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At the beginning of the seventies, O. Zariski proposed several problems related with

the (embedded) topology of a germ of a n-dimensional hypersurface singularity de-

fined by the zero locus of a germ of a complex analytic function. The second one was

roughly stated as “if two analytic hypersurface germs are topologically equivalent then

their tangent cones must be homeomorphic and the homeomorphism must respect

the topological equisingularity type at any point.” In this paper, we give counter-

examples for n = 3 and 4 (even in a family). Our proof is mainly based on the study of the

topology of weighted-Lê–Yomdin surface singularities which are a generalization

of the well-known Lê–Yomdin singularities. We obtain a formula for the Milnor

number of a weighted-Lê–Yomdin surface singularity and derive an equisingularity

criterion for them.

In [19], Zariski proposed to study a series of problems (from A to H) related with the

(embedded) topology of a germ of a hypersurface singularity (V, 0) ⊂ (Cn, 0) defined by

the zero locus of a germ of a complex analytic function f : (Cn, 0) → (C, 0). He defined
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4302 E. Artal Bartolo et al.

two germs (V1, 0) ⊂ (Cn, 0) and (V2, 0) ⊂ (Cn, 0) to be topologically equisingular if there

is a local homeomorphism φ : (Cn, 0) → (Cn, 0) such that φ(V1) = V2.

The A-problem (and the one which is still open) discussed by him was the so

called Zariski’s multiplicity question: does topological equisingularity of (V1, 0) and

(V2, 0) imply that they have the same multiplicity? (For an updated survey paper, see

for instance [5].) Given a hypersurface singularity (V, 0) germ, we denote by C V its pro-

jectivized tangent cone and by BV be the blowup of V at p. The second problem by

Zariski is to find out if the following assertion is true:

B-problem. Given two hypersurface singularities (V1, 0) and (V2, 0) which have the

same embedded topological type, the following holds: there exists a (non-embedded)

homeomorphism

h : C V1 → C V2 (B1)

of the projectivized tangent cones such that if h(p1) = p2, the following holds:

(1) The embedded topological types of (C V1, p1) and (C V2, p2) coincide.

(2) The embedded topological types of (BV1, p1) and (BV2, p2) coincide also. �

Zariski proved that this is true if n = 2. In 2005, Fernández de Bobadilla [6, Exam-

ple 13] found a counterexample to this problem for a topologically equisingular family

if n ≥ 5.

In this paper, we give counterexamples if n = 3 and 4 (also in a family). In our

examples and in those of [6, Example 13], there is no homeomorphism h from the projec-

tivized tangent cones. Not having such a homeomorphism it does not even make sense

to ask for the further properties (1) and (2).

Our proof is mainly based on the study of the topology of weighted-Lê–Yomdin

singularities which are a generalization of the well-known Lê–Yomdin singularities, see

[10, 12]. These singularities are deformations of weighted-homogeneous (non-isolated)

singularities; some topological results about them can be found for instance in works

by Dimca [4] and Massey and Siersma [14]. We obtain a formula for the Milnor number

of a weighted-Lê–Yomdin surface singularity and derive an equisingularity criterion for

them (see Theorem 3.2). This formula was proposed to us by Claus Hertling to whom we

are very grateful.
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Weighted-Lê–Yomdin Singularities 4303

1 Lê–Yomdin Singularities

We will study germs (V, 0) ⊂ (C3, 0) of isolated hypersurface singularities defined by a

convergent series f ∈ C{x, y, z}, that is, V = f−1(0). Let f := fd + fd+k + . . . be the ho-

mogeneous decomposition of f and let Cm ⊂ P2 be the projective locus of zeroes of fm.

Thus, the tangent cone of V at 0 is Cd.

Definition 1.1. A hypersurface germ (V, 0) is called a Lê–Yomdin singularity if

Sing(Cd) ∩ Cd+k = ∅

(note that its tangent cone Cd is reduced). �

Next result is due to Lê–Yomdin (see Luengo and Melle-Hernández [13] for arbi-

trary dimensions).

Proposition 1.2. If (V, 0) is Lê–Yomdin, then its Milnor number μ satisfies:

μ(V, 0) = (d− 1)3 + k
∑

P∈Sing(Cd)

μ(Cd, P ).

