UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUÍMICAS

TESIS DOCTORAL

Estudio de la estructura supramolecular del polietileno

MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR

Daniel R. Rueda Bravo

DIRECTOR:

Francisco José Balta Calleja

Madrid, 2015

© Daniel R. Rueda Bravo, 1975

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS -- SECCION DE QUIMICAS

ESTUDIO DE LA ESTRUCTURA SUPRAMOLECULAR DEL POLIETILENO

Memoria presentada por DANIEL-REYES RUEDA BRAVO para optar al grado de Doctor en Ciencias Químicas Madrid, Junio 1975

UNIVERSIDAD COMPLUTENSE - MADRID Facultad de Ciencias Químicas BIBLIOTECA Nº Registro......3.3.3..9..9......

71

544

RUE

INSTITUTO DE QUIMICA FISICA "ROCASOLANO" INSTITUTO DE OPTICA "DAZA DE VALDES" C.S.I.C. .

.

.

A mis padres

"Es mucho mejor presentar experimentalmente una mezcla de verdad y error, que mutilar la realidad para intentar separar con excesiva premura el trigo de la granza. He acatado sin vacilar esta regla evangélica que es realmente la regia de todo e<u>s</u> fuerzo intelectual y del progreso científico"

P. Teilhard de Chardin.

Agradecimientos.

Deseo expresar mi gratitud y reconocimiento al Dr. F.J. Baltá Calleja, Investigador Científico, Jefe del Laboratorio de Polímeros Cristalinos del Departamento de Rayos X del Instituto de Química-Física "Rocasolano" por la dirección del trabajo y eficaz ayuda en la realización del mismo.

Al Prof. A.Hidalgo, Director del Departamento de Espectroscopía Molecular del Instituto de Optica "Daza de Valdes", por la dirección del estudio espectroscópico y las discusiones y ace<u>r</u> tadas sugerencias en la realización del trabajo.

Deseo agradecer al Prof. J.Morcillo el haber aceptado ser ponente de esta tesis.

Asimismo debo gratitud al Prof. S.García-Blanco, Director del Departamento de Rayos X, por la ayuda y facilidades encontradas en su Departamento.

A la Prof. J.Bellanato por sus comentarios y ayuda en la realización del estudio espectroscópico.

A los Directores de los Institutos de Química-Física, Prof. M.Colomina Barberá y de Optica, Prof. A.Hidalgo (y Prof. -L.Plaza) por las facilidades encontradas en sus Laboratorios.

A nuestro compañero J.C.González Ortega (+) por la utiliza ción de los datos de los parámetros de la celdilla unidad cristal na de las muestras investigadas, aún no publicados.

Al Prof. J.M.Gómez-Fatou y al Dr. A.Bello del Instituto de Plásticos y Caucho del C.S.I.C. por su generosa ayuda al pe<u>r</u> mitirme utilizar el microcalorimetro diferencial de su Laborat<u>o</u> rio.

Quiero además expresar mi agradecimiento a la Srta. -M^a I.Izquierdo por el cuidadoso mecanografiado y a la Srta. J. Marquerie por las ilustraciones realizadas. Al Dr. F.Hernández Cano y D. J.F.Alcover por su ayuda en los cálculos y utiliza- ción de los programas de cálculo de descomposición de bandas.

Este trabajo ha sido realizado, por el que suscribe, gracias a una beca del Plan de Formación de Personal Investigador, durante los años 1973-1975.

INDICE

pag.

O. INTRODUCCION	1
1. PARTE EXPERIMENTAL	18
1.1 Muestras investigadas. Preparación	18
1.2 Espectroscopia infrarroja	22
1.3 Medida de la densidad	27
1.4 Calorimetría diferencial (D.S.C.)	30
1.5 Difracción de rayos X con ángulos pequeños	36
2. RESULTADOS EXPERIMENTALES	41
2.1 CARACTERIZACION QUIMICA DE LAS MUESTRAS	41
2.1.1 Determinación del contenido de grupos metilo	41
2.1.1.1 Método de descomposición de bandas	43
2.1.1.2 Método de compensación	46
2.1.2 Método diferencial para la determinación del	
grado de insaturación de PE	53
2.1.3 Grado de ramificación total	63
2.1.4 Estudio de las regiones espectrales 1320-1400 cm ⁻¹	
y 700-800 cm ⁻¹	63
2.1.4.1 Región espectral 1320-1400 cm ⁻¹	63
2.1.4.2 Región espectral 700-800 cm ⁻¹	74
2.1.4.3 Longitud de las ramas laterales en PE comercial	83

88
88
89
89
92
01
10
12
18
23
25
36
40
49
59
62
66
69

<u>pag</u>.

Simbolos más utilizados

A: muestras de alto peso molecular

a: relativo al carácter amorfo

B: muestras de bajo peso molecular

c: relativo a cristalino y a cristalización

f: átomos de carbono que constituyen el plegado molecular

(segmento de esqueleto no cristalino)

G: conformación gauche

GR₊: grado de ramificación total

GR_{ef}: grado de ramificación eficaz

K: coeficiente de absorción de la banda IR

L: espaciado grande

 l_{τ} : dimensión del cristal termodinámico en la dirección molecular

v: átomos de carbono que constituyen el segmento cristalino (l_r)

1: dimensión del cristal derivado del espaciado grande

M_w: peso molecular promedio en peso

PE: polietileno

p: distancia interlaminar amorfa

T: conformación trans

T_m: temperatura de fusión

X: cristalinidad

z: parámetro de apiñamiento

INTRODUCCION

Las propiedades de los materiales poliméricos, y su modo de cristalización, están íntimamente relacionadas con la estructura de sus largas cadenas moleculares. Los polímeros sintéticos son substancias constituidas por moléculas gigantes (macromolécu las) formadas por un número muy elevado de agrupaciones pequeñas (unidades monoméricas) unidas entre si covalentemente. En el caso del polietileno, (PE), obtenido por polimerización del etile no las unidades monoméricas se unen originando macromoléculas lineales. Los polímeros poseen una distribución más o menos amplia de longitudes moleculares (polidispersidad), por lo que el peso molecular representa el promedio de los pesos moleculares de to das las macromoléculas que constituyen la muestra.

Las macromoléculas, con un aito grado de regularidad química en su esqueleto, son capaces de cristalizar, adquiriendo el estado de mínima energia. En estas condiciones los múltiples esta dos rotacionales de la molécula están restringidos, y por consi guiente la macromolécula presentará una estructura altamente ord<u>e</u> nada. En lo que sigue se describirá la conformación de la cadena polimérica -secuencia de ángulos de rotación internos- siguiendo la notación de Tadokoro ¹, cuya nomenclatura simplificada es: T, trans; G, gauche izqda; y G, gauche decha. Para PE la conformación T es menos energética que la conformación G², pero ambas pu<u>e</u> den coexistir a temperatura ambiente. Cuando una serie de enla ces consecutivos en la cadena adoptan la conformación T resulta una disposición de cadena plana en zig-zag. El empaquetamiento de varios segmentos de cadena con esta ordenación constituye una agrupación molecular ordenada o cristalina. Por el contrario, segmentos de cadena que no posean esta configuración plana constituyen fundamentalmente las regiones desordenadas o amorfas.

La cristalización de polímeros (formación de una red tr<u>i</u> dimensional) puede tener lugar bien cuando se mantiene a una tem peratura por debajo del punto de fusión y por encima de la temp<u>e</u> ratura de transición vítrea, o cuando el material, si es elastómero, se deforma suficientemente. La formación de una red crist<u>a</u> lina estable requiere que las cadenas se empaqueten paralelamente entre sí. Para ello es esencial que cada molécula posea una uniformidad estructural. Por tanto, la naturaleza y tamaño de los monómeros, la estereoregularidad de la cadena principal y la proporción y dimensiones de las ramas laterales serán factores que influyan decisivamente en el proceso de cristalización.

El PE ha sido el sistema elegido en el presente trabajo debido a dos razones: 1^a, la molécula de PE está constituida por una secuencia de metileno, $-(CH_2)_n^-$, preservándose la hibridación tetragonal del carbono, y por tanto posee una extraordinaria sencillez estructural; 2^a, este polímero se emplea industrialmente en gran escala con la consiguiente repercusión económica.

La estructura cristalina del polietileno, propuesta por

Bunn ³, corresponde a una celdilla unidad cristalina ortorrómbica con el eje <u>c</u> en la dirección molecular de las cadenas en conformación plana, fig. 1.

La estructura semicristalina de los polímeros sintéticos, ha sido establecida mediante el análisis de los diagramas de difracción de rayos-X. En los difractogramas aparecen refle xiones de Bragg, acompañadas de un halo difuso. El tamaño de los microcristales, calculado mediante la ecuación Scherrer⁴, a partir de la anchura de las reflexiones es, para la mayor parte de los polímeros comerciales, de unos centenares de Amgstrons. Se ha aceptado que el halo difuso es debido a la existencia de una estructura amorfa. La presencia de defectos reticulares en el cristal ⁵, tambien puede causar una dispersión (scattering) de la radiación que contribuirá a la formación del halo difuso. Los polímeros semicristalinos presentan pues regiones amorfas y cristalinas más o menos perfectas. La fracción de material que las reflexiones cristalinas frente al volumen total del origina mismo que da lugar a la intensidad difractada total, constituye lo que se suele denominar cristalinidad del polímero y que naturalmente nunca alcanza el 100%.

La estructura semicristalina de los polímeros, se descr<u>i</u> bió, inicialmente, mediante el "modelo de franjas micelares" ⁶ (fringed micelle model), fig. 2, que consiste sencillamente en micelas de moléculas tridimensionalmente ordenadas (microcristales), de unos centenares de Å, sumergidos en una matriz amorfa.

•

.

•

Como la gran longitud de las macromoléculas (10⁴-10⁶ Å) excede con mucho la de los microcristales, en la dirección molecular, cada macromolécula tendrá que atravesar necesariamente múlti ples regiones cristalinas y amorfas.

Durante la década de los años 50, la investigación, mediante el microscopio óptico, de la morfología de los polímeros lineales, cristalizados del estado fundido, reveló la presencia de un cierto orden caracterizado por la existencia de esferulitas ⁷, unidades circulares de varios micrometros de diámetro cu yo tamaño depende de las condiciones de cristalización. Por observación en el microscopio con luz polarizada, se descubrió el carácter birrefringente y la simetria esférica de las esferulitas, fig. 3, demostrando, para la estructura de los polímeros, la existencia de una nueva organización supracristalina a una esca la mayor que la predicha por el modelo micelar.

En 1957 se obtienen monocristales de PE, a partir de d<u>i</u> soluciones en disolventes orgánicos 8,9,10 y se determina su morfología que corresponde a terrazas o laminillas de unos 100Å de espesor, estableciendose el concepto de plegado regular de las cadenas 8 . Los segmentos de cadena se empaquetan adyacentemente mediante una conformación de carbonos GGTGG 11,12 y GGGG o GGGGG 13 , de modo que las cadenas se disponen mas o menos pe<u>r</u> pendicularmente a la superficie de las terrazas fig. 4. Estos resultados sacuden las ideas básicas aceptadas hasta entonces en el campo de los polímeros y permiten el desarrollo de una nueva

Fig.3 Esferulitas de Politrimetilglutarato. (según Keller⁷)

Fig. 4. Representación esquemática de una laminilla cristalina con superficie de plegado regular (seqún Keller⁷).

disciplina: la físico-química del estado sólido macromolecular¹⁴.

En 1960 queda establecida la estructura laminar de las esferulitas ¹⁵, fig. 5. Se observa un crecimiento radial de las laminillas con una orientación molecular perpendicular a la superficie de las mismas y tangencial al radio de la esferulita. En muchos polímeros las laminillas se torsionan regularmente en dirección radial de modo helicoidal, siendo el paso de hélice que coincide con la periodicidad de los anillos de extinción de unas décimas de micrometro¹⁶. El espesor de las laminillas es comparable al de las terrazas de los monocristales crecidos a partir de disolución ¹⁷. Entre las laminillas cristalinas se encuentra una con siderable cantidad de material amorfo^{18,19}, lo que explica en par te la deficiencia de cristalinidad en muestras de PE y otros polímeros lienales.

Fig,5 Micrografia electrónica de PE lineal cristalizado del estado fundido. Dirección radial de la esferulita: la horizontal. (según Eppe, Fischer y Stuart^{15b})

El grado de cristalinidad depende notablemente de las cond<u>i</u> ciones de cristalización (tempcratura y presión) 20-22, asi como del grado de perfección y linealidad de la cadena 23,24 y del peso molecular ¹⁶.

Sin embargo el concepto sencillo de cristalinidad no fac<u>i</u> lita una información sobre muchos detalles de la estructura. Una descripción más completa de esta incluye el conocimiento de parámetros estructurales tales como: tamaño de cristal y dimensiones del plegado molecular, disposición relativa, distribución y orien tación de las regiones cristalinas y amorfas. Una caracterización completa deberá tener también en cuenta el orden de las regiones cristalinas y la localización de los defectos de cadena.

El estudio detallado de la naturaleza del plegado molecular ha dado origen a dos modelos estructurales esencialmente distintos. Por una parte Hoseman y co ²⁵ y Lindenmeyer ²⁶ estableci<u>e</u> ron el 'modelo de cristal con defectos'' que visualiza la estruct<u>u</u> ra de los polímeros cristalinos en forma análoga a la de los met<u>a</u> les, suponiendo la existencia de cristales relativamente perfectos con un plegamiento molecular de gran regularidad y la deficien cia de cristalinidad está provocada por defectos de 1^a especie (defectos reticulares, dislocaciones y defectos intersticiales, etc.) y por defectos de 2^a especie (pérdida de orden de largo alcance) por microvacios y por las moléculas plegadas en la superficie del cristal. Por otra parte se ha desarrollado el 'modelo in terlaminar amorfo'' ²² que consiste en la repetición alternada de laminillas perfectamente cristalinas interconectadas por regiones amorfas. Esta disposición es independiente de que el plegado sea regular con retorno adyacente 8 o irregular con retorno al azar 27,28 . Puede ocurrir que segmentos de cadena que emer gen de una laminilla cristalicen en la !aminilla consecutiva, despues de atravesar la región amorfa (molécula interconectan te 29) o bien terminen en la fase amorfa (cilios) fig. 6a-b.

En realidad, mediante un control adecuado de las condiciones de cristalización se puede cubrir prácticamente todos los pasos existentes entre estos dos modelos extremos, existien do por tanto evidencia experimental en favor de ambos ⁵. Asi por ejemplo, cristalizaciones a partir de disoluciones diluidas y pequeño subenfriamiento conducen a la obtención de cristales la minares de gran perfección morfológica, mientras que la cristali zación a partir de disoluciones concentradas y gran subenfriamiento favorece la formación de estructuras complejas con un elevado desorden estructural.

Un estudio estructural exhaustivo requiere la aportación de numerosos datos experimentales suministrados por las más diversas técnicas instrumentales. Entre ellas la espectroscopía in frarroja (IR) ha demostrado ser una técnica decisiva en la inve<u>s</u> tigación de la estructura química y física de los polímeros ³¹⁻³⁴. Las ramas laterales en PE, presentes en proporción apreciable (>5% molar) ³⁴, influyen notablemente en propiedades físicas e<u>s</u> tructurales tales como temperatura de fusión ³⁵⁻³⁹, deformación

Fig.6a Coexistencia de un plegado regular y segmentos moleculares desordenados en una superficie laminar. (según Keller²⁹)

Fig.6b

Representación esquemática de la superficie laminar con plegado intrínsicamente desordenado. (según Fischer³⁰). mecánica ⁴⁰ microdureza ⁴¹, cristalinidad ^{23,24,42}, susceptibilidad diamagnética ⁴³, etc. Por lo tanto su determinación tanto cuantitativa como cualitativa se hace indispensable ^{32,34} para un mejor conocimiento de la estructura.

La conformación molecular en las regiones cristalinas y amorfas y la ordenación intermolecular de las macromoléculas afectan notablemente los espectros de absorción infrarroja. Los. espectros registrados en fase sólida presentan bandas que desaparecen en el estado fundido y cuyo origen responde a una ordenación tridimensional de los segmentos de cadena ⁴⁴. Asimismo, aparecen bandas, que se pueden asignar a segmentos de cadena en conformación distinta a la plana, y por tanto, relacionadas con el estado amorfo o desornado. Una vez conocida la asignación – correcta de estas bandas estructurales se puede calcular la – fracción cristalina, evaluar la presencia de ciertas conformacio<u></u> nes características predominantes, como plegado regular, isómeros rotacionales e identificar y diferenciar el tipo de la celdilla unidad cristalina

La presente memoria constituye una contribución al esclarecimiento y estudio de la estructura supramolecular del po lietileno. En este trabajo hemos investigado un conjunto de muestras comerciales de PE con un amplio margen de pesos moleculares. Hay que hacer destacar que un grupo de estas muestras poseen tan solo un promedio de unos centenares de átomos de carbono, siendo

su investigación de especial interés por encontrarse en la frontera entre las substancias parafinoides y las típicamente poliméricas. Otra característica molecular relevante de algunas de estas muestras es su grado de ramificación relativamente elevado (>3/100 C) y que no es común en las muestras de PE descritas hasta la fecha en la bibliografía. Hasta ahora sólo se ha investigado la influencia de las ramificaciones saturadas al estudiar la supraestructura de PE. En el presente trabajo hemos rea lizado una determinación, por espectroscopía IR, no solo de las ramificaciones saturadas sino también de los grupos de insatura dos que llegan a constituir hasta un 10% de las ramificaciones. Por lo tanto se ha podido investigar la influencia del número total de defectos químicos de la cadena en las propiedades es tructurales.

El estudio estructural lo hemos realizado manteniendo fi jas las condiciones de cristalización de las muestras, y operando lejos del equilibrio termodinámico. Por lo tanto, restan solo el peso molecular y el grado de ramificación de las macromoléculas como principales variables. Sin embargo, no hemos tenido en cuenta la polidispersidad del peso molecular de las muestras.

Hemos discutido los resultados mediante la consideración de dos modelos estructurales. El primero está basado en una estructura bifásica (alternancia de laminillas cristalinas y amorfas), que permite el cálculo de la longitud promedio del plegado molecular. En un grupo de muestras se confirma la existencia de

una estructura bifásica, mientras que para otro grupo de muestras este modelo es insuficiente. En este segundo grupo hay que visualizar a los microcristales como sumergidos en el seno de una matriz amorfa. Mediante un segundo modelo, que representa una modificación del propuesto por Hosemann y co. 46,47 sugerimos la existencia de un apiñamiento local de las ramas laterales en zonas estadisticamente distribuidas en la cadena principal. El citado modelo nos ha permitido tambien hacer una estimación de la concentración de ramas ocluidas en la fase crist<u>a</u> lina.

Asimismo, discutimos el concepto físico de tamaño de cristal derivado de la ecuación termodinámica de Thomson $\frac{48}{1000}$, apoyados por los resultados del estudio espectroscópico del doblete a 720-730 cm⁻¹.

Hemos estudiado las regiones $1320-1400 \text{ cm}^{-1}$ y 700-800 cm⁻¹ mediante un programa de cálculo ⁴⁹, ligeramente modificado ⁵⁰, de descomposición de bandas espectrales y cuyos resultados ayudan a comprender la estructura y a intentar resolver el intringante problema de la longitud de las ramas laterales en el PE, reduciéndose las posibilidades a ramas de igual o mayor longitud que los grupos butilo.

La presente memoria está subdividida en los siguientes capítulos: el primer capítulo (capt.0) está dedicado a la INTRODUCCION; el capt.1 contiene la parte EXPERIMENTAL incluyendo una descripción de los materiales y la preparación de las Asimismo describimos las técnicas instrumentales y muestras. los procedimientos empleados. En el capt.2 se presentan los RESULTADOS experimentales agrupados en dos subcapítulos. El 1° comprende la caracterización química de las muestras (ramificaciones saturadas e insaturadas), el estudio espectroscópico de las regiones 1320-1400 cm⁻¹ y 700-800 cm⁻¹ y el análisis de la longitud de la longitud de las ramas laterales. Dada la heterogeneidad de los problemas planteados en este subcapítulo, cada apartado se acompaña de una revisión bibliográfica y planteamiento del problema correspondiente así como de la discusión y comentario apropiado. En el subcapítulo 2° presentamos la caracterización física de las muestras en cuanto a magnitudes físicas como densidad, cristalinidad (determinación espectroscópi ca), temperatura de fusión y espaciados grandes determinados por rayos-X, las cuales constituyen un conjunto de magnitudes absolutamente indispensables para abordar el problema de la estructura supramolecular.

En el capt.3 abordamos la DISCUSION de los Resultados Experimentales mediante la elaboración de los dos modelos estructurales, mencionados anteriormente y centramos dicha discusión en dos cuestiones fundamentales: la naturaleza de la región interla-

minar amorfa (longitud de plegado molecular) y la distribución y localización de las ramas laterales. Hemos tratado de encontrar la representación más adecuada de la estructura supramolecular presente en las muestras para las condiciones de cristalización utilizadas.

Finalmente presentamos las CONCLUSIONES más importantes a que nos ha conducido este trabajo presentado como Tesis -Doctoral.

1. PARTE EXPERIMENTAL

1.1 Muestras investigadas. Preparación

Las muestras de polietileno, que hemos investigado en el presente trabajo, son una serie de productos comerciales de PE, suministrados gentilmente por las casas Estman-Kodak, Farbwerke-Hoechst y Badische Anilin und Soda Fabrik, (B.A.S.F.).

En la tabla I están recogidos el nombre comercial, la d<u>e</u> nominación usada en este trabajo (para mayor simplicidad) y el peso molecular promedio en peso (M_w) de la serie de muestras investigadas. Las muestras A poseen un $M_w \ge 10^4$ y las B un $M_w < 10^4$.

Constituyen un conjunto de muestras de PE que cubren amplios rangos de valores para todas las propiedades físicas estudiadas debido a haber sido obtenidas por diversos métodos comerciales de polimerización. Asi pues tenemos por ejemplo muestras de PE de baja y alta densidad (alta y baja presión) ⁵¹. El PE de baja presión es tipo Phillips y Ziegler. Estas dos clases de PE se diferencian fundamentalmente, entre otras muchas características físico-químicas, por el peso molecular; el PE de alta densidad oscila entre 10⁴ y varios millones, mientras que PE de baja densidad se fabrica con algunos millares. Sin embargo, en el conjunto de muestras investigadas hay unas con peso molecular inferior a 10⁴ que se han obtenido por el método de polimerización

а	b	1	а		1	
_	_		-	-	-	

.

