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At the beginning of the seventies, O. Zariski proposed several problems related with
the (embedded) topology of a germ of a n-dimensional hypersurface singularity de-
fined by the zero locus of a germ of a complex analytic function. The second one was
roughly stated as “if two analytic hypersurface germs are topologically equivalent then
their tangent cones must be homeomorphic and the homeomorphism must respect
the topological equisingularity type at any point.” In this paper, we give counter-
examples for n = 3 and 4 (even in a family). Our proof is mainly based on the study of the
topology of weighted-Lé-Yomdin surface singularities which are a generalization
of the well-known Lé-Yomdin singularities. We obtain a formula for the Milnor
number of a weighted-Lé-Yomdin surface singularity and derive an equisingularity

criterion for them.

In [19], Zariski proposed to study a series of problems (from A to H) related with the
(embedded) topology of a germ of a hypersurface singularity (V, 0) C (C™ 0) defined by

the zero locus of a germ of a complex analytic function f: (C" 0) — (C, 0). He defined
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two germs (V;,0) C (C™, 0) and (72, 0) C (C™, 0) to be topologically equisingular if there
is a local homeomorphism ¢ : (C", 0) — (C", 0) such that ¢(V}) = V5.

The A-problem (and the one which is still open) discussed by him was the so
called Zariski's multiplicity question: does topological equisingularity of (¥, 0) and
(V2, 0) imply that they have the same multiplicity? (For an updated survey paper, see
for instance [5].) Given a hypersurface singularity (V, 0) germ, we denote by CV its pro-
jectivized tangent cone and by BV be the blowup of ¥V at p. The second problem by

Zariski is to find out if the following assertion is true:

B-problem. Given two hypersurface singularities (V;,0) and (V,, 0) which have the
same embedded topological type, the following holds: there exists a (non-embedded)

homeomorphism

h:CWh - C (B1)

of the projectivized tangent cones such that if h(p;) = p2, the following holds:

(1) The embedded topological types of (C V1, p1) and (C V», p2) coincide.
(2) The embedded topological types of (BVy, p1) and (BV;, pp) coincide also. [

Zariski proved that this is true if n = 2. In 2005, Fernandez de Bobadilla [6, Exam-
ple 13] found a counterexample to this problem for a topologically equisingular family
if n> 5.

In this paper, we give counterexamples if n= 3 and 4 (also in a family). In our
examples and in those of [6, Example 13], there is no homeomorphism h from the projec-
tivized tangent cones. Not having such a homeomorphism it does not even make sense
to ask for the further properties (1) and (2).

Our proof is mainly based on the study of the topology of weighted-Lé-Yomdin
singularities which are a generalization of the well-known Lé-Yomdin singularities, see
[10, 12]. These singularities are deformations of weighted-homogeneous (non-isolated)
singularities; some topological results about them can be found for instance in works
by Dimca [4] and Massey and Siersma [14]. We obtain a formula for the Milnor number
of a weighted-Lé-Yomdin surface singularity and derive an equisingularity criterion for
them (see Theorem 3.2). This formula was proposed to us by Claus Hertling to whom we

are very grateful.
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1 Lé-Yomdin Singularities

We will study germs (V,0) C (C2, 0) of isolated hypersurface singularities defined by a
convergent series f € C{x, y, z}, that is, V = f~1(0). Let f:= fy+ firx+... be the ho-
mogeneous decomposition of f and let C,,, C P? be the projective locus of zeroes of fp,.

Thus, the tangent cone of V at 0 is Cg.

Definition 1.1. A hypersurface germ (V, 0) is called a Lé-Yomdin singularity if
Sing(Cq) N Cark =¥

(note that its tangent cone C4 is reduced). (]

Next result is due to Lé-Yomdin (see Luengo and Melle-Hernandez [13] for arbi-

trary dimensions).
Proposition 1.2. If (V, 0) is Lé-Yomdin, then its Milnor number u satisfies:

wV.0)=d-1D%+k » wCaP).
PeSing(Cq) O

We are going to recall a topological proof of this fact since we will need it in the

next section.

