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2 Dislocations in crystals

Dislocations are line defects in an elastic crystal [6]. When a sufficiently large
stress is applied, these dislocations glide along the crystallographic planes of the
crystal and interact with other dislocations they find on their way. In addition,
new dislocations are observed to be generated at certain nucleation sites. As
a result they appear typically in very large numbers (1012 dislocations/cm2 in
heavily worked metals) and modify the mechanical properties of the material. In
particular, dislocations are thought to control the plastic properties of crystalline
solids (at low temperature).

It is well known that, under an applied stress, crystals deform elastically up
to a critical value of this stress, known as the yield stress. For higher stresses,
the deformation becomes plastic (irreversible) and ends up eventually in frac-
ture. The yield stress is thought to be the stress at which large numbers of
dislocations start moving. Once in the plastic regime, the generation, motion,
and interaction of dislocations results in the formation of complicated networks
of defects in the microscopic structure of the material. When these networks are
so dense that dislocations cannot move freely, the crystal hardens (work hard-
ening). This effect is very important when working with metals, since heavily
worked metals are stronger than unworked metals.

Dislocations can be described in many different ways, depending on the
lengthscale on which they are viewed. At the microscopic level, they appear as
defects in the crystalline lattice. Then, if the separation between dislocations
is not too small, there is a mesoscopic scale at which the dislocations may be
modelled as line singularities of the elastic stress evolving in a continuous ma-
terial. Finally, at a macroscopic scale containing large numbers of dislocations
we can think in terms of a continuous dislocation density.

2.1 Continuous models for pile-ups

In metal plasticity, we can define an outer length scale as that on which dislo-
cations can be regarded as a line singularity, i.e. the outer equations are the
Navier equations of linear elasticity. The second order strain tensor is defined

ε = (∇u)S

where u is the elastic displacement, and the superscript S denotes the ’symmet-
ric part of’. The strain tensor is related to the stress tensor through Hooke’s
law

σ = λtr(ε)I + 2µε

where λ and µ are the Lame constants. Finally, the equations of elastic equilib-
rium are

div(σ) = 0.

An isolated dislocation can be modelled as a singular solution of these equa-
tions in which the displacement is not single valued [1]. This is the classical
Volterra model of dislocations. In general, they may be characterized by their
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tangent vector and a microscopic parameter known as the Burgers vector, which
measures the form of the local mismatch in the crystal lattice.

We obtain a model for the interaction of two families of edge dislocations.
We take the first family to be tangent to the z-direction and Burgers vector in
the x-direction, and the second family to have tangent in the y-direction and
Burgers vector in the x-direction. Thus, the first family has the xz-plane as its
slip plane, while the second family has the xy-plane as its slip plane, and if we
assume that the dislocations remain rectilinear then both families will glide in
the x-direction. We refer to them as ‘dislocations type 1’ and ‘dislocations type
2’, respectively. By symmetry considerations, the problem can be reduced to a
one-dimensional problem [2], giving two populations with densities w1(x, t) and
w2(x, t), respectively. We want to determine how these density profiles evolve
with time.

Conservation of dislocations for both families yields [6]

∂w1

∂t
+

∂

∂x
(w1v1) = 0,

∂w2

∂t
+

∂

∂x
(w2v2) = 0,

where vi is the velocity of family i. Then, in the absence of any interaction
between the families we would close the model with velocity laws such as

v1 = sign(σ1,2)|σ1,2|γ ,
v2 = sign(σ1,3)|σ1,3|γ ,

In our setting, the first family of dislocations can be seen as a set of lines parallel
to the y-axis, and the second family is another set of lines parallel to the z-axis.
Both families move along the x-axis. However, as dislocations from the first
family move they must cut through the dislocations of the second family. We
suppose that there is a strong resistance to this cutting depending on the density
and we consider [2] velocity laws of the form

v1 = sign(σ1,2)(|σ1,2| − a
√
w1),

v2 = sign(σ1,3)(|σ1,3| − a
√
w2),

with a > 0. This is a system of conservation laws that may change type form
hyperbolic to elliptic. This corresponds to the onset of pattern formation, for-
mation of dislocation pile-ups. When regularized, we obtain a free-boundary
parabolic problem describing the process [6].

2.2 Lattice models for isolated defects

An elementary model for dislocation dynamics in crystal lattices is provided
by Frenkel-Kontorova type equations for the displacement un(t) of atoms from
their equilibrium position along a row in a cubic lattice

mu′′n + αu′n = d(un+1 − 2un + un−1)−Ag(un) + F.
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All the parameters are positive: m represents the atom mass, α friction, d elastic
springs between atoms (interaction strength), F applied force to set the defect
in motion. g(un) is a periodic function, whose period is given by the lattice
constant a. At equilibrium, all atoms are located at lattice positions separated
by a distance a in cubic lattices. Dislocations in this framework are represented
by a front like solutions, that is, solutions that grow from a stable zero z1(F/A)
of −Ag(z) + F to the next stable zero z3(F/A), passing through the instable
zero z2(F/A). When F = 0, z1(F/A) = 0 and z3(F/A) = a.

