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ABSTRACT 26 

 27 

This paper studies the weathering and soil formation processes operating on 28 

detrital sediments containing alkaline volcanic rock fragments of the Mirador del 29 

Río dolocrete profile. The profile consists of a lower horizon of re-movilised 30 

weathered basalts, an intermediate red sandy mudstones horizon with irregular 31 

carbonate layers and a topmost horizon of amalgamated carbonate layers with 32 

root traces. Formation occurred in arid to semiarid climates, giving place to a 33 

complex mineralogical association, including Mg-carbonates and chabazite, 34 

rarely described in cal/dolocretes profiles. Initial vadose weathering processes 35 

occurred in the basalts and in directly overlying detrital sediments, producing 36 

(Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions 37 

allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. 38 

In Stages 3 and 4, mostly pedogenic, biogenic processes played an important 39 

role in dolomite and calcite accumulation in the profile. Overall evolution of the 40 

profile and its mineralogical association involved initial processes dominated by 41 

alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for 42 

chabazite and dolomite formation, without a previous carbonate phase. 43 

Dolomite formed both abiogenically and biogenically, but without a previous 44 

carbonate precursor and in the absence of evaporites. Dominance of calcite 45 

towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric 46 

waters due to decreased supply of Mg from weathering, and increased supply 47 

of Ca in eolian dust. Meteoric origin of the water is confirmed by C and O 48 

isotope values, which also indicate lack of deep sourced CO2. The dolocrete 49 
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studied and its complex mineral association reveal the complex interactions that 50 

occur at surface during weathering and pedogenesis of basalt-sourced rocks.  51 

 52 

1. Introduction 53 

 54 

Calcretes and dolocretes, commonly described in sedimentary basins 55 

developed on sedimentary host rocks (Goudie, 1973; Esteban and Klappa, 56 

1983; Alonso-Zarza and Wright, 2010), do also form on metamorphic and 57 

igneous (Chiquet et al.,1999, 2000; Capo et al., 2000; Kadir, et al., 2010) host 58 

rocks. Of special interest is the accumulation of carbonate minerals on 59 

weathering profiles/soils containing basaltic rocks, as weathering of these rocks 60 

under alkaline conditions gives place to complex mineralogy including Mg-Ca-61 

rich silicate minerals, such as various types of zeolites, smectites (Whipkey et 62 

al., 2002) or talc-like minerals. Interpretation of the processes involved in the 63 

formation of this association is important for several reasons: 1) dolomite 64 

occurring in this type of soils is commonly ordered and stoichiometric  (Capo et 65 

al., 2000; Whipkey et al., 2002),  uncommon in recently formed dolomites; 2) 66 

South Atlantic reservoirs of Brazil and Angola seem to be contained in rocks 67 

formed by these minerals (Wright and Barnett, 2015); 3) a similar association 68 

seems to be present in some areas of Mars, thus indicating the presence of 69 

liquid water on the Martian surface, and perhaps microbial activity (Brown et al., 70 

2010; Sutter et al., 2012); and 4), as formation of carbonates on and within 71 

weathered basalts requires CO2, these carbonates might become useful as  72 

CO2 sequestration sinks (Gysi and Stefánsson, 2012).  73 
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The volcanic Canary Islands show a broad development of pedogenic 74 

calcretes, especially in the more arid eastern-most Islands (Alonso-Zarza and 75 

Silva, 2002; Huerta et al., 2015). These calcretes, mostly composed of calcite, 76 

were supplied calcium from aeolian dust (Huerta et al., 2015).  However little is 77 

known of the interaction of pedogenic-versus groundwater-accumulation of 78 

carbonates within weathered volcanic rocks, or in detrital deposits containing 79 

mostly volcanic fragments. In this paper we present the study of a 80 

calcrete/dolocrete profile that contains a typically alkaline mineral association 81 

including calcite, dolomite, smectites and chabazite (zeolite), developed in this 82 

type of rocks. Our aim is to discuss the mechanisms and controls operating in 83 

the formation of this mineral association within cal-dolocrete profiles hosted on 84 

volcanic-sourced surficial deposits, to better understand the origin of dolomite in 85 

soils. In addition, our study may serve as a near-natural analogue for a better 86 