Proposition 1.3. [9] Let f: (C"™ 0) — (C,0) be a germ of a (non-empty) singularity V.
Let us denote by x the Euler characteristic of its Milnor fiber. Let # : T — C™ be a proper
mapping which is an analytic isomorphism over C"\ {0}.

Let E := 7~1(0) and let us suppose that there exists a stratification S of E satis-
fying the following property: VS € S and Vp, q € S the Euler characteristic of the Milnor
fibers of the fox at pand q depends only on S and it is denoted by xs. Then,

x=Y_ x©S)xs.
SeS O

For germs (V, 0) C (C™ 0) of non-isolated hypersurface singularities Parusinski
defined a generalized Milnor number [16], u(V,0) := (=1)"1(x (Ff) — 1) where the zero
locus of f: (C" 0) — (C, 0) defines the singularity whose Milnor fiber is Fy.
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Lemma 1.4. Let V be the singularity in (C3,0) defined by z4(Z + f(x, y)), where C :
f(x, y) =0 is a germ of curve singularity with generalized Milnor number x . Then, the
Euler characteristic of the Milnor fiber of V is (d+ k)u. O

Proof. Let V; be the Milnor fiber z4(Z + f(x, y)) =t. Let us consider the projection
(%, v, 2) = (x,y). The discriminant of this projection restricted to V; is shown in the

equation:

d.k e
(—(;_?I;'L oo — t’5> =0,

where e := gcd(d, k). Then, the ramification locus of the projection is the disjoint union
of (d+ k)/e Milnor fibers F; of f(x, y) =0, and on each point we loose exactly e points.

By Riemann-Hurwitz, we have:

d+k
e

x(V) =(d+k —e X(F)=(@+k(1—-1+p =@+kpu. u

Proof of Proposition 1.2. We consider the blowing-up 7 : T — C2 of the origin and let

P2 = E := P~1(0). We can consider a stratification S as in Proposition 1.3 as follows:

e There is a stratum Sy of dimension 2 given by P? \ C4. The local equation of
7*(V) at a point p € Sy is of type z¢ = 0 and then Xxs, = d. We recall that

d-13-1
XSo)=3-d3-d- Y uCsP)=——- >  wCaP.
PeSing(Cq) PeSing(Cq)

e The space Cq:=Cq \ Sing(C4) is a union S of strata where the local equation
of 7*(V) at a point p € Sis of type xz% = 0 and then xs, = 0.

e The points P € Sing(C4) are strata. Since the local equation of 7*(V) at P is
as in Lemma 1.4, we know that xp = (d+ k)u(Cgq, P).

These data imply the statement. |

We want to give a weighted version of this formula.
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2 Weighted Projective Planes

Let Il € N; we denote yu; the group of Ith roots of unity. We will consider actions of u; on

C™, given by:

é" (Xla va) = (;«ple’ 7§mem)v

such an action is primitive if the quotient cannot be obtained from an action of a smaller

cyclic group.

Definition 2.1. The class of the origin in C™/y; is a singular point of index [ for a pri-

mitive action. U
Definition 2.2. A weight is a triple w := (px, Dy, Pz) € N2 such that gcd(py, Py P2) = 1.
A polynomial f is w-weighted-homogeneous of degree d if f(tPxx, tPry, tPzz) =
td f(x, v, 2). O

Let us fix a weight w. We can adapt the definition of the projective plane.

Definition 2.3. The weighted projective plane P? is the normalization of the quotient
of C3\ {0} by the action of C* defined by:

t-(x, v, 2) = (tPxx, tPry, tPrz).

The elements of P2 will be denoted by [x: y: z],. A weighted-homogeneous polynomial

h defines in a natural way a curve C® in the weighted projective plane P2, d

Notation 2.4. The point P,Y:=[0:0: 1], is a vertex of }P’fu; we define accordingly the
other vertices. The curve X® := {[x: y: z],, € P | x = 0} is an axis of P2; we denote X* :=
X?\ {P)Y, PX?}. We define the axes Y*, Z¢ in the same way. O

Let us describe P2 using multicharts. The mapping

Y. C? — U, ={lx:y: 2, €P?|z+#0)

zZ

xy—lx:y: 1],


http://imrn.oxfordjournals.org/

4306 E. Artal Bartolo et al.

is holomorphic but not injective. If ¢ € up,, it is easily seen that
[x: y: 1]y = [;pXX: pry: 1w.

