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Resumen

La correspondencia AdS3/CFTs es la dualidad holografica entre gravitaciéon en AdSs y el
limite de baja energia de la teorfa cudntica de campos bidimensional sobre la frontera de AdSs.
La teorfa de supercuerdas de tipo IIB sobre AdS3 x S? x T* con flujos de Ramond-Ramond
y Neveu-Schwarz-Neveu-Schwarz (NSNS concreta la correspondencia AdS3/CFTs. En la
tesis titulada Cuerdas bosénicas en AdS3 x S° con flujo de Neveu-Schwarz-Neveu-Schwarz,
analizamos el sistema por medio de cuerdas bosénicas en AdS3 x S* con flujo de a
nivel clasico y semiclasico. El andlisis de la tesis se basa en la aplicacién de técnicas em-
pleadas en AdSs x S® a cuerdas bosénicas en presencia de flujo de El objetivo de
la tesis es obtener resultados que permitan precisar la teoria de supercuerdas de tipo IIB
sobre AdS3 x S3 x T y su conexién con la correspondencia AdS3/CFTs. El punto de partida
de la tesis es el modelo ¢ no lineal cldsico en AdS3 x S? junto con su estructura integrable.
El modelo o no lineal es un modelo de Wess-Zumino-Novikov-Witten con multiples
sectores con respecto al flujo espectral en el limite de flujo de [NSNS| puro. Desde el modelo
o no lineal clasico, procedemos en dos direcciones. En primer lugar, estudiamos dos clases
de cuerdas bosénicas: cuerdas pulsantes y superficies minimas. Las cuerdas pulsantes son
cerradas y las superficies minimas abiertas. Construimos y analizamos las soluciones clasicas.
También hallamos las curvas espectrales locales elipticas de ambas clases de cuerdas bosoénicas
sobre la base de la conexién de Lax, ademés de una aplicacién entre ellas. En el limite de flujo
de puro, las soluciones clasicas de ambas clases se simplifican. Las cuerdas pulsantes se
distribuyen en las clases de cuerda corta y cuerda larga de Maldacena y Ooguri. Las superfi-
cies minimas conexas asimismo se distribuyen en dos clases. El limite de flujo de puro,
por otra parte, induce la singularizacién de la curva eliptica de cuerdas pulsantes y superficies
minimas. En el régimen de flujo mixto, calculamos cantidades que caracterizan cada una de
las dos clases de cuerdas bosénicas. Por un lado, escribimos la relacion de dispersiéon de cuer-
das pulsantes de forma cerrada mediante la eleccién apropiada de los médulos. Por otro lado,
obtenemos la accién sobre soluciones clasicas regularizada de superficies minimas. El limite
de flujo de puro de ambas cantidades refleja la distribucion de cuerdas bosonicas en dos
clases. Tanto la relaciéon de dispersion de cuerdas pulsantes como la acciéon sobre soluciones
clasicas regularizada de superficies minimas son cantidades a considerar en la correspondencia
AdS3/CFTy. En segundo lugar, construimos el modelo o de cadena de espines de sectores
bosénicos del modelo de [WZNWI a través de la accién efectiva. La accién efectiva es valida
en todo sector con respecto al flujo espectral. Calculamos primero la accién efectiva a partir
de la accién clasica. El procedimiento consta de la imposicién de una condicién de fijacion
de gauge en la accién clasica y la subsiguiente expansion en serie de la accidon clasica con

ix



respecto al acoplamiento efectivo semiclasico. Recuperamos después la misma accién efectiva
desde la cadena de espines de la hoja de mundo. La accién efectiva en este caso resulta de la
representacion de la amplitud de transicion en la cadena de espines en cuanto integral de cam-
ino. Para construirla, postulamos estados coherentes en la hoja de mundo y consideramos un
limite de Landau-Lifshitz atipico. La conformidad entre los resultados para la accién efectiva
sugiere que la aplicabilidad de la cadena de espines en el modelo de WZNW] va més alla del
problema, espectral.