If friction is high, the motion is overdamped and we may set m = 0 to study
it. Once can find a threshold Fc(A) such that [3]

• If |F | ≤ Fc(A), there are stationary wave front solutions un increasing
monotonically from z1(F/A) at −∞ to z3(F/A) at ∞.

• If |F | > Fc(A) and is close to A, there are traveling wave front solutions
un(t) = u(n− ct) with wave speed c(F ) and profile u(z) solution of

−cu(z) = u(z − 1)− 2u(z) + u(z + 1)−Ag(u(z)) + F

increasing monotonically from z1(F/A) at −∞ to z3(F/A) at ∞. This
solution is unique modulo translations.

• traveling and stationary wavefronts cannot coexist.

Stationary wavefronts represent pinned dislocations. Traveling wavefronts rep-
resent moving dislocations. Fc(A) represents the Peierls stress needed to move
dislocations in the lattice. As |F | → Fc(A), c(F )→ 0, the profiles u(z) develop
steps and become discontinuous at Fc(A). This fact is related to a global bifur-
cation in the system, which is locally of saddle node type and can be used to
estimate velocities as |c(F )| ∼ α(Fc)(|F | − Fc(A))1/2, see [12].

In the absence of friction, or for small friction, we must study the problem
with inertia. For piecewise linear g, for instance, g(u) = u + 1 if u < 0 and
g(u) = u − 1 if u > 0, it is possible to construct explicitly all the branches
of traveling wave solutions [15]. In this case, the wave front profiles develop
wavy tails. In principle, different wave profiles and speeds are possible. In
practice, stability can be proven [16] for a family which displays oscillations
only in one tail, the leading edge is monotonic and whose speed surpasses a
critical value. We identify two thresholds, the static Peierls stress Fc(A), and
the dynamic Peierls stress Fd(A). As before, stationary wavefronts exist when
|F | ≤ Fc(A). Traveling wavefronts exist when |F | > Fd(A). Both coexist for
Fd(A) < |F | < Fc(A). Thus, the system displays hysteresis. As we increase the
applied force from zero, wavefront solutions representing dislocations start too
move when the force magnitude surpasses Fc(A). Once the lattices dislocation
is moving, we can decrease the force below Fc(A), it will still move until it falls
below Fd(A).

We can study two dimensional dislocations in a cubic lattice by means two
dimensional lattice models [11, 14]. In the simplest version, the displacement
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of the lattice points ui,j(t) in the direction of motion (say, the direction x) is
governed by

∂ui,j
∂t

= ui−1,j − 2ui,j + ui+1,j +A(sin(ui,j−1 − ui,j) sin(ui,j+1 − ui,j)), A > 0.

Solutions representing dislocations can be generated using elastic far fields of dis-
locations as initial and boundary conditions [11]. The system relaxes to station-
ary solutions that represent the corresponding lattice distortion. For instance,
if we choose initial and boundary conditions given by si,j = θ(i, j/

√
A) + Fj

where θ is the angle function from 0 to 2π and F > 0 is a control parameter,
we obtain stationary solutions representing edge dislocations for small F . As
F grows, stationary solutions will disappear and traveling patterns will be ob-
served [14]. Notice that if we linearize the spatial operator about si,j , we have
a discrete elliptic problem for F small but it changes type as F grows.

The idea can be extended to fully 2D and 3D situations by developing ‘dis-
crete periodized elasticity lattice models’ [18, 23]. We discretize the derivatives
appearing the elasticity stress tensor with the required crystal symmetry by
means of finite differences in the principal lattice directions, with step equal to
the lattice constant, and then periodize, that is, we replace them by periodic
functions of the differences, with lattice period. Then, we derive the motion
equations with the resulting discrete and periodic stress tensor. For instance,
in two dimensions we find

Mu′′1 = C11D
−
1 [g(D+

1 u1)g′(D+
1 u1)] + C12D

−
1 [g(D+

2 u2)g′(D+
1 u1)]

+C44D
−
2 [(g(D+

2 u1) + g(D+
1 u2))g′(D+

2 u1)],

Mu′′2 = C11D
−
2 [g(D+

2 u2)g′(D+
2 u2)] + C12D

−
2 [g(D+

1 u1)g′(D+
2 u2)]

+C44D
−
1 [(g(D+

1 u2) + g(D+
2 u1))g′(D+

1 u2)].

Similar equations are derived for 3D lattices. Dislocation solutions of the cor-
responding lattices are generated using the known elastic far field for each type
of crystal [18, 23].

2.3 Nucleation in lattices

We can use discrete periodized elasticity models to gain insight on the math-
ematical processes behind defect nucleation. Unlike the models used for large
scale molecular dynamics simulations, which implement cut offs to reduce the
computational cost, these models involve smooth nonlinearities and are amenable
to analysis.