understanding of CO2 sequestration in mafic rocks, or to shed light on 87 

processes involved in the formation of this alkaline association in Mars.   88 

 89 

2. Geological setting  90 

 91 

The Canary Islands, a volcanic archipelago comprising seven main 92 

islands and several islets, situated close to the African coast (Fig.1), lies on 93 

oceanic African crust of early Jurassic age (Verhoef et al., 1991; Ancochea et 94 

al., 2004). The age of island emergence decreases from E to W. Younger 95 

islands, La Palma and El Hierro, are about 1.2 million years old, while 96 

Lanzarote and Fuerteventura, the eastern-most, are the oldest islands, 15 and 97 

23 Ma respectively (Balogh et al., 1999; Van den Bogaard, 2013). In Lanzarote 98 
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there are two main volcanic cycles (Balcells et al., 2004): during the first cycle 99 

(Upper Miocene to Pliocene), volcanic shields  (Ajaches and Famara) formed 100 

(Coello et al., 1992). These volcanic shields were coated by recent volcanism 101 

(Fúster et al., 1968). In the Famara Massif, the last eruption was the Corona 102 

volcano, 21000 ± 6500 years ago (Carracedo et al., 2003).  103 

 Lanzarote Island, in a senile evolutive stage dominated by erosive and 104 

sedimentary processes (Carracedo, 2011), contains quaternary marine 105 

terraces, aeolian deposits and calcretes (Zazo et al., 2002; Meco, 2008). 106 

Calcretes were formed after the Pliocene in relatively less-arid interglacial 107 

periods (Alonso-Zarza and Silva, 2002; Genise et al., 2013). Due to their 108 

location near Africa, all the Canary islands are regularly affected by aeolian dust 109 

(Goudie and Middleton, 2006; Menéndez et al., 2007; Scheuvens et al., 2013) 110 

from the northern part of the continent, the Sahara and Sahel regions (Laurent 111 

et al., 2008; Muhs et al., 2010). This dust was the main source of calcium and 112 

carbonate for calcrete formation in the eastern-most Canary Islands. In addition 113 

some areas of the islands marine bioclasts fragments transported mainly by 114 

wind periods were also an additional Ca-source for calcrete development 115 

(Meco, 2008; Criado et al., 2012; Huerta et al., 2015). 116 

The Mirador del Río profile, from the northernmost part of Lanzarote, on 117 

the slope of Famara cliff, is located in the homonym massif. The outcrop studied 118 

is about 470 m above mean sea level (29˚ 12' 46.0" N, 13˚ 28' 58.3" W) (Fig.1).  119 

The cliff is a retrograded scarp from a giant gravitational collapse scarp 120 

(Carracedo et al., 2002) of part of the volcano, 10.2 - 3.8 Ma (Coello et al., 121 

1992). The Famara Massif consists of a thick tabular succession of basaltic lava 122 

flows (1 to 2 m thick) with interbedded pyroclasts falls of the same geochemical 123 
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compositions, more than 7% of MgO. These volcanic very dark rocks, contain 124 

olivine and augite phenocrysts, altered to iddingsite, within a fine vitreous 125 

groundmass. Vacuoles within the basalts are partially filled by carbonates and 126 

zeolites (Balcells et al., 2004). 127 

 Basaltic lava flows are discordantly overlain by upper Pleistocene detrital 128 

deposits consisting of 25 m of angular and heterometric volcanic fragments 129 

within a red clay matrix (Balcells et al., 2004).  These poorly stratified beds were 130 

supplied with clasts and red matrix from nearby weathered basalts. Textural and 131 

compositional features indicate a minimum transport. The studied Mirador del 132 

Río profile developed within these detrital beds. 133 

 134 

3. Methods  135 

 136 

Seven representative samples were taken from the Mirador del Río 137 

profile. Thin sections were made for petrographical analysis and 138 

characterization of the different microtextures was done by transmission-light 139 

microscopy. Due to fragility, samples were embedded in EPOXY resin, in a 140 

vacuum system.  141 

Bulk-rock mineralogy was studied with a Philips PW-1710 X-Ray 142 

diffraction (XRD) system, operating at 40kV and 30 mA, under monochromatic 143 

CuKα radiation. Semi-quantitative analyses were performed using EVA software 144 

by Bruker. Mineralogical characterization of clay minerals was carried out on 145 

oriented aggregate samples using oriented air-dried slides that were ethylene 146 

glycol solvated and heated to 550°C (Brindley, 1961). Degree of dolomite 147 

ordering was determined by X-ray diffraction according to Goldsmith and Graf 148 
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(1958) procedures, and Hardy and Tucker (1988). SEM studies were performed 149 

with a scanning electron microscope, model JEOL JSM-820, equipped with an 150 

energy dispersive X-ray analyzer (EDX) of the CAI of geological techniques of 151 