Abstract

The AdS3/CFTy correspondence is the holographic duality between gravity on AdSs and the
low-energy limit of the two-dimensional quantum field theory on the boundary of AdS;. Type
IIB superstring theory on AdSz x S? x T4 with Ramond-Ramond and Neveu-Schwarz-Neveu-
Schwarz fluxes realises the AdS3/CFTy correspondence. In the thesis entitled Bosonic
strings on AdSs x S° with Neveu-Schwarz-Neveu-Schwarz flur, we analyse the system by
means of bosonic strings on AdSs x S? with flux at the classical and semi-classical
level. The analysis of the thesis is based on the application of techniques used in AdSs x S°
to bosonic strings in the presence of flux. The objective of the thesis is to obtain results
that permit to specify type IIB superstring theory on AdSz x S? x T and its connection with
the AdS3/CFTy correspondence. The starting point of the thesis is the classical non-linear
o-model on AdSz x S? together with its integrable structure. The non-linear o-model is a
Wess-Zumino-Novikov-Witten model with multiple spectrally flowed sectors in the
limit of pure[NSNS|flux. From the classical non-linear o-model, we follow two directions. First,
we study two classes of bosonic strings: pulsating strings and minimal surfaces. Pulsating
strings are closed and minimal surfaces are open. We construct and analyse classical solutions.
We also find elliptic local spectral curves of both classes of bosonic strings on the basis of
the Lax connection, and, in addition, we find a mapping between them. In the limit of pure
flux, classical solutions of both classes simplify. Pulsating strings fall into the short-
string and long-string classes of Maldacena and Ooguri. Connected minimal surfaces also
fall into two classes. The limit of pure flux, moreover, singularises the elliptic curve
of pulsating strings and minimal surfaces. In the mixed-flux regime, we compute quantities
that characterise each of the two classes of bosonic strings. On the one hand, we write
the dispersion relation of pulsating strings in a closed form through the proper choice of
moduli. On the other hand, we obtain the regularised on-shell action of minimal surfaces.
The limit of pure flux of both quantities reflects the distribution of bosonic strings
in two classes. Both the dispersion relation of pulsating strings and the regularised on-shell
action of minimal surfaces are quantities to be considered in the AdS3/CF T4 correspondence.
Second, we construct the spin-chain o-model of bosonic sectors of the WZNW)] model by
means of the effective action. The effective action is valid in every spectrally flowed sector.
We compute first the effective action from the classical action. The procedure consists of
the imposition of a gauge-fixing condition to the classical action and the subsequent series
expansion of the classical action with respect to the semi-classical effective coupling. We
retrieve the same effective action from the world-sheet spin chain afterwards. The effective
action in this case follows from the representation of the transition amplitude in the spin
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chain as a path integral. To construct the path integral, we postulate coherent states on the
world-sheet and consider an unconventional Landau-Lifshitz limit. The agreement between
the results for the effective action suggests that the applicability of the spin chain in the
[WZNW] model goes beyond the spectral problem.
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Chapter 1

Introduction

The holographic principle states the equivalence between quantum gravity on the bulk of a
space and the non-gravitational at the boundary of this space [1,)2]. The prime realisation of
the holographic principle is the AdS;1/CFT, correspondence [3H5]. This duality connects
type II superstring theory on a AdS i-background and the CFT, at the conformal bound-
ary thereof. The knowledge of two-point and three-point functions of primary operators in
both type II superstring theory and the CFT, virtually solves each side of the duality. The
remaining correlators follow from the operator-product expansion. Primary operators are
arranged according to the isometry superalgebra. The quantum numbers of representations
supply the mapping between primary operators through the AdS;y;/CFT, correspondence.
Thus, the proof of the duality amounts to two steps: first, the computation of two-point and
three-point functions of dual primary operators; second, the comparison between them.

In this chapter, we review the overall picture that underlies the body of the text. In
section we review the spectral problem of the AdS;/CFT} correspondence. We focus on
the semi-classical limit of bosonic strings. In subsection[I.1.1], we present type IIB superstring
theory on AdS5 x S° with pure Ramond-Ramond five-form flux and N =4
metric Yang-Mills| (SYM]) theory. We then state the spectral problem. In subsection we
highlight the role of classical solutions and integrability in solving the semi-classical limit of
the spectral problem. In section we present our focus in the text: AdSs x S? with mixed
and Neveu-Schwarz-Neveu-Schwarz three-form flux, and with pure flux.

We review advances made within the type IIB superstring theory. In section [1.3] we present

the overview of the remaining chapters.

The exhaustive review of the AdSy;1/CFT, correspondence with a complete list of ref-
erences is beyond the scope of the chapter. Broad and comprehensive reviews already are
available. We refer to [6] for a general review on the foundations of the duality. We refer to |7]
and, especially, [8] for a review of integrability in the AdS;/CFT4 correspondence. Finally,
we refer to [9] for a review of integrability on AdS3 x S? with pure flux.

1.1 The AdS;/CFT, correspondence

We devote this section to the spectral problem of the AdS;/CFT, correspondence between
type IIB superstring theory on AdSs x S° with pure ﬁve—form flux and N = 4 theory.

1



Chapter 1. Introduction 2

We focus on the semi-classical limit and integrability. We base the presentation of AdSs x S°
on [10], section 1 of [11] and [12]. We base the presentation of closed-superstring vertex
operators and N = 4 theory on [13-15] and [16], respectively. The review [16], in
particular, includes a complete set of references on N = 4 [SYM] theory.

1.1.1 The spectral problem

Reference [3] formulated the AdS;/CFT, correspondence by considering an array of parallel
D3-branes in type IIB superstring theory. The N/ = 4 [SYM] theory is the system inside the
world-volume of D3-branes in the low-energy limit. The near-horizon limit of D3-branes in
type IIB supergravity is AdSs x S°. The low-energy and near-horizon limits are equivalent.