Consider a bidimensional cubic lattice of lattice constant a = 2π. Let ui,j(t)
be the displacement of point (i, j) in the x direction, governed by

m
∂2ui,j
∂t2

+ α
∂ui,j
∂t

= ui−1,j − 2ui,j + ui+1,j

+A(sin(ui,j−1 − ui,j) sin(ui,j+1 − ui,j))
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in a square lattice i = 1, . . . , Nx, j = 1, . . . , Ny. We enforce boundary conditions
ui,j = F (j − (Ny + 1)/2). This is equivalent to ’shearing’ the lattice [24].
As F grows, we observe that the initial zero solution for F = 0 changes into
slowly varying stationary solutions until we reach a point Fc past which the
lattice structure is distorted in two main different ways. Linearizing the problem
at F = Fc we find a zero eigenvalue for the resulting matrix, while all the
eigenvalues are negative for F < Fc. The branch of stationary solutions si,j(F )
is stable. At F = Fc two new branches appear. The system undergoes a
pitchfork bifurcation [24].

Changing the geometry we can study other geometries, as for instance, crys-
tal indentation by means of indenters. Now vi,j(t) denotes the vertical displace-
ment, governed by

m
∂2vi,j
∂t2

+ α
∂vi,j
∂t

= vi−1,j − 2vi,j + vi+1,j

+A(sin(vi,j−1 − vi,j) sin(vi,j+1 − vi,j))

in a square lattice i = 1, . . . , Nx, j = 1, . . . , Ny. We set the boundary conditions
representing a ’push down’ from the central top part:

• Left-hand side: v1,j = v0,j .

• Right-hand side: vNx,j = vNx+1,j .

• Left-hand-side of the top layer (1 ≤ i < p1): vi,Ny
= vi,Ny+1.

• Right-hand-side of the top layer (p2 < i ≤ Nx): vi,Ny
= vi,Ny+1.

• Bottom layer of the domain: vi,0 = 0.

• Central atoms (p1 ≤ i ≤ p2) are pushed downwards according to: vi,Ny+1−
vi,Ny

= −f(i), where f has a triangular profile, pointing downwards, with
magnitude F > 0.

As F grows, we observe that the initial zero solution for F = 0 develops local-
ized lattice distortions that travel downwards. As we decrease F to zero the
distortions travel upwards and may disappear [32]. The branch of stationary
solutions that starts at F develops bifurcations at specific values of F at which
lattice with different distortions are created. Such new branches are stable for
some ranges of F , while the defects simply travel. The configuration bifurcates
at new F values, new distortions are created, that travel for while, and the
process is repeated as F grows. When we decrease F , the process is reversed.
Created distortions travel upwards, and disappear.

3 Propagation of biological impulses

Understanding wave propagation in discrete excitable media is challenging be-
cause of poorly understood phenomena associated with spatial discreteness. The
study of the transmission of nerve impulses along myelinated axons and muscle
contraction are paradigmatic examples.

6



3.1 Myelinated nerves

Myelinated nerve fibers, such as the motor axons of vertebrates, are covered
almost everywhere by a thick insulating coat of myelin. Only a fraction of the
active membrane is exposed, at small active nodes called Ranvier nodes. The
myelinated axons of motor nerves can be very long, and contain hundreds or
thousands of nodes. The wave activity jumps from one node to the next one
giving rise to “saltatory” propagation of impulses. Saltatory conduction on
myelinated nerve models has two important features. One is the possibility of
increasing the speed of the nerve impulse while decreasing the diameter of the
nerve fiber. The other is propagation failure when the myelin coat is damaged,
which causes diseases such as multiple sclerosis.

3.1.1 Hodgkin-Huxley equations for myelinated axons

A myelinated nerve is a sequence of exposed Ranvier nodes separated by regions
covered with myelin sheaths. Myelin is considered to be a perfect insulator.
Then, the nerve axon can be represented by an equivalent circuit where C and
R represent lumped resistance and capacitance. Vk, Ik and Iion(k) represent
the membrane potential, internodal current and ionic current at the k-th node.
Applying Kirchoff’s laws to the circuit yields:

Vk−1 − Vk = RIk, Ik − Ik+1 = C
dVk
dt

+ Iion(k)

Adopting at each node the Hodgkin-Huxley expression for the ion current, we
obtain the discrete Hodgkin-Huxley model for a myelinated axon:

C dVk

dT + Iion(Vk,Mk, Nk, Hk) =
D(Vk+1 − 2Vk + Vk−1),

dMk

dT = λMΛM (Vk)(M∞(Vk)−Mk),
dNk

dT = λNΛN (Vk)(N∞(Vk)−Nk),
dHk

dT = λHΛH(Vk)(H∞(Vk)−Hk),

where the index k designs the k-th node of the fiber. Here, Vk is the deviation
from rest of the membrane potential, Nk is the potassium activation, Mk is the
sodium activation and Hk the sodium inactivation. The ion current is given by:

Iion(V,M,N,H) = gNaM
3H(V − V Na,R)

+gL(V − V L,R) + gKN
4(V − V K,R).