Complutense University of Madrid (Spain). 152 

Chemical microanalyses of the main minerals for different elements, 153 

were made by wavelength dispersive electron probe microanalyzer (WDS-154 

EPMA), model JEOL JXA 89000, in the Electronic Microscopy Center Luis Brú 155 

of Complutense University of Madrid. These analyses were performed on gold-156 

coated, polished sections. 157 

The δ13C and δ18O values for dolomite and calcite from six samples were 158 

determined at the Scientific and Technical Services of Barcelona University 159 

(Spain). Analyses were carried out on powdered samples. To analyze calcite 160 

and dolomite, samples were attacked with hydrochloric acid diluted to 10% by 161 

measuring isotopic ratios for calcite after one minute attack. Twenty minutes 162 

later, samples were washed with distilled water, filtered and oven-dried, and 163 

values for dolomite were determined. CO2 was extracted using a Thermo 164 

Finnigan Carbonate Kiel Device III isotopic analyzer, with a Thermo Finnigan 165 

MAT-252 spectrometer, according to the McCrea (1950) method. Values 166 

obtained were corrected using the NBS-19 standard value and referred to 167 

VPDB standard.  168 

  169 

4. The Mirador del Río profile 170 

 171 

4.1. Macromorphology of the profile 172 

 173 
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 Poorly stratified detrital deposits of the Famara Cliff contain a 2.4 m thick 174 

bed (Figs 2, 3A), formed by red-orange mudstones with intercalated irregular 175 

carbonate layers. Lateral continuity of the bed is about 40 m, as it pinches out to 176 

the SW and towards the NE, directly overlying weathered basalts. The bed 177 

constitutes the Mirador del Río profile, formed by three horizons (Fig. 2). 178 

 The lower horizon, the transition with volcanic rock, is 0.2-0.4 m thick, 179 

composed of weathered basalts partially removilised, and including large, 180 

angular and poorly-sorted basalt fragments within a silty matrix.  181 

  The intermediate, brown-red horizon, 1.5-1.9 m thick, is composed of 182 

sandy mudstones with oxidized gravel-sized clasts of basalts with interbedded 183 

carbonate layers (Fig. 3B). Mudstones show irregular mm-wide cracks partially 184 

filled with white cement (Fig. 3C). The irregular horizontal carbonate layers (2-185 

10 cm thick), confer a platy structure to the horizon. These layers, more 186 

separated at the base of the horizon, tend to coalesce and amalgamate towards 187 

the top. The carbonate is mostly dolomite at the base of the horizon, but the 188 

amount of calcite increases towards the top (Fig. 2). 189 

 The upper horizon consists of amalgamated, mostly calcite, carbonate 190 

layers with few inter-bedded red mudstones. Root traces confer a diffuse 191 

prismatic structure to the horizon, 0.30 m thick, in gradual contact with the lower 192 

horizon, overlain at the top by red silts. 193 

 194 

4.2. Mineralogy and Petrology  195 

 196 

 Thin sections show that samples are composed of a fine groundmatrix 197 

which includes micrite, dolomicrite and clays (Figs. 4, 5). In the lower horizon 198 
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and in the and less carbonate layers of the intermediate horizon coarse detrital 199 

clasts (fragments of volcanic rocks, olivines, fragments of coarse crystalline 200 

dolomite and chabazite) are irregularly distributed within the groundmatrix, 201 

which is cut by  empty or dolomite and/or chabazite filled circum-granular and 202 

planar cracks (Fig. 4A, 5A). The carbonate layers either dolomite (Fig. 4B, 5B) 203 

or calcite (Fig. 4C, 5C) include coated grains, irregular laminations and alveolar 204 