The N' = 4[SYM] theory is the planar limit of maximally [SYM] theory in four-dimensional
Minkowski background My whose gauge group is SU(N). The S-function of gyyi, where gym
denotes the coupling constant of N/ = 4 [SYM] theory, vanishes prior to the planar limit.
Therefore, quantum superconformal invariance holds in N' = 4 [SYM] theory. The isometry
supergroup of N’ =4 theory is PSU(2,2|4), which has thirty-two supercharges. The su-
pergroup PSU(2, 2|4) is the supersymmetric enhancement of SO(2,4) x SO(6), where SO(2,4)
is the conformal group in four dimensions and SO(6) is the R-symmetry group of N’ = 4
theory. The planar limit is N — oo with the 't Hooft coupling A = g%MN fixed. Since the
B-function of gy vanishes, A is unaffected by the renormalisation-group flow.

The AdS5/CFT, correspondence also comprises type IIB superstring theory on AdSs x S°
with pure five-form flux. The isometry groups of AdSs and S° are SO(2,4) and SO(6),
respectively. The supersymmetric enhancement of SO(2,4) x SO(6) is PSU(2,2|4). The iso-
metry supergroup of the Green-Schwarz action is PSU(2,2|4). The parameters of N' = 4
theory map to the following specifications in AdSs x S®. First, N maps to the num-
ber of units of flux through S®. Second, the 't Hooft coupling maps to the string ten-
sion A = R*/a’?, where R denotes the common radius of AdSs and S°, and o denotes the
Regge slope. Third, the planar limit N — oo with A fixed corresponds to the vanishing of
the string-interaction coupling gs = A/47N.

The isometry supergroup of both AdSs x S® and N = 4 theory is PSU(2,2[4).
Primary operators in the AdS;/CFT, correspondence (and their descendants) fall into unit-
ary irreducible representations of PSU(2,2|4) called multiplets. E| The quantum numbers of
multiplets identify pairs of dual primary operators. The computation and matching of two-
point and three-point functions of dual primary operators comes after the identification.

Correlators are highly constrained by superconformal invariance. Superconformal invari-
ance implies that two-point functions of primary operators vanish unless primary operators
have the same quantum numbers (up to signs). Two-point functions are in this way de-
termined up to the conformal dimensions of the primary operators involved. The duality for

1We use operator and state interchangeably. The state-operator correspondence ensures the equivalence
between primary operators and highest-weight states in both A" = 4[SYM] theory and the world-sheet CFT>.
Moreover, we often talk about multiplets determined by PSU(2, 2|4) for brevity. Other quantum numbers may

be necessary to specify the multiplet. For instance, mode and winding numbers in AdSs x S°.



3 1.1. The AdS5/CFT, correspondence

two-point functions is equivalent to the so-called spectral problem: the computation of ener-
gies in AdSs x S® and conformal dimensions in N = 4 theory of dual primary operators
and the matching between them. We state the spectral problem more precisely hereunder.

Primary operators in N' = 4[SYM] theory are single-trace gauge-invariant composite local
operators. By definition, the conformal dimension A, that is the eigenvalue with respect
to the generator of dilatations D of a primary operator is minimum within its multiplet.
Primary operators commute, at the origin of My, with the four bosonic generators and the
sixteen supercharges that generate special conformal transformations. The trace of primary
operators can contain any simple local operators of N' = 4 theory. E| The action of psu(2,2|4)
on primary operators yield the descendants of each multiplet.

Primary operators are labelled by their eigenvalues with respect to the generators of the
Cartan subalgebra of so0(2,4) @s0(6) C psu(2,2|4). The conformal dimension A and the
Lorentzian spins S,, with a = 1,2, are the labels with respect to s0(2,4). The R-charges J,,
with o = 1,2, 3, are the labels with respect to s0(6).

The conformal dimension A depends on A and the quantum numbers S, and J,. The
operator D admits a perturbative series if A — 0, whose zeroth-order term is Dy and whose
remainder is 0. Therefore, the conformal dimension of any primary operator admits a
perturbative analytic series in A:

A=Y N'Ap=20g+7, (1.1)

n=0

where Ag and ~ are the eigenvalues of Dy and § D, respectively. The quantity Ag is called bare
dimension. Each primary operators have the lowest Ay within its multiplet, where Ag equals
the sum of S, and J,. Any descendant has larger bare dimension, which differs from the bare
dimension of primary operators by multiples of one half. The quantity ~ is called anomalous
dimension. The quantity v depends on A. Primary operators and their descendants have the
same . It follows from power counting in Feynman diagrams that the operator Dy commutes
with 0D. Thus, primary operators with the same Ag, S,, and J, form multiplets that are
closed sectors under 6D (order by order in A).

Primary operators in AdSs x S° are closed-superstring vertex operators. By definition,
primary operators are eigenstates of the generators of the Cartan subalgebra of s0(2,4) @ s0(6).
The expectation value of generators of psu(2,2|4) that lie outside the Cartan subalgebra van-
ishes. The descendants of a primary operator follow from the action of psu(2,2|4).