The fraction of open K+ channels is computed as N4
k . The fraction of open

Na+ channels is approximated by M3
kHk. The parameters have the following

interpretation. gNa and gK are the maximum conductance values for Na+

and K+ pathways, respectively. gL is a constant leakage conductance. The
corresponding equilibrium potentials are V Na, V K and V L, respectively. Then,
V Na,R = V Na − V R, V K,R = V K − V R and V L,R = V L − V R, where V R
is the resting potential. C is the membrane capacitance. The coefficient D =
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1
L(ri+re) = 1

R , where L is the length of the myelin sheath between nodes and

ri, re the resistances per unit length of intracellular and extra-cellular media.
This model is adequate for the long axons of peripheral myelinated nerves.

Numerical simulations representing the propagation of nerve impulses are pre-
sented in [19], where an asymptotic construction of pulse like solutions is also
given. Nerve impulse propagation is shown to fail when the leading front of
the pulse is pinned [12], which happens when the myelin sheath deteriorates
(multiple sclerosis) or in the presence of drugs, see simulations in [19].

3.1.2 Discrete FitzHugh-Nagumo equations

The discrete Fitz Hugh-Nagumo system is a simplification of the Hodgkin-
Huxley model for myelinated nerves useful to gain qualitative understanding
of the mathematical clues of successful pulse propagation and propagation fail-
ure [12, 13]:

duk
dt

= d (uk+1 − 2uk + uk−1) + f(uk)− vk,

dvk
dt

= ε (uk −Bvk),

k = 0,±1, . . . . Here uk and vK are the membrane potential and the recovery
variable (which acts as an outward ion current) at the kth excitable membrane
site (node of Ranvier). The cubic source term f(uk) is an ionic current, and the
discrete diffusive term is proportional to the difference in internodal currents
through a given site. The constant B is selected so that the source terms in the
FHN system are O(1) for uk and vk of order 1, that the only stationary uniform
solution is uk = 0 = vk, and that the FHN system has excitable dynamics.
The constant ε > 0 is the ratio between the characteristic time scales of both
variables. We assume ε� 1, that is, fast excitation and slow recovery.

3.2 Morris-Lecar model for muscle fiber contraction

Similar models are used to describe the contraction and recovery of muscle
fibers. The Morris-Lecar model is given by

dvk
dt

= D(vk+1 − 2vk + vk−1) + f(vk, wk)− 2I,

dwk
dt

= λ cosh(
vk − V3

2V4
)
[
1 + tanh(

vk − V3

V4
)− 2wk

]
,

where the index k denotes the k-th site and:

f(v, w) = 2w(v − VK) + 2gL(v − VL) + gCa
[
1 + tanh(

v − V1

V2
)
]
(v − 1).

vk is the ratio of membrane potential to a reference potential and wk is the frac-
tion of open K+ channels. The time scale is gK

2Cm
, gK being the K+ conductance

and Cm the membrane capacitance.
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This system is a reduced version of the full Morris-Lecar model, which in-
volves one more fast variable mk. It exhibits a rich dynamical behavior de-
pending on its stationary solutions. There are two possibilities. It there is a
unique stable constant solution, the system displays excitable dynamics. When
it happens to be unstables, the system develops self-oscillations and displays
synchronization phenomena [20].

4 Propagation of electric impulses in semicon-
ductors

Semiconductors are materials of great interest in microelectronics, and are the
basis of many devices that exploit the formation of patterns and oscillations in
the electric field.

4.1 Discrete models for domain walls in superlattices

Semiconductor superlattices are formed by a sequence of layers of different semi-
conductor materials. The dynamics of domain walls separating regions with
different electric field in semiconductor superlattices is described by systems of
the form

dEi
dt

+
v(Ei)

ν
(Ei − Ei−1)− D(Ei)

ν
(Ei+1 − 2Ei + Ei−1) = J − v(Ei),

for the electric field Ei at well i. Here, v,D are positive functions and ν > 0 is
large. v is a cubic, it grows from 0 to a local maximum, decreases to a positive
minimum, and increases to infinity later. For a range of J , we have three zeros
z1(J) < z2(J) < z3(J), two of which are stable. For ν large enough, we can
construct wavefront solutions [4] and the situation is similar to that described for
one dimensional discrete dislocation models. We find thresholds Jc1(ν) < Jc2(ν)
such that [8]

• If Jc1(ν) < J < Jc2(ν), there are stationary wave front solutions Ei in-
creasing monotonically from z1(J) at −∞ to z3(J) at ∞.

• If Jc1(ν) > J or J > Jc2(ν), there are traveling wave front solutions
Ei(t) = E(i− ct) with wave speed c(J) and profile E(z) increasing mono-
tonically from z1(J) at −∞ to z3(J) at∞. Such waves travel with speeds
of opposite sign for each range of J , some of them in the same sense as
electrons, some contrary to them.

• traveling and stationary wavefronts cannot coexist.

Stationary wavefronts represent pinned domain walls. Traveling wavefronts rep-
resent moving domain walls. As J → Jc1(ν) or J → Jc2(ν), c(J) → 0, the
profiles E(z) develop steps and become discontinuous at the critical values of J .
This fact is related to a global bifurcation in the system, which is locally of saddle
node type and can be used to estimate velocities as |c(J)| ∼ |α(Jc)|(|J−Jc|)1/2.