�

We are going to recall a topological proof of this fact since we will need it in the

next section.

Proposition 1.3. [9] Let f : (Cn, 0) → (C, 0) be a germ of a (non-empty) singularity V .

Let us denote by χ the Euler characteristic of its Milnor fiber. Let π : T → Cn be a proper

mapping which is an analytic isomorphism over Cn \ {0}.
Let E := π−1(0) and let us suppose that there exists a stratification S of E satis-

fying the following property: ∀S ∈ S and ∀p, q ∈ S the Euler characteristic of the Milnor

fibers of the f ◦ π at p and q depends only on S and it is denoted by χS. Then,

χ =
∑
S∈S

χ(S)χS.

�

For germs (V, 0) ⊂ (Cn, 0) of non-isolated hypersurface singularities Parusiński

defined a generalized Milnor number [16], μ(V, 0) := (−1)n−1(χ(F f ) − 1) where the zero

locus of f : (Cn, 0) → (C, 0) defines the singularity whose Milnor fiber is F f .
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4304 E. Artal Bartolo et al.

Lemma 1.4. Let V be the singularity in (C3, 0) defined by zd(zk + f(x, y)), where C :
f(x, y) = 0 is a germ of curve singularity with generalized Milnor number μ . Then, the

Euler characteristic of the Milnor fiber of V is (d+ k)μ. �

Proof. Let Vt be the Milnor fiber zd(zk + f(x, y)) = t. Let us consider the projection

(x, y, z) �→ (x, y). The discriminant of this projection restricted to Vt is shown in the

equation:

(
(−d)

d
e k

k
e

(d+ k)
d+k

e

f(x, y)
d+k

e − t
k
e

)e

= 0,

where e := gcd(d, k). Then, the ramification locus of the projection is the disjoint union

of (d+ k)/e Milnor fibers Ft of f(x, y) = 0, and on each point we loose exactly e points.

By Riemann–Hurwitz, we have:

χ(Vt) = (d+ k) − e
d+ k

e
χ(Ft) = (d+ k)(1 − 1 + μ) = (d+ k)μ. �

Proof of Proposition 1.2. We consider the blowing-up π : T → C3 of the origin and let

P2 ∼= E := P−1(0). We can consider a stratification S as in Proposition 1.3 as follows:

• There is a stratum S0 of dimension 2 given by P2 \ Cd. The local equation of

π∗(V) at a point p ∈ S0 is of type zd = 0 and then χS0 = d. We recall that

χ(S0) = 3 − d(3 − d) −
∑

P∈Sing(Cd)

μ(Cd, P ) = (d− 1)3 − 1

d
−

∑
P∈Sing(Cd)

μ(Cd, P ).

• The space Čd := Cd \ Sing(Cd) is a union S of strata where the local equation

of π∗(V) at a point p ∈ S is of type xzd = 0 and then χS0 = 0.

• The points P ∈ Sing(Cd) are strata. Since the local equation of π∗(V) at P is

as in Lemma 1.4, we know that χP = (d+ k)μ(Cd, P ).

These data imply the statement. �

We want to give a weighted version of this formula.
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Weighted-Lê–Yomdin Singularities 4305

2 Weighted Projective Planes

Let l ∈ N; we denote μl the group of lth roots of unity. We will consider actions of μl on

Cm, given by:

ζ · (x1, . . . , xm) = (ζ p1 x1, . . . , ζ pmxm);

such an action is primitive if the quotient cannot be obtained from an action of a smaller

cyclic group.

Definition 2.1. The class of the origin in Cm/μl is a singular point of index l for a pri-

mitive action. �

Definition 2.2. A weight is a triple ω := (px, py, pz) ∈ N3 such that gcd(px, py, pz) = 1.

A polynomial f is ω-weighted-homogeneous of degree d if f(tpx x, tpy y, tpzz) =
td f(x, y, z). �

Let us fix a weight ω. We can adapt the definition of the projective plane.

Definition 2.3. The weighted projective plane P2
ω is the normalization of the quotient

of C3 \ {0} by the action of C∗ defined by:

t · (x, y, z) := (tpx x, tpy y, tpzz).