The labels of primary operators with respect to s0(2,4) are the energy E and the Lorent-
zian spins S, with a = 1,2. (Energies equal conformal dimensions in AdS ;11 because the cor-
responding multiplets in s0(2,d) are related by global similarity transformations of SO(2,d);
see section 2 of [10].) The labels of primary operators with respect to s0(6) are the angular
momenta J,, with a = 1,2, 3.

The energy F depends on A, Sy, and J, through the dispersion relation of primary operat-
ors. The marginality condition of vertex operators with respect to their world-sheet conformal

2We refer to section 4 of [16] for an explicit discussion of the representations of simple local operators fields
under psu(2,2(4). Every simple local operators belongs to the adjoint representation of SU(N) prior to N — oo.
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dimensions implies dispersion relation. The perturbative series of E in o/ demands that 1/v/X
is small, and, hence, A — oo. The series reads

oo
E=Y AU, (1.2)
n=0
The series ([1.2) is non-analytic in A. In the limit A — oo, closed sectors correspond to
consistent truncations of the action.

Quantum numbers of primary operators that are dual under the AdS;/CFT, correspond-
ence match. Homonymous S, and J, of dual primary operators coincide in particular. There-
fore, the solution of the spectral problem of the AdS5;/CFT4 correspondence amounts to proof
that A = F holds for dual primary operators. The perturbative regimes of and with
respect to A do not overlap nonetheless. The lack of overlap is an instance of the strong/weak
duality: the strong-coupling (non-perturbative) regime of AdSs x S° is the weak-coupling
(perturbative) regime of N' = 4 theory, and vice versa.

The semi-classical limit permits to overcome the strong/weak duality. The semi-classical
limit singles out primary operators whose S, and J, are comparable to v/A when A — oo.
The semi-classical limit eases the comparison between A and E partly because it virtually
replaces vertex operators by classical solutions at A — oo. The connection between vertex
operators and classical solutions on AdSs x S° is in particular the following.

The spectral problem of primary operators on AdSs x S° is encoded in two-point functions
of vertex operators, as we have already mentioned. Vertex operators in the two-point function
carry the same A and opposite S, and J,, otherwise the two-point function would vanish.
(The normalisation of two-point functions includes a divergent integral over the M&bius re-
sidual symmetry group of the world-sheet and a d-function evaluated at zero that cancel each
other.) Two-point functions can be rephrased as world-sheet path integrals wherein two inser-
tions reflect vertex operators. The world-sheet path integral extends over closed-superstring
configurations, that is world-sheet fields that satisfy periodic boundary conditions. The in-
sertions are placed on the Riemann sphere since g5 = 0.

If A — oo, the stationary-phase approximation is applicable to the path integral. The
stationary phase approximation gives rise to classical solutions: closed bosonic strings that
solve the equations of motion of the classical action. Target-space spinors in the [GS|action are
negligible. Classical solutions are sourced by the vertex operators. The quantum numbers .S,
and J, become the Noether charges of classical solutions. The marginality condition, which
implies the dispersion relation, renders into the Virasoro constraints. The world-sheet of
classical solutions is cylindrical because insertions are placed on the Riemann sphere.

The actual feasibility of the stationary-phase approximation is limited to simple cases, such
as homogeneous classical solutions. If S,,J, are semi-classical, that is if S, Jo ~ VA — 00,
the problem simplifies. Classical solutions sourced by the vertex operators are then inter-
changeable with simpler classical solutions (‘solitons’) with the same Noether charges. (Both
classes of solutions may coincide.) The computation of two-point functions then amounts to
the construction of classical solutions with semi-classical Noether charges.

We must make some observations before moving forward. Classical solutions solve the
equations of motion of the classical action. The classical action is the closed-string Polyakov
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action on AdSs x S°. The Polyakov action is the bosonic truncation of the action of type
I1B superstring theory on AdSs x S°. Reference [17] rephrased theaction in terms of a non-
linear o-model on PSU(2,2[4)/SO(1,4) x SO(5). This rephrasing is possible because gs = 0.
Classical integrability holds in the non-linear o-model [18], and it also holds the bosonic
truncation of the non-linear o-model [19]. Classical integrability is indirectly responsible for
the availability of classical solutions that we review in the following subsection.

1.1.2 Bosonic strings in AdSs x S°

The simplest class of primary operators for which the comparison between A and FE is feasible
are [Bogomol'nyi—Prasad—Sommerfield| (BPS|) states. states preserve half of the super-
symmetries. In N = 4 [SYM] theory, [BPS| states correspond to chiral primary operators.