9



We can add noise γξi to the applied current J , where γ > 0 characterizes
the disorder strength and ξi is a zero mean random variable taking values on
an interval (−1, 1) with equal probability [10]. Setting γ = 0, we can repeat
with this equation the study done in the previous exercise and obtain a velocity
that scales like |J − Jc|1/2. However, when we add noise, for each realization
of the noise, the thresholds Jc is shifted slightly up or down by the noise. The
observed velocity will be the average of the velocities observed for a large number
of realizations. For J > Jc,

|cR| ∼
1

π

√
α(Jc)β(Jc)(J − Jc) + γβ(Jc)ξ0

the average

c =
1

N

N∑
R=1

|cR| =
1

2π

∫ 1

−1

(αβ(J − Jc) + γβξ)1/2dξ ∼ (J − J∗c )3/2

where the new critical field is J∗c = Jc − γ
α .

As ν → 0, only fronts traveling in one direction remain, same as for the
continuous limit, a reaction-convection-diffusion equation:

dE

dt
+ v(E)Ex −D(E)Exx = J − v(E).

4.2 Hyperbolic and kinetic models for the Gunn effect

When we add boundaries and wish to describe the so-called Gunn effect, that
is, generation of successive electric pulses at one end which travel and die at
the other end, triggering the creation of a new one [5]. This phenomenon is
captured at a macroscopic level by the system

∂2E

∂x∂t
+A

∂E

∂t
+B

∂E

∂x
+ C

∂J

∂t
+D = 0, x ∈ (0, L), t > 0,

E(x, 0) = 0, x ∈ (0, L),

E(0, t) = ρJ(t), t = 0,∫ L

0

E(x, t)dx = φ, t = 0,

where ρ, φ, L are positive and A,B,C,D are bounded functions, A and B pos-
itive, while C is negative. E(x, t) represents the electric field and J(t) the
current, while φ is the voltage.

More detailed microscopic models for this phenomena lead to kinetic Boltz-
mann equations for semiconductors [9, 31] for the carrier density f(x, k, t) such
as

∂tf +
∆l

2~vM
sin(k)∂xf +

τe
η
F∂kf =

1

η

[
fFDa(k;µ(n))−

(
1 +

νimp
2νen

)
f +

νimp
2νen

f(x,−k, t)
]
,
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∂2
xV = ∂xF = n− 1

n =
1

2π

∫ π

−π
f(x, k, t) dk =

1

2π

∫ π

−π
fFDa(k;µ(n)) dk

fFDa(k;µ) = α ln [1 + exp (µ− δ + δ cos(k))]

η =
vM
νenx0

δ =
∆

2kBT
.

The boundary conditions are, for x = 0:

f+ = βF − f (0)∫ π
0

sin (k) f (0) dk

∫ 0

−π
sin (k) f− dk

with

β =
2π~σFM
e∆ND

and for x = L/x0:

f− =
f (0)

(1/(2π))
∫ 0

−π f
(0) dk

(
1− 1

2π

∫ π

0

f+ dk

)
The boundary conditions for the electric potential V are

V (0, t) = 0, V (L, t) = φL ∼
φ

FM

L

x0
.

The initial condition is

f (0)(k;n) =

∞∑
j=−∞

exp (ıjk)
1− ıjF/τe
1 + j2 (F )

2 f
FD
j (n)

fFDj (n) =
1

π

∫ π

0

fFD(k;µ(n)) cos(jk) dk

with x ∈ [0, L = L/x0] and f periodic in k with period 2π. The average energy
E is defined as

E =
E

kBT
=

∫ π/l
−π/l ε(k)f(x, k, t) dk

kBT
∫ π/l
−π/l f(x, k, t) dk

= δ

∫ π
−π (1− cos k) f(x, k, t) dk∫ π

−π f(x, k, t) dk
.

This model implements a BGK approximation of the collision kernel in the
equation for the carrier density. The full model involves a nonlocal collision
kernel and equations for different types of carriers [9].
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5 Bubble and particle formation

5.1 Homogeneous nucleation of particles

Homogeneous nucleation occurs in many examples of first order phase tran-
sitions such as condensation of liquid droplets from a supersaturated vapor,
glass-to-crystal transformations, crystal nucleation in undercooled liquids, and
in polymers, colloidal crystallization, growth of spherical aggregates beyond the
critical micelle concentration (CMC), and the segregation by coarsening of bi-
nary alloys quenched into the miscibility gap.

Consider a model nucleation in a lattice in which there are many more bind-
ing sites, M , than particles, N . We shall consider the thermodynamic limit,
N → ∞, with fixed particle density per site, ρ = N/M . Let pk be the number
of clusters with k particles or, in short, k clusters, and let ρk = pk/M be the
density of k clusters. Particle conservation implies that the total particle density
ρ is constant

∞∑
k=1

kρk = ρ.