septal structures, but lack chabazite or dolomite filled cracks. Mineralogy of the 205 

profile is complex, including a wide variety of components (Table 1) inherited 206 

from both the host rock and minerals formed within the soil profile. 207 

 208 

1.- Fragments of volcanic rocks and volcanic minerals have porphyritic texture 209 

with olivine and augite phenocrysts included in a groundmass with opaques and 210 

glass. Some vacuoles contain chabazite; fragments are corroded, and their size 211 

may reach several mm. Olivine and augite occur within volcanic fragments and 212 

also as individual grains about 0.5 to 1 mm across, embedded in a carbonate-213 

clayly matrix (Fig. 6A). Olivine is altered to iddingsite, a red-brown mass formed 214 

by saponite, goethite (Eggleton, 1984) and other clay minerals. Augite is altered 215 

to serpentine, uralite and chlorite, but less than is the olivine.  216 

 217 

2.- Phyllosilicates occur as a dark, cracked groundmass mixed with dolomicrite, 218 

as relics within carbonate layers and as coatings on any silicate component of 219 

the profile (Fig. 6B). XRD studies indicate that they are mostly smectites, which 220 

is consistent with SEM observations (Fig. 6C). 221 

 222 
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3.- Chabazite is a zeolite which may contain different amounts of Na, K, Ca or 223 

Mg. Chabazites from the study profile are rich in Na (Table 1). In thin sections 224 

they appear as fibrous-radial or petaloid-like spherulites or more rarely as 225 

crystalline euhedral to subeuhedral equant mosaics (Fig. 6D-H). Fibrous-radial 226 

spherulites are about 0.5 mm in diameter. Petaloid spherulites are smaller (0.2 227 

mm), composed of 6-10 triangular crystals. Chabazite occurs as: 1) detrital 228 

fragments; 2) cements partially or totally filling vacuoles or fractures within 229 

volcanic fragments; and 3) cements filling cracks within the micrite carbonate 230 

matrix or around detrital grains. In many cases, especially cases 1 and 3, 231 

chabazite is partially replaced by dolomite (Fig. 6G, H). 232 

 233 

4.- Dolomite is the only carbonate mineral in the lower part of the profile, but is 234 

also present in the upper part, together with calcite. It is either coarse crystalline 235 

or dolomicrite. Coarse crystalline dolomite appears as: 1) cements filling cracks, 236 

within the dolomicrite or micrite matrix or on weathered detrital grains, 237 

commonly distributed all throughout the pore or coating all the surface of 238 

specific grains (Figs. 4A, 7A), 2) partially replacing chabazite (Fig. 6G, H), 3) as 239 

detrital etched fragments, up to 2 mm across (Fig. 7B, C). This coarse dolomite 240 

is zoned, as clear dolomite bands are interrupted by dark-cloudy ones. 241 

Dolomicrite occurs as: 1) homogeneous or peloidal matrix, in cases replacing 242 

and corroding detrital grains (Figs 4B, 7C), 2) irregular and thin coatings on 243 

detrital grains (Fig. 7D), and commonly alternating with red clays, 3) micritic 244 

filaments (Fig. 7E), 4) forming irregular laminar structures (mm-thick) in which 245 

micrite alternates with irregular empty cracks. Some needle-like fibre crystals 246 



11 
 

also occur within dolomicrite (Fig. 7F). Very commonly dolomicrite is found 247 

coating or overlying dolomite cements or chabazite (Fig. 7E, F).  248 

 Dolomite, having superstructure peaks, lends itself to calculation of the 249 

degree of order (Goldsmith and Graf, 1958), which varies between 0.46 and 250 

0.94 (Table 1). Samples with a higher order degree, in the lower part of the 251 

profile, has coarse dolomite more commonly than dolomicrite. The amount 252 

CO3Mg varies between 40 and 44%, whereas CO3Ca varies between 55 and 253 

59%, indicative of a Ca-rich dolomite. 254 

 255 

5.- Calcite, mostly micrite and rarely microspar, occurs mostly in the upper part 256 

of the profile. Calcite micrite occurs with an arrangement similar to that of 257 

dolomicrite, but micritic filaments and/or alveolar septal structures are more 258 