Chiral stands for the commutativity of the primary operator at the origin of My with eight
out of the sixteen Poincaré supercharges of psu(2,2|4). The anomalous dimensions of chiral
primary operators vanishes, v = 0, and A = Ag. Chiral primary operators comprise J copies
of a holomorphic scalar made up of two real scalar, say Z = (¢1 +1i¢4)/v/2. Therefore,

A=J (1.3)
states correspond to supergravity states on AdSs x S°. The energy
E=J, (1.4)

where J is the total angular momentum in S°, does not depend on \. It follows from ({1.3)
and that A = E. Reference [20] noted that point-like classical solutions realise the
semi-classical limit of states, where J ~ v/A — o0o. The degenerate world-sheet is a
null geodesic along the global time-like direction of AdSs that surrounds S along an equator.
Bothstates and their classical solutions are called Berenstein-Maldacena-Nastase (BMN])
vacua in the semi-classical limit. The reasons will be clear later.

Reference [21] considered the so-called near{BP§ states. Reference [21] realised that A
and E of near{BPY|states match in the so-called [BMN limit. In N' = 4[SYM] theory, near{BPS]|
states are primary operators with J copies of Z and a number much less than J of other fields
inside the trace. The limit takes J not only much larger than the number of other fields
but also J — oco. The one-loop computation of « reveals that

2 3 4
v = %al + %ag + %a;», +0 <:>8> , (1.5)
where A — 0. Note that \ appears in the ratio \/J>.

Reference [20] presented near states in AdSs x S°, which [22,/23] detailed. Nearm
states correspond to quantum fluctuations around point-like classical solutions of [BPS states
in the semi-classical limit J ~ v/A — co. The effective action of quantum fluctuations reduces

to the [GS| action on a pp-wave background. The pp-wave background arises because it is the
Penrose limit of AdS5 x S® [24]. The spectrum of type IIB superstring theory on the pp-wave
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background is exactly computable [25]. The energy E of quantum fluctuations reads

2 A?’ )\4
62+J6b3+O<J8> . (16)

The dispersion relation (1.6 just involves A in the effective coupling N J2.

Both ((1.5) and . are series in \/J2. Therefore, and ([1.2)) could overlap. The
overlap occurs if the successive application of A — 0 and J — 00, and A, J — 0o with A\/.J?

A A
FEF—-J= J2b1+J4

fixed and small yield the same result for A and E (at the given order in A\/J?). The overlap
indeed occurs and a; = by holds [21]. The agreement extends to as = ba |26].

The next question was whether A and E match for semi-classical primary operators
that are neither nor near states (by reason of which they are called far—from
states). In the semi-classical limit, far—fromn BPS|states correspond to classical solutions with
extended world-sheets in AdSs x S®. A hint of the agreement between and . is that
E of far-from{BPS| states depends linearly on the sum of the seml—classwal S, and J, at
leading order [27]. Thus, E reproduces Ag in (L.I).

The matching between A and E in the semi-classical limit of far-from{BPY states was
initiated in [20]. Reference [20]| considered twist-two operators with large Lorentzian spin S.
In N =14 theory, twist-two operators are trace of two Z and (for instance) a large
number S of covariant derivatives along a given light-cone direction. If A — 0 and S — oo,
the conformal dimension of the operator is

y=A—-S8=F(\)logS+ O(logS/S), F(\ Zan/\” (1.7)

where A — 0. The series is carried by F'(X\) at O(log S).

Twist-two operators with large S are represented by folded spinning strings on AdS5 x S°.
Folded strings were first considered in 28|, and they rigidly rotate in AdSs; and remain fixed
at a point of S°. The world-sheet is strip-shaped instead of cylindrical. Folded strings just
carry F and the Lorenzian spin S. If E, S ~ v/A — 0o, the dispersion relation is

E—S=F(\)logS+0(logS/S), F(\ Zb Ad=m)/2 (1.8)

The series is carried by F(A) at O(log S).

The patterns of both and with respect to S agree, which is a non-trivial test
of the AdS;/CFT} correspondence. Nonetheless, the function F'(A) precludes the comparison
from being quantitative. E| There exist far—from states for which the match between A
and F is quantitatively feasible in the semi-classical limit.

Reference [30] noted that there exist far—frorn states whose A and E admit overlap-
ping analytic perturbative series, similarly to near{BPS|states. In N/ = 4 [SYM] theory, the
total R-charge of far-from{BPS| states must be large: J = J; + Jo + J3 — oco. The associated
primary operators have a large number of fields inside the trace, by reason of which we call

3The function F()) is called scaling function of the cusp anomalous dimension and played a central role in

the analysis of the AdSs5/CFT4 correspondence. We refer to [29] for a review and a complete set of references.
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them long primary operators. In AdSs x S°, the total angular momentum of the long primary
operator must be semi-classical and large, that is J = J; +Ja+J3 ~ VA = oo with A/ J? fixed
and small. The comparison between A and E is feasible if the successive application of A — 0
and J — 0o, and \,J — oo with A\/J? fixed and small and are equivalent for A and E. The
conditions are the same as those of near{BPS|states. We are neglecting subleading corrections
in 1/J unless otherwise stated hereafter.