•

Nombre comercial	Denominación usada	Peso Molecular promedio M _w ×10 ⁻³	
Lupolen 6011 L	A1	-	
Marlex 6015	.A2	150	
Hostalen GC	A3	50	
Hostalen GF	A4	120	
Alkathene HD	A5	245	
Epolene C-11	A'6	10	
Hoechst PA-190	A'7	9	
Lupolen KR 1051	A8	51	
Lupolen KR 1032	A9	53	
BASF a Wachs	A'10	10	
Lupolen 1810 H	A11	54	
Epolene C-13	A'12	10	
Hoechst PA-130	B1	3.0	
Epolene N-12	B2	1.5	
Epolene E-10	B3	2.5	
Epolene N-10	В4	2.5	
Epolene E-11	B5	1.5	
Epolene E-14	B6	1.4	
Epolene N-11	B7	1.5	
BASF a Wachs	в8	5.6	
Hoechst PA-560	B9	6.0	
Epolene C-10	B10	7.0	
Epolene C-101	B1 1	3.2	
Hoechst PA-520	B12	2.0	
Epolene C-12	B13	3.7	

Ziegler (A'7, B 1) y otras muestras que tras la determinación de sus propiedades (densidad y grado de insaturación) se deben ciasificar en el grupo de muestras polimerizadas a baja presión. Por el contrario, muestras de peso molecular elevado, como por ejemplo A8, A9 y A11, se pueden clasificar en cuando a su densidad macroscópica y tipos de insaturaciones en el grupo de mues tras de PE polimerizadas a alta presión. Las muestras se presentan en forma granular y tambien en escamas (B 1), en bloques (A'7) y con un granulado fino (A 3). Seis de las muestras de alto peso molecular (A2, A4, A5, A8, A9, y A11) son de grado de r<u>a</u> mificación (CH₃/100 C) conocido (determinado en el laboratorio de Ensaye y Medida de la casa B.A.S.F.) y se han tomado como patrones para la determinación, por espectroscopía IR,del contenido de grupos metilo (CH₃/100 C).

La caracterización química, por espectroscopía IR, de las muestras se ha llevado a cabo preparando películas de espesor ade cuado a las exigencias de cada determinación espectroscópica. El procedimiento empleado, para la preparación de las películas, con siste en la fusión de unos granos o bolitas de la muestra entre dos placas de vidrio, a temperatura ligeramente superior a la tem peratura de fusión de la muestra y prensando manualmente hasta conseguir el espesor de película adecuado. La fusión la hemos rea lizado sobre una barra con gradiente de temperatura. Dada la diferente viscosidad o fluidez de las muestras, por su distinto peso molecular y naturaleza ramificada, la preparación de cada mues tra exige una atención peculiar si se desea obtener unos espesores de película comparables. Cuando el espesor requerido es sup<u>e</u> rior a 0.1 mm procedimos a la introducción en los extremos de las placas de vidrio dos separadores de aluminio de idéntico espesor al deseado. (Las dimensiones de la placa de vidrio son de \sim 6x3.5x0.2 cm).

Por otra parte cuando, debido a la fuerte absorbancia de las bandas del espectro IR en estudio, (doblete 720-730 cm⁻¹), el espesor requerido es muy pequeño (10-20 μ m), las dificultades crecen ya que se precisa prensar fuertemente y este procedimiento resulta ineficaz para las muestras de alto peso molecular. Otro inconveniente grave es la aparición del espectro acanalado cuando las caras de la película son paralelas. Este efecto se acen tua para espesores muy delgados, inhabilitando los espectros para toda determinación cuantitativa. Esta dificultad la hemos superado prensando más fuertemente sobre un lado de las placas, o<u>b</u> teniendo una película delgada en forma de cuña en la que no se satisfacen las condiciones de paralelismo entre las dos caras de la película.

Una vez prensada la muestra, lo más brevemente posible, la separamos de la barra calefactora y la dejamos enfriar a temp<u>e</u> ratura ambiente, o bien en agua con hielo. La separación de la p<u>e</u> lícula, de las placas de vidrio, suele facilitarse sumergiendolas en agua ya que esta moja preferentemente la superficie de vidrio. Montamos las películas sobre unas cartulinas de dimensiones adecua das para colocarlas en las ventanas del espectrofotómetro.

Las muestras usadas para la determinación de la densidad macroscópica, temperatura de fusión y espaciados grandes son restos de las películas empleadas en la determinación de la cristal<u>i</u> nidad, por espectroscopía IR, de las muestras cristalizadas a tem peratura ambiente. Asi se evita las fluctuaciones en los parámetros estructurales por diferencias en las condiciones de cristal<u>i</u> zación de las muestras ²⁰.

1.2 Espectroscopía infrarroja

La espectroscopía IR, aplicada al estudio de polímeros juega un papel fundamental, no solo desde el punto de vista de ca racterización química sino también porque es una técnica especial mente sensible a la estructura molecular y al estado de agregación por lo que permite deducir información sobre algunos parámetros estructurales.

En este trabajo, además de la técnica de registro ordina rio, hemos hecho uso de la técnica diferencial o de compensación. Los espectrofotómetros utilizados han sido los modelos Perkin-Elmer 577, 457 y 225. Con el espectrofotómetro modelo 577 obtuvimos los registros de las muestras desde 4000 a 250 cm⁻¹, fig. 7 y a continuación en la región de 1320 a 1400 cm⁻¹ usamos la expansión de es

Fig.7 Espectros IR entre 4000 y 250 cm⁻¹ correspondientes a cuatro muestras de PE. (de arriba a abajo: A'7, Bl, B2 y BlO)

cala en abscisas x10, con objeto de aplicar el programa de descomposición de bandas espectralos de Pitha y Jones 49 ligeramen te modificado 50. En este caso leimos los puntos del perfil a in tervalo constante de 1 cm⁻¹.

Comenzamos poniendo a punto un método de espectroscopía diferencial para la determinación cuantitativa de insaturaciones en PE. La técnica consiste esencialmente en el registro de espectros diferenciales colocando la película de PE en el haz de la muestra y una película bromada, del mismo espesor, en el haz de referencia. El éxito del método depende de la obtención de películas de idéntico espesor, lo que constituye la mayor dificultad del mismo. Lo conseguimos preparando películas entre dos placas de vidrio (6x3.5x0.2cm) en cuyos extremos insertamos dos separadores de aluminio de idéntico espesor al deseado, y prensando uniformemente en la superficie de las placas de vidrio. Dividimos la película en dos mitades, una de las cuales sometimos a bromación en atmósfera de bromo, en el interior de un matraz Erlemmeyer taponado ⁵². El tiempo óptimo de bromación, para una película de es pesor comprendido entre 250 y 300 μ m, es inferior a 2h, dependien do del grado de ramificación o de la cristalinidad de las muestras. En general son necesarios tiempos de bromación mayores para las muestras más cristalinas (menos ramificadas). Tiempos de bromación excesivos dañan la superficie del film pudiendo incluso inutilizar lo por excesiva pérdida de transmitancia. En el caso de muestras oxidadas, la bromación se _exalta considerablemente, sobre los meti

lenos contiguos a los grupos oxidados, y la superficie se deterio ra al extremo de que no es posible el registro del espectro diferencial.

Obtuvimos los espectros diferenciales, en el espectrofotómetro Perkin-Elmer 577, en condiciones de rendija normal y a una velocidad de registro de 1 cm⁻¹/6 s. La buena superposición de los registros de la película bromada y sin bromar (fig. 16 (a,c)) y la estabilidad de la línea de base de los espectros di ferenciales (fig. 16(b,d)) en todo el campo del infrarrojo medio, son indicativos de la igualdad alcanzada en el espesor y de que el tiempo de bromación es el adecuado.

Para determinación de la cristalinidad por espectrosco -53 pía IR, obtuvimos los registros de las bandas convenientes con el espectrofotómetro modelo 457 en condiciones de rendija normal y a la velocidad programada "slow". En estas condiciones registra mos los espectros de dos series de muestras cristalizadas a temp<u>e</u> ratura ambiente (T_{amb} .) y 0°C. Obtuvimos además los espectros en el estado fundido de dos muestras de PE y de la parafina C₃₆H₇₄ usando células RIIC (tipo 01 FH) de 0.1 mm de espesor. El control de temperatura se llevó a cabo con un potenciómetro "Beckman 10" y un termopar de hierro-constantán calibrado. La película se dejó enfriar hasta la temperatura ambiente y a continuación registranos los espectros en fase sólida.

Con este mismo espectrofotómetro modelo 457 realizamos los experimentos de espectroscopía de compensación para medida del gra do de ramificación en la región comprendida entre 1320 y 1400 cm⁻¹ ²³ y el estudio del hombro hacia 770 cm⁻¹ contíguo al doblete 720-730 cm⁻¹ ²³. La técnica consiste en eliminar las ban das que interfieren la banda en estudio y se consigue situando en el haz de referencia una película, en forma de cuña, cuyo es pectro solo presenta las bandas interferentes. Esta por su geometria ofrece un espesor variable a voluntad al introducirla más o menos en el haz de referencia. Si la geometria de la cuña es buena el procedimiento es rápido y eficaz y resuelve el proble ma de eliminar la interferencia de la banda en estudio por otros métodos (descomposición de las bandas ...). El estudio de los dos problemas anteriores lo realizamos de manera simultánea con la misma serie de muestras de espesor comprendido entre 0.1 y 0.3mm.

Finalmente utilizamos un espectrofotómetro Perkin-Elmer modelo 225* para el estudio de la región 700-800 cm⁻¹ usando las condiciones de registro: velocidad de registro ≼1; programa de rendija 4.5; escala 1; ganancia 0.8; tiempo de respuesta de la pluma 3; y respuesta 0. Dada la gran intensidad del doblete 720-730 cm⁻¹ el espesor de las películas exigido es de unos 20 µm para las muestras más cristalinas pudiendo ser algo mayor para las menos cristalinas. Hay que cerciorarse de que los espectros no presentan franjas de interferencia. Estudiamos esta región apli -

* del Instituto de Edafología del C.S.I.C.

cando el programa de cálculo citado anteriormente 49 . En este caso tomamos los datos de transmitancia a intervalo constante de 2 cm⁻¹.

En todas las determinaciones determinamos el espesor de las películas por pesada del área aproximada de película expue<u>s</u> ta al haz de radiación; conocida la densidad de la película, p<u>u</u> dimos determinar el espesor en cm. y así expresar los coeficien tes de absorción (K) en cm⁻¹ como suelen referirse en la liter<u>a</u> tura. Consideramos que este procedimiento es el más preciso para la determinación del espesor de la película, sobre todo en el caso de películas muy finas. Asi para una película de ix2 cm el error relativo cometido en el espesor es inferior al 3%.

1.3 Medida de la densidad

Columna de gradiente de densidad

Los valores de la densidad (p) han sido determinados mediante una "columna de gradiente de densidad". Esta técnica ex perimental es suficientemente sencilla y cómoda y se impone cuan do hay necesidad de determinar la densidad de un gran número de muestras de la misma naturaleza. El método consiste esencialmente en la obtención de un gradiente de densidad en una columna. Esto se consigue llenando la columna, por su base a través de un tubo capilar, con una solución de densidad contínua y uniformemente cre
ciente entre los valores de densidad extremos. Normalmente el gradiente debe abarcar un rango de densidad <0.1 g/cm³ a lo la<u>r</u> go de la columna ($\sqrt{70}$ cm) con lo que ia precisión alcanzada pu<u>e</u> de llegar a ser ±0.0001 g/cm³.

La solución que llena la columna se obtiene por mezcla de dos liquidos totalmente miscibles cuyas densidades sean res pectivamente mayor y menor que los valores de densidad de las muestras que se quieren medir. El problema surge a la hora de la elección de la pareja de disolventes que está en relación ín tima con la naturaleza química de las muestras en estudio.

Blackader y Keniry ⁵⁴ han estudiado exhaustivamento las fuentes de error en la determinación de la densidad de PE cristalizado del estado fundido, usando columnas de gradiente, preparadas con diferentes parejas de disolventes, atendiendo al po der de mojado de los disolventes y el área de la superficie específica de las muestras introducidas en la columna. Estos auto res encontraron que el uso de una pareja de disolventes con poder de mojado del PE idéntico o muy próximo y una superficie e<u>s</u> pecífica de las muestras no muy grande elimina las fuentes de error y la columna de gradiente de densidad se convierte en un instrumento de una gran precisión.

En este trabajo hemos realizado la medida de la densidad de las muestras de PE con objeto de poder hacer un calibrado para la determinación de la cristalinidad, por espectroscopía IR ⁵⁴, y obtener asimismo los datos espectroscópicos de los coeficientes

de absorción (K) en cm⁻¹. Hemos montado una Columna Tecam y oper<u>a</u> do a 23°C (temperatura a la que están calibradas el juego de bolas patrones de densidad) mediante un termostato suministrado por la misma casa. Como disolventes empleamos tetracloruro de carbono $(\rho=1.56 \text{ g/cm}^3)$ y p-xileno $(\rho=0.86 \text{ g/cm}^3)$ en proporción del 17% - en volumen de Cl₄C, obteniendose un gradiente de densidad lineal apto para la medida de la densidad de toda la serie de muestras. El gradiente de densidad obtenido responde a la expresión:

$$\rho = 1.0530 - 0.00278 h$$
 (1)

donde $\rho(g/cm^3)$ es la densidad macroscópica y h(cm) es la posición de la muestra en la columna y en este experimento puede tomar los valores comprendidos entre 20 y 60 cm, intervalo de la columna donde se ha formado el gradiente lineal puesto de manifiesto por la perfecta alineación de 6 bolas patrones situadas en dicha zona de la columna.

Las muestras usadas son restos de las películas utilizadas para espectroscopía IR y a cada muestra le dimos una forma geométr<u>i</u> ca peculiar para poder distinguirla de las demás. Previamente empapamos las muestras en la solución empleada a unos 45°C para llenar los posibles microvacios ⁵⁴. Entonces introducimos cuidadosamente una a una en la columna donde se formó el gradiente y procedimos a la lectura de la posición después de cerciorarnos que las muestras habian alcanzado la posición de equilibrio; la lectura puede hacerse transcurridas 24 h. La retirada de las muestras se hace mediante un recogemuestras adecuado, situado previamente en el fondo de la columna, suspendido de un hilo de nylon mediante un motorcito que lo sube y ba ja a velocidad lenta y uniforme (≈ 2 cm/min); así no se perturba apenas el gradiente que puede usarse en medidas posteriores. Además, operando cuidadosamente, la precisión alcanzada es relativamente elevada. Dado el tamaño de las muestras y la dificultad para situar la posición de su centro de gravedad, hemos podido estimar la densidad en un error, $\Delta \rho = \pm 0.0005$ g/cm³. Los errores cometidos al usar columnas de gradiente son aparentemente tan grandes ⁵⁵ o incluso menores ⁵⁶ que los cometidos en una picnometria.

1.4 Calorimetría diferencial (D.S.C.)

Es una técnica de gran aplicación en el campo de los polímeros ya que permite el estudio de las diversas transiciones térmicas que tienen lugar así como también el estudio de transformaciones – químicas. La técnica D.S.C. (Differential Scanning Calorimeter) fac<u>i</u> lita una medida de la diferencia en las velocidades de absorción de calor por una muestra respecto a otra muestra de referencia inerte cuando la temperatura de calentamiento (o enfriamiento) se programa a una velocidad constante. Ambas muestras la de referencia y la pro – blema se mantienen continuamente a la misma temperatura. Los termogra mas así obtenidos representan la velocidad de absorción de calor en función de la temperatura de la muestra

En este trabajo hemos hecho uso de la D.S.C. para la med<u>i</u> da de las temperaturas de fusión de las muestras investigadas ya que suministra una medida más precisa que las determinaciones sim plemente ópticas realizadas previamente con la ayuda de una barra Koffler de gradiente de temperatura usada para la preparación de las muestras. Esta barra Koffler llega a ser suficientemente válida para la determinación de puntos de fusión, operando cuidadosa mente, como hemos comprobado en este laboratorio.

Utilizamos un microcalorímetro Perkin-Elmer DSC-1B* . Las muestras utilizadas son restos de las películas usadas para determinación de cristalinidad por espectroscopía IR. Fueron recortadas de forma circular, adecuada a las capsulitas de aluminio en cuyo interior colocamos la muestra cubriéndola con una laminilla metálica y sellandola mediante una prensa destinada a este fin. El peso de muestra varia de unos 3 a 6 mg, según el espesor de la película, que por su forma facilita un buen contacto con la capsulita metálica. Las capsulitas de muestra y de referencia se colocan en los pocillos correspondientes de la célula calorimétrica por la que se hace pasar un flujo constante (≃ 20 cm³/min.) de gas inerte (nitrógeno) durante toda la experiencia. Previamente bloqueamos los potenciómetros "Diferencial" y "Calibrado de Temperatura" en los valores recomendados, y ajustamos el potenciómetro "Pendiente" hasta conseguir que la línea de base dibujada en el registrográfico fuera horizontal y bloqueandolo en el valor encontrado. Después de estos

* del laboratorio de la Sección de Física y Físicoquímica de Polímeros del Instituto de Plásticos y Caucho del C.S.I.C.

pasos preparatorios tanteamos las condiciones de registro y eleg<u>i</u> mos las siguientes: sensibilidad calorímetro, 32; sensibilidad registro, 5; velocidad de registro, 60 mm/min. y velocidad de calentamiento, 16°C/min.

Ya que es amplio el rango de temperaturas de fusión de las muestras preferimos operar con un valor fijo de "Calibrado de Temperatura" para todas las medidas y hacer una corrección de la temperatura mediante calibrado del aparato con un grupo de substan cias patron de punto de fusión conocido que abarcan el rango de temperaturas de fusión de las muestras.

Debido a que los picos de los termogramas de PE, no son su ficientemente estrechos y agudos como los de compuestos molecula res totalmente cristalinos, es necesario adoptar un criterio de lectura para determinar las temperaturas de fusión (si bien en el caso de polímeros es más correcto hablar de intervalo de fusión). En este trabajo elegimos los máximos de los picos del termograma previa corrección del retraso térmico 57 dada la escasa conductividad de las muestras poliméricas fig. 8.

Para ello se traza la recta pendiente del termograma correspondiente al patrón Indio, registrado en las mismas condiciones, sobre los termogramas de las muestras y de los patrones para calibrado, haciendola pasar por la intersección de las rectas tangentes que definen el pico. La temperatura de fusión leida es el valor de la abcisa correspondiente a la intersección de la pendiente del indio con la verdadera línea de base del termograma. En el caso de -

Fig.8 Procedimiento para lectura de la temperatura de fusión, previa corrección del retraso térmico,en un diagrama D.S.C. En ordenadas, valor de entalpia de fusión (LH), en unidades relativas. termograma de doble pico seguimos el mismo criterio si hien entraña más dificultad el trazado de las tangentes.

Los compuestos utilizados como patrones junto con las temperturas real (T_{real}) y leida (T_{leida}) están recogidos en el cua dro siguiente:

	T _{real} (°C)	T _{leida} (°C)
Zobenzol	68.0	60.9
Benzol	95.0	89.4
Acetanilida	114.5	111.2
Fenacetina	134.5	132.2
Indio	156.0	156.6

La fig. 9 representa la curva de calibrado para corrección de la temperatura leida. La recta de calibrado responde a la expresión:

$$T_{real} = 0.926 T_{leida} + 11.9$$
 (2)

donde T viene dada en (°C). Esta corrección es necesaria si por sencillez operatoria se trabaja con un valor fijo de 'Calibrado de Temperatura'' en lugar de ir ajustando la T_{leida} a la T_{real} para pequeños intervalos del rango de temperatura deseado.

La precisión en la medida de la "temperatura de fusión" (T_m) es menor para las muestras que presentan picos anchos y poco

Fig.9 Curva de calibrado para la determinación de la Temperatura de fusión real.

definidos; no obstante estimamos la precisión alcanzada, en las condiciones de registro, en un error, ΔT_m , de ±0.3°C.

1.5 Difracción de rayos X con ángulos pequeños

Como su nombre indica, esta técnica permite el estudio de efectos de difracción a ángulos muy pequeños (<1°) respecto del haz primario. Debido a la naturaleza del ánodo y del tubo, el haz de rayos-X es siempre divergente. Como los rayos X no se pueden focalizar de la misma forma que la luz visible, para obtener un haz casi paralelo se tiene que recurrir al uso de un sistema de colimación. Hay cinco procedimientos principales que permiten rea lizar la colimación de los rayos X: rendijas ⁵⁹, colimadores pun tuales ⁶⁰⁻⁶², cámara de Kratky ⁶³, focalización por reflexión ⁶⁴ y focalización por difracción ⁶⁵.

En este trabajo hemos utilizado una cámara de difracción de rayos X de ángulos pequeños con colimación puntual de la casa Rigaku-Denki acoplada a un generador de rayos X de 6 Kw de la mi<u>s</u> ma casa.

La ley de Bragg de la difracción, 2dsenθ=nλ, (3), postula que el ángulo de difracción θ, de un haz de rayos X con una longitud de onda λ, que atraviesa un cuerpo cristalino es inversamente proporcional al espaciado d entre planos de la malla cristalina. . En cristales ordinarios, inorgánicos y metálicos, los espaciados reticulares son del mismo orden de magnitud que la longitud de onda de la radiación utilizada, y por lo tanto dan lugar a ángulos θ relativamente grandes (10-30°). En sólidos poliméricos, algunas moléculas biológicas y en algunos minerales especiales, los espaciados son del orden de varias decenas a centenares de Å y los án gulos de difracción correspondientes suelen ser menores que 1°. La técnica de difracción de rayos X en la región de ángulos peque ños permite, pues, una investigación directa de la estructura supramolecular y textura de los polímeros, es decir, de las varia ciones en el tamaño, forma, orientación y distribución de las regiones cristalinas.

La fig. 10 representa esquemáticamente el principio básico de la cámara de colimación puntual empleada donde c $_1$ y c $_2$ son

Fig. 10

dos colimadores puntuales de 0.5 y 0.3 mm de diámetro φ; S es la placa interceptora del haz (≃1.5 mm φ); P la película fotográfica; M la muestra; s el diámetro del haz primario en la película fotográfica y r el radio del anillo de difracción.

El diámetro del haz primario s, viene dado por:

$$s = c_2 + \frac{CP}{CC} (c_1 + c_2)$$
 (4)

Por ejemplo, para CC=CP=300 m se tiene s=1.1 mm con lo que el haz primario es completamente interceptado por S. La resolución alcan zada depende obviamente de las aberturas c₁ y c₂ de los colimadores utilizados asi como de las distancias CC, CP y CM elegidas. La resolución obtenida viene dada por $\theta = \frac{s/2}{CP} \approx \frac{0.6}{300} = 2\times10^{-3}$ (rad.) y teniendo en cuenta la ley de Bragg (3) para ángulos pequeños, el espaciado máximo será: d_{max} = $\frac{\lambda_{Cu}}{\theta} = \frac{1.54 \text{ Å}}{2\times10^{-3}} \approx 750 \text{ Å}$, (aqui θ es el doble del ángulo de la expresión (3)), conocido en este caso como espaciado grande (L). Para MP=200 mm y dado que S>s el espaciado grande, correspondiente a un anillo de difracción de diámetro S, es L_{max} $\approx 400 \text{ Å}$. Así pues, sólo se podrán observar en la película fotográfica los anillos de difracción correspondientes a L<400 Å.

El espesor de muestra utilizado fue de 1-2 mm y el tiempo de exposición de unas 2.5 h para una potencia de generador de 4.5 Kw.

Hay un conjunto de muestras que requirieron mayor resolución por lo que obtuvimos sus difractogramas operando en las condiciones siguientes: c₁ y c₂ colimadores de 0.3 y 0.2 mm ϕ respecti - vamente, CC= $\frac{1}{2}$ CP \simeq 168 mm y MP=300 mm y con tiempos de exposición ligeramente mayores. (En estas condiciones $L_{max} \simeq 600$ Å).

En la fig. 11 se representa el anillo de difracción que se obtiene en la placa fotográfica y el perfil densitométrico correspondiente. La medida de r, para calcular L, se realizó sobre los perfiles densitométricos de las películas fotográficas, obtenidas mediante un microdensitómetro Joyce-Lebell MKIII por ser un método más preciso y cómodo que la observación directa en la película. Estos perfiles presentan junto a los máximos de difracción, más o menos bien definidos, un fondo que aumenta contínuamente al acercar se al borde de la sima correspondiente a la placa interceptora (círculo no ennegrecido) y que se debe a la dispersión de radiación (Scattering) contínua de la muestra y del haz primario y que perturba sensiblemente la posición de los máximos cuando estos no son muy intensos. En la fig. 11 está señalada, mediante flechas, la posición correcta de los máximos de difracción una vez deducida la contribución debida al scattering contínuo.