The elements of P2
ω will be denoted by [x : y : z]ω. A weighted-homogeneous polynomial

h defines in a natural way a curve C ω in the weighted projective plane P2
ω. �

Notation 2.4. The point P x,y
ω := [0 : 0 : 1]ω is a vertex of P2

ω; we define accordingly the

other vertices. The curve Xω := {[x : y : z]ω ∈ P2
ω | x = 0} is an axis of P2

ω; we denote X̌ω :=
Xω \ {P x,y

ω , P x,z
ω }. We define the axes Yω, Zω in the same way. �

Let us describe P2
ω using multicharts. The mapping

�ω
z : C2 → Uz := {[x : y : z]ω ∈ P2

ω | z �= 0}
(x, y) �→ [x : y : 1]ω
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4306 E. Artal Bartolo et al.

is holomorphic but not injective. If ζ ∈ μpz, it is easily seen that

[x : y : 1]ω = [ζ px x : ζ py y : 1]ω.

In fact, if we consider the action of μpz on C2 given by ζ · (x, y) := (ζ px x, ζ py y), the map-

ping �ω
z factorizes through C2/μpz and we obtain an isomorphism

�ω
z : C2/μpz → Uz.

We define the same objects for the variables y, z.

Remark 2.5. Let us denote dx := gcd(py, pz) and let us define in the same way dy, dz. We

define qx := px/dydz and qy, qz in the same way. The number of preimages for �ω
z verifies:

• #(�ω
z )−1([x : y : 1]ω) = pz if xy �= 0.

• #(�ω
z )−1([x : 0 : 1]ω) = pz

dy
= qzdx if x �= 0.

• #(�ω
z )−1([0 : 0 : 1]ω) = 1. �

Definition 2.6. The reduced weight associated to ω is η := (qx, qy, qz) (the components

are pairwise coprime). �

Lemma 2.7. The mapping P2
ω → P2

η defined by [x : y : z]ω �→ [xdx : ydy : zdz]η is an

isomorphism. �

Remark 2.8. It is easily seen that P2
η is smooth outside its vertices and P x,y

η is singular

if and only if qz > 1. In that case, qz is the index of the singular point; we have similar

statements for the other vertices. �

We can define weighted blowups. Let

Tω := {((x, y, z), [u : v : w]ω) ∈ C3 × P2
ω | (x, y, z) ∈ [u : v : w]ω},

where we identify the class [u : v : w]ω with its closure in C3; let π : Tω → C3 be the re-

striction of the first projection. As with usual blowup, π is an isomorphism outside the
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Weighted-Lê–Yomdin Singularities 4307

origin and E := π−1(0) is isomorphic to P2
ω

∼= P2
η. We can study Tω using multicharts. Let

us define:

�̃ω
z : C3 → Ũz := {((x, y, z), [u : v : w]ω) ∈ Tω | z �= 0},

where �̃ω
z (x, y, z) := ((xzpx, yzpy, zpz), [x : y : 1]ω). If we consider the action of μpz on C3

defined by

ζ · (x, y, z) := (xζ px, yζ py, zζ̄ ),

then �̃ω
z factorizes through an isomorphism �̃ω

z : C3/μpz → Ũz.

Proposition 2.9. The variety Tω satisfies:

1. If px > 1, then (0, P y,z
ω ) is singular of index px.

2. If dx > 1, then, Tω has singularities at {0} × X̌ω of index dx.

Similar facts happen for the other axes and vertices. �

Following these facts, we will define weighted Milnor numbers.

Definition 2.10. Let f be a non-zero ω-weighted-homogeneous polynomial and let C ω ⊂
P2

ω be the associated curve. Let P ∈ C ω and let us suppose that we can express it as

P = [x0 : y0 : 1]ω. Let Cz be the zero locus in C2 of f(x, y, 1) and let μ be the usual Milnor

number of Cz at (x0, y0). We define:

• the ω-Milnor number as μω(C ω, P ) := μ/νP , where νP is the index of (0, P ) in

Tω, that is, it is the gcd of the weights of the non-zero coordinates of P ;

• the x-intersection multiplicity mx(C ω, P ) of C ω at P as the intersection num-

ber of Cz and x = 0 at (0, y0), when P = [0 : y0 : 1].