common (Fig. 7G, H). No features indicative of dedolomitization were found. 259 

XRD and microprobe analyses indicate that calcite is HMC with a mean CO3Mg 260 

content of 9%. 261 

 262 

4.3. Isotope Geochemistry 263 

  264 

 Mean δ13C values are -8.90‰VPDV for calcite and -8.40 ‰VPDV for 265 

dolomite. Calcite has mean δ18O ‰VPDV values of -1.86 and dolomite of 0.54. 266 

Although the number of samples is limited, carbon values do not differ greatly 267 

between the calcite and dolomite of the same sample, whereas oxygen values 268 

are about 1% heavier in dolomite (Fig. 8). Oxygen values are in the range of 269 

other calcretes from Lanzarote and Fuerteventura islands (Huerta et al., 2015), 270 

whereas carbon values are, in general, lighter. 87Sr/86Sr (0.7078 to 0.7081) 271 
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values are very similar to those obtained by Huerta et al., (2015) in calcretes 272 

developed on basaltic host rocks. 273 

 274 

5. Discussion 275 

 276 

5.1. Mineral formation 277 

 278 

 The complex mineralogy of this profile, specially the presence of 279 

chabazite, differentiates it from other calcrete profiles described in the eastern-280 

most Canary Islands (Genise et al., 2013; Huerta et al., 2015), and also from 281 

most calcrete-dolocrete profiles in which chabazite is uncommon. Chabazite is 282 

common in volcanic settings either as a hydrothermal or weathering product 283 

(Robert et al., 1988). Very probably chabazite infills of some vacuoles of 284 

volcanic fragments occurred during hydrothermal alteration of basalts (Pérez-285 

Torrado et al., 1995; Pérez-Guerrero et al., 1997; Robert, 2001). On the 286 

contrary, chabazite recognized in cracks formed during weathering caused by 287 

percolation of meteoric waters through porous volcanic material, as described 288 

by Gottardi (1989). Under semiarid to arid climates, evapotranspiration may 289 

produce alkaline conditions suitable for chabazite (and other zeolites) 290 

precipitation in soils (Hay and Sheppard, 2001), together with other zeolites and 291 

carbonates as described also in Olduvai Gorge (Tanzania) (Ashley and Driese, 292 

2000). Chabazite precipitation is favoured by the presence of inherited 293 

chabazite in soils (Ming and Boettinger, 2001) as in this study case, where the 294 

coarse size of crystals and its presence mostly in cracks point to formation 295 

under phreatic conditions, either as cement or replacement of dolomite.  296 
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 The two types of dolomite reflect different conditions, but in both cases 297 

dolomite formed in the absence of a previous carbonate precursor, as also 298 

described in soils of non-volcanic areas (Spölt and Wright, 1992; Casado et al., 299 

2014). Coarse, zoned dolomite formed mostly as phreatic cements, as indicated 300 

by its symmetric arrangement and zoning around voids, and by the absence of 301 

any pedogenic features. Similar groundwater dolocretes, with dolomite filling 302 

different types of cavities, have also been described in karst settings (Khalaf, 303 

1990; Khalaf and Abdullah, 2013), where dolomite was also considered a 304 

precipitate that did not replace any previous mineral. In fluvial groundwater 305 

dolocretes, dolomite saturation of groundwater is driven by the early 306 

precipitation of calcite, which caused an increase of Mg concentration (Spötl 307 

and Wright, 1992). However, this mechanism is excluded from the Mirador del 308 

Río profile, as there is neither previous calcite precursor nor the expectation of 309 

lateral chemical evolution of groundwaters. In our case, weathering of basaltic 310 

rocks or of their fragments produced Mg-rich solutions favoring dolomite 311 

formation, mostly as cement but also locally replacing chabazite (Podwojewski, 312 

1995; Capo et al., 2000; Whipkey et al., 2002; Whipkey and Hayob, 2008). The 313 

generally arid to semi-arid climate, as that prevailing in the Canaries, could 314 

cause variations in the degree of saturation of groundwater, enabling the 315 

formation of zoned dolomite. Cloudy zones are probably partially dissolved 316 

dolomite, and the clear ones stable, undissolved dolomites (Khalaf and 317 

Abdullah, 2013), similarly to that described in cave aragonites, where 318 

micritization by partial dissolution produced dark, clouded bands (Martín-García 319 

et al., 2014).  320 
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 Dolomicrite replacement of the soil matrix, grains with dolomite coatings, 321 

dolomicrite filaments and peloidal dolomicrite probably formed under vadose 322 

conditions and under some biogenic control, as also indicated by needle-like 323 

crystals and alveolar septal structures (Callot et al., 1985; Phillips and Self, 324 