In the Becker-Döring kinetic theory of nucleation, a k cluster can grow or decay
by capturing or shedding one monomer at a time. Then the evolution with time
is given by

ρ′k = jk−1 − jk, k = 2,

jk = dk(e(εk+1−εk)/(KBT )ρ1ρk − ρk+1).

The monomer density ρ1 can be obtained from the conservation identity that
relates it to the other cluster densities. Different eras in the process of cluster
formation can be analyzed by adequate asymptotic methods [17, 21].

5.2 Heterogeneous nucleation

Heterogeneous nucleation happens at preferential sites where irregularities are
located.

5.2.1 Bubble formation in radioactive waste

The formation and growth of helium bubbles due to self-irradiation in plutonium
has been modeled by discrete kinetic equations for the number densities of
bubbles having k atoms. This is an important phenomenon which occurs in
radioactive waste and may end up damaging containers resulting in radioactive
pollution of the environment. As an alloy ages, there is an initial transient stage
during which self-irradiation produces dislocation loops that tend to saturate
within approximately two years. The alpha particles created during irradiation
become helium atoms. These atoms come to rest at unfilled vacancies generated
during their slowing-down process, before they are captured at existing helium
bubbles. A helium atom diffuses through the lattice until it finds another helium
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atom thereby forming a stable dimer or until it finds a helium bubble (a stable
cluster with k atoms or, in short, a k-cluster), which absorbes it. Helium bubbles
are attached to lattice defects, do not move and do not shed helium atoms
because the binding energies of helium to any cluster are extremely high.

We denote by ρk(t) the number density of k clusters having effective radii
ak (when the centre of a monomer comes within distance ak of the cluster
centre, it is absorbed). ρ1(t) is the number of monomers per unit volume, D
is the diffusion coefficient and g(t) is the number of monomers created per unit
volume and per unit time. The following kinetic model describes the process

ρ′k = 4πDρ1ak−1ρk−1 − 4πDρ1akρk, k = 3,

ρ′2 = 8πDρ2
1a1 − 4πDρ1a2ρ2,

ρ1 +

∞∑
k=2

kρk =

∫ t

0

g(s)ds

Asymptotic studies [22] show that this system generates a wave profile describing
the evolution of the number of clusters of different sizes with time.

5.2.2 Deposition of vapour and particles

Heterogeneous condensation of vapours mixed with a carrier gas in the stagna-
tion point boundary layer flow near a cold wall is considered in the presence of
solid particles much larger than the mean free path of vapour particles. The
supersaturated vapour condenses on the particles by diffusion, and particles and
droplets are thermophoretically attracted to the wall.

Consider a dilute vapour of number density c(x) in a carrier gas that contains
a small amount of solid single-size particles. The mass fraction of vapour and of
solid particles are sufficiently small with respect to the mass fraction of the car-
rier gas, so that the velocity and temperature fields (assumed to be stationary)
u(x) and T (x) are not affected by the condensation and deposition processes.
The solid particles can act as condensation sites for the vapour. Let n∗ be the
volume of a particle divided by the molecular volume of condensed vapour, so
that a solid particle is equivalent to n∗ molecules of vapour. Then a droplet of
liquid coating on a solid particle is equivalent to n(x) vapour molecules, in the
sense that n equals the volume of a droplet (particle plus condensed vapour)
divided by the molecular volume of condensed vapour. Thus, the number of
liquid molecules coating a given solid particle is n(x) − n∗. Let ρ(x) be the
number density of droplets, so that ρ(x)[n(x)−n∗] is the number density of the
condensate.

Let us fix a flow geometry, a stagnation point flow near a wall. The equations
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for u(x), n(x), T (x) and c(x) are [30]

u′′′ + uu′′ + 1− (u′)2 = 0, x > 0,

u(0) = u′(0) = 0, u′(∞) = 1,

T ′′ + Pr uT ′ = 0, x > 0,

T (0) = Tw, T (∞) = 1,(
u+ α

T ′

T

)
ρ′ = −αρ

(
T ′

T

)′
, x > 0,

ρ(∞) = 1,(
u+ α

T ′

T

)
n′ = −Nn1/3(c− ce) x∗ > x > 0,

n(x∗) = 1,

ce(x) =
Td
T (x)

exp

[
1

ε

(
1

Td
− 1

T (x)

)]
,

c′′ + Sc uc′ = Rρn1/3(c− ce), 0 < x < x∗,

c(0) = ce(0), c(x∗) = ce(x∗),

c′′ + Sc uc′ = 0, x > x∗,

c(x∗) = ce(x∗), c
′(x−∗ ) = c′(x+

∗ ) c(∞) = 1,

where the point x∗ comes with the solution of the free boundary problem [30].

6 Graphene defects

Graphene is a two dimensional material with promising mechanical and elec-
tronic properties. Its lattice structure consists of carbon atoms forming a hexag-
onal lattice. Different types of defects alter the hexagonal structure, as well as
the mechanic and electronic properties of the material as a consequence. Peri-
odized discrete elasticity models can describe typical defects and their dynamics
[28, 26].