In N/ = 4[SYM] theory, long primary operators comprise a large number J; of Z inside
the trace. They may comprise a large number Jo of Y = (¢2 +1i¢5)/v/2, a large number J3
of X = (¢3 +i¢g)/v/2, or both. (The pair X and Y are the two holomorphic scalars apart
from Z.) Long primary operators may also carry a large number S; of covariant derivatives
along a light-cone directions, a large number Sy along the other, or both. [BPS| states with
large J are particular long primary operators. If A — 0 and J — oo, the analytic perturbative

series (1.1)) is rearranged as

2 3 4
v = %al—i—%ag—i—%ag,—i—O <¢>}7> , (1.9)
where A — 0. The bare dimension of is Ag = J (or Ag = J+S). The series (|1.5))
and differ since each term of is multiplied by an additional factor of 1/J with
respect to . The coefficients a,, depend on the ratios of the large S, and J, by J.

The computation of v based on Feynman diagrams for primary operators that involve a
large number of fields is challenging. Reference [31] overcame the problem by mapping 6 D
into the Hamiltonian of an integrable spin chain. More precisely, [31] mapped dD at O()) in
the SO(6) sector (the sector of primary operators composed of Z, ¥ and X and their anti-
holomorphic partners), to the Hamiltonian of an SO(6) integrable spin chain with nearest-
neighbours interactions. The total R-charge J is the number of sites the spin chain. The
state with given J maps into the ground state of the spin chain (hence the name
vacuum). Primary operators other than states map into the remaining states of the
spin chain. Since the spin chain is integrable, finding the eigenvalues of the Hamiltonian
is equivalent to finding the Bethe roots of a set of algebraic Bethe equations. The Bethe
equations are implied by the S-matrix of the spin chain. Solving the Bethe equations is still
a non-trivial problem. The anomalous dimension 7 of long primary operators at O(\) follows
from the Bethe equations. Bethe equations enable an efficient computation of ~ for long
primary operators that is prohibitive in terms of Feynman diagrams. The limit J — co with
a comparable number of Bethe roots is the continuum limit of the spin chain, also called
thermodynamic limit. The Bethe equations become a set of integral equations for density
functions of Bethe roots in the thermodynamic limit. The integral equations can be solved
systematically providing the series (|1.9).

The computation of v through an integrable spin-chain can be extended beyond the SO(6)
sector and O(\). Reference [32] mapped the fields of N' = 4 theory into an oscillator
algebra. Reference [33] built on [32] to map dD, at O(A) and for general primary operators,
into the Hamiltonian of a PSU(2,2|4) integrable spin chain. Reference [33] proved that a set
of Bethe equations encode the anomalous dimensions of primary operators in N' = 4 SYM]
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theory. In parallel, [34] made some considerations on the dilatation operator 6D to O(A?)
and O()\3®). The analysis of [34] reveals that the range of the spin-chain interaction increases
by one with each power of A, that the length of the spin chain in general varies with the
spin-chain state, and that integrability holds beyond O(\).

Long primary operators correspond to classical solutions on AdSs x S® whose J is semi-
classical and large. Hence, at least one J, is semi-classical and large. Classical solutions
may also carry semi-classical and large S,. If \,J — oo with A/J? fixed and small, the
non-analytic perturbative series is rearranged in an analytic perturbative series:

2 3 5
EF—-J= 3[)1—1-;3[)24-;5[934-0(37) . (1.10)
(If S = S1 + Sy is comparable to J, E — (J + S) replaces £ — J in (1.10).) The series
and differ since each term of is multiplied by an additional factor of 1/J with
respect to (({1.10f).

Classical solutions for which holds exist. Reference [30] constructed circular spin-
ning strings with two and three large J,. Circular strings follow the global time-like direction
of AdSs and rigidly rotate in S®. (Circular stands for a cylindrical world-sheet, as opposed to
folded strings.) Circular strings of [30] prompted the construction, led by [35-38], of multiple
spinning strings. A crucial step for the systematisation of spinning strings was connection
with effective integrable mechanical systems, in particular the Neumann-Rosochatius
system [37,38]. The coefficients b, in depend on the ratios of semi-classical S, and J,
by J, and they also on mode and winding numbers. References [39-41] showed on general
grounds that holds if the world-sheet is a nearly-null surface embedded into AdSs x S°.
References [42,/43] extended the picture to nearly-null world-sheets embedded into the fully
supersymmetric AdSs x S°. Reference [44] showed that the primary operators for which
holds are local operators (in contrast with global operators).