In fact, if we consider the action of 1 p, on C? given by ¢ - (x, y) := (¢Prx, ¢ Pry), the map-

ping ®¢ factorizes through €2/, and we obtain an isomorphism
W C?/up, — U,
We define the same objects for the variables y, z.

Remark 2.5. Let us denote dy := gcd(py, p;) and let us define in the same way dy, d,. We

define gx := px/dyd; and qy, g, in the same way. The number of preimages for ®} verifies:

o #(@Y) M(x:y:1]y) = pif xy #0.
o #(@) N(x:0:1],) = g—; = q,dy if x # 0.
o #(@®2)71(0:0:1],) = 1. O

Definition 2.6. The reduced weight associated to w is 7 := (gx, gy, g») (the components
are pairwise coprime). O

Lemma 2.7. The mapping P2 — P2 defined by [x:y:z], > [x%:y%:z%], is an

isomorphism. O

Remark 2.8. It is easily seen that P2 is smooth outside its vertices and P, is singular

if and only if g, > 1. In that case, g; is the index of the singular point; we have similar

statements for the other vertices. O
We can define weighted blowups. Let

T, = {((x, v, 2), [u:v:wl,) € C3x ]P’f, | (%, y,2) € [u:v:wly},

where we identify the class [u: v : w], with its closure in C3; let 7 : T,, — C2 be the re-

striction of the first projection. As with usual blowup, 7 is an isomorphism outside the
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origin and E := 7 ~1(0) is isomorphic to P2 = IE”%. We can study T, using multicharts. Let
us define:

d°:C3 5 U, ={(((x.y.2.[u:v:wl) €T, | z# 0},

where EIS‘;(X, V. 2) := ((xzPx, yzPr, zP7), [x : y : 1],). If we consider the action of pp, on cs
defined by

¢ (xy.2) = (P P z0),
then ®¢ factorizes through an isomorphism W2 : C3/up, — U,.

Proposition 2.9. The variety T, satisfies:

1. If py > 1, then (0, P)'?) is singular of index py.
2. If dy > 1, then, T, has singularities at {0} x X® of index d.

Similar facts happen for the other axes and vertices. O
Following these facts, we will define weighted Milnor numbers.

Definition 2.10. Let f be a non-zero w-weighted-homogeneous polynomial and let C® C
P2 be the associated curve. Let P € C® and let us suppose that we can express it as
P =[x0: ¥ : 1llo. Let C, be the zero locus in C? of f(x, y, 1) and let u be the usual Milnor
number of C; at (xy, yp). We define:

e the w-Milnor number as u®(C®, P) := u/vp, where vp is the index of (0, P) in
T%, that is, it is the gcd of the weights of the non-zero coordinates of P;

e the x-intersection multiplicity m*(C®, P) of C® at P as the intersection num-
ber of C, and x =0 at (0, yp), when P = [0 : yp : 1].

We denote m Y (C®) :== m*(C®, P)’Y). We naturally extend the definitions for other writ-
ings of P and we check that it does not depend on the choices. The singular points of C®

are those where u® > 0. a

Even if P2 and ]13’,27 are isomorphic, since we take into account their embeddings

in T® and T", the concept of weighted Milnor number depends actually on the weight.
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Lemma 2.11. Let C® be a curve in P2 and let C" be the corresponding curve in IP’z Let

[X : Vo : Z0]w =: P” € C® and let us denote P = [Xo : ng dz]

in C". Then:

the corresponding point

1. If P7 is not a vertex of IP%, then u"(C", P") coincides with the usual Milnor
number.
If P is outside the axes, then u®(C®, P®) = u"(C", P").
If P® € X, then

(dx — DH(M*(C", P") — 1)
dx

Mw(cw7 Pa)) — M"](C’]’ P77) +

and m*(C®, P®) = m*(C", P").