2. RESULTADOS EXPERIMENTALES

2.1. CARACTERIZACION QUIMICA DE LAS MUESTRAS

Dependiendo de la cinética y condiciones de polimerización, el PE comercial presenta una cierta concentración de defectos en las cadenas principales que son fundamentalmente ramificaciones cortas de tipo hidrocarburo saturado y en menor proporción de natu raleza etilénica ⁵¹. El análisis de los espectros infrarrojos de las muestras confirma la presencia de grupos metilo y diversos tipos de insaturaciones. La oxidación de la mayoria de las muestras investigadas es prácticamente despreciable. Sin embargo las mues tras B3, B5 y B6 presentan una oxidación considerable y por lo tan to tuvieron que ser descartadas del estudio estructural, por su comportamiento tan anómalo en relación con el resto de las muestras. Ello se debe a la exaltación de los valores de absorción de læ bandas IR estudiadas. Las muestras A¹6 y A5 presentan bandas de intens<u>i</u> dad media a 1745 cm⁻¹ y 1260 cm⁻¹ que podemos atribuir a grupos e<u>s</u> ter (acetato) (restos de catalizador de polimerización).

2.1.1. Determinación del contenido de grupos metilo

En los espectros de hidrocarburos saturados en estado sóli-

do, la banda a \approx 1376 cm⁻¹, correspondiente a la vibración de deformación simétrica del grupo metilo, aparece con suficiente niti dez para que sea idónea para la determinación cuantitativa del contenido de grupos metilo. En el caso de muestras de PE, por el contrario, esta banda aparece fuertemente solapada por otras que deben su origen a vibraciones de aleteo (wagging) de los metile nos en conformación no plana, y por tanto originadas, en parte, por las moléculas en las regiones amorfas ^{66,67} y en parte por los defectos conformacionales en los microcristales ²⁹. El espectro de las parafinas en estado fundido es muy parecido en esta re gión al del PE en el estado sólido y fundido. No obstante, a pesar del solapamiento, esta banda es la más interesante del espectro para la determinación del contenido de grupos metilo, o grado de ramificación GR, en PE. Inicialmente la determinación del contenido de grupos CH₂ se llevó a cabo en estado fundido usando como muestras patron algunos hidrocarburos líquidos 66-68. Posterior mente Bryant y Voter ⁶⁹ midieron los coeficientes de absorción de la banda a 1376 cm⁻¹en los espectros de PE en estado sólido y fundido y encontraron que estaban relacionados entre sí. De esta mane ra se hizo posible la determinación del contenido de CH₃ en PE en estado sólido previa corrección de la fuerte interferencia de las bandas que la solapan ^{67,51}. Willbourn ²³ comunicó más tarde un mé todo para la determinación del GR, basado en la eliminación de las bandas que interfieren mediante compensación con una muestra de po limetileno lineal. En los espectros de una serie de PE de GR conocido (determinado por otro método 23) encontró una relación entre el coeficiente de absorción K(cm⁻¹) de la banda a 1375 cm⁻¹ y el num. de CH₃/1000 C:

$$CH_3/1000 C = 0.85 K_{1375}$$
 (5)

La expresión (5) es de aplicación general para la medida de GR en PE y ha sido utilizada por numerosos investigadores 70,71. Hasta ahora es el método más preciso y sensible ya que permite determi nar grados de ramificación de hasta 0.5 CH₃/1000 C. Sin embargo es dificil la preparación de una buena cuña de PE lineal y determ<u>i</u> nar cuál es la compensación exacta para cada una de las muestras investigadas.

En el presente trabajo presentamos un nuevo método que el<u>i</u> mina estos inconvenientes y que consiste en la aplicación del programa de cálculo de Pitha y Jones ⁴⁹ modificado ⁵⁰ para la descomposición de bandas espectrales. A continuación se comparan el mét<u>o</u> do de descomposición de bandas y el de compensación.

2.1.1.1. Método de descomposición de bandas

La banda compleja que se extiende entre 1320 y 1400 cm⁻¹ se descompone en sus componentes mediante aplicación del programa de cálculo anteriormente citado ^{49,50} (2.1.3.1) figs. 12a-b. Se pu<u>e</u> de ver el buen ajuste alcanzado que hace que la envolvente teórica y la experimental se superpongan en todo el intervalo de frecuencias estudiado.

Para la determinación cuantitativa del contenido de GH_3 calculamos el coeficiente de absorción K, de la banda componente a 1376 cm⁻¹ en los espectros de seis muestras de grado de ramif<u>i</u> cación conocido. Con los valores medios de K_{1376} (cm⁻¹) obtenidos en los espectros de películas diferentes de cada una de las mue<u>s</u> tras se construyó la curva de calibrado de la fig. 13. El punto correspondiente a la muestra A8 se desvia mucho y como veremos más adelante este hecho se repite en la aplicación del método de compensación. Por tanto no se ha tenido en cuenta al trazar la recta de calibrado. Por el método de mínimos cuadrados se ajustó una recta a la curva de calibrado de la fig. 13 obteniendose la siguiente ecuación:

$$GR(CH_3/100 C) = 0.085 K_{1376} - 0.086$$
 (6)

que permite calcular el GR expresado en CH₃/100 C. Si comparamos esta última ecuación (6) con la propuesta por Willbourn (5) se puede observar que son idénticas las pendientes de las dos rectas obtenidas.

Los valores de GR calculados a partir de la ecuación (6) se dan en la tabla II. Las muestras marcadas con un asterisco son las de GR conocido que hemos empleado como patron.

2.1.1.2 Método de compensación

Preparamos dos cuñas de compensación empleando las muestras

Fig.13 Curva de calibrado para la determinación del grado de ramificación ($CH_3/100$ C) por el método de des--composición de bandas.

A2 y A3 que pueden considerarse prácticamente lineales. Se introdujo cada una de estas cuñas en el haz de referencia del espectrofo tómetro hasta conseguir que el perfil de la banda a 1376 cm⁻¹ fuese lo más simétrico posible y que la transmisión a ambos lados de di cha banda fuera la misma. En la fig. 14 presentamos los resultados obtenidos por este procedimiento en los espectros de las muestras A4 y A'10.

Calculando los valores de GR de las muestras patrón mediante la ecuación (5), obtuvimos valores inferiores a los conocidos. Por esta razón procedimos a dibujar curvas de calibrado a partir de los valores de K medidos, utilizando las dos cuñas A2 y A3, frente a los GR conocidos fig. 15. Obtuvimos asi dos rectas paralelas so bre las que se encontraban los puntos correspondientes a cuatro de las muestras patrón. El punto correspondiente a GR=1.3(A8) está fuera de las dos rectas. La desviación observada es de la misma mag nitud y sentido en ambas rectas y análoga a la que encontramos en la aplicación del método anterior (fig.13). El valor que se obtiene para el GR de A8 por aplicación de la ecuación (6) es de 1.75 CH₃/100 C que se encuentra en muy buen acuerdo con los obtenidos al aplicar el método de compensación (tabla II). Por esta razón admit<u>i</u> mos este valor para el GR de la muestra A8.

Por el método de mínimos cuadrados se ajustaron dos rectas a las curvas de calibrado de la fig. 15 obteniéndose la siguiente ecuación:

$$GR(CH_3/100 C) = 0.106 K_{1376} + b$$
 (7)

Espectros IR entre 1400 y 1200 cm⁻¹ de las muestras A'lC y A4. A la derecha de cada registro aparece el espectro diferencial

(%) AIDNATIMENAAT

Fig.15 Curvas de calibrado para la determinación del grado de ramificación (CH3/100 C) por el método de compensación.

_	
a	
ab	
F	I

•

Grado de Ramificación GR (CH $_3/100$ C)

·	Descomposición	Método de cc	ompensación		Error relativo
	de bandas	a (cuña : A2)	b (cuña :A3)	a-b	a-b/a (%)
A1	0.17	ı	ı		
A2*	0.05	0.08**	1		
A3	0.28		0.28**		
A4*	0.64	0.64	0.64		
A5*	0.91	0.91	16.0		
A ' 6	1.21	1.15	1.20	-0.05	4.3
A'7	1.06	1.01	1.10	-0.09	ۍ . 8
A8*	1.75(1.3)	1.78(1.3)	1.76 (1.3)	0.02	1.1
A9*	2.50	2.50	2.50		
A'10	2.34	2.50	2.53	-0.03	1.2
A11*	3.00	3.00	3.00		
A'12	3.54	3.90	4.16	-0.26	6.7
B1	1.54	I	ı		
B2	2.41	2.76	2.84	-0.08	2.9
8	2.61	ı	1		
B4	2.83	2.97	3.02	-0.05	1.7
BS	2.90	I	ı		
B6	3.18	I	ı		
B7	2.93	3.64	3.68	-0.04	1.1
B8	3.06	3.54	3.31	0.23	6.5
B9	64.4	5.50	5.40	0.10	1.8
B10	4.68	5.23	5.19	0.04	0.8
B11	5.12	5.33	5.16	0.17	3.2
B12	5.28	6.55		-0.05	8°.
813	6./2	1°04	/./4	0.10	

(*) Muestras patrón (1.1) (**) Valores obtenidos por extrapolación para K₁₃₇₆=0

donde b toma los valores 0.08 para la cuña A2 y 0.28 para la cuña A3. Los valores de b deben corresponderse aproximadamente con el GR de cada una de las muestras utilizadas como cuña. El valor de la pendiente encontrada en este trabajo es mayor que el obtenido por Willbourn ²³ mientras que Badilescu y co. ⁷⁰ obtienen valores menores (0.072 y 0.068) y diferentes para cada una de las cuñas em pleadas. Estos resultados confirman que el valor de la pendiente depende de la apreciación subjetiva del operador y pone en evidencia los inconvenientes, anteriormente indicados (2.1.1.) del método de compensación.

Los valores de GR, determinados por este método, aparecen en las columnas 3^a y 4^a de la tabla II. Dichos valores son simila res en las dos determinaciones como se deduce del pequeño error relativo (tabla II, última columna). Los valores de GR, obtenidos por el método de compensación, son en general mayores que los obtenidos por el método de descomposición de bandas y esta diferencia es más acusada a medida que aumenta el GR. Esto se traduce por un valor de la pendiente de la recta, representada por la ecuación (7), más alto que el de la expresión (6). Dado que la descomposición de ban_ das del perfil infrarrojo es excelente y que los coeficientes angu lares de las ecuaciones (5) y (6) coinciden, consideramos razona ble tomar como valores de GR de las muestras estudiadas los determinados por el método de descomposición de bandas y recogidos en la 2^a columna de la tabla II.

La descripción y presentación de los resultados del método

de compensación, se ha hecho para poner en evidencia los inconve nientes de que adolece este método, que no se encuentran en el método de descomposición de bandas mediante programa de cálculo. Sin embargo, el método de compensación parece dar mejores resultados cuando se aplica a PE con GR muy pequeño, menores de 0.1.

2.1.2 <u>Método diferencial para la determinación del grado</u> de insaturación de PE

Los espectros de la mayoria de las muestras de PE investiga das, (fig. 7), presentan bandas típicas del doble enlace C=C que por su intensidad indican la existencia de insaturaciones en propor ción apreciable, por lo que hay que tenerlas en cuenta al estudiar las propiedades estructurales. La región del espectro adecuada para determinar el grado de insaturación es la correspondiente a las vi_ braciones de deformación fuera del plano de los hidrógenos unidos al doble enlace (850-1000 cm⁻¹), ya que en los diversos tipos de in saturaciones vibran a frecuencias diferentes y además originan bandas intensas ^{31,32}. Los tipos de insaturaciones presentes en las muestras de PE dependen del tipo de polimerización empleada ⁷². Se han encontrado insaturaciones del tipo <u>vinilo</u>, <u>trans-vinileno</u> y <u>vinilideno</u> predominando la insaturación tipo vinilo en el PE de alta densidad (tipo Phillips y Ziegler) y la insaturación vinilideno en PE de baja densidad ^{72,70}.

La banda a 895 cm^{-1} , correspondiente a la vibración de ba -

lanceo (rocking) de los grupos metilo de ramas laterales 68,69,73 y fundamentalmente los de tipo butilo 74 , se solapa con la banda a 888 cm⁻¹ característica de los grupos vinilideno y en mucha menor extensión con la del grupo vinilo (\sim 910 cm⁻¹) asimismo la i<u>n</u> saturación trans-vinileno se ve ligeramente perturbada por una banda débil alrededor de 964 cm⁻¹ 69 . Es pues necesario hacer una corrección de la banda a 895 cm⁻¹ para la determinación exacta del contenido de grupos vinilideno como han realizado investigadores anteriores en la determinación de insaturaciones en pe 69,74 .

En este capítulo proponemos un método diferencial por espectroscopía IR para determinación cuantitativa de insaturaciones en PE⁷⁵. La técnica consiste esencialmente en el registro de un espectro diferencial, colocando una película en el haz de la mue<u>s</u> tra y otra película bromada, de idéntico espesor, en el de refe rencia.

La fig. 16 presenta los espectros de absorción de dos mue<u>s</u> tras B4 y B10 antes y después de la bromación (espectros a y c) y los respectivos espectros diferenciales (espectros b y d). La exc<u>e</u> lente superposición de los registros de la película bromada y sin bromar, y la estabilidad de la línea de base en los espectros dif<u>e</u> renciales, son indicativos de la igualdad alcanzada en el espesor de ambas películas. Así se asegura la compensación exacta de las bandas interferentes. En los espectros diferenciales podemos obse<u>r</u> var las bandas de insaturación en la región de los 900 cm⁻¹ (vibr<u>a</u> ciones de deformación fuera del plano de los hidrógenos unidos al doble enlace C=C) y la banda menos intensa a 1645 cm⁻¹ (vibración

Fig.16 Espectros IR de dos muestras (a: B4 y c: B10) antes y despues de la bromación. Los espectros diferenciales correspondientes (b y d) muestran las bandas de insaturación aisladas. de valencia del doble enlace).

La fig. 17 representa los espectros en la región 850-1050 cm⁻¹ de seis muestras con diferente tipo y contenido de insaturaciones. En A se dibujan, superpuestos, los espectros de la muestra bromada (línea discontínua) y muestra sin bromar. En B aparecen los correspondientes espectros diferenciales.

En el cuadro siguiente indicamos los tipos de insaturación presentes en las muestras, así como la posición en cm⁻¹ de las ba<u>n</u> das correspondientes y los valores de sus coeficientes de absor- - ción molar ε , determinados por Kock y Hol⁷⁶ usando la corrección de Lomonte⁷⁴.

tipo de insaturación	conformación	posición(cm ⁻¹)	ε ⁷⁶ (cm ⁻¹)
trans-vinileno	R-H ₂ C H ^{C=C} H ₂ -R	965	168
vinilo	R-H ₂ C HC=C H	910 (990)	123
vinilideno	^{R−H} 2 ^C C=C H R'−H ₂ C	888	129

Medimos las absorbancias en los espectros diferenciales tr<u>a</u> zando una línea de base que une los puntos de transmisión a 850 y 930 cm⁻¹ para los grupos vinilo y vinilideno y otra entre 930 y -1000 cm⁻¹ para el trans-vinileno.

Fig. 17 Espectros IR entre 800 y 1000 cm⁻¹ correspondientes a seis muestras de PE (a: A'10, b:B9, c: A2, d: 34, e: All,y f: A8). (1): antes y depues(línea de trazos) de la bromación. (2): espectros diferenciales.

La expresión que facilita el número de C=C por cada 100C 76

es:

$$N(\frac{C=C}{100 C}) = 1.4 A/\rho d\epsilon$$
 (8)

donde A es la absorbancia (lg $\frac{T_0}{T}$), ε el coeficiente de absorción molar (cm⁻¹), ρ la densidad macroscópica (g/cm³) y d el espesor de la película (cm). El producto ρ d lo determinamos pesando películas no bromadas de 1x2 cm.

En la tabla III a aparecen los valores de los coeficien tes de absorción K(cm⁻¹) de las bandas de insaturación y de la ba<u>n</u> da a 895 cm⁻¹ así como el espesor de las películas utilizadas.

En la tabla III b están recogidos los valores encontrados de los diversos tipos de insaturaciones. Las muestras están agrupa das en dos clases. En la primera se encuentran las de mayor densidad y en la segunda las menos densas (2.2.1.) y ordenadas según el grado de insaturación decreciente. En la última columna aparece la relación entre el contenido de grupos vinilo y de vinilideno. Se observa que el cociente vinilo/vinilideno es mayor que la unidad para las muestras de alta densidad y menor para las muestras de ba ja densidad. Según estos resultados, podemos decir que este método de espectroscopía diferencial, para la determinación de insatura ciones, es imprescindible para la medida correcta de la insatura ción en PE de baja densidad (normalmente con alto contenido de grupos metilo y donde la insaturación vinilideno es predominante⁷²)

	Coefic	Coeficientes de Absorción K(cm						
Espesor de película d(cm)	^K 965	^K 910 .	к ₈₈₈	к ₈₉₅				
•	_	-	-					
-	0 00	11 25	0 00	_				
0.0579	0.00	C 00	0.00	_				
	1 17	0.00	0.00	-				
0.0500	·.1/	2.52	0.90	-				
0.0590	0.00	0.04	0.97	0.30				
0.0245	0.00	0.00	0.00	-				
0.0226	2.5/	1.06	1.55	0.40				
0.0585	0.07	0.21	0.79	0.64				
0.0576	0.10	C.42	2.26	1.00				
0.0388	3.25	12.76	4.43	0:94				
0.0551	0.18	0.60	3.03	1.00				
0.0277	0.25	0.50	4.19	1.52				
0.0176	9.66	13.81	1.93	-				
0.0259	4.83	10.96	3.24	-				
0.0320	0.00	4.47	0.00	-				
0.0328	1.71	1.83	1.83	1.62				
0.0315	0.00	6.00	0.00	-				
0.0334	0.00	0.00	0.00	-				
0.0269	6.54	15.06	7.32	1.13				
0.0315	6.00	22.16	8.92	1.35				
0.0287	1.22	3.00	7.39	1.64				
0 0274	0 47	0.73	6 72	1.63				
0.0280	2 KL	7 00	9.07	2 56				
0.0200	2.07 0 / R	0.26	5.07 6 1E	2.00				
0.0350	1 .00	1 71		2.00				
	Espesor de película d (cm) - 0.0519 0.0530 0.0580 0.0598 0.0245 0.0226 0.0585 0.0576 0.0585 0.0576 0.0388 0.0551 0.0277 0.0176 0.0259 0.0320 0.0320 0.0320 0.0328 0.0315 0.0315 0.0315 0.0287 0.0274 0.0280 0.0330 0.0254	Coefic Espesor de película K965 d (cm) - 0.0519 0.00 0.0530 0.00 0.0580 1.17 0.0598 0.08 0.0245 0.00 0.0226 2.57 0.0585 0.07 0.0576 0.10 0.0576 0.10 0.0576 0.10 0.0576 0.10 0.0277 0.25 0.0176 9.66 0.0259 4.83 0.0320 0.00 0.0328 1.71 0.0315 0.00 0.0328 1.71 0.0315 6.00 0.0287 1.22 0.0274 0.47 0.0280 2.64 0.0330 0.48 0.0254 1.08	Espesor de películaCoeficientes de A K_{965} K $_{910}$ d (cm) K_{965} K_{910} 0.05190.0011.350.05300.006.000.05801.172.320.05980.080.840.02450.000.000.05850.070.210.05760.10c.420.03883.2512.760.05510.180.600.02770.250.500.01769.6613.810.02594.8310.960.03200.004.470.03281.711.830.03150.006.000.02771.223.000.03340.000.000.02696.5415.060.03156.0022.160.02871.223.000.02740.470.730.02802.647.000.03300.480.360.02541.081.71	Coeficientes de Absorción K K_{965} Espesor de película d (cm) K_{965} K_{910} K_{888} d (cm)0.05190.0011.350.000.05300.006.000.000.05801.172.320.900.05980.080.840.970.02450.000.000.000.05850.070.210.790.05760.100.422.260.03883.2512.764.430.05510.180.603.030.02770.250.504.190.01769.6613.811.930.02594.8310.963.240.03200.004.470.000.03281.711.831.830.03150.006.000.000.02696.5415.067.320.02740.470.736.720.02802.647.009.070.03300.480.366.150.02541.081.7112.20				

Tabla ||| a

•

·

•

					•																						
	А9 А8	A11	A'12	B12	B10	Rq	B11		B6	AS	A A 5	B3	A4	B2	A2	· A'7	B2	A'10	B1	·B7	B8						
·	0.9203	0.9146	0.9111	0.9184	0,9044	0 9100	0.9201		0.9411	0.9040	0.9366	0.9455	0.9502	0.9443	0.9634	0.9649	0,9365	0.5335	0,958r	0.9318	0.9304	ρ(g/cm ²)	Densidad				
	0.001 0.001	0.002	0.010	0.004	0.004	0.010	0.024	-	0.000		0.001	0.000	0.010	0.000	0.000	0.022	0.046	0.027	0.084	0.058	0.054	965 cm 1	trans-Vinileno	Insaturac	-		
	0.005	0.007	0.006	0.005	0.009	0.038	0.087		0.000		0.009	0.054	0.033	0.072	0.136	0.148	0.134	0.152	0.164	0.180	0.272	910 cn ⁻¹	V in i lo	iones (C=C/100	Tabla III b		
	0.627 0.009	0.036	0.050	0.073	0.080	880 0	0.107		0.000		0.011	0.000	0.012	0.000	. 0,000	0.018	0.038	0.050	0.022	0.085	0.104	888 cm -	Vinilideno) C)	10		
	0.033	0.045	0.066	0.082	0.093	0.137	0.218		0,000		0.021	0.054	0.055	0.072	0,136	0.188	0.218	0.229	0.270	0.323	0,430	100 C	()	Grado de insaturación			
	0.18 0.33	0.19	0.12	0.07	0.11	0.43	0.81)	1 1	ſ	0.82	≥ 54	2.75	≥ 72	≥136	8.22	3.53	3.04	7.45	2.12	2.62	V inilideno	Vinilo				

.

y en PE tipo Ziegler (con notable contenido de vinilideno 72). En PE de alta densidad tipo Phillips, que solo presenta insaturación tipo vinilo 72 , este método es menos necesario.

Mediante un cálculo sencillo se puede estimar el número de los diversos tipos de insaturaciones que se encuentran en una 'macromolécula''. En el siguiente cuadro se da el número de grupos vinilo y vinilideno por macromolécula determinados en un conjunto de muestras.

	Grado de pulimerización n	vinilos/molécula	vinilidenos/molécula
в 8	400	1	0.4
A'10	710	1	0.3
A'7	645	1	0.1
A 2	10700	14	0
A 4	8600	3	1
A 5	17500	1.6	2
A 11	3850	0.3	1.5
A 9	3800	0.2	1

Es notable el caso de A 2 que contiene 14 grupos vinilo (en los extremos de cadena de longitud desconocida) disminuyendo asi su cará<u>c</u> ter de PE lineal como podriamos considerarlo si tenemos en cuenta solo los grupos metilo presentes (≃5 CH₃/molécula).