Consider a planar hexagonal graphene lattice and ignore possible vertical
deflections. In the continuum limit, in-plane deformations are described by the
Navier equations of linear elasticity for the two-dimensional (2D) displacement
vector (u, v),

ρ2
∂2u

∂t2
= (λ+ 2µ)

∂2u

∂x2
+ µ

∂2u

∂y2
+ (λ+ µ)

∂2v

∂x∂y
,

ρ2
∂2v

∂t2
= µ

∂2v

∂x2
+ (λ+ 2µ)

∂2v

∂y2
+ (λ+ µ)

∂2u

∂x∂y
,

where ρ2 is the 2D mass density and λ and µ are the 2D Lamé coefficients
(λ = C12, µ = C66, λ+ 2µ = C11).
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At lattice level, we obtain a discrete elasticity model for the atom dynamics
as follows. We consider a point A in the hexagonal lattice with coordinates
(x, y). Its 9 (3+6) closest neighbours have coordinates

n1 =

(
x− a

2
, y − a

2
√

3

)
, n2 =

(
x+

a

2
, y − a

2
√

3

)
, n3 =

(
x, y +

a√
3

)
,

n4 =

(
x− a

2
, y − a

√
3

2

)
, n5 =

(
x+

a

2
, y − a

√
3

2

)
, n6 = (x− a, y),

n7 = (x+ a, y), n8 =

(
x− a

2
, y +

a
√

3

2

)
, n9 =

(
x+

a

2
, y +

a
√

3

2

)
.

Let us define the following operators acting on functions of the coordinates (x, y)
of node A:

Tu = [u(n1)− u(A)] + [u(n2)− u(A)] + [u(n3)− u(A)],

Hu = [u(n6)− u(A)] + [u(n7)− u(A)],

D1u = [u(n4)− u(A)] + [u(n9)− u(A)],

D2u = [u(n5)− u(A)] + [u(n8)− u(A)],

Taylor expansions of these finite difference combinations about (x, y) yield

Tu ∼
(
∂2
xu+ ∂2

yu
) a2

4
,

Hu ∼ (∂2
xu) a2,

D1u ∼

(
1

4
∂2
xu+

√
3

2
∂x∂yu+

3

4
∂2
yu

)
a2,

D2u ∼

(
1

4
∂2
xu−

√
3

2
∂x∂yu+

3

4
∂2
yu

)
a2,

as a → 0. Now we replace in the motion equations Hu/a2, (4T −H)u/a2 and
(D1 − D2)u/(

√
3a2) instead of ∂2

xu, ∂2
yu and ∂x∂yu, respectively, with similar

substitutions for the derivatives of v, thereby obtaining the following equations
at each point of the lattice:

ρ2a
2 ∂

2u

∂t2
= 4µTu+ (λ+ µ)Hu+

λ+ µ√
3

(D1 −D2)v,

ρ2a
2 ∂

2v

∂t2
= 4(λ+ 2µ)Tv − (λ+ µ)Hv +

λ+ µ√
3

(D1 −D2)u.

The isotropic Navier equations have singular solutions such as

u =
a

2π

[
tan−1

(y
x

)
+

xy

2(1− ν)(x2 + y2)

]
,

v =
a

2π

[
− 1− 2ν

4(1− ν)
ln

(
x2 + y2

b2

)
+

y2

2(1− ν)(x2 + y2)

]
,
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where ν = λ/[2(λ + µ)] for any a. These solutions represent edge dislocations.
We choose (x0, y0) different from a lattice point and solve a damped version of
the discrete Navier equations

ρ2a
2 ∂

2u

∂t2
+ γ

∂u

∂t
= 4µTu+ (λ+ µ)Hu+

λ+ µ√
3

(D1 −D2)v,

ρ2a
2 ∂

2v

∂t2
+ γ

∂v

∂t
= 4(λ+ 2µ)Tv − (λ+ µ)Hv +

λ+ µ√
3

(D1 −D2)u,

with γ > 0. Starting from (u(x − x0, y − y0), v(x − x0, y − y0)), the system
relaxes as time grows to a stationary solution that contains a typical heptagon-
pentagon defect (sometimes octagons). These are standard defects observed in
graphene.

To allow for motion and interaction of these defects taking into account the
lattice directions we change coordinates from cartesian coordinates to the primi-
tive lattice coordinates and periodize the differences along them with the lattice
constant periodicity [28, 26]. Heptagon-pentagon pairs differently oriented in-
teract through their elastic far fields, attracting and repelling, to form known
defects, such as unstable Stone-Wales and different types of dipoles and loops.

7 Imaging of structures

In many situations we need to extract information on the inner structure of
a medium from external indirect observations. Technology has provided many
tools for different purposes: magnetic resonance, tomography, ultrasound, radar,
seismic imaging... All of them are based on emitting some kind of wave which
interacts with the medium under study, and is then measured at a set of re-
ceptors. Knowing the data recorded at the receptors and the emitted waves,
we wish to reconstruct the internal geometry and/or material properties of the
medium. Topological derivative based methods have arisen as a powerful tool
to obtain information on objects from scattered data.