1987; Verrecchia and Verrecchia, 1994; Bajnóczi and Kovács-Kis, 2006; 325 

Cailleau et al., 2009). Very commonly these mostly fungal structures, 326 

interpreted as biogenic, are formed by calcite, aragonite or calcium oxalates, 327 

but rarely by dolomite. Some exceptions are various dolomite paleosols and 328 

marginal lacustrine deposits from the Madrid Basin, where dolomite occurs in 329 

clear association with roots, either mycorrhizae or otherwise (Sanz-Montero and 330 

Rodríguez-Aranda, 2012, Casado et al., 2014). Although the exact mechanism 331 

of dolomite formation is unknown, it would seem that both biogenic and 332 

abiogenic processes controlled dolomite formation in those alkaline vadose 333 

environments (Casado et al., 2014). Of additional interest is the need for 334 

nutrients of roots and associated microorganisms, with their associated acids 335 

promoting silicate weathering, favoring release of K, Mg, Ca and Fe (Calvaruso 336 

et al., 2006), also possibly favoring carbonate formation in soil (Sanz-Montero et 337 

al., 2009). Variation in the degree of order of dolomite probably is a reflection of 338 

the two different types of dolomite, but all have superstructure peaks and so are 339 

ordered dolomites. These ordered dolomites are common in soils developed in 340 

basalts (Capo et al., 2000) or Mg-rich clays (Casado et al., 2014), probably as a 341 

result of the relatively high Mg/Ca ratio in the pedogenic environment, which 342 

favors the incorporation of Mg into the dolomite structure.  343 

 The fact that micrite calcite postdates dolomite and has its same 344 

textures, points to the interplay of biogenic and non-biogenic processes, but 345 
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also indicates fresher waters with lower Mg/Ca ratios. Such change could be 346 

due to: 1) decreased supply of magnesium from groundwater, 2) dominance of 347 

pedogenic versus phreatic conditions, and 3) aeolian dust supply of Ca to the 348 

top of the profile (Huerta et al., 2015), as also confirmed by Sr isotope values. In 349 

this last stage of evolution of the profile roots played in calcite precipitation. 350 

 Carbon and oxygen data in the range of most pedogenic and 351 

groundwater calcretes (Spölt and Wright, 1992; Williams and Krause, 1998); 352 

confirm the either phreatic or vadose meteoric origin of the water, Dolomite 353 

shows higher oxygen values than calcite due to the fractionation effect (O'Neil 354 

and Epstein, 1966). Relatively higher oxygen values are an indication of the 355 

heavier values of rain water in the eastern-most Canary Islands (Yanes et al., 356 

2008), as also seen in thick laminar calcrete profiles from Lanzarote and 357 

Fuerteventura (Huerta et al., 2015). Negative δ13C values confirm the meteoric 358 

origin of the water, precluding the influence of deep-sourced CO2. The later 359 

would have produced positive or only slightly negative carbon values, as of 360 

those found in travertines from nearby Gran Canaria Island (Rodríguez-361 

Berriguete et al., 2012; Camuera et al., 2014).   362 

 363 

5.2. Profile formation 364 

 365 

 The Mirador del Rio profile developed on weathered basalts and sandy 366 

mudstones directly overlying basalts. In the lower part of the profile it is difficult 367 

to distinguish “in situ” weathered basalts from detrital sandy mudstones. Clearer 368 

evidence comes from the presence of detrital grains of both chabazite and 369 

dolomite, which suggests the reworking of previously weathered basalts. 370 
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 Weathering of detrital sandy mudstones produced red clays (smectites) 371 

that constitute, together with the dolomicrite, the matrix of an incipient paleosoil 372 