	сн ₃ /100 с	C=C/100 C	GR _t /100 C
A1	0.17		0.17
A2	0.05	0.136	0.19
A3	0.28	0.000	0.28
A4	0.64	0.055	0.70
A5	0.91	0.021	0.93
A'6	1.21	0.000	1.21
A'7	1.06	0.188	1.25
A8	1.75	0.013	1.76
A9	2.50	0.033	2.53
A'10	2.34	0.229	2.57
A11	3.00	0.045	3.04
A'12	3.54	0.066	3.61
B1	1.54	0.270	1.81
B2	2.41	0.218	2.63
B3	2.61	0.054	2.66
В4	2.83	0.058	2.89
B5	2.90	0.072	2.97
в6	3.18	0.000	3.18
В7	2.93	0.323	3.25
в8	3.06	0.430	3.49
B9	4.49	0.137	4.63
B10	4.68	0.093	4.77
B11	5.12	0.218	5.34
B12	5.28	0.082	5.36
B13	6.72	0.180	6.90

Tabla IV

2.1.3 Grado de ramificación total

En la tabla IV aparecen reunidos el grado de ramificación GR (CH₃/100 C) y el grado de insaturación (C=C/100 C). Vemos que el número de dobles enlaces (C=C) en el PE comercial es considerablemente menor que el de grupos metilo. No obstante en algunas muestras llega a suponer más del 10% de GR por lo que creemos necesario la introducción de un nuevo concepto: el de grado de ram<u>i</u> ficación total (GR_t) que es la suma de CH₃/100 C y de C=C/100 C y puede constituir una medida del grado de irregularidad química de las cadenas. Los valores de GR_t están recogidos en la última colu<u>m</u> na de la tabla IV y serán los que utilicemos al estudiar la dependencia de las propiedades estructurales del PE frente a la irregularidad química de las cadenas.

2.1.4 <u>Estudio de las regiónes espectrales 1320-1400 cm⁻¹</u> y 700-800 cm⁻¹

2.1.4.1. Región espectral 1320-1400 cm⁻¹

Desde hace tiempo se ha prestado especial atención a la región 1200-1400 cm⁻¹ del espectro infrarrojo del PE por las diferencias tan notables que presenta con relación a los espectros de sus compuestos homólogos las parafinas sólidas (fig. 25). En esta región se encuentra la banda correspondiente a la vibración simétrica del
grupo CH_3 hacia 1376 cm⁻¹ que es la única observable en el espectro de las parafinas sólidas, mientras que en el espectro del PE existen en general tres bandas más, relacionadas con la estructura macromolecular y la cristalinidad ^{45,68,69,77,78}. Estas bandas se deben a vibraciones de aleteo de los grupos CH_2 en conformación no plana^{12,78,79}.

Snyder ⁷⁹ ha calculado teóricamente las frecuencias de los modos normales de vibración de secuencias cortas de metilenos (CH_2) con distintas conformaciones y ha podido asi realizar una asigna - ción casi completa del espectro de PE fundido basándose en los espec tros IR de n-parafinas líquidas. Posteriormente Zerbi ¹² ha calcula do teóricamente el espectro de PE lineal en estado sólido, en se- - cuencias largas de metilenos, (200 monómeros CH_2 en conformación trans, caso ideal) donde introduce de manera regular o al azar los siguientes defectos conformacionales: G, GG, GTG, GTTG, GGTGG. La asignación encontrada para el doblete 1350-1367 cm⁻¹ difiere de la propuesta por Snyder ⁷⁹. En el cuadro adjunto se recogen las fre- - cuencias de las bandas infrarrojas observadas y las asignaciones da- das por dichos autores:

Posición (cm ⁻¹)	Snyder ⁷⁹	Zerbi ¹²
1376 m	-CH ₃ ðsim.	-
1367 m	-G TG -	-GTTG-
1350 m	-GG -	-GG-+-GTG- (T) _m -GGTGG-(T) _n
1340 d (b)	1344 -TG terminal	_
	1388 -GTTG-	-
1300 m	-GTG-	-

m, d; intensidad media y débil respectivamente; h: hombro.

Okada y Mandelkern 78 estudian las bandas "gauche" en los espectros de monocristales de PE y muestras cristalizadas del estado fundido (con amplio rango de valores de densidad). Estos investigadores encuentran para ambos tipos de muestras un comportamiento similar y sugieren que las bandas "gauche" se deben a la vibración de aleteo de los grupos CH₂ de la región interlaminar amorfa. Además afirman que los monocristales de PE no poseen una estructura de plegado regular 29 y mantienen que no se puede dedu cir del estudio de estas bandas que el PE cristalizado del estado fundido presente una estructura plegada, tal como sostienen otros autores 80,81 .

Posteriormente Jackson y Hsu⁸², estudiando los espectros registrados a diferentes temperaturas, calculan la diferencia de energía entre los estados gauche y trans y encuentran que sus resultados son consistentes con la asignación de Snyder⁷⁹.

En el presente trabajo hemos recurrido a la aplicación de un programa de cálculo de descomposición de bandas espectrales^{49,50} para el estudio de la región 1320-1400 cm⁻¹. El uso de este pro- grama permite fundamentalmente la determinación directa del GR (2.1.1) pero al mismo tiempo puede servir para encontrar el número y posición de las bandas que originan la absorción compleja registrada en esta región.

El número de bandas componentes introducido para los cal-

culos del programa ha sido de 5 siguiendo la asignación propuesta por Snyder ⁷⁹ y guiados por el aspecto de los perfiles experimentales. Como el hombro que aparece a ≃1340 cm⁻¹ en las muestras más lineales,se hace más intenso en las más ramificadas, podemos admitir la presencia de dos bandas a 1344 y 1338 cm⁻¹ tal como propone Snyder.

Para encontrar los parámetros adecuados de las bandas componentes que ofrecen un ajuste espectral óptimo, hemos realizado un estudio previo que permite establecer los valores de la semi anchura de las bandas componentes ($\Delta v_{1/2}$). En el cuadro que figura a continuación se recogen: en la segunda columna los valores de la semianchura ($\Delta v_{1/2}$), en la columna tercera aparecen los valo res medios de la semianchura ($\Delta v_{1/2}$) para el conjunto de muestras investigado junto con la desviación cuadrática media de $\Delta v_{1/2}$.

posición (cm ⁻¹)	$\Delta v_{1/2} (\text{cm}^{-1})$	$\Delta v_{1/2} (cm^{-1})$
1376	3.0	4.8 ± 0.07
1367	5.5	7.7 ± 0.12
1350	5.5	9.4 ± 0.15
1344	4.0	6.3 ± 0.30
1338	4.0	8.0 ± 0.51

el valor medio de la función de minimización FSM $|=(8.6\pm1.1)\times10^{-4}|$ permite determinar la bondad del ajuste alcanzado, que en este ca so es muy bueno dado la pequeñez de FSM.

El programa de cálculo suministra las bandas componentes, la envolvente calculada y el perfil experimental dibujados punto a punto en escala de transmitancias. De este dibujo discontínuo resulta dificil visualizar la bondad del ajuste. Para la obtención de un dibujo en trazado contínuo, utilizamos el equipo Hewlett-Packard modelo 9, 830 A con un Plotter adosado, empleando un programa de cálculo $\frac{83}{5}$ con los datos de salida del programa anterior $\frac{49}{5}$. Dicho programa de cálculo transforma los datos de transmitancia en valores de absorbancia y proporciona un dibujo contínuo de las bandas componentes y de la envolvente calculada, a un intervalo de frecuencias variable a voluntad (0.5 cm^{-1}) , y del perfil experimen tal al intervalo de frecuencia en que se leyeron los datos del espectro expandido (1 cm^{-1}) . La fig. 18 y las figs. 12a-b ilustran la descomposición de bandas en esta región en la que puede verse las cinco bandas componentes y la excelente superposición de la envolvente calculada con el perfil experimental en todo el intervalo de frecuencias estudiado.

En la tabla V se recogen los datos del espesor de las pel<u>í</u> culas empleadas y los valores de los coeficientes de absorción $K(cm^{-1})$ de las cinco bandas componentes. Cuando se representan los valores de los coeficientes de absorción K de las bandas a 1367, 1350 y 1338 cm⁻¹ frente a 1-X (X: cristalinidad,2.2.2) fig. 19, se

Tabla V

.

·

	Espesor de	Coeficientes de Absorción $K(cm^{-1})$				
	d (cm)	^K 1376	^K 1367	^K i350	к ₁₃₄₄	^K 1338
A1	0.0084	2.99	13.37	9.83	1.10	1.64
A2	0.0150	3.40	12.87	9.44	1.05	1.52
A3	0.0079	4.31	12.71	8.94	1.21	2.17
А4	0.0172	8.28	19.09	12.16	2,61	3.31
A5	0.0130	12.42	22.21	15.45	2.27	4.89
A'6	0.0074	15.27	18.79	12.19	3.49	4.61
A'7	0.0049	13.53	14.77	9.33	2.33	2.31
8A	0.0125	21.63	26.44	17.21	4.56	6.15
A9	0.0110	30.60	28.27	18.32	4.42	5.52
A'10	0.0047	28.55	22.04	12.96	3.83	4.89
A11	0.0128	36.08	28.06	18.94	4.90	7.22
A '12	0.0109	42.64	31.07	17.35	6.42	7.87
B1	0.0032	19.17	16.37	9.85	2.96	4.06
B2	0.0037	29.35	23.78	15.42	3.61	2.85
B3	0.0054	31.67	38.01	21.90	7.01	6.31
В4	0.0035	35.11	34.30	22.12	7.02	7.05
в5	0.0039	34.36	23.23	12.08	4.28	7.03
B6	0.0033	38.38	36.65	22.54	6.72	6.30
в7	0.0035	35.44	23.20	13.38	4.82	6.28
в8	0.0044	37.01	23.69	12.77	5.04	6.82
B9	0.0089	53.87	29.82	15.23	6.52	8.92
B10	0.0055	56.02	30.24	17.08	6.85	9.22
B11	0.0036	61.24	30.53	17.18	6.56	9.25
B12	0.0068	63.12	30.61	17.65	5.62	8.42
B13	0.0060	80.07	39.97	19.50	7.12	9.97

Fig.19 Correlación entre el coeficiente de absorción,K(cm⁻¹), de las bandas correspondientes a metilenos en conformación no plana y la "amorficidad" (1-X). encuentra una dependencia lineal. Sin embargo, se observa una segregación de los puntos correspondientes a la banda a 1350 cm⁻¹. A las muestras de alto peso molecular A(0) les corresponden valores más altos de K que a las de bajo peso molecular B(\bullet); esto parece indicar que existe una mayor concentración de conformaciones -GG- en las primeras.

Si ahora representamos los valores de K de las bandas a 1367 y 1350 cm⁻¹ frente al GR_t , figs. 20 a,b, observamos una se gregación de los puntos según el peso molecular de las muestras. En las muestras A(0), K aumenta rápidamente para valores pequeños de GR_t y tiende a estabilizarse para $GR_t>2$. Por el contrario, las muestras B(•) presentan un crecimiento lineal de K al aumentar GR_t . Las muestras A'(•) de peso molecular medio se situan en posición intermedia entre las A y B. Todas las curvas, así obtenidas, presentan una ordenada en el origen ($GR_t=0$) cuyo valor depende de las condiciones de cristalización. Los valores de K de la banda a 1338 cm⁻¹ no se han representado frente al GR_t pues dado su pequeño valor no es posible poner en evidencia la segregación observada con claridad en las otras dos bandas en estudio.

En la fig. 21 se ha representado K_{1344} frente al GR, encontrándose una dependencia lineal que apoya la asignación dada para esta banda por Snyder ⁷⁹.

Fig.20a

Dependencia del coeficiente de absorción, K(cm⁻¹), de la banda a 1367 cm⁻¹ con el grado de ramificación total (GR_t). ($\Lambda(0)$, $\Lambda'(0)$, $B(\bullet)$)

Fig.20b Dependencia del coeficiente de absorción, $K(cm^{-1})$, de la banda a 1350 cm⁻¹ con el GR_t .

2.1.4.2 Región espectral 700-800 cm⁻¹

En esta zona del espectro infrarrojo aparecen las bandas correspondientes a la vibración de balanceo (rocking) de los gru pos metileno 32 . Para secuencias largas de grupos metilenos en conformación plana - (T)_n- (n>4) estos vibran a la misma frecuencia, 719 cm⁻¹; cuando n<4 lo hacen a mayor frecuencia 84 .

En el estado sólido cristalino, debido a la inherente interacción intermolecular, se origina un desdoblamiento (splitting) de algunas de las bandas del espectro. Este desdoblamiento es característico de la celdilla unidad cristalina ³². Así los espec tros de las parafinas de larga cadena, en fase sólida, con estruc tura cristalina ortorrómbica presentan un doblete a 720-730 cm^{-1 85} mientras que en los de las parafinas con estructura triclínica - aparece una sola banda ⁸⁶⁻⁸⁸. En el espectro de PE con celdilla unidad orcorrómbica ³ se encuentra el doblete a 720-730 cm⁻¹ mientras que en el de PE con estructura monoclínica ⁸⁹,aparece una banda única (~715-718 cm⁻¹). Esta estructura monoclínica puede aparecer excepcionalmente en condiciones especiales de cristalización.

El doblete a 720-730 cm⁻¹ se asigna a la vibración de balanceo de las secuencias de metilenos en conformación trans -(T)_n- que constituyen los microcristales de PE. Las bandas a 720 y 730 cm⁻¹ responden a una variación del momento dipolar según los ejes cristalográficos b y a respectivamente ³². Las secuencias de metilenos trans, menos largas, que no cristalizan, contribuyen a la intensidad de la banda a 720 cm⁻¹ ⁹⁰.

El espectro de PE lineal en estado fundido presenta una sola banda a 719 cm⁻¹, mucho menos intensa que en estado sólido y asimétrica por el lado de mayor frecuencia (fig. 25). Según Snyder ⁷⁹, esta asimetría está provocada por la absorción originada por la vibración de secuencias cortas de metilenos en conformación distinta a la plana. En el espectro de PE ramificado se observa un hombro por el lado de frecuencias mayores, que llega a hacerse bastante nítido en las muestras más ramif<u>i</u> cadas, alrededor de 770 cm⁻¹ ^{69,91} (fig.23 y figs.43 a-b). Una inspección más detenida del perfil del espectro infrarrojo de las muestras investigadas indica que la asimetría de la banda a 730 cm⁻¹ se hace evidente para las muestras menos cristalinas. Los espectros de hidrocarburos de tipo parafínico en estado líquido muestran que las ramas etilo, propilo, butilo y amilo están asociadas a bandas que aparecen a 775, 740, 730 y 725 92 . Willbourn 23 , en un intento de estudiar la naturaleza (longitud) de las ramas laterales en PE, utilizó la espectroscopía IR de com pensación para eliminar las bandas intensas a 720 y 730 cm⁻¹ y así obtuvo el espectro correspondiente al hombro que atribuye a la vibración de las ramas laterales. El espectro asi obtenido pre senta dos bandas a 770 y 745 cm⁻¹, para PE de baja densidad, que los asigna a ramas etilo y butilo respectivamente, mientras que los espectros de muestras de PE de alta densidad solo presentan una banda a 770 cm⁻¹.

Para realizar un estudio estructural completo de PE sería indispensable el conocimiento de la longitud de las ramas laterales. Inicialmente utilizamos la espectroscopía de compensación usando como muestra en el haz de referencia una muestra de PE lineal (A 2 y A 3). La obtención de espectros diferenciales adecuados resultó dificil por la excesiva diferencia en la transmisión del PE ambos lados del doblete. El aspecto de los espectros re gistrados, fig. 22, difiere notablemente de los obtenidos por Willbourn y en ellos se observa que la banda a 770 cm⁻¹ es menos intensa que la banda a 745 cm⁻¹, pero se puede observar un aumento de su intensidad con el grado de ramificación de las muestras. Un cálculo aproximado, usando las expresiones de Willbourn ²³ para determinación del contenido de grupos etilo y butilo, propor

Espectros IR de compensación entre 800 y 700 cm⁻¹ correspondientes a cuatro muestras cuyo grado de ramificación se indica en la figura. Fig.22

ciona valores para el número de ramas laterales que excede considerablemente del valor del GR de las muestras, determinado anterior mente (2.1.1). Esto indica que las bandas a 770 y 745 cm⁻¹ del e<u>s</u> pectro diferencial no se deben exclusivamente a las ramas laterales etilo y butilo sino también a vibraciones de secuencias de m<u>e</u> tilenos en conformaciones distintas a la plana 79.

Debido a esto, creimos conveniente el estudio de la región 700-800 cm^{-1} aplicando el programa de descomposición de bandas es pectrales ya citado ⁴⁹. Obtuvimos los datos de entrada del progra ma de cálculo leyendo en los registros los valores de transmitancia a intervalos de 2 cm⁻¹ desde 670 a 840 cm⁻¹. Debido a la ca rencia de datos en la bibliografía sobre el número de bandas "definidas" en la zona de mayor frecuencia, hicimos un estudio previo para encontrar el número de componentes, la posición de las bandas y la semianchura $\Delta v_{1/2}$ que hacen óptimo el ajuste. La dificultad para llegar a un buen ajuste, estriba en la gran intensidad del doblete a 720-730 cm⁻¹ frente a la pequeña intensi dad de las componentes de mayor frecuencia. Estas se resuelven con valores de $\Delta v_{1/2}$ mucho mayores que las bandas del doblete 720-730 cm⁻¹. Un excesivo número de componentes para la zona de mayor frecuencia no reduce el valor de $\Delta v_{1/2}$ sino que, por el con trario, conduce a valores de $\Delta v_{1/2}$ aún mayores. Finalmente opta mos por introducir además de las bandas a 720, 730 y 770 cm⁻¹, dos componentes más a 745 y 760 cm⁻¹ que completan el intervalo de frecuencias existente entre el doblete y el hombro que aparece hacia 770 cm⁻¹. La posición y semianchura de las bandas componentes de mayor frecuencia suele fluctuar y en algunas de las muestras, una de las bandas a 745 o 760 cm⁻¹ se extingue y aparece entre los 790 y 810 cm⁻¹ una banda sumamente aplanada y de pequeña intensidad.

Los valores de $\Delta v_{1/2}$ de entrada se eligieron igual a 3 cm⁻¹ para las cinco componentes, que es el valor aconsejable para las bandas del doblete, si bien las otras componentes admiten valores superiores de $\Delta v_{1/2}$ resolviéndose en ambos casos como - componentes más anchos. En el cuadro siguiente se recogen la posición de las bandas y $\Delta v_{1/2}$ de entrada. En la tercera columna figuran los valores medios de $\Delta v_{1/2}$ encontrados junto con la - desviación cuadrática media de $\Delta v_{1/2}$ para cada componente.

posición (cm ⁻¹)	∆v _{1/2} (cm ⁻¹)	$\Delta \bar{v}_{1/2} (\text{cm}^{-1})$
720	3	5.6 ± 0.2
730	3	3.9 ± 0.2
745	3	6.9 ± 0.5
760	3	9.3 ± 1.6
770	3	21.0 ± 3.4

El valor medio de la función de minimización FSM, que es un orden de magnitud mayor que el obtenido en el estudio de la región -

1320-1400 cm⁻¹, es de $(9.2\pm1.7)\times10^{-3}$. El ajuste alcanzado no es tan bueno como en el problema anterior y es debido principalmente a la dificultad del programa de cálculo para resolver las com ponentes a 720 y 730 cm⁻¹. La fig. 23 y figs.43 a-b ilustran la descomposición de bandas de esta región en las que se observa una buena superposición de la envolvente calculada y con el perfil experimental en toda la región a excepción de los máximos de absorción del doblete.

Los resultados obtenidos de los cœficientes de absor ción para las bandas componentes, y el espesor de la película uti lizada se encuentran recogidos en la tabla VI. Las muestras más cristalinas (A'7, B 1 y A'6) y menos ramificadas, solo admiten las componentes a 720, 730 y 770 cm⁻¹ para una buena, descompos<u>i</u> ción, excluyendo de la región espectral considerada las otras dos bandas. En la tabla se ha incluido una nueva muestra de PE (A'0) (de la Societé Nationale de Pétroles d' Aquitaine, cuyas características conocidas son: M_w =13.3x10³, y GR<0.2 CH₃/100 C y grado de insaturación 0.09 C=C/100 C) en la que llega a anularse tam bién la banda a 770 cm⁻¹.

En la fig. 24 se representa el cœficiente de absorción de la banda a 770 cm⁻¹ frente a GR(CH₃/100 C) obteniendose una l<u>í</u> nea recta de pendiente \sim 1.81. La expresión correspondiente a la recta viene dada por:

$$CH_3/100 C = 0.55 \times K_{770} + 0.9$$
 (9)

	Espesor de	Coe	ficientes	de Absor	ción K(cm	⁻¹)
*** <u></u>	película d (cm)	^K 720	^K 730	к ₇₄₅	^K 760	^K 770
A'0	0.0021	233	239	-	-	-
A ' O _T	0.0021	253	265	-	-	-
A'7	0.0019	227	249	-	-	0.4
A'7	0.0024	231	213	-	-	0.0
A'6	0.0024	2 04	182	-	-	1.0
A'6	0.0034	163	172	2.2	1.5	0.4
B1	0.0032	176	185	-	-	0.3
A'10	0.0046	122	120	-	1.1	2.3
в8	0.0043	121	98	5.3	4.9	3.8
B7	0.0034	129	98	-	2.7	3.0
B12	0.0037	106	85	7.8	3.9	7.9
B11	0.0031	124	99	8.1	5.1	4.5
A'12	0.0048	109	79	5.2	1.6	4.7
B9	0.0035	115	77	-	1.4	7.0
B10	0.0035	103	73	5.4	4.8	6.2
B13	0.0067	72	32	5.4	3.6	12.0

· •

<u>Tabla VI</u>

.

.

que relaciona el contenido total de CH_3 con el K_{770} (cm⁻¹). El valor 0.55 se aproxima bastante al valor 0.50 encontrado por Willbourn ²³ que asigna la banda a 770 cm⁻¹ solo a las ramas etilo del PE.

Hemos considerado conveniente, estudiar más adelante la relación existente entre la absorción de las bandas del doblete 720-730 cm⁻¹ con la longitud de las secuencias lineales de metilenos que lo originan.

2.1.4.3 Longitud de las ramas laterales en PE comercial

Una vez establecida, por espectroscopia IR 93 , la natura leza ramificada del PE se creyó interesante determinar la longitud de las ramas laterales y su proporción relativa 23 con objeto de ver la influencia en la estructura y propiedades físicas del PE $^{94-96}$. Se pensó en principio que las ramas laterales segu ramente eran más largas que metilo y más cortas que n-amilo 97,23 .

En 1953, Roedel ⁹⁸ propuso un posible mecanismo para explicar la formación de ramas cortas en PE que lleva consigo una transferencia de cadena intramolecular o "back-biting" del radi cal en crecimiento dando preferentemente cadenas C₄ y C₅ y posiblemente C₃ y C₆ y aún más largas pero no metilo o etilo.

No hay evidencia directa para este mecanismo pero es consistente con la cinética de polimerización de PE por via radical.

Sin embargo los experimentos de irradiación de PE con radiación γ y electrones de alta energía indican la presencia predominante de ramas etilo y butilo ⁹⁹. Harlen y co. ¹⁰⁰ encontraron al analizar los productos de irradiación de polimetileno, -(conteniendo ramas de longitud conocida), que las ramas latera les se liberaban de la cadena principal, generalmente, sin rompe<u>r</u> se por efecto de la radiación.

