here g is the QCD coupling, not the pion degeneracy) and presumably QCD is not well
defined outside the asymptotic freedom regime. In addition the above formula applies
only for NLSM coset SO(g + 1)/SO(g) whilst the chiral QCD coset is SU(Ny)z, x
SU(N¢)r/SU(Ny)r+r- Both families of cosets meet only for g =3 and Ny =2 but not in
the general case. Thus the above results do not describe low-energy QCD for g different
from 3.
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The other possibility for completing the NLSM is by introducing the corresponding
Linear Sigma Model (LSM) since the NLSM can be considered as the low energy limit
of the LSM for large o (Higgs) masses and the LSM is, at least perturbatively a well
defined renormalizable QFT. In this case, and for the same regime of validity than in
the NLSM, we get the same result for 17/s. Thus, for an exponentially large g we can
violate the KSS bound. Is there any way out for the KSS conjecture? In principle there is
one. The above computation only considered binary interactions, but even at very small
temperatures we have an exponential number of non-elastic processes which make the
system metastable with a very weak tendency to relax to a state where the density is fixed
by the condition 4 = m and where the result above does not apply any more. Another
possibility to keep the validity of the KSS bound is the almost established triviality of
the LSM which would ruin this way to complete the NLSM through a sensible QFT
theory.

FIGURE 1. A way to violate the KSS bound is by employing the logarithmic increase of the mixing
entropy in a multicomponent gas. This might be achieved with a factorially large number of molecules,
here a cartoon of fullerene with two substitutions. However, simple estimates [18] indicate that it will
be difficult to achieve fast enough growth of the number of species with the molecule size (since the
sublimation temperature and hence viscosity also grow with the size).

The concept of multiple substitutions in complex molecules, yielding an exponen-
tially (factorially) large number of isomers, is illustrated in figure 1. Although we have
not been able to clearly identify a family of currently synthesyzed molecules, because
of the complicated interplay of tightness of binding, excluded volume, sublimation tem-
perature, etc. that vary together with the number of substitutable nodes, the possibility
remains a priori. It is not clear how the argument of ultraviolet completion and a discus-
sion about the completion of the standard model would affect a non-relativistic gas (the
relevant case for most of our physical reality). From a practical point of view, although
we know of no fluid that violates the bound, it is not obvious how this empirical fact
is tied to the “weak” form of the conjecture that requires good UV behavior, since by
arguments of scale separation, the low-energy effective theory would be all needed to
describe reality to a given precision. Investigations continue.
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Decrease the Viscosity by Altering the Dual Gravitational Action

Another possible source of violation of the bound comes from considering changes of
the scattering cross-sections in the gas that decrease the viscosity.

From the point of view of the AdS/CFT correspondence, the bound is saturated for
standard general relativity. However, on general grounds, one expects to have higher
derivative corrections to the Einstein-Hilbert action. For example one could consider the
case of a theory with a gravity dual described at low energy by a Gauss-Bonnet gravity
action

1 5 afGB 2 2
S = gagry = | 41/ (R 2N AR o)
(10)
where A = 76/L2. In this case it is possible to find ! [19]
n 1
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This result is non perturbative in Agp and shows that the bound can be violated for
positive Agg. One could argue that this result is suspicious since it does not make sense
for Agp > 4. However in [20] it is shown that, in order to avoid microcausality violations
in the corresponding CFT we need to have

16 /1
T>2(=). (12)

s — 25 \4r
This leaves room for violation of the KSS bound but requires Agg < 9/100 for the
Gauss-Bonnet theory to be consistent. However there could be other additional consis-

tency constraints in the theory forcing the Agp parameter to vanish or be negative thus
reestablishing the validity of the KSS bound.

Unitarity Invalidates Certain Reported Violations

From the QFT point of view, a way to decrease the viscosity without affecting the
entropy in excess is to increase the interparticle interaction. This has been remarked in
the past, in particular in the context of the pion gas. We however have shown that the
method fails because unitarity imposes a bound on the cross-section.

Thus, the extrapolation of the low-energy effective theory for pions (ChPT to first or
second order) to higher energies, ceases to be valid when resonances in the meson gas
are reached (o, p, etc.). A properly unitarized method such as the Inverse Amplitude
Method (IAM) has been reported in reference [21] and is plotted in figure 2, where we
have extended our past calculations to include strange mesons (K, 1) and their lowest
resonances through the SU(3) IAM [22].