(Stage 1, Fig. 9). Formation of smectites was mainly due to the transformation 373 

of ferromagnesian minerals (Eggleton et al., 1987) such as olivine or augite. In 374 

addition, the presence of clay-cutans also points to iluviation processes within 375 

the profile (Wilson, 1999). 376 

 Dolomite precipitation as coarse crystals filling voids suggests a stage 377 

(Stage 2) of profile formation under groundwater conditions similar to some 378 

karst-related dolocretes (Khalaf and Abdullah, 2013). The magnesium required 379 

came from the weathering of basaltic rocks and basaltic components of the 380 

profile host rocks, which also supplied the cations required to form chabazite. 381 

Both weathering and precipitation of chabazite and dolomite occurred under 382 

seasonally contrasted arid to semi-arid climates, allowing the formation of 383 

zoned dolomite. Variable humidity conditions also could cause differences in pH 384 

or the supply of silica, Mg, or Na, favoring replacement of chabazite by 385 

dolomite, under alkaline, non-evaporite conditions. This context is somehow 386 

different from that commonly described for groundwater calcretes or dolocretes, 387 

as they seem to be linked to the presence of evaporite bodies (Arakel, 1986, 388 

1991; Spölt and Wright, 1992; Colson and Cojan, 1996; Jutras et al. 2007), 389 

where dolomite formed as the result of evaporation and evapotranspiration 390 

which caused the down-dip increase of Mg/Ca ratio of groundwater due to 391 

previous calcite precipitation within sediments. Both the morphology of the 392 

profile and its geochemistry point to formation in meteoric groundwaters, with no 393 

influence of evaporites. In addition, detrital fragments of coarse zoned dolomite 394 

in various levels within the profile indicate surface reworking of older profiles.  395 
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 Formation of dolomicrite (St 3) and the dominance of calcite (St 4) in the 396 

upper part of the profile suggest a change from dominant phreatic to vadose-397 

pedogenic conditions. In these stages (Fig. 9), biogenic processes played an 398 

important role in accumulation of carbonate within the profile, with root mats 399 

contributing to the formation of the carbonate layers interbedded with the sandy 400 

mudstones as described in other rootcretes (Alonso-Zarza and Jones, 2007; 401 

Meléndez et al., 2011; Bustillo et al., 2013).  Transition from dolomite to calcite 402 

is an indication of the decrease of Mg supply from weathering, as well as an 403 

increase of Ca supplied by eolian dust (Stage 4).   404 

 Composition of host rock (alkaline basaltic-like detritals) and arid to 405 

semiarid climatic conditions of Lanzarote, determined the formation of an 406 

alkaline mineral association under both phreatic and vadose (pedogenic) 407 

conditions. Study of the mineral association of these profiles has additional 408 

implications such as: 1) similar associations have recently been found in the 409 

surface of Mars (Ming et al., 2008; Sutter et al., 2012), so study of these profiles 410 

could provide clues to the understanding of environmental and geochemical 411 

conditions prevailing there; and 2), presence of carbonates in these profiles, 412 

previously absent, due to fixation of CO2, highlights the potential of these 413 

profiles as CO2 sinks. 414 

 415 

6. Conclusions 416 

 417 

 The profile studied is an example of the complex interaction between 418 

groundwater and vadose processes that operate on basaltic-sourced host rocks 419 

under arid to semiarid climates. The profile developed on detrital rock 420 
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composed of basaltic fragments. In the initial stage (1), alteration of volcanic 421 

rock and detrital fragments gave place to the neoformation of red-smectites, 422 

and liberated a variety of cations (eg. Mg, K, Na, or Fe) to the interstitial waters. 423 

In Stage 2, the initial chabazite precipitation was followed by dolomite formation 424 

under phreatic conditions (coarse dolomite). Zoned dolomite indicates changes 425 

in water composition, probably due to alternating, always alkaline, drier and 426 

wetter conditions. Vadose-pedogenic conditions prevailed in Stage 3 in which 427 

dolomicrite formed within the profile. Dominance of calcite at the top of the 428 

profile is an indication of the increasing Ca/Mg ratio in the profile, as a result of 429 

increasing input of aeolian dust, and decreasing supply of Mg from the hostrock 430 

(Stage 4).  431 

 Different dolomite textures suggest different formation processes, mostly 432 

abiogenic in Stage 2 (coarse zoned dolomite) and biogenic, dominated by roots, 433 

in Stages 3 and 4, as indicated by dolomicrite filaments, peloids, and alveolar 434 

structures. In both cases, origin of the water was meteoric, as shown by 435 

geochemical data, which also confirms the lack of input of deep sourced CO2.  436 