Los espectros de los hidrocarburos de cadena normal presentan una banda alrededor de 900 cm⁻¹ que se ha asignado a la vibración de balanceo (rocking) de los grupos metilo de final de cadena. El espectro de PE ramificado presenta una banda en torno a los 895 cm⁻¹ 51. Boyd y co. ¹⁰¹ encontraron empiricamente una dependencia entre la posición de esta banda y la longitud de la rama lateral, que atribuyeron a la interacción de la vibra ción de balanceo del metilo con vibraciones de esqueleto carbonocarbono de los metilenos de la rama lateral ^{32,102}. Snyder ⁷⁹ ha estudiado la vibración de balanceo del grupo metilo y ha en -

contrado una dependencia entre posición y conformación de los "rotámeros", es decir con la conformación de los metilenos un<u>i</u> dos al grupo metilo.

Al estudiar detalladamente los espectros de las mues tras bromadas utilizadas en 2.1.2, fig. 17, se observa la aparición de una sola banda alrededor de 895 cm⁻¹ debida a la vibración de balanceo de los grupos metilo de ramas laterales ⁷³, que son ramas butilo o de mayor longitud ^{101,32,71}. Los valo res de K₈₉₅ determinados a partir de los espectros están recogidos en la tabla III a. La fig. 24 representa gráficamente la relación entre K₈₉₅ y el GR de las muestras, observándose una buena linealidad. La expresión encontrada es:

$$CH_3/100 C = 2.4 K_{895}$$
 (10)

La relación entre los coeficientes de absorción (K) de las bandas a 1376 cm⁻¹ (número total de grupos metilo) y a 895 cm⁻¹ (número de CH₃ situados en rama lateral de cuatro o más átomos de carbono) es prácticamente constante para la serie de muestras estudiadas y el valor medio encontrado es similar al obtenido por otros autores 69,74 :

	^K 1376 ^{/K} 895
Bryant-Voter ⁶⁹	29.4
Lomonte 74	28.9
Nosotros	29.9

Fig.24 Relación entre el coeficiente de absorción,K(cm-1) de las bandas a 895 y 770 cm-1 y el grado de ramificación.

Esta relación se mantiene constante para PE comercial y excluye la presencia de grupos metilo directamente unidos al esqueleto⁶⁹ ya que estos absorben solo a 1376 cm⁻¹ pero no a 895 cm⁻¹. Si examinamos cuidadosamente la banda a 895 cm⁻¹ en los espectros bromados, se observa, en muchas de las muestras, una asimetría de la banda por el lado de frecuencias mayores, lo que parece in dicar la presencia de una pequeña proporción de ramas propilo. Sin embargo estos espectros no muestran minguna absorción próxima a los 920 cm⁻¹ correspondiente a los grupos etilo por lo que se debe descartar la presencia de ramas etilo en las muestras de PE comercial investigadas.

Anteriormente encontramos una relación lineal entre la banda a 770 cm⁻¹ y el GR (ec.(9) y fig.21). Concluimos pues que en estas muestras la banda a 770 cm⁻¹ está originada exclusivamente por ramificaciones de mayor longitud que los grupos etilo en contradición con la asignación de Willbourn ²³ que la atrib<u>u</u> ye a los grupos etilo.

2.2 CARACTERIZACION FISICA DE LAS MUESTRAS

La estructura física de los sólidos poliméricos depende fundamentalmente de las formas de agregación de las macrom<u>o</u> léculas y están determinadas en gran parte por las condiciones de cristalización y tratamientos mecano-térmicos a que ha sido sometido la muestra ²⁰.

A continuación se presentan los resultados obtenidos en la medida de los parámetros físicos investigados: densidad, cristalinidad, espaciados grandes de rayos X y temperatura de fu sión. Hay que recordar (1.1) que todas estas magnitudes físicas se han determinado en la misma serie de muestras utilizadas para la medida del grado de cristalinidad por espectroscopia IR.

2.2.1 Densidad

La densidad es una magnitud física de gran utilidad para el conocimiento de la estructura de las substancias. En el caso de muestras poliméricas está directamente relacionada con el grado de perfección submicroscópica de la muestra, esto es, con la cristalinidad del polímero ¹⁰³.

2.2.1.1. Densidad macroscópica

En la tabla VII se encuentran recogidos los valores de la densidad macroscópica (ρ) obtenidos mediante la columna de gradiente de densidad (17% de tetracloruro de carbono y 83% de ρ -xileno), para las muestras cristalizadas, del estado fundido, a temperatura ambiente, (T_{amb}) y a 0°C. Los valores de ρ , para estas condiciones de cristalización, oscilan entre 0.895 y 0.967 g/cm³. Se observa que ρ es menor para las muestras crist<u>a</u> lizadas a 0°C como cabia esperar. La precisión alcanzada en la medida de ρ se estima en ±0.0005 g/cm³.

2.2.1.1 Densidad cristalina

Se incluye, en este apartado los valores de la densidad de las regiones cristalinas (ρ_c) calculada a partir de los parámetros de la celdilla unidad cristalina, obtenidos de los diagr<u>a</u> mas de difracción de rayos-X registrados en este laboratorio¹⁰⁴.

Los valores de ρ_{c} se han calculado aplicando la expresión:

$$\rho_{c} = \frac{n M(CH_{2})/N}{axbxc}$$
(11)

donde: a, b y c son los ejes cristalográficos (c=2.54 Å), r_i =4

Tabla VII

	Densidad	ρ (g/cm³)
	T_=T_amb.	T _c ≔0°C
A1	0.9668	0.9522
A2	0.962	0.9486
A3	0.962	0.953 ₀
A4	0.9502	0.941
A5	0.9366	0.9284
A'6	0.9452	0.938
A'7	0.9649	0.9588
A8	0.9268	0.9227
A9	0.9203	0.9168
A'10	0.9335	0.9312
A11	0.9146	0.912 ₇
A'12	0.911	0.908
B1	0.958 ₅	-
B2	0.9365	0.9316
B3	0.946	-
В4	0.926	0.924 ₇
в5	0.944	-
в6	0.941	-
B7	0.9 30 ₇	0.9300
B8	0.9304	0.929
B9	0.9108	0.908 ₀
B10	0.9044	0.903
B11	0.9201	0.9167
B12	0.9184	0.9128
B13	0.897 ₉	0.8950

Tabla VIII

۰.

Celdilla unidad cristalina

	a (Å)	ь (Å)	Densidad p _c (g/cm ³)
A1	7.408	4.947	0.999
A2	7.405	4.942	1.000
A3	7.403	4.952	0.998
A4	7.424	4.948	0.996
A5	7.441	4.943	0.995
A'6	7.438	4.952	0.994
A'7	7.416	4.945	0.998
A 8	7.449	4.955	0.992
A9	7.474	4.962	0.987
A i 1 .0	7.467	4.968	0.987
A11	7.531	4.970	0.978
A'12	7.478	4.977	0.983
B1	7.444	4.952	0.993
B2	7.469	4.969	0.986
B3	7.479	4.973	0.984
В4	7.479	4.969	0.985
B5	7.486	4.974	0.983
в6	7.484	4.971	0.984
B7	7.477	4.973	0.984
B 8	7.483	4.962	0.986
B9	7.464	4.973	0.986
B10	7.499	4.977	0.981
B11	7.484	4.972	0.984
B12	7.493	4.962	0.984
B13	7.529	4.976	0.977

es el número de grupos CH_2 por celdilla unidad, $M(CH_2)=14$ es el peso molecular del grupo metileno y N es el número de Avogadro (6.023x10²³ moléculas/mol). La expresión (11) está de acuerdo con la estructura ortorrómbica de la celdilla unidad cristalina del PE³, fig. 1. Los valores de a y b experimentales y los de ρ_c calculados mediante la expresión (11) están recogidos en la table VIII.

2.2.2 Determinación de la cristalinidad por espectroscopía IR.

El estado físico del polímero afecta notablemente el espectro de absorción IR como puede verse en la fig. 25 en la que se observa la desaparición de algunas bandas de absor ción en los espectros en estado fundido ⁴⁵. Estas bandas se llaman "bandas infrarrojas de cristalinidad" y según Ciampelly y co. ⁴⁴ esta definición debería usarse solamente si estas bandas existen simultáneamente con una red cristalina tridimen sional como es el caso de PE y algunos otros polímeros. A par tir de dichas bandas de cristalinidad se puede determinar la fracción de segmentos de cadena en la fase cristalina, es decir la cristalinidad, X. Igualmente se encuentran bandas sensibles a la fase no cristalina o amorfa y una vez hecha la asignación correcta pueden aplicarse para el estudio estructural de PE.

Diversos autores han determinado el grado de cristalinidad, por espectroscopía IR, usando la relación entre las absorbancias de las bandas a 730 y 720 cm⁻³ (A_{730}/A_{720}) 105-111 Este método tiene grandes inconvenientes por el carácter dicroico⁹⁰ de estas bandas y la dificultad de preparar pelícu las suficientemente delgadas (≤20 µm), dada la fuerte intensidad de las mismas. Para películas más gruesas, se ha com probado que, la banda a 1894 cm^{-1} es proporcional a la cristalinidad 77-78 y puede usarse para su determinación, incluso en muestras de PE oxidado 72 al no verse interferida por bandas de oxidación. Richards⁹⁵ ha indicado que la banda a 1300 cm⁻¹ puede permitir una medida "absoluta" de la frac- ción amorfa y ha sido utilizada, por tanto, para medida de la cristalinidad¹¹². Este método, sin embargo, proporciona valores de X que discrepan de los obtenidos por otros conven cionales (rayos X y medida de la densidad).

En 1961 Hendus y Schnell ⁵³ establecieron otro proce dimiento para la determinación de cristalinidad por espec- troscopía IR que facilita resultados concordantes con los ob tenidos por los métodos anteriormente citados (rayos X y medida de densidad). Para ello utilizan la banda de combina- ción ⁷³ a 1894 cm⁻¹ totalmente cristalina y la banda "amorfa" a 1300 cm⁻¹ asignada a la vibración de aleteo de metilenos en conformación GTG⁷⁹ o GG⁴⁵. Representados los coeficientes de absorción de estas dos bandas frente al volumen específico

 $(\overline{V}=1/\rho)$ de las muestras, obtuvieron dos rectas en las que determinaron los coeficientes de absorción, para una muestra total mente cristalina (C),y para una muestra totalmente amorfa (A). El coeficiente de absorción K_c se puede suponer proporcional a la fracción cristalina (X) y el K_a a la fracción amorfa (1-X):

$$K_{c} = CX; \quad K_{a} = A(1-X)$$
 (12a)

Por combinación de las dos expresiones anteriores se obtiene una relación sencilla para la expresión de la cristalinidad, X(%) ⁵³:

$$X(\%) = \frac{D}{D+C/A} \times 100$$
 (12b)

donde
$$D = \frac{K_c}{K_a}$$
 y $\frac{C}{A} = \frac{6,1}{17,0} = 0.36$

Puesto que los valores de C y A dependen de las condiciones ex perimentales 54 considéramos necesaria su determinación exper<u>i</u> mental siguiendo el mismo procedimiento establecido por estos autores 53 . Para ello estudiamos dos series de muestras crist<u>a</u> lizadas del estado fundido a T_{amb} y 0°C con objeto de ampliar el número de datos experimentales para una determinación más exacta de C y A. Medimos las absorbancias de las bandas median te la línea de base entre los puntos de máxima transmisión a 1850 y 1970 cm⁻¹ para la banda a 1894 cm⁻¹ y entre los puntos de transmisión a 1170 y 1395 cm⁻¹ para la banda a 1300 cm⁻¹. Al representar los valores de los coeficientes de absorción - $(K_c \ y \ K_a)$ de las bandas frente al volumen específico de la mue<u>s</u> tra fig. 26 encontramos una buena linealidad de los puntos, a excepción de algunas muestras ligeramente oxidadas que se excl<u>u</u> yen para calcular las ecuaciones de las rectas por ajuste de mínimos cuadrados. Las ecuaciones obtenidas son:

$$K_c = -45.89 \ \bar{v} + 51,96$$
 (a)
 $K_a = 178.49 \ \bar{v} - 178.13$ (b)
(13)

obteniendose por extrapolación en (13a) para $\bar{v}=1 \text{ cm}^3/\text{g}$, C~6,1 cm⁻¹ y para K_c=0, $\bar{v}_a=1.136 \text{ cm}^3/\text{g}$ ($\rho_a=0.88 \text{ g/cm}^3$). Sustituyendo en la ecuación (13b) el valor \bar{v}_a así obtenido se calcula -A=24.5 cm⁻¹. (Los valores K_a=28,3 y 27,7 cm⁻¹ determinados exp<u>e</u> rimentalmente en los espectros de dos muestras (A 2 y A3) fund<u>i</u> das a unos 150°C se alinean en la recta correspondiente a la banda a 1300 cm⁻¹ para una densidad del estado fundido de - 0.87 g/cm^3 . En el cuadro siguiente se comparan los valores de C, A, C/A y de la densidad del estado amorfo ρ_a obtenidos en e<u>s</u> te trabajo con los encontrados por otros autores.

	$\rho_{a}(g/cm^{3})$	C (cm ⁻¹)	A(cm ⁻¹)	C/A
Hendus-Schnell 54	0.87	6,1	17,0	0,36
0kada-Mandelkern ⁷⁸	0,85	6.1*	26,7*	0.23
Nosotros	0,88	6,1	24,5	0.25

(*) C y A vienen expresados en (cm^2/g) .

Fig.26

Relación entre el coeficiente de absorción, $K(cm^{-1})$, de las bandas "cristalina" (a 1894 cm⁻¹ (O)) y "amorfa" (a 1300 cm⁻¹ (x)) y el volumen espécifico, V. Se observa una discrepancia en los valores de ρ_a que se hace más acusada en los valores de A y por tanto en el cociente C/A de la expresión (12b). Sin embargo nuestros resultados son muy próxi mos a los de Okada y Mandelkern si los de estos autores se expre san en cm⁻¹ (que provocaria un aumento de ρ_a y una ligera disminución de A). Estas discrepancias encontradas justifican que en la medida de X, por espectroscopía IR, sea necesaria la determinación previa de los valores de C y A para que los resultados ob tenidos por aplicación de la expresión (12b) sean coherentes.

Los valores de la cristalinidad, X, calculados según la expresión (12b) de las muestras cristalizadas del estado fundido a temperatura ambiente (T_{amb}) y a 0°C se encuentran en la tabla IX. Se observa que los valores de X de las enfriadas a 0°C son menores que los de las cristalizadas a T_{amb}. Esta diferencia es mayor para las muestras de alto peso molecular.

En la fig. 27 se han representado los valores de la cris talinidad (X) a temperatura ambiente, para todas las muestras, y a 0°C, únicamente para las muestras A, frente al grado de ramificación total (GR_t). Puede observarse que los valores de X disminuyen al aumentar GR_t . Existe además una clara segregación de los puntos según el peso molecular; las muestras A(0) presentan valores inferiores de X, para un mismo valor de GR_t , que las muestras B(\bullet). Los valores de X de las muestras A cristalizadas a 0°C se situan por debajo de los correspondientes a la temperatura ambiente. Esto demuestra la influencia de la temperatura de

Tabla IX

•

.

.

.

•

•

	Cristalinidad X(%)		
	T_=T_amb.	T _c =0°C	
A1	74.3	59.7	
A2	73.4	57.6	
A3	73.0	60.1	
A4	58.7	50.7	
A5	49.6	44.3	
A'6	56.8	49.9	
A'7	71.0	62.6	
A8	42.8	38.1	
A9	34.6	32.2	
A'10	45.8	38.2	
A11	32.0	28.9	
A'12	28.4	26.8	
B1	-	_	
B2	43.4	42.8	
В4	40.3	-	
B7	42.1	-	
в8	38.5	32.9	
B9	30.6	26.5	
B10	26.1	22.7	
B11	31.2	27.4	
B12	30.6	28.2	
B13	19.2	15.0	

Fig.27 Dependencia de la cristalinidad (X) con el GR_t . Efecto de la temperatura de cristalización (T_c) sobre los valores de X en las muestras de alto peso molecular. (puntos O, x)

cristalización en la cristalinidad del polímero.

2.2.3. Temperatura de fusión

Los valores de la temperatura de fusión, (T_m), facilitan información sobre la naturaleza cristalina del polímero, espe cialmente sobre el tamaño de cristal en la dirección molecular.

Obtuvimos los termogramas a una velocidad de calentamien to de 16°C/min , para reducir al máximo el recocido (annealing) 113 de la muestra que trae consigo una reorganización de las macromoléculas junto con un crecimiento del espesor de las laminillas cristalinas provocando un corrimiento del pico del termogra ma hacia valores mayores de T_m 114 .

La fig. 28 presenta una serie de termogramas de un grupo de muestras de alto peso molecular. Al aumentar el GR_t el pico sufre un ensanchamiento y se desplaza hacia valores menores de T_m . En la fig. 29 se representan los termogramas de las muestras de medio y bajo peso molecular (A' y B). Las muestras con $GR_t < 2$ exhiben un solo máximo pero para $GR_t > 2$ presentan un do ble pico cuya separación aumenta ligeramente con GR_t . Este doble pico persiste para diferentes velocidades de calentamiento.

Anteriormente se ha observado un doble pico en los termo gramas de: parafinas de larga cadena ¹¹⁵, poliamidas orientadas

Fig.28 Diagramas D.S.C. de muestras de alto peso molecular. El valor de GR_t aparece sobre las curvas. En ordenadas,valor de entalpia de fusión (GH) en unidades relativas.

Fig.29 Diagramas D.S.C. de muestras de intermedio y bajo peso molecular (A') y (B). El valor de GR_t aparece sobre las curvas. 116,117, polipropileno sindiotáctico con una cierta proporción de detectos conformacionales ¹¹⁸ y monocristales de PE lineal con - $M_w < 10^5$ ^{114,119}. Se han dado diversas explicaciones a la aparición de este doble pico. En el caso de parafinas el primer pico (menor T_m) se interpreta como debido a una transición rotacional de las cadenas ¹²⁰ seguida de la fusión normal (segundo pico). En las poliamidas orientadas el primer pico se atribuye a la deso-rientación que precede a la fusión ¹¹⁶ que origina el segundo pico y en el caso de polipropileno sindiotáctico a la fusión de la fracción desordenada ¹¹⁸, correspondiendo el segundo pico a la fusión cristalina. Finalmente en los monocristales de PE lineal el primer pico se debe a la fusión de las laminillas originales y el segundo a la fusión de las de mayor longitud que se originan en el recocido.

Por irradiación de los monocristales de PE 121 , con una dosis de 25-50 M_{rad}. se elimina el segundo pico (de mayor T_m) mientras que el primer pico permanece prácticamente invariable. La irradiación provoca un entrecruzamiento (crosslinking) 122 de las cadenas en las laminillas dificultando la movilidad de los segmentos en el interior de los cristales y evitando así el aume<u>n</u> to de espesor debido al recocido.

Ya indicamos que únicamente las muestras de PE de bajo peso molecular, más ramificadas, presentan un doble pico. De las explicaciones dadas sobre su origen, en las distintas substancias, podemos descartar en principio las dos primeras, puesto que una transición rotacional de los segmentos de cadena estará impedida por la fracción de moléculas plegadas en la región interlaminar, y por otro lado las muestras investigadas no presentan una orien tación macroscópica y no cabe pensar en una desorientación que precede a la fusión. Dado el carácter ramificado de las muestras y la posible inclusión de las ramas en la red, se podría pensar en la cocxistencia de cristales con y sin defectos. El primer p<u>i</u> co del termograma se originaria entonces por la fusión de crist<u>a</u> les con defectos que fundirían antes que los cristales sin defec_ tos. Sin embargo el hecho de que no se observe un doble pico en los termogramas de las muestras A más ramificadas, fig. 28, ni una variación contínua de la intensidad relativa de los dos picos con el GR_t parece indicar que esta sencilla explicación no es satisfactoria. Podemos pensar por tanto en un fenómeno de reorganiza ción de las macromoléculas por recocido.

Para confirmar esta hipótesis realizamos el siguiente ex perimento: dos de las muestras, cuyos termogramas presentan un solo pico (la A'6) y un doble pico (la A'10), se irradiaron en una fuente de ${}^{60}C_o$ (J.E.N.-Madrid) con una dosis de 25 M_{rad}. -(1 M_{rad}/h). En al fig. 30 se presentanlos diagramas de la mues tra A'10 antes y después de la irradiación. Se observa como ha d<u>e</u> saparecido el pico de mayor T_m, mientras que el primer pico con serva inalterada su posición. En la fig. 31 aparecen los termogr<u>a</u> mas de la muestra A'6 antes y después de irradiar. Aqui se despl<u>a</u> za el pico unos dos grados hacia valores menores de T_m. Estos ex-

Diagrama D.S.C. correspondiente a la muestra A'lO antes y despues de la irradiación. (fuente de ${}^{60}C_{O}$) Fig.30

Diagrama D.S.C. correspondiente a la muestra A'6 antes y despues de la irradiación. (fuente de 60 Co) Fig.31

perimentos sugieren que en muestras de PE de bajo peso molecular con GR_t>2% el pico de menor T_m es el que está relacionado con el tamaño inicial de las laminillas, mientras que el pico de mayor T_m está originado por las laminillas cuyo espesor ha aumentado por recocido. Podemos pensar que la concentración de ramas laterales de la cadenà principal, excluidos preferentemente de las regiones cristalinas, como se verá más adelante, limita en cierto modo la citada reorganización con crecimiento de las laminillas ya que la cristalización de segmentos de cadena ramificados está menos favorecida. Solamente una parte de los segmentos lineales que constituyen las laminillas iniciales y de los segmentos lineales de la fase amorfa, podrá contribuir al incremento del tamaño de cristal (pico de mayor T_m). El efecto de las ramas laterales puede ser similar al mencionado efecto de la radiación, pero de menor intensidad ya que en las muestras sin irradiar las macromoléculas ramificadas presentarán mayor movilidad que las macromoléculas unidas covalentemente por efecto de la radiación. La no aparición de doble pico en las muestras A, con $GR_+>2\%$ puede deberse a la longitud de las macromoléculas, considerablemente mayor que en las B, facilitando la citada reorganización y originando un pico simple ancho. En las B, de corta longitud mole cular, las posibilidades de organización son menores y solo afec tará a una parte del material que dará lugar a laminillas de mayor longitud responsables del segundo pico (de mayor T_m).

Las temperaturas de fusión determinadas para la serie de

	•	
	Espaciados	Tamaño de
	grandes	Cristai
•	L (A)	1 (Å)
A 1	265	100
AI	205	190
A2	295	209
A3	· 261	184
Α4	236	132
A5	215	100
A'6	180	97
A '7	210	144
А8	180	72
A9	171	55
A'10	175	75
.A11	155	46
A'12	134	35
B1	171	_ ·
B2	178	73
В4	165	63
B7	143	57
в8	174	63
B 9	129	36
B10	134	36
B11	173	50
B12	150	43
B13	138	24

Tabla X

muestras cristalizadas del estado fundido a temperatura ambiente se encuentran recogidas en la tabla X. En las muestras que presentan un doble pico se ha empleado el primero para determinar la temperatura de fusión. En el resto de las muestras T_m será 2 ó 3°C mayor debido al sobrecalentamiento.