We denote mx,y
x (C ω) := mx(C ω, P x,y

ω ). We naturally extend the definitions for other writ-

ings of P and we check that it does not depend on the choices. The singular points of C ω

are those where μω > 0. �

Even if P2
ω and P2

η are isomorphic, since we take into account their embeddings

in Tω and Tη, the concept of weighted Milnor number depends actually on the weight.
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4308 E. Artal Bartolo et al.

Lemma 2.11. Let C ω be a curve in P2
ω and let C η be the corresponding curve in P2

η. Let

[x0 : y0 : z0]ω =: P ω ∈ C ω and let us denote P η = [xdx
0 : y

dy
0 : zdz

0 ]η the corresponding point

in C η. Then:

1. If P η is not a vertex of P2
η, then μη(C η, P η) coincides with the usual Milnor

number.

2. If P ω is outside the axes, then μω(C ω, P ω) = μη(C η, P η).

3. If P ω ∈ X̌ω, then

μω(C ω, P ω) = μη(C η, P η) + (dx − 1)(mx(C η, P η) − 1)

dx

and mx(C ω, P ω) = mx(C η, P η).

4. For the vertices,

μω(C ω, P x,y
ω ) = dxdy

dz
μη(C η, P η) + (dx − 1)(dy − 1)

pz
+

+ (dx − 1)dy(m
x,y
x (C η) − 1) + (dy − 1)dx(m

x,y
y (C η) − 1)

pz

and mx,y
x (C ω) = dymx,y

x (C η). �

The proof is straightforward from the previous considerations.

3 Weighted-Lê–Yomdin Singularities

Let us consider a germ (W, 0) ⊂ (C3, 0) defined by a series g ∈ C{x, y, z}; let g := gd +
gd+k + . . . be the weighted-homogeneous decomposition of g with respect to a weight

ω and let C ω
m ⊂ P2

ω be the weighted projective locus of zeroes of gm.

Definition 3.1. We say that (W, 0) is a weighted-Lê–Yomdin singularity with respect to

ω if Sing(C ω
d ) ∩ C ω

d+k = ∅. �

We are going to prove the formula proposed by C. Hertling.

Theorem 3.2. The Milnor number μ of a weighted-Lê–Yomdin singularity (W, 0) with

respect to ω satisfies the following equality:

μ(W, 0) =
(

d

px
− 1

) (
d

py
− 1

) (
d

pz
− 1

)
+ k

∑
P∈Sing(C ω

d )

μ(C ω
d , P ).

�
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Weighted-Lê–Yomdin Singularities 4309

We will use the next result.

Lemma 3.3. Let h : (Cm, 0) → (C, 0) be a germ of holomorphic function which is invari-

ant for an action of μn on Cm. Let p be the class of the origin in Q := Cm/μn. Note that

h defines a germ h̃ : (Q, p) → (C, 0). Let us suppose that h−1(0) contains the points of

Cm where the isotropy group of the action is not trivial. Then if χ (resp. χ̃ ) is the Euler

characteristic of the Milnor fiber of h (resp. h̃) then χ = ñχ . �

Proof. The Milnor fiber of h is an unramified covering of n sheets of the Milnor fiber

of h̃. �

In order to prove Theorem 3.2, we are going to set up notations. We will denote

Č ω
d := C ω

d \ (
Xω ∪ Yω ∪ Zω

)
.

It is possible for the axes to be components of C ω
d . We set εx = 1 (resp. 0) if Xω ⊂ C ω

d (resp.

�) and we define εy and εz in the same way. We denote by C̃ ω
d the union of irreducible

components of C ω
d different from the axes. Let p be the degree of C̃ ω

d ; note that:

p = d− (εx px + εypy + εypy).

Let Sing(C d
ω) ∩ Č ω

d = {P1, . . . , Pr}. For i = 1, . . . , r we denote

μi := μω(C ω
d , Pi) = μω(C̃ ω

d , Pi).