Given the analytic series and in either side of the AdS;/CFT}, correspondence,
the check of A = FE for dual long primary operators requires to match a,, and b,,. The first
step is the proof at O(A/.J), that is a; = b;. References [45,46] explicitly checked that a; = b;
holds in the two simplest, closed sector. First, the SU(2) sector. In N/ =4 theory, long
primary operators have a large number J; of Z and J; of Y. The integrable spin chain is
the XXX, /o Heisenberg model. The SU(2) sector in AdSs5 x S5 encompasses both folded and
circular strings with two large angular momenta J; and J; in S* C S°. Second, the SL(2, R)
sector. In N' = 4 [SYM] theory, long primary operators have a large number J of Z and S
of derivatives along a light-cone direction. The integrable spin chain is the XXX_; /, model.
The SL(2,R) sector in AdSs x S° contains folded strings with large angular momentum .J
along an equator of S® and large Lorentzian spin S in AdS3 C AdSs. Reference [46] in
fact demonstrated that the matching holds at O(A2/J3), that is as = by in both the SU(2)
and SL(2,R) sectors. References [47] and [48| respectively matched at O()\/J) and O(\2/J3)
the infinite hierarchy of higher conserved charges in the Heisenberg XXX, model and the
non-linear o-model in the SU(2) sector for spinning strings.

Long operator are not only realised by spinning strings but also by pulsating strings. Ref-
erence [49] first constructed pulsating strings that correspond to long operators, which [44,
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50| elaborated on. They pulsate in S and follow the global time-like direction of AdSs [44)
49,50]. Pulsating strings are realised by the system [38]. The dispersion relation re-
sembles , but a semi-classical and large adiabatic invariant N replaces J. (There also
exist pulsating strings on AdSs whose dispersion relation is non-analytic [49].) Pulsating
strings belong to the SO(6) sector, and they are dual to the spin chain of [31]. The relation
and A = E holds at O(\/N?) [50].

The results of [45,/4650] posed the question of whether the matching between A and F
is feasible beyond specific examples. Two alternative answers were given. Reference [51]
advanced the first answer, which [44,52] elaborated on. The answer relies on the derivation
of an effective action. The effective action corresponds to a spin-chain o-model and implies
the analytic series and beforehand. In N = 4 theory, the effective action is
built on coherent states of the spin chain in the Landau-Lifshitz limit. In the non-linear
o-model on AdS5 x S?, the effective action follows from a series with respect to A/J? of the
classical action itself. The matching of the results imply the matching between A and E at a
given order in \. The effective action justifies the appearance of closed-string configurations
in the spin chain through coherent states. The effective action is furthermore applicable to
closed-superstring configurations, as proposed in [53]. (Whereas supersymmetric classical
solutions demands the assignation of an expectation value to the target-space spinors, the
effective action does not; see section 1 of [54].) Reference [51] constructed the SU(2) spin-
chain o-model at O(A/J) and found agreement; [52] extended the agreement between effective
actions to O(A?/J3). Moreover, [5556] obtained the SL(2,R) spin-chain o-model at O(\/.J).
Reference [57] extended the effective action to O(A\?/J3) from the non-linear o-model.

The proposal of [51] does not explicitly resort to integrability. Reference [58] gave a second
answer, based on integrability, to the question of whether the general matching between A
and E for long primary operators. In particular, [58] proposed the use of spectral curves.
Being integrable, the non-linear o-model on AdSs x S® admits a Lax connection [18]. The
monodromy matrix of the Lax connection in the closed-superstring world-sheet leads to a
spectral curve. Closed-superstring moduli are entirely encoded in the spectral curve, which
classifies all the classical solutions. The spectral curve permits to obtain a set of integral finite-
gap equations. Finite-gap equations can be matched directly with the thermodynamic limit
of the Bethe equations. The agreement between and follows as a consequence.
Spectral curves are the adequate starting point for the quantisation of the non-linear o-model.
Reference [58] in particular applied the approach to the SU(2) sector. Reference [58] found
agreement between both sides of the AdS5/CFT, correspondence at O(\/J) and O(A\%/.J3).
Reference [59] performed the analogous extension in the SL(2,R) sector. Reference [60] put
forward the spectral curve of the fully supersymmetric AdSs x S, and [61] matched it with
the thermodynamic limit of the Bethe equations of the PSU(2,2|4) spin chain at O(\/J).

Let us recapitulate the three main approaches used to address the spectral problem of
long primary operators in type IIB superstring theory. All of them are ultimately based on
the integrable non-linear o-model on AdS5 x S® that was constructed in [17]. First, spinning
strings (and pulsating strings), especially through effective integrable mechanical systems.
Second, effective actions for spin-chain o-model, which are linked to coherent states. Third,
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algebraic curves or, equivalently, finite-gap equations, which encode the closed-string moduli.
Each of the three approaches shed light on bosonic strings on AdSs x S with semi-classical
Noether charges from a complementary point of view.

In this text, we apply the first and third points of view to analyse bosonic strings

on AdSz x S3 C AdS;z x S x T* with mixed and [NSN| flux, and pure [NSNS| flux. [] We
also use coherent states and spin-chain o-models in the limit of pure flux. We review

AdS3 x S? x T* with mixedandﬂux, and pureﬂuX in section Before we
change the subject, we briefly review the resolution of the spectral problem in the AdS;/CFTy
correspondence, where integrability realised its potential. Integrability in AdSs x S® in turn
laid the foundations of large part of the progress made on AdS3 x S? x T4.