! The authors thank Juan Maldacena for bringing our attention to these references.
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n/s in a Meson Gas

%***********
* *
~00000 A ~ * ok % * % 102k < 1
2l o0OY " 7T YOU00H S
Yo 00004~ ] iR —
e} “~Y00o00 S T HTH SO
- - \~~ —_ zxzzn:zk:0.01
1 : Sao Zn:Zn:Zk:O'gg
vE e ] 10 s.. - - 2=2,=0.99
f\‘f_ o S~o. |~ KsS bound
= Ay
0 <> ___________
10° O LET ]
[ * 2=0.1 100 b )
o O =02 e
o 3=05 ~ae
o'k S et ] e L
1/4n O ¢ T
<><><><><><><> 107" 1an
0 2 4 6 8 10 0.03 0.05 0.1 0.16

T T (GeV)

FIGURE 2. Reported violations of the 1 /s holographic bound in the meson gas at high temperature
are spurious: in this graph we show how the cross section computed within unitarized Chiral Perturbation
Theory by means of the Inverse Amplitude Method, respects the bound 1/47 for all conceivable tempera-
tures that the hadron gas might attain (right). Violations reported are due to an unphysically small (large)
viscosity (cross section) induced by unitarity violations. For comparison, we show a similar calculation
with the unitarized Linear Sigma Model (left) that yields the same result.

1/s AND THE PHASE TRANSITION

Recently, Csernai, Kapusta and McLerran [23] made the observation that, in all systems
whose L(T) plot has been examined, the minimum of 7 /s and the liquid-gas phase
transition happen at the same temperature. This fact can be roughly understood because
in a gas, as the temperature increases, there is more efficient momentum transport and
then the viscosity goes to infinity. However in a liquid, which can be seen as a mixture
of clusters and voids, molecules swap voids less efficiently at low temperature. Then
as temperature decreases there are less voids and consequently more shear momentum
transport due to adhesivity among layers, so that the viscosity takes also off to infinity.

Therefore somewhere between the two phases the viscosity should have a minimum.
Empirically, for standard fluids, 1 /s is found to reach its minimum at or near the critical
temperature. Thus, apparently there is a connection between 1) /s and the phase transition
but we do not have any clear theory of this [24]. For example we ignore if there are
universal critical exponents for the different kind of phase transitions. A very interesting
possibility is that the same behavior observed in ordinary liquids could also occur in
QCD. If this were the case, an experimental determination of the 1/s minimum could
give information about the QCD phase transition and whether there is a critical end-
point. This direction has been explored in [25].

The hadron-gas phase has been examined with great care by us [24] and close col-
leagues [26, 27], so that great improvements are not to be expected. The quark and
gluon plasma phase, however, is less known in the strong-coupling regime and requires
more work. The situation is represented in figure 3. At high baryon chemical potential
one would expect a jump in the ratio 17/s (by analogy with common substances) at a
first order phase transition, but a continuous minimum at low baryon-density where one
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FIGURE 3. By analogy with common, human-scale fluids, /s is expected to have a minimum but
not a discontinuity at the predicted cross-over between the hadron phase and the quark and gluon plasma
phase. We have reexamined the computation in the hadron phase with more detailed than past work, but a
discontinuity remains, maybe due to the uncertainties in the quark-gluon plasma side. This observable is
a promising tag of a possible critical end point in the QCD phase-diagram.

expects a cross-over. Current computations of 7] /s from the hadron phase are quite ma-
ture, but the quark-gluon plasma has not yet been refined beyond high-T perturbation
theory.

CONCLUSIONS AND OPEN QUESTIONS

The AdS/CFT correspondence makes possible to study new aspects of QFT such as
viscosity and other hydrodynamic behavior. The KSS bound set a new limit on how
perfect a fluid can be coming from holography which was completely unexpected. From
the experimental stand point there is no counter example for this bound. From the
RHIC data we observe a large amount of collective flow that can be properly described
by hydrodynamic models with low viscosity compatible with the KSS bound. Some
theoretical models suggest that unitarity could be related in some way with the KSS
bound. There is a theoretical counter example of the bound in a non-relativistic model
with large degeneracy. However possibly the model is not UV complete because of the
triviality of the LSM. This could be an indication that a more precise formulation of the
bound is needed.

Some open questions are the following: Is the bound correct for some well defined
formulation? Could it be possible to really measure 1 /s at RHIC with precision enough
to check the KSS bound? Are there any connections between the KSS and the entropy
Bekenstein bounds? How are the minima of 71 /s related to phase transitions? Could it
be considered an order parameter?
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