4. For the vertices,

oCo. PEY) dxdy e pry 4 1>(dy—1>

- Ddy(mi¥(C") - 1) i (dy — Ddx(my¥(C™) — 1)
Dz
and my¥(C®) = dym ¥ (CM). O

The proof is straightforward from the previous considerations.

3 Weighted-Lé-Yomdin Singularities

Let us consider a germ (W, 0) C (C3,0) defined by a series g € C{x, y, z}; let g:=gq+
9d+k + ... be the weighted-homogeneous decomposition of g with respect to a weight

o and let C& C P? be the weighted projective locus of zeroes of g,

Definition 3.1. We say that (W, 0) is a weighted-Lé-Yomdin singularity with respect to
w if Sing(Cg) NCg, = 0. O

We are going to prove the formula proposed by C. Hertling.

Theorem 3.2. The Milnor number u of a weighted-Lé-Yomdin singularity (W, 0) with

respect to w satisfies the following equality:

w(W,0) = (i - 1) (i - 1) (pi - 1) +k Y u(cy. P).

Px Py PeSing(CY) O
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We will use the next result.
Lemma 3.3. Let h: (C™ 0) — (C, 0) be a germ of holomorphic function which is invari-
ant for an action of u, on C™ Let p be the class of the origin in Q := C™/u,. Note that
h defines a germ h: (Q, p) — (C,0). Let us suppose that h~1(0) contains the points of
C™ where the isotropy group of the action is not trivial. Then if x (resp. X) is the Euler

characteristic of the Milnor fiber of h (resp. h) then x = n¥. O

Proof. The Milnor fiber of h is an unramified covering of n sheets of the Milnor fiber
of h. |

In order to prove Theorem 3.2, we are going to set up notations. We will denote
Cy:=Cy\ (X°UY°UZ®).

It is possible for the axes to be components of C{. We set ¢* = 1 (resp. 0) if X* C CJ (resp.
¢) and we define ¢ and ¢Z in the same way. We denote by Eé’ the union of irreducible

components of Cg different from the axes. Let p be the degree of 5(‘1"; note that:
p=d— (*p* +e¥p" +£VpY).
Let Sing(Cﬁ) N Cv’fi’ ={P;,...,P}.Fori=1,...,r we denote
i = (CY, P) = p”(CyY, P).
Letfz{ﬁ)v(‘” ={(P{, ..., P%}. Fori =1,...,n*, we denote
u¥ = p® (€Y, PX), N¥:=up?(CY, PX), and mf := m*(C®, PY).
Note that
p = e

Replacing the superindex x by y and z, we refer to the other axes.
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Let us consider now the vertices. Let us denote ¢¥Y :=1 (resp. 0) if P,7 ¢ 53

(resp. otherwise). We denote

~

ne¥ = ue(CY PYY), Y= uo(CY YY), mV =€), my? = my¥(CY).

If the vertex is P,’Y, the corresponding Milnor number will be supposed to be zero. Let

us also denote n*Y := 1 (resp. 0) if P;'¥ € Cg (resp. ¢). It is easily seen that
7Y =1-(1-¢"(1 -5 —&Y).

Note that:

~ 1 e*myY + e¥YmY 2eXeV — X — ¥ 4 %Y
Mf},y':gx,y Mi,y___l_z lx my, + n .
y 2 Pz Dz
For the other vertices, we act in the same way.
We can relate weighted and standard projective planes via the covering p : P? —

IP’Z), given by p([x: y: z]) = [XpX : ypy : zpz]w.

Proposition 3.4. The mapping p is of degree p*pYp” and unramified outside the axes.
Each point in X has DyPz/d* preimages and each vertex has only one preimage.
The plane curve Cq4 := ,0_1(5(“1’) is of degree p with the following (possible) singu-

lar points:

(1) Foreachi=1,...,rthereare pxpyp,singular points over P;, all of them with
Milnor number equal to u;.

(2) For eachi=1,...,n* there are pyp,/dyx singular points over P}, all of them
with Milnor number equal to dxpxii} + (px — 1)(nz* — 1). The intersection
number of each point over P;* with the axis x = 0 equals m7. Similar state-
ment works for the other axes.