7.1 Acoustic waves

Let us consider a medium where a number of objects are buried. To simplify,
we take the surrounding medium to be Ωe := R2 \ Ωi, Ωi ⊂ R2 being the
obstacle. Ωi is an open bounded set with smooth boundary Γ := ∂Ωi but
has no assumed connectivity. There may be an unknown number of isolated
components: Ωi = ∪dj=1Ωi,j with Ωi,j open connected bounded sets satisfying

Ωi,l ∩ Ωi,j = ∅ for l 6= j.
This configuration is illuminated by a plane wave uinc(x) = exp(ı κ0 x · d)

with wave number κ0 and propagation direction d, |d| = 1. The incident wave
interacts with the medium and the obstacles, generating a scattered wave and a
transmitted wave. The total wave field is measured at detector locations placed
on Γmeas, far enough from the scatterers. Γmeas may be a circle enclosing the
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obstacles in simple tests or a number of sites where receptors are located in
more realistic reconstructions. In real experiments, the total field is known on
the set of receptors Γmeas for several incident directions dj .

The interaction between the scatterers, the medium and the incident radi-
ation is described by the following scalar transmission model. The total scalar
wave field u = uinc + usc in Ωe and the transmitted scalar wave field u = utr in
Ωi satisfy∣∣∣∣∣∣∣∣∣∣∣∣∣

∇ · (αe∇u) + λ2
eu = 0, in Ωe,

∇ · (αi∇u) + λ2
iu = 0, in Ωi,

u− − u+ = 0, on Γ,

αi∂nu
− − αe∂nu+ = 0, on Γ,

lim
r→∞

r1/2
(
∂r(u− uinc)− ıκ0(u− uinc)

)
= 0, r = |x|,

with real parameters

λe(x) ≥ λ1
e > 0, λi(x) ≥ λ1

i > 0, αe(x) ≥ α1
e > 0, αi(x) ≥ α1

i > 0.

The normal vector n points inside Ωi. u
+ and u− denote the limits of u from

the exterior and interior of Ωi respectively. ∂n and ∂r stand for normal and
radial derivatives.

Knowing the values of the field u at a number of receptors, umeas, for differ-
ent incident waves we wish to obtain information on the objects buried in the
medium. We can look for domains Ωi which minimize an error in some sense.
This leads to a constrained optimization problem: minimize

J(R2 \ Ωi) :=
1

2

M∑
j=1

∫
Γmeas

|uj − ujmeas|2dl,

uj being the solutions of M forward transmission problems with incident waves
ujinc(x) = exp(ı κ0 x · dj). This functional depends on the design variable Ωi
through the transmission problems, which act as constraints.

The topological derivative of this cost functional helps to locate the ob-
jects.The topological derivative of the shape functional J (R) is defined as

DT (x,R) := lim
ε→0

J (Rε)− J (R)

V(ε)
, x ∈ R,

where V(ε) is minus the volume of the ball. In our case, V(ε) = −πε2. Asymp-
totic expansions provide a result easier to implement [25, 27]: The topological
derivative of the cost functional in R = R2 \ Ω is given by

DT (x,R2 \ Ω) =

M∑
j=1

Re

[
2(αe(x)− αi(x))

1 + αi(x)
αe(x)

∇uj(x)∇pj(x)

+(λ2
i (x)− λ2

e(x))uj(x)pj(x)

]
,
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for any x ∈ R2 \ Ω not belonging to the singularity curves of the parameters.
The forward field uj solves the forward transmission problems with the j-th
incident wave and Ωi = Ω. The adjoint field pj solves∣∣∣∣∣∣∣∣∣∣∣∣∣

∇ · (αe∇pj) + λ2
ep = (ujmeas − uj) δΓmeas

, in R2 \ Ωi ,

∇ · (αi∇pj) + λ2
i p
j = 0, in Ωi,

(pj)− − (pj)+ = 0, on ∂Ωi,

αi∂n(pj)− − αe∂n(pj)+ = 0, on ∂Ωi,

lim
r→∞

r1/2
(
∂rp

j + ıκ0pj
)

= 0,

with Ωi = Ω. Here, δΓmeas is the Dirac delta function defined on Γmeas. Visual-
izing the topological derivative field for Ωi = Ω = ∅ we find information on the
objects. An iterative procedure allows us to improve it [27].

7.2 Thermal waves

The previous description corresponds to an imaging problem with time harmonic
acoustic waves. A similar strategy can be applied to time dependent thermal
waves [29], which solve transmission heat problems

Ut − κe∆U = 0, in RN \ Ωi × (0,∞),
Ut − αiκi∆U = 0, in Ωi × (0,∞),
U− − U+ = Uinc, on ∂Ωi × (0,∞),
αi

∂
∂nU

− − ∂
∂nU

+ = ∂
∂nUinc, on ∂Ωi × (0,∞),

U( · , 0) = 0, in RN ,

Topological derivative methods allow us to approximate solutions of the inverse
problem for such waves [29].
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