2.2.3.1. Tamaño de cristal termodinámico

La ecuación termodinámica de Thomson ⁴⁸, de gran aplicación en la física de macromoléculas ¹²³, permite calcular el tamaño de los microcristales, I_T , en la dirección molecular, a partir del valor de la temperatura de fusión, T_m .

$$T_{m} = T_{m}^{\infty} \left(1 - \frac{2\sigma}{\Delta H_{c}^{\infty} \rho_{c} l_{T}}\right)$$
(14)

donde

$$\begin{split} T_m : \text{temperatura de fusión de la muestra en °K} \\ T_m^\infty : \text{temperatura de fusión de un cristal de tamaño infinito en °K} \\ \Delta H_c^\infty : \text{entalpía de fusión (erg/cm^3) de un cristal de tamaño infinito} \\ \sigma : \text{energía libre de superficie (erg/cm^2)} \\ \rho_c : \text{densidad de la fase cristalina (gr/cm^3)} \end{split}$$

 l_{T} : tamaño de cristal (cm) en la dirección molecular.

Fig.32 Dependencia de la dimensión del cristal en la dirección molecular l_T con el GR_t .

Con los valores de $T_m^{\infty} = 418 \,^{\circ}$ K (145°C), $\sigma = 80 \, \text{erg/cm}^2$ que se obtienen más adelante (2.2.4.1.) y $\Delta H_c^{\infty} = 2,8 \times 10^9 \, \text{erg/cm}^3$ y ρ_c - (tabla VIII) calculamos los valores de I_T mediante la expresión (14). Los valores de I_T se encuentran recogidos en la tabla X junto con los valores de T_m .

En la fig. 32 se ha representado l_T frente al GR_t y puede observarse la fuerte disminución de l_T para valores pequeños de GR_t , que se hace más suave para valores mayores de GR_t , ten diendo asintóticamente a un valor de 30 Å. Este valor puede de terminarse representando l_T frente a $1/GR_t$.

2.2.4. Espaciados grandes

La mayoria de los polímeros, tanto sintéticos como natura les, difractan los rayos X, en la región de ángulos pequeños, en forma de dispersión difusa ^{124,125}. Los polímeros semicristalinos, en especial, presentan frecuentemente además máximos de difrac- ción discretos. En las fibras sintéticas y polímeros orientados uniaxialmente ^{40,126-134} y en agregados de monocristales obtenidos a partir de disoluciones diluidas ^{113,135-141}, estos máximos de difracción aparecen predominantemente según el eje molecular. Numerosos polímeros isótropos, cristalizados a partir del estado fundido, también exhiben máximos de difracción discretos en la re gión de ángulos pequeños ^{30,59,142}, aunque en este caso presentan la forma de anillos circulares de difracción. La interpretación molecular de estos resultados es de gran importancia para el en tendimiento de la naturaleza de los microcristales y de su orga nización espacial. La intensidad absoluta difractada se puede explicar mediante las fluctuaciones de densidad electrónica motivadas por la alternancia más o menos manifiesta de regiones cristalinas ordenadas y "amorfas" desordenadas ⁵. Mediante simple aplicación de la ecuación de Bragg (3), a partir de los anillos de difracción, se puede calcular el espaciado grande L, que facilita una medida de la distancia media entre las laminillas cristalinas separadas por estratos de material desordenado.

En los difractogramas de las muestras más cristalinas de la serie investigada, pueden observarse dos anillos de difra<u>c</u> ción, de diferente intensidad, que no están sencillamente relacionados entre si, mediante la ecuación de Bragg, como debería ocurrir si fueran órdenes sucesivos de una misma periodicidad. La presencia de estos dos máximos se puede explicar, mediante la existencia de una función de distribución asimétrica de las distancias intercristalinas ¹⁴³ o debida a la distinta morfología, evidenciada por microscopía electrónica, de dos estructuras cri<u>s</u> talinas coexistentes en el polímero isotrópico ¹⁴⁴. Las investigaciones de Illers y Hendus ¹⁴⁵ han sido decisivas para el escl<u>a</u> recimiento de este problema. Los resultados de dichos autores d<u>e</u> muestran que el espesor de los cristales calculado por difrac- ción de rayos X (2.2.4.1.), utilizando el L derivado del primer

Fig.33 Perfiles densitométricos de los diagramas de difracción de rayos X con ángulos pequeños de tres muestras. El valor de GR_t aparece junto a las curvas.

máximo de difracción, coincide con el deducido del M_W del material resultante de la oxidación selectiva del PE con ácido ní trico fumante ¹⁴⁶. En los difractogramas de las muestras menos cristalinas (X<45%) solo aparece un anillo de difracción que se hace más difuso al ir disminuyendo la cristalinidad.

La fig. 33 representa el primer máximo de difracción de rayos X en la región de ángulos pequeños de tres muestras con distintos valores de GR_t, observándose el corrimiento del máximo de difracción a ángulos mayores al aumentar GR_t.

Los valores de L calculados mediante la expresión (3) utilizando el primer máximo de difracción, estan recogidos en la tabla XI, los cuales oscilan entre 130 y 300 Å. Si represen tamos los valores de L frente al GR_t , fig. 34 se observa que L decrece bruscamente para valores pequeños de GR_t y más lentamen te para valores mayores de GR_t . También se observa una cierta fluctuación de L. En esta misma figura aparecen representados los valores de la distancia interlaminar, p,obtenidos por diferencia entre L y I_T (tamaño de cristal o espesor de la laminilla) (2.2.3.1.). El valor medio de p asi obtenido resulta ser aproximadamente constante y oscila alrededor de los 95 Å para el grupo de muestras estudiado y las condiciones de cristalización emplea das.

<u>Tabla XI</u>

•

	Temperatura de fusión	Tamaño de cristal
	⊤ _m (°c)	۱ _Т (Å)
A1	133.0	199
A2	132.7	194
A3	131.9	183
Α4	127.1	134
A5	122.1	105
A'6	120.0	96
A'7	127.8	139
A8	116.4	84
A9	112.0	73
A'10	110.8	71
A11	107.6	. 65
A ' 12	99.7	54
B1	118.7	92
B2	106.2	62
в4	104.2	59
В7	104.0	59
B8	106.1	62
B9	98.9	53
B10	98.2	52
B11	99.6	54
B12	101.3	56
B13	86.1	42

Fig.34 Dependencia del espaciado grande L, (D) con el GR_t. Tambien aparecen representados los puntos correspondientes a la distancia interlaminar p, (0).

2.2.4.1. <u>Tamaño de cristal derivado del espaciado</u> grande

Admitiendo, para el PE cristalizado del estado fundido, una estructura bifásica de laminillas cristalinas, separadas por regiones amorfas, se puede calcular el valor medio del espesor de las laminillas o tamaño de cristal l, a partir del espaciado grande L, y del valor de la cristalinidad X, mediante la expresión ¹⁴⁷:

$$1 = \frac{\rho}{\rho_c} . L.X$$
 (15)

donde ρ y ρ_c son la densidad macroscópica y cristalina respectivamente. Los valores de l se recogen en la Tabla XI.

Debido a la pluralidad de valores para $T_m^{\infty} y \sigma$ (ec.(14)) encontrados en la bibliografía ha sido necesaria una previa est<u>i</u> mación de los mismos haciendo uso de la representación gráfica de la ecuación de Thomson (14) consistente en representar $T_m(°C)$ frente a los valores recíprocos de l (cm) ¹⁴⁷. Utilizando nues tros resultados experimentales para T_m y los calculados para l⁻¹, fig. 35, encontramos que un grupo de muestras se alinean según una recta que extrapolada para l⁻¹=o da un valor de T_m^{∞} =145°C mientras que en el otro grupo se desvian considerablemente. Las muestras de este segundo grupo se alinean en otra recta, de pendiente mitad que la de la primera, que extrapolada da un T_m^{∞} =132°C

Fig.35 Representación de los valores de la temperatura de fusión, T_m (°C), frente al recíproco del tamaño de cristal, 1^{-1} (cm⁻¹), derivado del espaciado grande (ec. 15). y corresponden a las de menor densidad agrupadas en la tabla -IIIb. El valor de T_m^{∞} =145°C obtenido por nosotros coincide prácti camente con el calculado por Flory y Vrij ¹⁴⁸ 145.5°C y el encontrado por Broadhurst ¹⁴⁹ 144.7°C. La pendiente de la recta que ex trapola a 145°C coincide con la obtenida por Hendus e Illers ¹⁴⁷, sin embargo estos autores encuentran un T_m^{∞} =141°C y esta diferencia puede deberse al distinto criterio empleado para determinar el T_m de las muestras. El valor de T_m^{∞} =132°C es notablemente inf<u>e</u> rior a los valores teórica y experimentalmente encontrados. A partir del valor de la pendiente de la recta hemos calculado, aplicando la expresión (14) el valor de σ =80 erg/cm², tomando ΔH_c^{∞} =2.8x10⁹ erg/cm³ (67 K_{cal}/mol) que es un valor medio de los encontrados en la literatura ¹⁵⁰⁻¹⁵³.

En la tabla XII se encuentran los valores de l, l_T , L y ρ de las muestras separadas en dos grupos; en el segundo grupo aparecen las muestras para las que $l < l_T$ y que se desvian en la representación de la fig. 35; en las muestras del primer grupo se cumple que $l \approx l_T$ y en ellas se satisface la expresión (15) siendo - válida la estructura laminar bifásica. En la última columna de la tabla XII se da el valor de p que representamos en la fig. 34 calculado como diferencia entre L y l_T .

Finalmente hemos creido conveniente para facilitar su comparación la presentación conjunta,en la tabla XIII, de los valores de las magnitudes, determinados experimentalmente en este trabajo, dispuestos en orden creciente de GR₊.

		· · ·		
	1 (Å)	I _T (Å)	L(Å)	p=11 _T (Å)
A1	190	199	265	66
A2	209	194	295	101
A3	184	183	261	78
A4	132	134	236	102
A5	100	105	215	110
A'6	97	96	180	84
A'7	144	139	210	81
A'10	75	71	175	104
B1	-	92	171	79
B2	73	62	178	116
В4	63	59	165	106
B7	57	59	143	84
в8	63	62	174	112
B11	50	54	173	119
A8	72	84	180	96
A9	55	73	171	98
A11	46	65	155	90
A'12	35	54	134	80
B9	36	53	129	76
B10	36	52	134	82
B12	43	56	150	94
B13	24	42	138	96

Tabla XII

.

,

.

.

	Peso Molecular promedio	Grado de Rami- ficación total	Densidad macroscópica	Espaciados grandes	Temperatura de fusión
	M _w ×10 ⁻³	GR _t /100 C	ρ(g/cm ³)	L (Å)	т _m (°С)
A1	-	0.17	0.966 ₈	265	133.0
A2	150	0.19	0.962	295	132.7
A3	50	0.28	0.962	261	131.9
A4	120	0.70	0.950	236	127.1
A5	245	0.93	0.9366	215	122.1
A'6	10	1.21	0.945	18û	120.0
A'7	9	1.25	0.964	210	127.8
A 8	51	1.76	0.926 ₈	180	116.4
A9	53	2.53	0.920	171	112.0
A'10	10	2.57	0.933 ₅	175	110.8
A11	54	3.04	0.914	155	107.6
A'12	10	3.61	0.911	134	99.7
B1	3	1.81	0.958 ₅	171	118.7
B2	1.5	2.63	0.9365	178	106.2
B3	2.5	2.66	0.946	141	104.8
в4	2.5	2.89	0.926	165	104.2
B 5 .	1.5	2.97	0.944	119	100.0
BG	1.4	3.18	0.941	114	100.9
B7	1.5	3.25	0.930.	143	104.0
в8	5.6	3.49	0.930,	174	106.1
B9	6.0	4.63	0.910 ₈	129	98.9
B10	7.0	4.77	0.904	134	98.2
B1 1	3.2	5.34	0.920	173	99.6
B12	2.0	5.36	0.918,	150	101.3
B13	3.7	6.90	0.897 ₉	138	86.1

Tabla XIII

3. DISCUSION

Como ya indicamos en la introducción, existen actualmen te dos modelos para explicar la estructura semicristalina del polietileno: el "modelo de cristal con defectos" 25,26 y el -"modelo interlaminar o bifásico" 22 . Ninguna de estas representaciones estructurales extremas explica satisfactoriamente to das las propiedades observadas en el PE y es, por tanto, más razonable pensar que la realidad corresponda a una situación in termedia. La mayor o menor aproximación a uno u otro de dichos modelos dependerá de las condiciones experimentales de preparación de la muestra 2C,22 y de la naturaleza molecular de las ca denas: peso molecular 16 y grado de perfección lineal de las mismas. Se sabe que un grado de ramificación de hasta un 3% modifica notablemente los valores de la cristalinidad 23,24 , la temperatura de fusión $^{36-38,154}$ y los parámetros de la celdilla unidad cristalina 155 .

La morfología de PE lineal cristalizado a partir de disolución ^{14,17,29}, parece apoyar el modelo de cristal con defe<u>c</u> tos y la existencia de un plegado regular con retorno adyacente⁸, con una conformación GGTGG ^{11,12}. Sin embargo, otros autores ^{27,28} admiten la existencia de monocristales con un plegado irr<u>e</u> gular y los segmentos que emergen de una laminilla cristalina r<u>e</u> tornan a ella al azar. En algunos casos las macromoléculas pene-

tran en las laminillas consecutivas actuando como moléculas interconectantes²⁹. Per otra parte, los experimentos de ataque de monocristales de PE lineal, con ácido nítrico fumante ¹⁵⁶, que digiere preferentemente las regiones amorfas¹⁴⁶, indican la pre sencia de una considerable cantidad de material amorfo (10-20%) entre las laminillas cristalinas. Cuando estos experimentos se realizan con monocristales de copolímeros del etileno con buteno y propileno, con grado de ramificación inferior al 2%, se demuestra la preferente localización de las ramas laterales en la fase amorfa, pero se encuentra también una apreciable inclusión de las ramas en el interior de las laminillas cristalinas que es tanto mayor cuanto menor es la longitud de la rama lateral¹⁸. Si el PE lineal cristalizado del estado fundido se ataca con ácido nítrico fumante 19 se pone de manifiesto la existencia de un 25-30% de ma terial amorfo. Todos estos resultados están a favor de un plegado irregular (figs. 6a y 6b).

Ya que en este trabajo, los valores determinados para cris talinidad y densidad son en su mayor parte relativamente bajos, $(X: 20-70\%; p: 0.90-0.77 \text{ g/cm}^3)$, en parte debido a la baja tempera tura de cristalización (T_{amb}) y en parte al elevado grado de ramificación de las muestras, cabe esperar que la estructura correspon diente a este conjunto de muestras se aparte considerablemente del modelo de "cristal con defectos" y se aproxime más a un modelo interlaminar o bifásico en el que la contribución de las regiones amorfas sea considerable (80%-30%). Independientemente y a la vista de los valores relativamente bajos de ρ_c (tabla VIII) hay que pensar que los microcristales también se aparten de la pe<u>r</u> fección cristalina, supuesta en el modelo bifásico, y admitir que las imperfecciones de la red cristalina contribuyan a reb<u>a</u> jar los valores del grado de cristalinidad y de la densidad e<u>n</u> contrados.

Los resultados obtenidos en la presente investigación facilitan una valiosa información de la que puede deducirse un mejor conocimiento de la supraestructura del PE que centraremos en:

- a) la naturaleza de la región interlaminar amorfa (longitud media del plegado molecular).
- b) la distribución y localización de las ramas laterales.

3.1. Naturaleza de la región interlaminar amorfa.-

Modelo bifásico

Para el estudio de la naturaleza de las moléculas plegadas e interconectantes que constituyen la fase amorfa hemos de sarrollado un modelo estructural en este laboratorio ¹⁵⁷ que pr<u>e</u> sentamos aquí ligeramente modificado y usando los datos experi mentales obtenidos en esta memoria. Para la elaboración del mod<u>e</u> lo hemos usado el concepto de estructura bifásica, suponjendo que las laminillas cristalinas no presentan defectos de cristal (ρ_c =1) y que la deficiencia de los valores de densidad y crist<u>a</u> linidad se localizan en la región interlaminar amorfa. La modificación introducida ha sido tener en cuenta la densidad de la fase interlaminar amorfa ρ_a , que se considera constante. La cristalinidad que responde a este modelo bifásico viene dada por la expresión:

$$X = \frac{\nu/\rho_c}{\nu/\rho_c + f/\rho_a} \approx \frac{\nu}{\nu + f/\rho_a}$$
(16)

- donde ν : número de átomos de carbono que constituye el espesor de la laminilla cristalina (segmento de cadena cristalino).
 - f : número de átomos de carbono que constituyen el plegado (segmento de cadena no cristalino).
 - ρ_{a} y ρ_{c} : densidad de la fase amorfa y cristalina respectivamente.

Empleando la ecuación de Thomson 48 (2.2.3.1.):

$$T_{m} = T_{m}^{\infty} \left(1 - \frac{2\sigma}{\Delta H_{c}^{\infty} \rho_{c}^{-1} T}\right)$$
(14)

y teniendo en cuenta que $l_T = v \times 1.27 \times 10^{-8}$ (cm), si sustitu<u>i</u> mos l_T por $v(v = \frac{f}{\rho_a} \frac{X}{1-X})$ en la expressión (14), se obtiene:

$$T_{m} = T_{m}^{\infty} - \frac{K}{f} (\frac{1-\chi}{\chi}) = T_{m}^{\infty} + \frac{K}{f} - \frac{K}{f} (\frac{1}{\chi})$$
(17)

donde

$$K = \frac{2\sigma T_{m}}{\Delta H_{c}^{"}\rho_{c}} \frac{\rho_{a}}{1.27 \times 10^{-8}}, (°K)$$

m

La expresión (17) indica que para valores de X=1 (cristal perfecto de longitud infinita) $T_m = T_m^{\infty}$ como se deduce de la ecuación (14). Los valores usados para las constantes en la expresión (17) son las ya comentadas en (2.2.3.1.) tomando $\rho_c = 1 \text{ g/cm}^3 \text{ y} - \rho_a = 0.88 \text{ g/cm}^3$ encontrado experimentalmente (2.2.2). La representación de la ecuación (17) (T_m frente a X⁻¹) para distintos valores valores de forigina un conjunto de rectas de pendiente negativa que se cortan en T_m^{∞} .

Si representamos sobre este ábaco los puntos correspon dientes a los resultados experimentales (tabla XIV a) de las mue<u>s</u> tras investigadas, fig. 36, se puede estimar el f correspondiente. f también se puede calcular directamente de la ecuación (17). Los valores de f encontrados están recogidos en la tabla XIVa y varian desde 40 a 120 átomos de carbono por plegado en contradicción con el valor constante (f=40) calculado por Knox ²⁴ para muestras cristalizadas del estado fundido con diferente grado de ramificación. Hay que considerar que las ramificaciones laterales contribuyen en parte al valor de f, por lo que la longitud de esquele-

Fig.36 Abaco de T_m frente a X⁻¹, según ec. (17), para distintos valores de la longitud media del plegado molecular f. (A(O), A'(O), B(O)).

	T _m (°C)	x ⁻¹	f
A1	133.0	1.35	48
A2	132.7	1.36	50
A3	131.9	1.37	47
A4	127.1	1.70	66
A5	122.1	2.02	73
A'6	120.0	1.76	51
A'7	127.8	1.41	39
A8	116.4	2.34	78
A9	112.0	2.89	95
A'10	110.8	2.20	59
A11	107.6	3.13	94
A'12	99.7	3.52	92
B2	106.2	2.30	55
в4	104.2	2.48	60
в7	104.0	2.38	54
в8	106.1	2.60	68
B9	98.9	3.27	.81
B10	98.2	3.83	100
.B11	99.6	3.21	81
B12	101.3	3.27	86
B13	86.1	5.21	118

•

Tabla XIV a

.

٠

-

.

to correspondiente al plegado es inferior a los valores encontrados. Estos resultados parecen favorecer la idea de una región interlaminar con una gran contribución de plegados irregulares – (fig. 6b). Es facil comprobar que el valor de f depende de las condiciones de cristalización y demás factores que modifican la cristalinidad (grado de ramificación, peso molecular, temperatura de calentamiento) ⁹⁴.

En la tabla XIV b se reunen los valores de X, ν , f y GR₊ para mejor comprensión de las figuras que presentamos a continua ción. En la fig. 37 hemos representado los valores de f frente a X. Sobre dicha figura hemos dibujado un ábaco tomando v como paráme tro para ilustrar la relación entre las tres variables de la expre sión (15). Se observa la tendencia de f a aumentar cuando disminuye X y que esta tendencia es más acusada cuando X tiende a cero. Puede observarse también una segregación de los puntos por pesos mole culares. En dicha figura puede verse que los puntos correspondientes a las muestras A, A' con GR_t pequeño se alinean sobre dos rectas de pendiente similar y se observa que f es mayor para las mues tras A que son las de mayor peso molecular. Por otro lado las mues tras B, más ramificadas, se alinean en una recta de mayor pendiente que las anteriores lo que indica un rápido crecimiento de f para una disminución pequeña de X. La fig. 38 complementa a la fig. 37, ilustrando la dependencia del otro parámetro estructural v con X. También puede observarse una segregación por pesos molecula res de las muestras A, A' y B. Es notable el rápido crecimiento de

	X(%)	• v	f	GR _t /100 C		
A1	74.3	157	48	0.17		
A2	73.4	153	50	0.19		
A3 .	73.0	144	47	0.28		
А4	58.7	106	66	0.70		
A5	49.6	83	73	0.93		
A'6	56.8	76	51	1.21		
A'7	71.0	110	39	1.25		
A8	42.8	66	78	1.76		
A9	34.6	58	95	2.53		
A'10	45.4	56	59	2.57		
A11	32.0	51	94	3.04		
A'12	28.4	42	92	3.61		
B2	43.4	49	55	2.63		
В4	40.3	47	60	2.89		
B7	42.1	47	54	3.25		
в8	38.5	49	68	3.49		
в9	30.6	41	81	4.63		
B10	26.1	41	100	4.77		
B11	31.2	42	81	5.34		
B12	30.6	44	86	5.36		
B13	19.2	33	118	6.90		

Tabla XIV b

Fig.37 Dependencia de la longitud media del plegado molecular f, con la cristalinidad X. En líneas de trazos el ábaco de f en función de X, según ec. (16), para distintos valores de Y (num. de carbonos que constituyen el segmento cristalino).

Fig.38 Dependencia del num. de carbonos que componen la dimensión del cristal en la dirección molecular, con la cristalinidad X.

v en las muestras A y A' poco ramificadas para X>0.5. Las muestras A presentan además un v considerablemente mayor que las A' para un mismo valor de X. En las muestras B, v aumenta más lentamente con X y parece existir una relación lineal; la extrapolación de la recta resultante para X \rightarrow 0, aunque no es absolut<u>a</u> mente unívoca, apunta hacia un valor máximo de v cercano a v=23 átomos de carbono.

La fig. 39 ilustra la dependencia de f frente al GR_t en la que puede observarse también la segregación por pesos molecu lares. Las muestras B presentan una dependencia lineal creciente de f con GR₊. Las muestras A presentan un aumento mayor de f para $GR_{+}<1$ tendiendo a una saturación para $2<GR_{+}<3$. Las muestras A' se encuentran en una posición intermedia. La anabgía de esta fig. 39 con las figs. 20 a,b que representan el cœficiente de absorción de las bandas a 1367 y 1350 cm⁻¹ concuerda con el carácter amorfo de estas bandas (fig. 19). De la segregación de valores obtenida en las figs. 19 y 39 para las muestras A y B, y teniendo en cuenta la asignación de la banda a 1350 cm⁻¹ 12,35 (2.1.4.1.), parece desprenderse que en las muestras A existe mayor proporción de segmentos de cadena que vuelven a la misma lami nilla después de un recorrido medio f (algunos pocos, tal vez, con retorno adyacente, f: GGTGG), mientras que en las muestras B (con menor valor de K_{1350}) el número de segmentos de cadena que retornan a la laminilla debe ser menor. Esto es debido a la corta longitud de las cadenas principales de las muestras B en las que

Fig.39 Dependencia de la longitud media del plegado molecular f con el grado de ramificación total GR_t . (A(O), A'(O), B(O)).
muchas macromoléculas que emergen de las laminillas, terminarán en la fase amorfa (cilios) reduciendo el número de conformaciones GG y de piegado regular.