(3) If¢XY =1, there is a singular point over P,'¥ with Milnor number

PxDy DSy + (P — D(py — 1) + py(px — DY — 1) + pe(py — D(my ¥ — 1).

The intersection number of Cg4 at this vertex with the axis x=0 (resp.
y=0) equals pymy? (resp. pxmiY). Similar statements work for the other
vertices. O
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Using intersection numbers, we obtain:

Corollary 3.5. The degree of 52‘1’ satisfies:

n*
p= pgxpz Zrnzx + 8X,ypyrn;§»Y+ 8X’szﬂ§’z.

A similar statement works for any permutation of the variables. O

Lemma 3.6. The Euler characteristic of éfi) equals

P(px+DPy+P:— D) | - 1 v 1 il 1
x + Dy + Pz — ~x ~y ~z
£ 6r-3)-£-4) £
PxDPyDz ; ' ; : dx ; : dy ; t d,
~ 1 - 1 - 1
(L) e L) (e L) ;
Dz Py Dx

Proof. Because of Proposition 3.4, we know that X(,o_l(Cv'f;)) = PP’y (Cv'fi”) and it is
clear that X(pfl(cv'é‘{)) is equal to x(C4) minus the number of points in the union of the
axes. Recall that the Euler characteristic of a curve of degree pis equal to p(3 — p) plus
the sum of the Milnor numbers of its points, that is, of its singular points. Using again

Proposition 3.4, we obtain:

X(Ca) = p(3— p) + PxPyPz Y 1i + Py Pz Z(dxpx + (px— DM — 1))

i=1 dy i=1
p p DPxD, i
;YZ Z (dypyii! + (py — (M — 1)) + ’;,ZY > (depofiZ + (2 — V(7T — 1))
i=1 i=1
+e* (pepyPaity Y + (P = D(Py = 1) + Py(px = D(m¥ = 1) + px(py — D(my ¥ — 1))

+e*% (pxpypzliw' +(px— D(pz—1) + p(px — 1)(”@;’2 - 1)+ px(pz — 1)(771;’2 - 1))
+e¥% (pxpyPL% + (py — D(pz — 1) + pa(py — D(my” — 1) + py(p, — D(mE” — 1)).
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Then:
x(1(CP)  pB-p -1
e’ - F p+Zm+Z ul—— i
PxDyDz Px Dy Dz P dx dx Dx
n
~ -1 - 1 — 1)t
Y Mly__+ )m{ +Z<z 1 (P )mf)
X,V X,y
Dz DxDz DyDz
+SXZ (ﬁi’z _ i + (pX - l)rrg’z + (pZ - l)r"évz)
py Dx Dy DyDz
\Z \Z
terEfre— — 4 (py — 1)m¥ " (pz— Lymf ‘
Dx DxDy DPxDz
Using Corollary 3.5, we can compute the terms involving py — 1 and we obtain
(px — 1) p/ px Py Pz- The same argument applies to y, zand we obtain the formula. |

Proof of Theorem 3.2. We are going to apply Proposition 1.3. The strata to be consid-

ered are:

(S1) LetS; :=P2(CY\ (X”UY®U Z®). Itis clear that x(Sz) = —x(C%) and since the
local equation is 74, we have xs, = d.
(§2) The local equation for the union of strata S; := Cv’gl" \ Sing(cy) is 7%x and then,
s =0.
(S3) Let Sy := X© \ 53; we have x(Sy) = —n*. Since the local equation is %%, and

this stratum is of index dy, then

_ (1-e5d
XSy = —dx .

A similar formula applies for the other axes.

(S4) Applying Lemma 1.4 to P;,i =1,...,r we have:
= (d+ ku;.
(S5) We apply Lemmas 1.4 and 3.3 to P¥,i=1,...,n"

2mt — 1
xpx = (d+ K (ﬁf—i—ex%).
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A similar formula applies for the other axes.