Let C̃ ω
d ∩ X̌ω = {P x

1 , . . . , P x
nx}. For i = 1, . . . , nx, we denote

μx
i := μω(C ω

d , P x
i ), μ̃x

i := μω(C̃ ω
d , P x

i ), and mx
i := mx(C̃ ω, P x

i ).

Note that

μx
i = μ̃x

i + εx 2mx
i − 1

dx
.

Replacing the superindex x by y and z, we refer to the other axes.
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4310 E. Artal Bartolo et al.

Let us consider now the vertices. Let us denote εx,y := 1 (resp. 0) if P x,y
ω ∈ C̃ ω

d

(resp. otherwise). We denote

μx,y
ω := μω(C ω

d , P x,y
ω ), μ̃x,y

ω := μω(C̃ ω
d , P x,y

ω ), mx,y
x := mx,y

x (C̃ ω
d ), mx,y

y := mx,y
y (C̃ ω

d ).

If the vertex is P x,y
ω , the corresponding Milnor number will be supposed to be zero. Let

us also denote ηx,y := 1 (resp. 0) if P x,y
ω ∈ C ω

d (resp. /∈). It is easily seen that

ηx,y = 1 − (1 − εx,y)(1 − εx)(1 − εy).

Note that:

μx,y
ω = εx,y

(
μ̃x,y

ω − 1

pz
+ 2

εxmx,y
x + εymx,y

y

pz

)
+ 2εxεy − εx − εy + ηx,y

pz
.

For the other vertices, we act in the same way.

We can relate weighted and standard projective planes via the covering ρ : P2 →
P2

ω, given by ρ([x : y : z]) = [xpx : ypy : zpz]ω.

Proposition 3.4. The mapping ρ is of degree px pypz and unramified outside the axes.

Each point in X̌ω has pypz/dx preimages and each vertex has only one preimage.

The plane curve Cd := ρ−1(C̃ ω
d ) is of degree p with the following (possible) singu-

lar points:

(1) For each i = 1, . . . , r there are px pypz singular points over Pi, all of them with

Milnor number equal to μi.

(2) For each i = 1, . . . , nx there are pypz/dx singular points over P x
i , all of them

with Milnor number equal to dx pxμ̃
x
i + (px − 1)(mx

i − 1). The intersection

number of each point over P x
i with the axis x = 0 equals mx

i . Similar state-

ment works for the other axes.

(3) If εx,y = 1, there is a singular point over P x,y
ω with Milnor number

px pypzμ̃
x,y
ω + (px − 1)(py − 1) + py(px − 1)(mx,y

x − 1) + px(py − 1)(mx,y
y − 1).

The intersection number of Cd at this vertex with the axis x = 0 (resp.

y = 0) equals pymx,y
x (resp. pxmx,y

y ). Similar statements work for the other

vertices. �
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Weighted-Lê–Yomdin Singularities 4311

Using intersection numbers, we obtain:

Corollary 3.5. The degree of C̃ ω
d satisfies:

p = pypz

dx

nx∑
i=1

mx
i + εx,ypymx,y

x + εx,zpzm
x,z
x .

A similar statement works for any permutation of the variables. �

Lemma 3.6. The Euler characteristic of Č ω
d equals

p(px + py + pz − p)

px pypz
+

r∑
i=1

μi +
nx∑

i=1

(
μ̃x

i − 1

dx

)
+

ny∑
i=1

(
μ̃

y
i − 1

dy

)
+

nz∑
i=1

(
μ̃z

i − 1

dz

)
+εx,y

(
μ̃x,y

ω − 1

pz

)
+ εx,z

(
μ̃x,z

ω − 1

py

)
+ εy,z

(
μ̃y,z

ω − 1

px

)
. �

Proof. Because of Proposition 3.4, we know that χ(ρ−1(Č ω
d )) = px pypzχ(Č ω

d ) and it is

clear that χ(ρ−1(Č ω
d )) is equal to χ(Cd) minus the number of points in the union of the

axes. Recall that the Euler characteristic of a curve of degree p is equal to p(3 − p) plus

the sum of the Milnor numbers of its points, that is, of its singular points. Using again