 Although in volcanic settings, similar profiles have rarely been described, 437 

presence of detrital fragments of coarse-zoned dolomite points to reworking of 438 

previous profiles, so in these settings these dolocrete profiles may be relatively 439 

common. Study of these profiles may clarify the process of transition from a 440 

volcanic to a pedogenic environment, and the processes involved in the 441 

formation of alkaline surficial paragenesis, containing, for example, carbonates 442 

and zeolites.    443 

 444 

 445 
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FIGURE CAPTIONS 707 

 708 

Table 1. Mineralogy and isotope data of the studied samples. 709 

 710 

Fig. 1. Map showing the location of the Mirador del Río profile and the geology 711 

of the studied area. 1. Hierro, 2. La Palma, 3. Gomera, 4. Tenerife, 5. Gran 712 

Canaria, 6. Fuerteventura, 7. Lanzarote. 713 

Fig. 2. Sedimentary log of the Mirador del Río profile and its mineralogy. 714 

Fig. 3. (A) Outcrop of the Mirador del Río profile with indication of the three 715 

horizons: lower (L), intermediate (I) an upper (U). (B) Intermediate horizon in 716 

which the red cracked sandy mudstones (1) include white carbonate layers (2). 717 

(C) Closed-up view of the sandy mudstones with cracks filled partially by 718 

chabazite and dolomite cements (arrowed). 719 

Fig. 4. Microphotograhs of thin sections: (A) Sandy mudstones of the 720 

intermediate horizon composed by a dolomicrite groundmass (g) with volcanic 721 

fragments (v) and cracks (arrowed) filled with dolomite (d) and chabazite. (B) 722 

The dolomicrite groundmass of the dolomite layers of the intermediate horizon 723 

also includes large volcanic fragments (v) and detrital dolomite grains (arrowed, 724 

d). (C) Calcitic layers consist of a micrite groundmass with volcanic fragments 725 

(v) coated by micrite (arrowed) and locally laminated micrite (arrowed). 726 

Fig. 5. Sketches of the micromorphology of the different parts of the profile. A. 727 

Intermediate horizon, cracked sandy mudstones. B. Intermediate horizon 728 

dolomitic layers. C. Upper horizon. 729 

Fig. 6. (A) Coarse altered and broken olivine fragment (ol). (B) Detrital grain 730 

with a thin clay coating (arrowed). (C) Detailed view of a clay coating showing 731 
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an open structure characteristic of smectites (arrowed). (D). Fibrous-radial 732 

chabazite (ch) filling cracks within the groundmass, coarse zoned dolomite grew 733 

in the remaining porosity. (E, F). Same image under parallel and crossed 734 

nichols showing chabazite (ch), coarse zoned dolomite (d) and dolomicrite 735 

groundmass (dm).(G, H) The infill of the porosity of the mudstone layers is 736 

made by spheroidal chabazite and coarse zoned dolomite which partially 737 

replaces chabazite. 738 

Fig. 7. Carbonate layers. (A) Chabazite and coarse zoned dolomite filling cracks 739 

within the dolomicrite groundmass. (B) Detrital fragments of coarse zoned 740 

dolomite. (C)  Peloidal dolomicrite groundmass containg detrital fragments 741 

some composed of dolomite (d) and chabazite (ch). (D) Dolomicrite containing 742 

some detrital grains coated by dolomicrite (arrowed). (E) Organic filaments 743 

within the dolomicrite groundmass. (F) Needle crystals within the dolomicrite. 744 

(G) Micritic filaments (arrowed) and peloids (arrowed) filling partially a crack 745 

within the calcite groundmass. (H) Alveolar septal structures in the topmost 746 

horizon. 747 

Fig. 8. δ13C ‰VPDV and δ18O ‰VPDV plots of the carbonates of the Mirador 748 

del Río profile and comparison with other calcretes form Lanzarote and 749 

Fuerteventura (Huerta et al., 2015). 750 

Fig. 9. Model illustrating the 4 stages of development of Mirador del Río profile. 751 

For legend see Fig. 2. 752 
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