(S6) For each point P,'Y, we apply Lemmas 1.4 and 3.3:

x il
j24 Dz

'z Dz

(d+k) <8X,y<~X,Y_ 1 n ngrm(X'Y—i-ean);»Y) . 26Xe¥ — X _ gV 4 77x,y) . (1— nx’y)d.

A similar formula applies for the other vertices.
Let us study the contribution of the different parts.

e The terms related with each P; appear in several items. In (S1), we obtain du;.
In (S4), we find (d + k)u;. The final result is: ku;.

e Let us consider now the terms related with P*. In (S1), we have —d(i} —
(1/dy)). Adding term in (S3), we obtain —d(iif — (¢*/dx)). Summing with the

term in (S5), we obtain:

k(ﬁf + SX%;> + 28’%1% = kuj + 2£Xd%{. (3.1)

e Letus study what happens in P;'?. The term in (S1) gives —e*Yd(jis” — (1/p2)).
Combining with (S6):

kuxY + 26%¥d (3.2)

eEme? + EYTTL);’Y 4 d<28Xsy— eX — ¥+ 1)
Dz '

Z

Let us note that with the second term in (3.1) and with two second terms in

(3.2) (and permutations), using Corollary 3.5, we obtain

n* » X,y Z d
2e*d Z @ + gy + SX’Zﬁ =25 P (3.3)
P dx Dz Dby DyDz

e Let us consider the remaining terms multiplied by pxpyp,. In (S1), we have

dp(p— px — Py — P2) = d(d— (e¥px + €Y py+ €7 py)
x(@— ((e*+ Dpx+ (¥ + 1D py+ (6% + 1) py)).

The terms in (3.3) give:

2d(e*px+ ¥ py + €7p)(d — (e px + eV py + 7py)).
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If we sum these two terms, we obtain (recall that ¢X =0, 1):

d(d— (e*px + e¥py + p))(d+ (¥ — D px + (¥ — ) py + (67 — 1) pr)).

Let us take into account the third terms in (3.2) (and permutations):

dpxpy(2e¥e? — e¥ — e¥ + 1) + dpx p,(2e*e? — ¥ — e + 1)
+ dpyp,(2e¥e? — ¥ — % 4 1).

Summing up all these terms, we find (d — px)(d — py)(d — ps) + pxpyp, and we
finish the proof. n

3.1 Euler characteristic formula

Let o := (px, Py, P2) € N® be a weight with gcd(px, Dy. P2 = 1. Let us denote dy:=
gcd(py, pz) and let us define in the same way dy, d,.

Let P2 be weighted projective space. The point P,Y:=[0:0:1], is a vertex of
P2; we define accordingly the other vertices. The curve X := {[x: y: z], € P2 | x=0} is
an axis of ]P)CZU; we denote X? := X® \ (PXY, PX?}. We define the axes Y, Z“ in the same
way.

Let f be a non-zero w-weighted-homogeneous polynomial of degree d and let
C® C P2 be the associated curve. With Lemma 3.6 we can compute the genus of the
curve C¢ if it is irreducible. The smooth case was computed by Orlik and Wagreich [15,
Proposition 3.5.1]. If C® coincides with one of the axis of the weighted projective space,
then its genus is 0.

Otherwise consider
C?:=C®\ (X*UY”UZ°)

and set Sing(C,) N Cco = {P1,..., P}

Let 5(‘1" NnX®={PX, ..., P}, and replacing the superindex x by y and z we refer

to the other axes.

Let us consider now the vertices. Let us denote ¢¥¥:=1 (resp. 0) if Po¥ e C?

(resp. otherwise). For the other vertices, we act in the same way.
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The Euler characteristic of the (possible singular) irreducible curve C® is given
by the formula:

d(px+ py+ Dz — 4 . 1 il 1
x(coy APt Pyt P d)+Zui+z<uf—£+l)+z<uf—gy+1>
i=1 i=1

DxDPyDPz i=1
s 1 1 1
+ (;ﬁ— -+ 1) +5X’Y<MX’Y— —+ 1) + e*# (u“— —+ 1)
; b4 ¢ Pz ¢ by
+e¥? (Mgz - —+ 1)
X

where:

e uj is the w-Milnor number defined as u“(C®, P) := uu/vp;
e vp is the index of (0, P), that is, it is the gcd of the weights of the non-zero
coordinates of P.