Proposition 3.4, we obtain:

χ(Cd) = p(3 − p) + px pypz

r∑
i=1

μi + pypz

dx

nx∑
i=1

(
dx pxμ̃

x
i + (px − 1)(mx

i − 1)
)

+ px pz

dy

ny∑
i=1

(
dypyμ̃

y
i + (py − 1)(my

i − 1)
) + px py

dz

nz∑
i=1

(
dzpzμ̃

z
i + (pz − 1)(mz

i − 1)
)

+εx,y (
px pypzμ̃

x,y
ω + (px − 1)(py − 1) + py(px − 1)(mx,y

x − 1) + px(py − 1)(mx,y
y − 1)

)
+εx,z (

px pypzμ̃
x,z
ω + (px − 1)(pz − 1) + pz(px − 1)(mx,z

x − 1) + px(pz − 1)(mx,z
z − 1)

)
+εy,z (

px pypzμ̃
y,z
ω + (py − 1)(pz − 1) + pz(py − 1)(my,z

y − 1) + py(pz − 1)(my,z
z − 1)

)
.
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Then:

χ(ρ−1(Č ω
d ))

px pypz
= p(3 − p)

px pypz
+

r∑
i=1

μi +
nx∑

i=1

(
μ̃x

i − 1

dx
+ (px − 1)mx

i

dx px

)

+
ny∑

i=1

(
μ̃

y
i − 1

dy
+ (py − 1)my

i

dypy

)
+

nz∑
i=1

(
μ̃z

i − 1

dz
+ (pz − 1)mz

i

dzpz

)

+εx,y

(
μ̃x,y

ω − 1

pz
+ (px − 1)mx,y

x

px pz
+ (py − 1)mx,y

y

pypz

)

+εx,z
(

μ̃x,z
ω − 1

py
+ (px − 1)mx,z

x

px py
+ (pz − 1)mx,z

z

pypz

)
+εy,z

(
μ̃y,z

ω − 1

px
+ (py − 1)my,z

y

px py
+ (pz − 1)my,z

z

px pz

)
.

Using Corollary 3.5, we can compute the terms involving px − 1 and we obtain

(px − 1)p/px pypz. The same argument applies to y, z and we obtain the formula. �

Proof of Theorem 3.2. We are going to apply Proposition 1.3. The strata to be consid-

ered are:

(S1) Let S2 := P2
ω(C̃ ω

d \ (Xω ∪ Yω ∪ Zω). It is clear that χ(S2) = −χ(Č ω
d ) and since the

local equation is zd, we have χS2 = d.

(S2) The local equation for the union of strata S1 := Č ω
d \ Sing(̃cω

d) is zdx and then,

χS1 = 0.

(S3) Let Sx := X̌ω \ C̃ ω
d ; we have χ(Sx) = −nx. Since the local equation is zdxεx

, and

this stratum is of index dx, then

χSx = (1 − εx)d

dx
.

A similar formula applies for the other axes.

(S4) Applying Lemma 1.4 to Pi, i = 1, . . . , r we have:

χPi = (d+ k)μi.

(S5) We apply Lemmas 1.4 and 3.3 to P x
i , i = 1, . . . , nx:

χP x
i

= (d+ k)

(
μ̃x

i + εx 2mx
i − 1

dx

)
.
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A similar formula applies for the other axes.

(S6) For each point P x,y
ω , we apply Lemmas 1.4 and 3.3:

(d+ k)

(
εx,y

(̃
μ

x,y
ω − 1

pz
+ 2

εxmx,y
x + εymx,y

y

pz

)
+ 2εxεy − εx − εy + ηx,y

pz

)
+ (1 − ηx,y)d

pz
.

A similar formula applies for the other vertices.

Let us study the contribution of the different parts.

• The terms related with each Pi appear in several items. In (S1), we obtain dμi.

In (S4), we find (d+ k)μi. The final result is: kμi.