3.1.1. <u>Desviación del modelo bifásico</u>.- Relación entre cristalinidad bifásica y experimental.

Si se pasa del valor de f a su proyección según el eje molecular, f* = f $\frac{1.27}{\rho_a}$, se comprueba que para un grupo de muestras f*=p mientras que para otro (A8, A9, A11, A'12, B9,B10, B12 y B13) f*>p con lo que L<1_T+f*.

Admitiendo que l_T es el valor correcto deducido a partir de la expresión (14) con $\sigma = 80 \text{ erg/cm}^2$ ^{150,153}, este resultado indica que el f derivado a partir del modelo propuesto es exces<u>i</u> vamente elevado. Es decir para este grupo de muestras es proba ble que el modelo bifásico no sea totalmente aplicable. Una pos<u>i</u> ble explicación de los valores excesivamente altos de f se puede encontrar si se admite que el exceso de f se localiza lateralmen<u></u> te a las laminillas cristalinas con lo que la supraestructura de estas muestras se podría representar por microcristales sumergidos en el seno de una matriz "amorfa" aunque conservandose la ordenación del "modelo interlaminar" fig. 40 (b).

Observando la fig. 36 se comprueba que las muestras que

Fig.40. Representación esquemática: a) del modelo interlaminar o bifásico, b) de la desviación del modelo interlaminar propuesta.

no se ajustan al modelo bifásico se situan a la derecha de la figura. Los valores excesivamente altos de f estarán originados bien por una deficiencia de X o por un valor alto de T_m.

La cristalinidad bifásica o lineal X_L, en la dirección m<u>o</u> lecular, usando l_T como tamaño de cristal, viene dada por la ex presión (15), X_L= ρ_c l_T/ ρ L. Los valores calculados de X_L están r<u>e</u> cogidos en la tabla XV junto con los valores de la cristalinidad experimental X.

En la fig. 41 se muestra la correlación entre X_L y X. Un grupo de muestras se alinean con la bisectriz del cuadrante - $(X_L=X)$ confirmando que en ellas es aplicable el modelo bifásico, mientras que para el resto X_L es mayor que X, entre un 14 y un 42%, indicando que estas muestras no se ajustan a dicho modelo.

Vale la pena hacer notar que la distancia interlaminar amor fa $(p=L-l_T)$ permanece constante para todas las muestras investiga das independientemente del espesor de las laminillas l_T , (tabla XII y fig. 34)

Tabla XV

	Cristalinidad		
	experimental(IR)	bifásica o lineal	
	X (%)	x _L (%)	
A1	74.3	77.6	
A2	73.4	68.4	
A3	73.0	72.7	
A4	58.7	59.5	
A5	49.6	51.9	
A'6	56.8	56.1	
A'7	71.0	68.5	
A'10	45.4	42.9	
B2	43.4	36.7	
В4	40.3	38.0	
B7	42.1	43.6	
в8	38.5	37.8	
B11	31.2	33.4	
A8	42.8	49.9	
A9	34.6	45.8	
A11	32.0	44.8	
A'12	28.4	43.5	
B9	30.6	44.5	
B10	26.1	42.1	
B12	30.6	40.0	
B13	19.2	33.1	

Fig.41 Relación entre la cristalinidad bifásica X_L, y la cristalinidad experimental X.

r.

3.1.2. Dimensión de los microcristales en la

dirección molecular

Si se satisface la estructura bifásica se puede obtener in formación del espesor de las laminillas l, a partir de L y X me- diante la expresión $1 = \frac{\rho_c}{\rho} LX$ ya comentada (2.2.4.1.). Al comparar los valores de l y $!_{T}$ (tabla XII) observamos que coinciden prácticamente para las muestras del primer grupo de la tabla, mien tras que en las muestras del segundo grupo los valores de l son considerablemente menores que los l_T . La fig. 42 ilustra la igualdad de l y $l_{\overline{l}}$ para muchas de las muestras y $l < l_{\overline{l}}$ para el grupo de muestras que se desvia de la estructura bifásica. El tamaño de cris tal depende principalmente del subenfriamiento (ΔT) para valores de $GR_{t} < 1$, mientras que para $GR_{t} > 1$ viene determinado por el grado de ra mificación total. La variación del tamaño de cristal con el grado de ramificación total se ajusta a una ley de tipo hiperbólico, a partir de GR_t \gg 1, que tiende asintóticamente hacia un $l_T \approx 30$ Å. Esto parece indicar que a partir de un cierto valor de GR_{t} (>3%) el aumen to del número de ramas laterales no contribuye de manera sensible a disminución del tamaño de cristal. Este hecho puede explicarse la si admitimos que existen apiñamientos locales de las ramas en el esqueleto creándose defectos estructurales que interrumpen la cristali zación.

Las muestras que se desvián del modelo bifásico se alinean, en la fig. 35, con la recta de menor pendiente que extrapolada da un

 $T_{m}^{\infty}=132^{\circ}$ C, valor notablemente menor que el obtenido teórica y experimentalmente ($\approx 145^{\circ}$ C) 148,149 . A partir de la pendiente de esta recta, para $\Delta H_{c}^{\infty}=2.8\times 10^{9} \text{ erg/cm}^{3}$, se obtiene un valor de $\sigma =40$ - erg/cm² que es la mitad del encontrado cuando se considera la recta de mayor pendiente. Aunque σ puede disminuir debido a que los microcristales están rodeados lateralmente por fase amorfa (fig. 40 (b)), como el valor de la energía de superficie de la interfase cristal-amorfo es muy pequeña 158,159 , nunca podría explicarse la gran disminución de σ antes indicada. Este hecho unido al bajo valor de T_m^{\infty} encontrado (132°C) elimina la posibilidad de ajustar una ecuación de Thomson (14) con dichos parámetros (σ , T_m^{\infty}) para el - cálculo del tamaño de cristal, por lo que los valores de l correspondientes a los puntos que se alinean en esta recta no deben re - presentar su dimensión real. Parece pues lógico considerar los valores de l₁ como su verdadera dimensión.

El estudio espectroscópico del doblete 720-730 cm⁻¹ y en especial de la banda a 730 cm⁻¹, dada su asignación 45 (2.1.4.2.) puede arrojar más luz sobre este problema ya que es de esperar que la intensidad de la banda a 730 cm⁻¹ esté relacionada con la dimensión de los microcristales en la dirección molecular. Por este mot<u>i</u> vo hemos creido conveniente la inserción aqui de este estudio para su comentario y no en 2.1.4.2.

Los valores de los coeficientes de absorción (K) de las ban das a 730 y 720 cm⁻¹ se encuentran en la tabla VI. En ellas hemos incluido la muestra A'O con $T_m = 130$ °C $(1_T = 159$ Å). La película de la muestra A'O se recoció posteriormente a unos 125°C durante 1/2 h. con objeto de aumentar el tamaño de cristal ¹¹³ y obtuvimos un nuevo registro de la región 700-800 cm⁻¹ de la película asi tratada. El punto de fusión determinado es de 131°C – $(1_T = 171$ Å).

En las figs. 43 a,b se presentan los perfiles del espectro de absorción IR entre 650 y 850 cm⁻¹ y la descomposición de bandas, obtenida por la aplicación del programa de cálculo citado anteriormente 49,50 . En cada uno de los espectros se indica el ta maño de cristal l_T en Å.

En la fig. 44a se han representado los valores de K₇₃₀ frente a los de tamaño de cristal l_T y l. Se ve que K₇₃₀ aumenta con el tamaño de cristal, al principio rápidamente y más lentamente a partir de unos 125 Å, pareciendo tender a un valor de saturación. Los puntos conectados por una flecha corresponden a la muestra A'O antes y despues del recocido. Se observa que el crecimiento del tamaño de cristal, originado por el recocido, va acompañado de un aumento del valor K₇₃₀. En la fig. 44a se ve que los puntos correspondientes a l_T se alinean según una curva que aproximadamente corta al eje de abscisas para l_T≈29 Å (23 átomos de carbono). Este resultado parece coherente con el valor l_T=21 Å calculado por la expresión (14) (con ρ_c =1) y que corresponde al mínimo tamaño de cristal existente a temperatura ambiente. Por otro lado la represen de K₇₃₀ frente a los valores de l se separa del hábito de esta cur-

Descomposición de bandas entre 650 y 850 cm⁻¹ para los espectros de las muestras (B13 y B8) cuyo valor de tamaño de cristal $l_{T}(A)$, figura en el ángulo superior derecha. Fig.43a

en el ángulo superior derecha.

Fig.44a

Dependencia del coeficiente de absorción K(cm⁻¹), de la banda a 730 cm⁻¹ con la dimensión del cristal en la dirección molecular (A). va para los puntos correspondientes a las muestras que se des vian del modelo bifásico. Estos puntos se situan sobre una se gunda curva (línea de trazos), que corta al eje de abscisas para el valor l=13 Å correspondiente a un cristal de 10 átomos de ca<u>r</u> bono. Este tamaño de cristal resulta ser inferior al mínimo permitido a la temperatura ambiente indicado anteriormente (Pensamos que los defectos reticulares (3.2) deben reducir el valor de - K_{730} que hace que la representación K_{730} frente a l_T corte el eje de abscisas en un valor (29 Å) mayor que el de 21 Å).

En la fig. 44b se ha representado K_{720} frente a I_T y l. La intensidad de la banda a 720 cm⁻¹ se debe además a secuencias más cortas de metilenos trans que pueden no encontrarse en la fase cristalina. Por tanto la correlación no es completamente correc ta, como lo era el caso de la banda a 730 cm $^{-1}$. Sin embargo puede proporcionar una información válida en primera aproximación. Se observa el mismo hábito de la curva que en la fig. 44a. Extrapolan do dicha curva para $K_{720}=0$ se obtiene un valor de I_T de unos 6 Å congruente con el mínimo número (4) de metilenos trans necesarios para la aparición de la banda a 720 cm⁻¹ 31,32. En la representa ción de K_{720} frente a l los puntos correspondientes a las mues tras que se desvian del modelo bifásico se situan fuera de dicha curva. Estos puntos parecen estar situados sobre una segunda curva (linea de trazos) que cortaría al eje de abscisas en su parte negativa lo que carece de significado físico. Los resultados obtenidos en el estudio de las bandas a 730 y 720 cm $^{-1}$ confirman por tan

Fig.44b

Dependencia del coeficiente de absorción K(cm⁻¹), de la banda a 720 cm⁻¹ con la dimensión del cristal en la dirección molecular (A). tola elección que realizamos anteriormente de l_T como medida de la verdadera dimensión del cristal.

3.2. <u>Distribución y localización de las ramas laterales</u>. Modelo estadístico

Hasta ahora hemos podido comprobar el efecto del GR_t so bre algunos de los parámetros físicos característicos del PE, sien do de destacar la notable disminución del tamaño de cristal l_T, p<u>a</u> ra valores pequeños de GR_t (fig. 32) mientras que la distancia interlaminar p, permanece prácticamente constante para cualquier valor de GR_t (fig. 34). De la fig. 32 se deduce que las ramas later<u>a</u> les delimitan el tamaño de cristal actuando como defectos que int<u>e</u> rrumpen la cristalización.

Por un lado los resultados obtenidos por varios investigaderes estan a favor de una localización preferente de las ramas la terales en la región amorfa ^{18,19,36}. Por otro lado se ha puesto en evidencia la expansión de la celdilla unidad cristalina, al aumentar el grado de ramificación, por la inclusión de una fracción de las ramas en la fase cristalina ^{104,155,160,161}, que es tanto mayor cuanto menor es la longitud de las ramas ¹⁸. Como en la presente investigación hemos encontrado que las ramas laterales tienen en general longitudes iguales o mayores que los grupos butilo (aunque puedan existir grupos propilo en pequeña proporción (2.1. 4.3)), es de esperar que las ramas ocluidas en la fase cristalina deben estar en muy pequeña proporción.

Si admitimos una distribución regular de las ramas en la cadena principal, las longitudes de los segmentos lineales que se obtienen al considerar dicha distribución son mucho menores que los valores de $l_{\rm T}^{\,\cdot}$ encontrados. Hay que pensar por tanto en un apiñamiento de ramas en regiones del esqueleto que permitan secuencias lineales cristalizables de mayor o iqual longitud que $\mathbf{I}_{\mathsf{T}}.$ De este modo lo que antés era un defecto de cristalización sencillo (una rama aislada) pasa a ser un defecto de cristaliza ción complejo (ramas limitando un segmento de cadena lineal no cristalizable por ser de menor longitud que l_{T}^{47}). Podemos hablar entonces de un cierto grado de apiñamiento de las ramas y el nú mero de defectos de cristalización (complejos), para el que suponemos una distribución estadística, (al azar), será menor que el correspondiente al valor de GR_{+} . Cuando GR_{+} es muy grande puede ocurrir que alguna de las ramas laterales se situe en el segmento lineal desplazado a la fase amorfa siendo "ineficaz" desde el punto de vista de defecto de cristalización. Puede ocurrir también que alguna de las ramas laterales quede ocluida en la fase cristalina, favorecido talvez este hecho por las condiciones bruscas de cristalización. Podemos hablar entonces de un grado de ramifica ción eficaz GR ef, que corresponde al número de defectos en el es queleto que perturban la cristalización. Este GR_{ef} es realmente más significativo que el GR_t desde el punto de vista supramolecu -

lar de la estructura.

Sería interesante conocer la distribución de las ramas en el esqueleto y poder estimar el GR_{ef} , Hosemann y co. $^{46.47}$, suponiendo una distribución estadística de ramas laterales aisladas a lo largo del esqueleto y una exclusión total de las mismas de la fase cristalina, han obtenido mediante un cálculo teórico, una r<u>e</u> lación entre la cristalinidad y el grado de ramificación para una serie de muestras de PE estirado (algunas del grupo A). La expresión que proponen dichos autores es:

$$X_{L} = e^{-V\varepsilon}$$
(18)

donde ε : es el número CH₃/átomo de carbono \equiv GR_t/átomo de carbono v : $l_T \frac{\rho_c}{1.27}$, es el número de átomos de carbono que constituyen el tamaño de cristal

X₁: es la cristalinidad bifásica o lineal.

Estos autores encuentran que las muestras con $v \in <0.6$ se ajustan a la expresión (18) mientras que aquellas con $v \in >0.6$ se desvian cons<u>i</u> derablemente siendo $X_L > e^{-v \epsilon}$. Esta desviación la atribuyen a la incorporación de ramas en la red cristalina.

En este trabajo hemos hecho uso de la expresión (18) para aplicarla al estudio de las muestras cristalizadas del estado fun dido. Si suponemos una desviación de la distribución estadística de ramas aisladas a lo largo de la cadena principal, en forma de apiña mientos locales o ramas ramificadas 154 , esto equivaldría a cons<u>i</u> derar un nuevo grado de ramificación "eficaz" GR_{ef} que es el que verdaderamente determinará el tamaño de cristal, y que será una fracción z del Gr₊:

$$GR_{ef} = z \cdot GR_{t}$$
 (19)

donde z es el parámetro de apiñamiento (z<1).

Si en la expresión (18) sustituimos el grado de ramificación total ε por el eficaz ε' tendremos:

$$X_{L} = e^{-\nu \varepsilon'} = e^{-Z\nu \varepsilon}$$
(20)

En la fig. 45 se ha dibujado en trazo discontínuo la función (20) para distintos valores de z y se han representado los datos (X_L , $v\varepsilon$) de la tabla XVI. Se puede observar la dispersión de los pun tos que toman valores de z comprendidos entre 1/4<z<1. Las mues tras con $v\varepsilon$ <0.6 se situan prácticamente en la curva z=1.

El parámetro z representa una distribución estadística de defectos de esqueleto que tienen una multiplicidad ideal dada por el valor recíproco de z; por ej. z=1/2 significa que la multiplic<u>i</u> dad es 2, es decir, los defectos de esqueleto están constituidos por 2 ramas. La fig. 46 ilustra esquemáticamente el significado de z y la multiplicidad de los defectos para una muestra con - -GR_t=4%. A la derecha de la figura se ha representado una distribu-

	x _L (%)	VE	Z	GR _{ef} (%)	GR _c (%)
A1	77.6	0.267	0.950	0.16	0.01
A2	68.4	0.291	1.305	0.18	0.00
A3	72.7	0.403	0.791	0.22	0.03
A4	59.5	0.742	0.700	0.49	0.08
A5	51.9	0.772	0.850	0.79	0.06
A'6	56.1	0.920	0.628	0.76	0.16
A'7	68.5	1.375	0.275	0.34	0.17
A8	49.9	1.162	0.598	1.05	0.21
۸9	45.8	1.467	0.532	1.34	0.29
A'10	42.9	1.439	0.588	1.51	0.26
A11	44.8	1.550	0.518	1.57	0.34
A'12	43.5	1.516	0.549	1.98	0.39
B1	55.7	1.665	0.351	0.64	0.23
B2	36.7	1.289	0.778	2.05	0.16
В4	38.0	1.358	0.712	2.06	0.23
В7	43.6	1.528	0.543	1.76	0.35
B 8	37.8	1.710	0.569	1.99	0.32
B9	44.5	1.898	0.427	1.98	0.50
B10	42.1	1.956	0.442	2.11	0.50
B11	33.4	2.243	0.489	2.61	0.44
B12	40.0	2.358	0.389	2.09	0.51
B13	33.1	2.277	0.486	3.35	0.57

Tabla XVI

.

-

Fig.45 Relación entre la cristalinidad bifásica X_L , y el producto $\Im \varepsilon$, según ec.(20), para distintos valores del parámetro de apiñamiento z. (A(O), A'(O), B(O))

GRt : 4 %

Fig.46 Representación esquemática de la distribución y localización de ramas laterales en el esqueleto, correspondiente a una muestra hipotética con $GR_{t}=4\%$, para dos valores del parámetro de apiñamiento z.

ción en la que algunas de las ramas "ineficaces" se alejan de los defectos (las rodeadas por círculo a trazos) dando origen a una multiplicidad distinta de la ideal.

El uso de X_L para todas las muestras incluyendo las que se desvian del modelo bifásico, está justificado puesto que la distribución de las ramas en el esqueleto debe preservar secue<u>n</u> cias lineales de longitud l_T. Los valores de z se obtienen me diante una traslación horizontal de los puntos hasta la expone<u>n</u> cial z=1 que nos dará el valor vɛ'. Conocido el valor de z es inmediato el cálculo de GR_{ef} mediante la relación (19). Los val<u>o</u> res de z y GR_{ef} se recogen en la tabla XVI.

En la fig. 47 se representa la variación de z frente a GR_t. Para valores pequeños de GR_t z decrece netamente, mientras que para valores mayores llega a tomar un valor prácticamente – constante, lo que indica un grado de apiñamiento similar en las muestras más ramificadas. Para las muestras menos ramificadas el apiñamiento es menor y tienden a presentar una distribución esta dística de defectos simples cuando GR_t es muy pequeño. Las muestras A¹7 y B1 con valores de GR_t (1.25 y 1.81%) que no son excesivamente grandes, presentan valores de z muy bajos (0.28 y 0.35), es decir, presentan un apiñamiento mucho mayor que el resto de las muestras.

Ahora podemos representar I_T frente al GR_{ef} , fig. 48, con el que debe estar más directamente relacionado que con GR_t . La -

Fig.48 Dependencia de la dimensión del cristal en la dirección molecular l_T , con el grado de ramificación "eficaz" GR_{ef}.

curva resultante muestra, como era de esperar, una buena correlación. Si se comparan las figs. 48 y 32 se observa que A'7 $(l_T=139 \text{ Å})$ se situa muy bien sobre la curva determinada por el resto de las muestras, encontrándose que la mayor parte de las ramas laterales (GR_t=1.25/100 C) son ineficaces (GR_{ef}=0.34/100 C), lo que indica un gran apiñamiento local que origina un valor considerablemente alto de l_T.

3.2.1. Estimación del grado de inclusión de ramas en la red cristalina

Con objeto de dar una interpretación de la variación observada en los valores de <u>a</u> y ρ_c (tabla VIII), hemos intentado calcular el número de ramas incluidas en la fase cristalina, GR_c . Es de esperar que la presencia de ramas ineficaces (GR_t - GR_{ef}) pr<u>o</u> voque en parte la variación observada en <u>a</u>. Si los defectos de e<u>s</u> queleto, representados por GR_{ef} , presentaran una multiplicidad ideal, no cabria esperar la inclusión de rama alguna en <u>b</u> red cr<u>is</u> talina. Sin embargo la expansión de la celdilla unidad parece indicar una cierta inclusión. En principio el grado de inclusión en la red se puede considerar proporcional a GR_t - GR_{ef} y a X_L. Muy pr<u>o</u> bablemente las ramas ineficaces no se presentarán en forma aislada, sino que en su mayor parte tenderán a apiñarse en los defectos de esqueleto y el resto se localizará en los segmentos lineales de la fase amorfa y de la red cristalina. Por tanto GR_c será proporcional a $z(GR_t-GR_{ef})$ de modo que la expresión que podría permitir el cálculo del número de ramas ocluidas en la red cristalina es:

$$GR_{c} = z.(GR_{t}-GR_{ef}).X_{L} = GR_{ef}(1-z).X_{L}$$
 (21)

Los valores de GR_c calculados mediante la expresión (21) se encue<u>n</u> tran en la última columna de la tabla XVI. Estos indican que la fracción de ramas incluidas en la red cristalina es relativamente pequeña, no llegando a rebasar el valor 0.6/100 C, suficiente, sin embargo, para provocar una disminución de la densidad cristalina de un 3%. En la fig. 49 hemos representado la variación de <u>a</u> y ρ_{c} frente a los valores calculados de GR, encontrándose una buena correlación lineal. Este resultado apoya la bondad de la expresión (21) para la estimación de GR_c. Los valores de GR_c obtenidos son l<u>i</u> geramente inferiores a los de Holdsworth y Keller 18 en monocristales de copolímeros etileno-buteno con un grado de ramificación de 1 a 1.84 etilo/100 C. Dichos autores encuentran que, una vez eliminada la fase amorfa, las muestras poseen todavia un 15-20% de las ramificaciones las cuales deben estar ocluidas en la red cristalina. En las muestras aquí estudiadas las ramas son de mayor longitud y por tanto, la inclusión debe ser menor $\frac{18}{2}$. En efecto los valores de GR_{c} encontrados (5-10% de GR_{+}) lo confirman.

El análisis de los resultados recogidos en esta memoria no

Variación del parámetro <u>a</u> de la celdilla unidad y la densidad de la fase cristalina _C, en fun-ción del grado de inclusión de ramas en la red GR_C. Fig.49

nos ha permitido dar una explicación univoca y satisfactoria a la desviación del modelo interlaminar o bifásico para las muestras indicadas (3.1.1.). Sin embargo, vale la pena hacer notar que, - dentro de las muestras de alto y bajo peso molecular, las que se desvian del modelo interlaminar son aquellas que presentan los va lores de GR_c mayores. Se podría pues pensar que la interrupción lateral de las laminillas cristalinas se origine por una alta con centración de defectos en la red.