If P € C® can be expressed as P = [xp : yo : 1], and C; is the zero locus in C? of f(x, y, 1)
then p is the usual Milnor number of C; at (xp, y).

4 Example

In [19], Zariski proposed to study some open problems related with the (embedded) to-
pology of a germ of a hypersurface singularity (V, 0) C (C" 0) defined by the zero lo-
cus of a germ of a complex analytic function f: (C"% 0) — (C, 0). He defined two germs
(11,0) € (C™, 0) and (V,,0) C (C™ 0) to be topologically equisingular if there is a local
homeomorphism ¢ : (C", 0) — (C", 0) such that ¢(V}) = V5.

A family of functions germs f; : (C™, 0) — (C, 0) holomorphically depending on
the parameter t is said to be topologically trivial if there exists a family of homeomor-
phism germs ¢; : (C™ 0) — (C™ 0) depending continuously on the parameter such that
Jeows = fo.

The B-problem proposed by Zariski in [19, page 484] is the following: if two ana-
lytic hypersurface germs are topologically equivalent then their tangent cones must be
homeomorphic and the homeomorphism must respect the topological equisingularity
type at any point. Zariski proved that this is true if n= 1. In 2005, the second author [6]
found a counterexample to this problem for a topologically equisingular family if n = 5.

The following example gives a negative answer to Question B of Zariski for germs

of surface singularities in C3. We consider the holomorphic uni-parametric family {V;}
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Fig. 1. The minimal resolution graph.

of hypersurface singularities defined as zero locus of f; = z'? + zp°x + ty?x® + x5 + y°.

The following properties hold:

(1)

Every member of the family V; defines a weighted-Lé-Yomdin singularity
with respect to the weights v = (wx, vy, ©,) = (2,3, 1).

Using Theorem 3.2, the Milnor number u; = 166 for all t.

The Minor number of the generic hyperplane section is changing: ug = 18 and
p? =17 for t # 0 (we have computed this with SiNGuLAR [8]). So the family is
not Whitney-equisingular see [3, 18].

The Newton polyhedra of 7 and V; are distinct from each other, but both are
non-degenerate.

The family f; is topologically trivial by Parusinski criterion for families
f + tg (see [17]) or by Abderrahmane’s main result in [1] which states: every
u-constant deformation of isolated singularities where the Newton polyhe-
dra are non-degenerated is topologically trivial and equimultiple.

One can compute the minimal embedded resolution graph; it is the same in
both cases and it appears in Figure 1.

This implies that the abstract link is constant in the family. Therefore, the
family is equisingular at the normalization in the sense of [7] and by the main
result in the same paper the family is topologically trivial.

The family of tangent cones is C; = {y?(zyx + tx° + y°) = 0}. The cone Cy is
not homeomorphic to C; because the reduction of C; has only one singular

point and the reduction of Cg has two.

Remark 4.1. The tangent cones C; are non-reduced curves. It would be interesting to

find a counterexample with reduced tangent cones. O

The family g; := f; + w® answers negatively to Zariski's Question B if n = 4. This

family has constant Milnor number by Thom-Sebastiani and therefore it is topologically

trivial by Parusinski criterion. The family of tangent cones is D; := {y?(zyx + tx° + y°) +
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w® = 0}. The singular locus of D; is independent of t and equals to ¥ := {y=w = 0}.
The generic transversal type at a generic point of ¥ is (1) the curve singularity y? + w®
for t # 0 and (2) the curve singularity y° + w® for ¢t = 0. Any homeomorphism germ ¢ :
C% — C5 which sends Dy to D; must leave ¥ invariant because the Betti numbers of the
local Milnor fibers are topological invariants of a germ by [11]. For the same reason, the
homeomorphism cannot send a point of ¥ where Dy has general transversal type into a
point of ¥ where D; has general transversal type.

Notice that in this case each of the tangent cones is irreducible and reduced.
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