• Let us consider now the terms related with P x
i . In (S1), we have −d(μ̃x

i −
(1/dx)). Adding term in (S3), we obtain −d(μ̃x

i − (εx/dx)). Summing with the

term in (S5), we obtain:

k
(

μ̃x
i + εx 2mx

i − 1

dx

)
+ 2εxd

mx
i

dx
= kμx

i + 2εxd
mx

i

dx
. (3.1)

• Let us study what happens in P x,y
ω . The term in (S1) gives −εx,yd(μ̃

x,y
ω − (1/pz)).

Combining with (S6):

kμx,y
ω + 2εx,yd

εxmx,y
x + εymx,y

y

pz
+ d

(
2εxεy − εx − εy + 1

pz

)
. (3.2)

Let us note that with the second term in (3.1) and with two second terms in

(3.2) (and permutations), using Corollary 3.5, we obtain

2εxd

⎛⎝ nx∑
i=1

mx
i

dx
+ εx,y mx,y

x

pz
+ εx,z mx,z

x

py

⎞⎠ = 2εx dp

pypz
. (3.3)

• Let us consider the remaining terms multiplied by px pypz. In (S1), we have

dp(p− px − py − pz) = d(d− (εx px + εypy + εzpz))

×(d− ((εx + 1)px + (εy + 1)py + (εz + 1)pz)).

The terms in (3.3) give:

2d(εx px + εypy + εzpz)(d− (εx px + εypy + εzpz)).
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If we sum these two terms, we obtain (recall that εx = 0, 1):

d(d− (εx px + εypy + εzpz))(d+ ((εx − 1)px + (εy − 1)py + (εz − 1)pz)).

Let us take into account the third terms in (3.2) (and permutations):

dpx py(2εxεy − εx − εy + 1) + dpx pz(2εxεz − εx − εz + 1)

+ dpypz(2εyεz − εy − εz + 1).

Summing up all these terms, we find (d− px)(d− py)(d− pz) + px pypz and we

finish the proof. �

3.1 Euler characteristic formula

Let ω := (px, py, pz) ∈ N3 be a weight with gcd(px, py, pz) = 1. Let us denote dx :=
gcd(py, pz) and let us define in the same way dy, dz.

Let P2
ω be weighted projective space. The point P x,y

ω := [0 : 0 : 1]ω is a vertex of

P2
ω; we define accordingly the other vertices. The curve Xω := {[x : y : z]ω ∈ P2

ω | x = 0} is

an axis of P2
ω; we denote X̌ω := Xω \ {P x,y

ω , P x,z
ω }. We define the axes Yω, Zω in the same

way.

Let f be a non-zero ω-weighted-homogeneous polynomial of degree d and let

C ω ⊂ P2
ω be the associated curve. With Lemma 3.6 we can compute the genus of the

curve C ω if it is irreducible. The smooth case was computed by Orlik and Wagreich [15,

Proposition 3.5.1]. If C ω coincides with one of the axis of the weighted projective space,

then its genus is 0.

Otherwise consider

Č ω := C ω \ (
Xω ∪ Yω ∪ Zω

)
and set Sing(Cω) ∩ Č ω = {P1, . . . , Pr}.

Let C̃ ω
d ∩ X̌ω = {P x

1 , . . . , P x
nx}, and replacing the superindex x by y and z we refer

to the other axes.

Let us consider now the vertices. Let us denote εx,y := 1 (resp. 0) if P x,y
ω ∈ C̃ ω

(resp. otherwise). For the other vertices, we act in the same way.
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The Euler characteristic of the (possible singular) irreducible curve C ω is given

by the formula:

χ(C ω) =d(px + py + pz − d)

px pypz
+

r∑
i=1

μi +
nx∑

i=1

(
μx

i − 1

dx
+ 1

)
+

ny∑
i=1

(
μ

y
i − 1

dy
+ 1

)

+
nz∑

i=1

(
μz

i − 1

dz
+ 1

)
+ εx,y

(
μx,y

ω − 1

pz
+ 1

)
+ εx,z

(
μx,z

ω − 1

py
+ 1

)
+εy,z

(
μy,z

ω − 1

px
+ 1

)
.

where:

• μ∗
i is the ω-Milnor number defined as μω(C ω, P ) := μ/νP ;

• νP is the index of (0, P ), that is, it is the gcd of the weights of the non-zero

coordinates of P .