3.3. Representación esquemática de la estructura supramolecular de PE cristalizado del estado fundido

Finalmente hemos intentado representar esquemáticamente la supraestructura de dos muestras de PE que presentan características extremas entre las investigadas en este trabajo. En la fig. 50 presentamos los esquemas, a escala, correspondientes a una mue<u>s</u> tra de alto peso molecular ($M_w \simeq 10^5$), prácticamente lineal - -(GR $\simeq 0.2\%$), con un grado de cristalinidad de $\simeq 0.7$ y otra de bajo peso molecular ($M_w \simeq 4x10^3$), ramificada (GR_t $\simeq 5\%$), con un grado de cristalinidad de $\simeq 0.3$.

Mediante estos esquemas pretendemos poner en evidencia el efecto del GR_t y el M_w en la supraestructura del PE.

En la fig. 50(a), correspondiente a la muestra de alto p<u>e</u> so molecular, se han dibujado algunos plegados regulares con retor no adyacente ⁸ pero en ella predominan el plegado irregular con retorno al azar ^{27,28} de acuerdo con los valores relativamente altos de f calculados. Se observa que la inclusión de extremos de cadena y de ramas laterales provocan dislocaciones y otros d<u>e</u> fectos conformacionales en la red ¹⁴ que serán probablemente escasos cuando las macromoléculas son, como en este caso, práctic<u>a</u> mente lineales.

En la fig. 50(b) se presenta la estructura supramolecular propuesta para la muestra de bajo peso molecular con un grado de cristalinidad inferior al que le correspondería en el modelo bi fásico. En el esquema se destaca la naturaleza ramificada de las macromoléculas y la localización preferente de las ramas en la f<u>a</u> se amorfa ^{18,36}. Sin embargo, la proporción de ramas incluidas en la red cristalina es significativa. También puede observarse el apiñamiento de las ramas laterales. En esta representación lo más notable es la interrupción lateral de las laminillas cristal<u>i</u> nas por zonas de material amorfo, que son las principales responsables del deficiente grado de cristalinidad y valores de densi dad encontrados. No obstante los defectos de la red cristalina d<u>e</u> ben contribuir apreciablemente en la disminución de los valores de la cristalinidad y de la densidad. Puede apreciarse también el número relativamente elevado de finales de cadena principal pre -

Fig.50

Representación esquemática de la supraestructura del PE. a: modelo interlaminar; b: estructura propuesta para las muestras que no se ajustan al modelo laminar. sentes no solo en la fase amorfa sino también la cristalina, en contraste con io que se observa en la muestra de alto peso molecular donde son escasos.

•

CONCLUSIONES

- 1.- En las muestras de PE investigadas hemos encontrado que las ramas laterales son preferentemente de naturaleza saturada, aunque existen también grupos insaturados, en proporción de hasta un 10% del grado de ramificación. Nuestro análisis es pectroscópico indica que las ramas laterales son grupos butilo o más largos.
- 2.- Las ramas laterales actúan como defectos estructurales en las cadenas moleculares del polietileno limitando la dimensión de los cristales en la dirección molecular. Dichos defectos se localizan preferentemente en regiones moleculares desordenadas (fase amorfa). En estas regiones se situan además segmentos de secuencias lineales que poscen longitudes menores que la del tamaño del cristal.
- 3.- El análisis de los resultados obtenidos nos ha permitido el desarrollo de dos modelos estructurales que facilitan una in formación directa sobre la naturaleza de la región interlami nar amorfa (longitud media del plegado molecular) y sobre la distribución y localización de las ramas laterales.

- 4.- Utilizando un modelo estadístico, hemos calculado la frac ción de ramas que se incorporan en la red cristalina y que provocan una expansión lineal del eje <u>a</u> de la celdilla unidad y por tanto una disminución análoga de la densidad cri<u>s</u> talina. Dicha fracción no rebasa el 10% del grado de ramif<u>i</u> cación total.
- 5.- La secuencia de las ramas laterales, a lo largo de la cadena principal, se desvia de una distribución puramente regular, originándose apiñamientos locales en defectos al parecer distribuidos con regularidad.
- 6.- El tamaño de los microcristales, que es función de la concentración de defectos estructurales (GR_{ef}), disminuye rápidamente para GR_{ef} <1% y más lentamente para GR_{ef} >1%. Dicha función tiende asintóticamente hacia un valor de unos 30 Å para un grado de ramificación elevado. Hemos encontrado una correlación empírica entre el tamaño de cristal y el coeficiente de absorción de la banda IR a 730 cm⁻¹.
- 7.- La supraestructura de las muestras de PE de baja cristalini dad y densidad inferior a 0.93 g/cm³ no puede explicarse sa tisfactoriamente mediante el modelo bifásico, por ello proponemos un modelo en el que las laminillas cristalinas se interrumpen lateralmente por zonas ocupadas por material -

desordenado o amorfc. Este modelo justifica los bajos valores encontrados para la cristalinidad.

- 8.- El valor medio del número de carbonos de los segmentos de las macromoléculas, plegadas e interconectantes, de la re gión amorfa oscila entre 40 y 120. Este valor depende del grado de ramificación, peso molecular y condicionos de cris talización.
- 9.- El espesor de la región interlaminar amorfa es prácticamente independiente del grado de ramificación total y del peso molecular. En todas las muestras investigadas el valor obte nido oscila alrededor de 95 Å.

BIBLIOGRAFIA

.

,

(1).	Tadokoro, H. J.Polymer Sci. <u>C15</u> , 1 (1966).		
(2).	Bunn, C.W., Holmes, D.R. Trans.Farady Soc. <u>25</u> , 95 (1958).		
(3).	Bunn, C.W. Trans.Faraday Soc. 35, 483 (1939).		
(4).	Scherrer, P. Göttinger Nachrichten <u>2</u> , 98 (1918).		
(5).	Alexander, L.E. 'X-Ray Diffraction Method in Polymer		
	Science". Wiley-Interscience N.YLondon (1969).		
(6).	Hermann, K., Gerngross, O. Kautsch.Anwend <u>8</u> , 181 (1932)		
	Gerngross, O., Hermann, K.; Abitz, W.		
·	Z.Physik.Chem. <u>1310</u> , 371 (1930).		
	(6b) Hill, R. "Fibres from Synthetic Polymers"		
Elsevier, Amsterdam (1953).			
(7),	Keller, A. J.Polymer Sc: <u>17</u> , 291, 351 (1955).		
	Kelier, A. J.Polymer Sci. <u>39</u> , 151 (1959).		
(8).	Keller, A. Phil.Mag. <u>2</u> , 1171 (1957).		
(9).	Fischer, E.W. Z.Naturforsch. <u>12a</u> , 753 (1957).		
(10).	Till, P.H. J.Polymer Sci. 24, 301 (1957).		
(11).	Lindenmeyer, P.H. J.Chem.Phys. (USA) <u>46</u> , 1902 (1967).		
(12).	Zerbi, G. Pure and Appl.Chem. <u>26</u> , 499 (1971).		

- (13). Peterlin, A. Macromol.Chem. 8, 277 (1973).
- (14). Wunderlich, B. "Macromolecular Physic" Vol.I. Academic-Press N.Y.-London (1973).
- (15). Geil, P.H. J.Polymer Sci. <u>47</u>, 65 (1960).

(15b) Eppe', R., Fischer, E.W., Stuart, H.A. J.Polymers Sci. <u>37</u>, 721 (1959).

- (16). Basset, D.C., Carder, D.R. Phil.Mag. <u>28</u>(3), 513 (1973).
- (17). Geil, P.H. "Polymer Single Crystals".Wiley-Interscience N.Y.-London (1963).
- (18). Holdsworth, P.J., Keller, A. Makromol.Chem. 125, (1969).
- (19). Baltá-Calleja, F.J., Gómez-Blanco, J., González-Ortega, J.C.,
 Pereira, M.A. Comunicación presentada en el "Int.Symp.Macromol." I.U.P.A.C. Helsinki, julio
 (1972).
- (21). Arakawa, T. Tesis Doctoral. Cornell Univ. USA. Nov. (1964).
- (22). Oppenlander, G.C. Science 159, 3821 (1968).
- (23). Willbourn, A.H. J.Polymer Sci. <u>34</u>, 569 (1959).
- (24). Knox, J.R. J.Polymer Sci. C18, 69 (1967).
- Hosemann, R. J.Appl.Phys. <u>34</u>, 25 (1963).
 Hosemann, R., Wilke, W., Baltá Calleja, F.J.
 Acta Crystallographica 21, 118 (1966).

- (26). Lindenmeyer, P.H. J.Polymer Sci. 1, 5 (1963).
- (27). Flory, P.J., J. Amer. Chem. Soc. 84, 2857 (1962).
- (28). Mandelkern, L. J.Polymer Sci. C15, 129 (1966).
- (29). Keller, A. Reports on Progress in Physics 31, 623 (1968)
- (30). Fischer, E.W. Kolloid Z.u.Z.Polymere 231, 458 (1969).
- (31). Bellamy, L.J. "Infrared Spectroscopy of Complex Molecules" Methuen, London (1958).
- (32). Zbinden, R. "Infrared Spectroscopy of High Polymers" Academic-Press N.Y.-London (1964).
- (33). Henniker, C.J. "Infrared Spectroscopy of Industriai Polymers". Academic-Press, N.Y.-London (1967).
- (34). Glenz, W. "Application of IR-Spectroscopy to Polymers". Polymer Conf.Series, Univ.Detroit.Michigan Mayo (1970).
- (35). Ke, B. J.Polymer Sci. 61, 47 (1962).
- (36). Richardson, M.J., Flory, P.J., Jackon, J.B. Polymer <u>4</u>, 221 (1963).
- (37). Bastien, L.J., Ford, R.W., Mak, H.D. J.Polymer Sci. <u>B4</u> 1473 (1966).
- (38). Baltá-Calleja, F.J., Schönfeld, A., Faserforschg.u. Textiltech. <u>18</u>, 170 (1967).
- (39). Baltá-Calleja, F.J., Hudalgo, A. Kolloid Z. 229,21 (1969).
- (40). Peterlin, A., Baltá Calleja, F.J. Kolloid.Z.u.Z. Polymere242, 1093 (1970).
- (41). Baltá-Calleja, F.J. Frühjahrstagung der Deutschen Phys.Ges.PH41, Munster, Marzo (1975).
- (42). Glenz, W. Tesis Doctoral, Marburg (1968).
- (43). Baltá-Calleja, F.J., Čačkovič, H., Hosemann, R., Wilke, W. Kolloid Z.u.Z.Polymere <u>206</u>, 118 (1965).
- (44). Ciampelli, F., Cambini, M., Lachi, M.P.J.Polymer Sci. C7, 213 (1963).
- (45). Krimm, S. Fortschr. Hochpolymer Forch. 2, 51 (1960).
- (46). Loboda-Čaćković, J., Čačković, H., Hosemann, R.
 J.Polyner Sci. 42, 577 (1973).
- (47). Cackovic, H., Loboda-Cackovic, J., Hosemann, R.Colloid & Polymer Sci. <u>252</u>, 818 (1974).
- (48). Thomson, W. Philos.Mag. 42, 448 (1871).
- (49). Pitha, J., Jones, R.N. Nat.Research. Council of Canada Bull. 12 Ottawa (1968).
- (50). Alcover, J.F., Sanz, J. Fernández, M. Comunicación privada.
- (51). Aggarwal, S.L., Sweeting, O.J. Chem.Reviews 57,665 (1957).
- (52). Doak, K.W. Demonstration of Meth. at du Pont Lab.

Marzo 23-25 (1959).

- (53). Hendus, H., Schnell, G. Kunststoffe 2, 63 (1961).
- (54). Blackader, D.A., Keniry, J.S. Makromol.Chem.141,211 (1971).
- (55). Blackader, D.A., Lewell, P.A. Polymer (london) 9,249 (1968).
- (56). Sharma, R.K., Mandelkern, L. Makromolecules 2, 266 (1969).
- (57). Wendlant, W. 'Thermal Methods of Analysis'' Interscience N.Y. (1964).
- (58). Gómez-Fatou, J.M. Coloq.direct.Inv. C.N.Q.Org.Ed. Madrid p.135 (1971).
- (59). Mandelkern, L., Posner, A.S., Diorio, A.F., Roberts, D.E. J.Appl.Phys. <u>32</u>, 1509 (1961).
- (60). Kiessig, H. Röntg. Netzebenenabstände 98, 213 (1942).
- (61). Bolduan, O.E.A., Bear, R.S. J.Appl.Phys. 20, 983 (1949).
- (62). Staton, W.O. J.Polymer Sci. 22, 385 (1956).
- (63). Kratky, O. Z.Elektrochem. 58, 49 (1954).
- (64). Franks, A. Proc.Phys.Soc. (London) 68B, 1054 (1955).
- (65). Beereman, D.W. Rev.Sci.Instr. 26, 1048 (1955).
- (66). Tobin, M.C. J.Chem.Phys. 23, 819 (1955).
- (67). Tobin, M.C., Carrano, M.J. J.Chem.Phys. 25, 1044 (1956).
- (68). Cross, L.H., Richards, R.B., Willis, H.A. Disc.Faraday Soc. <u>9</u>, 235 (1950).
- (69). Bryant, W.M.D., Voter, R.C. J.Amer.Chem.Soc.75,6113 (1953).

- (70). Badilescu, S., Toader, M., Oprea, H., Badilescu, I.I. Materiale Plastice <u>7</u>, 9 (1970) (Rum.)
- (71). Haslan, J., Willis, H.A., Squirrell, D.C.M.
 "Identification and Analysis of Plastics".
 ILIFFE 2^a ed. (1972).
- (72). Cernia, E., Mancini, C., Montando, G. J.Polymer Sci.
 <u>B1</u>, 371 (1963).
- (73). Nielsen, J.R., Wollet, A.H. J.Chem.Phys. 26, 1391 (1957).
- (74). Lomonte, J.N. Anal.Chem. 34, 129 (1962).
- (75). Rueda, D.R., Baltá-Calleja, F.J., Hidalgo, A.Spectrochim. Acta <u>30A</u>, 1545 (1974).
- (76). de Kock, R.J., Hol, P.A.H.M. J.Polymer Sci. B2, 339 (1964).
- (77). Hendus, H., Schnell, G. Kunststoffe <u>5</u>1, 69 (1960).
- (78). Okada, T., Mandelkern, L. J.Polymer Sci. A2, 5, 239 (1967).
- (79). Snyder, R.G. J.Chem. Phys. 47, 1316 (1967).
- (80). Geil, P.H. Comunicación presentada en el "U.S.-Japan Joint Seminar on Polymer Physics". Kyoto, Japan. Octubre (1965).
- (81). König, J.L., Wittenhafer, D.E. Makromol.Chem.<u>99</u>, 193 (1966).
- (82). Jackson, J.F., Hsu, T.S. Polymer Prep., Amer.Chem.Soc.Div.Polymer Chem. <u>12(2)</u>, 726 (1971).
- (83). Alcover, J.F. Comunicación privada.

- (84). Snyder, R.G., Schachtschneider, J.H. Spectrochim.Acta <u>19</u>, 85 (1963).
- (85). Krimm, S. J.Chem.Phys. 22, 567 (1954).
- (86). Chapman, D. J.Chem.Soc. 4489 (1957).
- (87). Martin, J.M., Johnston, R.W.B., O'Neal, M.J. Spectrochim. Acta <u>12</u>, 12 (1958).
- (88). Snyder, R.G. J.Chem.Phys. 27, 969 (1957).
- (89). Kikuchi, Y., Krimm, S. A.C.S. Polymer Preprint, 1012(1969).
- (90). Nielsen, J.R., Holland, R.F. J.Mol.Spectr. 6,394 (1961).
- (91). Rugg, F.M., Smith, J.J., Waterman, L.H. J.Polymer Sci. <u>11</u>, 1 (1953).
- (92). MacMurray, H.L., Thornton, V. Anal.Chem. 24, 318 (1952).
- (93). Fox, J.J., Martin, A.E. Proc.Roy.Soc. (London) A175,208(1940).
- (94). Buckley, G.D., Cross, L.H., Ray, N.H. J.Chem.Soc.2714 (1950).
- (95). Richards, R.B. J.Appl.Chem.(London) 1, 370 (1951).
- (96). Buckley, G.D., Ray, N.H. J.Chem.Soc. 3701 (1952).
- (97). Elliot, A., Ambrose, E.J., Temple, R.B. J.Chem.Phys. 16, 877 (1948).
- (98). Roedel, M.J. J.Amer.Chem.Soc. 75, 6110 (1953).
- (99). Diller, D.E., Rowe, E.H. Anal.Chem. 29, 1378 (1957).
- (100). Harlen, F., Simpson, W., Waddington, F.B., Waldron, J.D. Baskett, A.C. J.Polymer Sci. 18, 589 (1955).

(101). Boyd, D.R.J., Voter, R.C., Bryant, W.M.D.

Paper presented at 132 nd meeting of the Amer. Chem.Soc. N.Y. (1957) Abstracts p 8T.

- (102). Biermacka, T. Communication Ninth Colloq.Spectros. Internat. (G.A.M.S) Vol. 11 113 (1961).
- (103). Kilian, H.G. Kolloid. Z. 176, 49 (1961).
- (104). Gonzalez-Ortega, J.C. Comunicación privada.
- (105). Nichols, J.B. J.Appl.Phys. 25, 840 (1954).
- (106). Stein, R.S., Sutherland, G.B.B.M. J.Chem. Phys. 22, 1993 (1954).
- (107). Stein, R.S. J.Chem.Phys. 23, 734 (1955).
- (108). Stein, R.S., Morris, F.H. J.Polymer Sci. 21, 381 (1956).
- (109). Kaiser, R. Kolloid-Z. <u>148</u>, 168 (1956). Kolloid-Z. 149, 84 (1956).
- (110). Schnell, G. Erg. exakten Naturwis. 31, 270 (1959).
- (111). Luongo, L.P. J.Polymer Sci. B2, 75 (1964).
- (112). Miller, R.G., Willis, H.A. J.Polymer Sci. 19, 485 (1956).
- (113). Fischer, E.W., Smidt, G.F. Angw.Chem. 1(9), 488 (1962).
- (114). Bair, H.E., Salovey, R. J.Makromol.Sci-Phys. B3(1), 3 (1969).
- (115). Ke, B. J.Polymer Sci. 42, 15 (1960).
- (116). Ke, B., Sisko, A.W. J.Polymer Sci. 50, 87 (1961).
- (117). White, T.R. Nature 175, 895 (1955).

176.

- (118). Marchetti, A., Martuscelli, E. J.Polymer Sci. <u>A2</u> <u>12</u>, 1649 (1974).
- (119). Hamada, F., Wunderlich, B., Sumida, T., Hagashi, S.,Nakajima, A. J.Phys.Chem. 72, 178 (1968).
- (120). Ke, B. "Newer Methods of Polymers Characterization". Interscience N.Y. (1964).
- Bair, H.E., Salovey, R., Huseby, T.W. Polymer 8, 9 (1967).
 Bair, H.E., Salovey, R. J.Polymer Sci. B5, 429 (1967).
- (122). Charlesby, A, "Atomic Radiation and Polymer" Pergamon N.Y. (1960).
- (123). Flory, P.J. J.Chem.Phys. 17, 223 (1949).
- (124). Guinier, A., Fournet, G., Walker, C.B., Yuodowitch, K.L. "Small-Angle Scattering of X-Rays". Wiley, N.Y.-London (1955).
- (126). Hess, K., Kiessig, H. Z.Phys.Chem. A193, 196 (1944).
- (127). Staton, W.O. J.Polymers Sci. 28, 423 (1958).
- (128). Posner, A.S., Mandelkern, L., Worthington, C.R., Diorio, A.F. J.Appl.Phys. <u>31</u>, 536 (1960).
- (129). Hosemann, R. Polymer, 3, 349 (1962).

177.

- (130). Peterlin, A., Corneliussen, R. J.Polymer Sci. <u>A-2,6</u>,
 1273 (1968).
- (131). Loboda-Ćačkovič, J., Hosemann, R., Wilke, W.
 Kolloid.Z.u.Z. Polymere 235, 1162 (1969).
- (132). Baltá-Calleja, F.J., Peterlin, A. J.Mat.Sci. 4, 722(1969).
- (133). Baltá-Calleja, Peterlin, A., Crist, B.
 J.Polymer Sci. <u>A-2,10</u> 1749 (1972).
- (134). Hosemann, R., Loboda-Cackovic, J., Cackovic, H.Ber.Bunsen Ges. <u>77</u>, 1044 (1973).
- (135). Keller, A., O'Connor, A. Nature 180, 1289 (1957).
- (136). Keller, A., O'Connor, A. Disc.Farady Soc. 25, 114 (1958).
- (137). Kawai, T., Keller, A. Philos.Mag. <u>11</u>, 1165 (1965).
- (138). Baltá-Calleja, F.J. Real Acad.C.Exact.Fis. y Nat. de Madrid. 57, (1), (1963).
- (139). Baltá-Calleja, F.J., Bassett, D.C., Keller, A. Polymer <u>4</u>, 269 (1963).
- (140). Nakajima, A., Hayashi, S. Kolloid Z.u.Z.Polymere <u>225</u>,
 116 (1968).
- (141). Fernández-Bermudez, S., Baltá-Calleja, F.J., Hosemann, R. Makromol.Chem. 175, 3567 (1974).
- (142). Stuart, H.A. Kolloid Z. 165, 3 (1959).
- (143). Reinhold, Chr., Fischer, E.W., Peterlin, A. J.Appl.Phys. 35, 71 (1964).

- (144). Anderson, F.R. J.Appl.Phys. 35, 64 (1964).
- (145). Iller, K.H., Hendus, H. Kolloid Z.u.Z.Polymere. <u>218</u>, 56 (1967).
- (146). Palmer, R.P., Cobbold, A. Makromol.Chem. 74, 174 (1964).
- (147). Illers, K.H., Hendus. H. Makromol.Chem. 113, 1 (1968).
- (148). Flory, P.J., Vrij, A. J.Amer.Chem.Soc. 85, 3548 (1963).
- (149). Broadhurst, M.G. Journal of Research N.B.S. <u>70A,6</u>, 481 (1966).
- (150). Wunderlich, B., Dole, M. J.Polymer Sci. 24, 201 (1957).
- (151). Hoffman, D. S.P.E. Trans. 4, 315 (1964).
- (152). Brown, R.G., Eby, R.K. J.Appl, Phys. 35, 1156 (1964).
- (153). Meinel, G., Morosoff, N., Peterlin, A. J.Polymer Sci. A2,8, 1723 (1970).
- (154). Casey, K., Elston, C.T., Phibbs, M.K. J.Polymer Sci. <u>B2</u>, 1013 (1964).
- (155). Swan, P.R. J.Polymer Sci. 56, 409 (1962).
- (156). Peterlin, A., Meinel, G. J.Polymer Sci. <u>B3</u>, 1051 (1965).
 Blundell, D.J., Keller, A., Connor, T.M. J.Polymer Sci.
 A2,5, 991 (1967).
- (157). Baltá-Calleja, F.J., Rueda, D.R. Polymer Journal of Japan 6(3), 216 (1974).

- (158). Peterlin, A. J.Macromol. Sci.-Phys.<u>B3(1)</u>, 19 (1969).
- (159). Turnbull, D., Cormia, R. J.Chem.Phys. 34, 820 (1961).
- (160). Walter, E.R., Reding, R.P. J.Polymer Sci. 21, 561(1956).
- (161). Eichhorn, R.M. J.Polymer Sci. <u>31</u>, 197 (1958).