If P ∈ C ω can be expressed as P = [x0 : y0 : 1]ω and Cz is the zero locus in C2 of f(x, y, 1)

then μ is the usual Milnor number of Cz at (x0, y0).

4 Example

In [19], Zariski proposed to study some open problems related with the (embedded) to-

pology of a germ of a hypersurface singularity (V, 0) ⊂ (Cn, 0) defined by the zero lo-

cus of a germ of a complex analytic function f : (Cn, 0) → (C, 0). He defined two germs

(V1, 0) ⊂ (Cn, 0) and (V2, 0) ⊂ (Cn, 0) to be topologically equisingular if there is a local

homeomorphism φ : (Cn, 0) → (Cn, 0) such that φ(V1) = V2.

A family of functions germs ft : (Cn, 0) → (C, 0) holomorphically depending on

the parameter t is said to be topologically trivial if there exists a family of homeomor-

phism germs ϕt : (Cn, 0) → (Cn, 0) depending continuously on the parameter such that

ft ◦ ϕt = f0.

The B-problem proposed by Zariski in [19, page 484] is the following: if two ana-

lytic hypersurface germs are topologically equivalent then their tangent cones must be

homeomorphic and the homeomorphism must respect the topological equisingularity

type at any point. Zariski proved that this is true if n = 1. In 2005, the second author [6]

found a counterexample to this problem for a topologically equisingular family if n = 5.

The following example gives a negative answer to Question B of Zariski for germs

of surface singularities in C3. We consider the holomorphic uni-parametric family {Vt}
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g = 6
–2 –3

Fig. 1. The minimal resolution graph.

of hypersurface singularities defined as zero locus of ft = z12 + zy3x + ty2x3 + x6 + y5.

The following properties hold:

(1) Every member of the family Vt defines a weighted-Lê–Yomdin singularity

with respect to the weights ω = (ωx, ωy, ωz) = (2, 3, 1).

(2) Using Theorem 3.2, the Milnor number μt = 166 for all t.

(3) The Minor number of the generic hyperplane section is changing: μ2
0 = 18 and

μ2
t = 17 for t �= 0 (we have computed this with SINGULAR [8]). So the family is

not Whitney-equisingular see [3, 18].

(4) The Newton polyhedra of V0 and Vt are distinct from each other, but both are

non-degenerate.

(5) The family ft is topologically trivial by Parusiński criterion for families

f + tg (see [17]) or by Abderrahmane’s main result in [1] which states: every

μ-constant deformation of isolated singularities where the Newton polyhe-

dra are non-degenerated is topologically trivial and equimultiple.

(6) One can compute the minimal embedded resolution graph; it is the same in

both cases and it appears in Figure 1.

This implies that the abstract link is constant in the family. Therefore, the

family is equisingular at the normalization in the sense of [7] and by the main

result in the same paper the family is topologically trivial.

(7) The family of tangent cones is Ct = {y2(zyx + tx3 + y3) = 0}. The cone C0 is

not homeomorphic to Ct because the reduction of Ct has only one singular

point and the reduction of C0 has two.

Remark 4.1. The tangent cones Ct are non-reduced curves. It would be interesting to

find a counterexample with reduced tangent cones. �

The family gt := ft + w5 answers negatively to Zariski’s Question B if n = 4. This

family has constant Milnor number by Thom–Sebastiani and therefore it is topologically

trivial by Parusiński criterion. The family of tangent cones is Dt := {y2(zyx + tx3 + y3) +
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Weighted-Lê–Yomdin Singularities 4317

w5 = 0}. The singular locus of Dt is independent of t and equals to � := {y = w = 0}.
The generic transversal type at a generic point of � is (1) the curve singularity y2 + w5

for t �= 0 and (2) the curve singularity y3 + w5 for t = 0. Any homeomorphism germ ϕ :
C5 → C5 which sends D0 to Dt must leave � invariant because the Betti numbers of the

local Milnor fibers are topological invariants of a germ by [11]. For the same reason, the

homeomorphism cannot send a point of � where D0 has general transversal type into a

point of � where Dt has general transversal type.

Notice that in this case each of the tangent cones is irreducible and reduced.
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