The matching a; = b; and as = by for long operators suggests the coincidence of
and (L.10). However, [46}/67] encountered the mismatch a3 # bs. The existence of an inter-
polating, non-perturbative function, called dressing phase, is responsible for the mismatch. It
also accounts for the mismatch at O(A*/J%) of near/BPS|states in the limit [68].

Reference [69] wrote the asymptotic all-loop Bethe equations in the SU(2) sector of N' = 4
theory. The Bethe equations of [69] are called asymptotic since they neglect finite-size
corrections in the limit J — oo (J is the number of sites of the spin chain, and, thus,
the size thereof). The Bethe equations of [69] have an analogue in the non-linear o-model
on AdSs x S°. Reference [70] proposed a set of algebraic Bethe equations for the SU(2)
sector of AdSs x S°, which discretise the finite-gap equations of [58]. The Bethe equations
of [70] introduced the dressing phase. The dressing phase accounts for the disagreement
between and in the SU(2) sector of both sides of the AdS5;/CFTy correspondence
at O(\3/J%). In N = 4 theory, requires the successive applications of A — 0
and J — oo, where the dressing phase is exponentially suppressed. In AdSs x S°,
requires the application of \,.J — oo with A/J? fixed and small, where the dressing phase
contributes at O(A3/J?) to the series . The dressing phase in other sectors, such as
the SL(2, R) sector, was later studied in |71].

Reference [72] put forward the set of asymptotic all-loop Bethe equations of the com-
plete PSU(2,2|4) spin chain of N’ = 4 theory. Reference [73] used the symmetries of
the asymptotic all-loop S-matrix of |72] to obtain the non-perturbative dispersion relation of
magnons. Magnons consist of a linear superposition of creation operators, called oscillators,
with definite momentum above the vacuum. Reference [74] assembled the creation
and annihilation operators in a Zamolodchikov-Faddeev algebra, which is a deformation by
the string tension of the canonical harmonic-oscillator algebra that arises in the [BMN] limit.
Magnons are massive excitations. The dispersion of magnons is non-relativistic and periodic
with respect to the momentum of the magnon. Reference [75] derived the all-loop Bethe
equations of the non-linear o-model on AdSs; x S°. The construction of [75] is based on

“In this section, we have focused on the duality for primary operators. The AdSs/CFT, correspondence
between Wilson loops in N = 4 m theory and partition functions over open-superstrings configurations
on (Euclidean) AdSs x S°, elaborated in [62,/63], sets the basis of part of the text. Our starting points are
nonetheless the minimal surfaces of [64], which are based on the spinning strings of [37,/38], and the algebraic
curves of [65/66], which adapt the proposal of [58] to open-string world-sheets.
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the computation of the asymptotic all-loop S-matrix under the imposition of the light-cone
gauge-fixing condition on the world-sheet. The dispersion relation of [75] matches the pro-
posal of |73|. Reference [76] used central extensions of the symmetry superalgebra to write a
shortening condition that provides the dispersion relation of magnons.

The dressing phase is not given beforehand but must be determined. Reference [72] wrote
the structure of the dressing phase. Reference |77] computed the leading quantum corrections
to the dressing phase from the non-linear o-model in the SU(2) and SL(2,R) sectors. Ref-
erence [78] argued that crossing symmetry constrains the dressing phase of the AdS;/CFTy
correspondence. Reference |79] checked that crossing symmetry holds in the first orders avail-
able. Reference [80] constructed the solution of the dressing phase in the limit A\ — oo; [81]
connected the results of [80] with the dressing phase in the limit A — 0.

We close the section with a comment on finite-size corrections. The hitherto ignored
subleading corrections in the J — oo are not incorporated in the asymptotic all-loop Bethe
equations, as we have already mentioned. The asymptotic Bethe equations must be promoted
to the thermodynamic Bethe ansatz to include finite-size corrections. Further research eventu-
ally yielded the quantum spectral curve of the AdS5/CFTy correspondence, which constitutes
the final answer to the spectral problem of the duality. We refer to [82], [83], and [84] for
reviews on the dressing phase, the thermodynamic Bethe equations and the quantum spectral
curve, respectively, where complete sets of references can be found.

1.2 AdS; x S x T* with Neveu-Schwarz-Neveu-Schwarz flux

The duality between type IIB superstring theory on AdSs x S° with pure flux and N =4
theory triggered the quest for realisations of the AdS;41/CFT 4 correspondence where
integrability holds. Type IIB superstring theory on AdSz x S3 x T4 with pure flux, and
mixed [RR] and [NSNS| flux is integrable. Integrability holds at the point of pure flux.
The AdS3 x S x T* background realises one side of the AdS3/CFTy correspondence. In this
section, we review advances made in this context. We focus on AdSz x S? x T* with mixed
flux and pure [NSNS| flux.

Early studies on type IIB superstring theory on AdS3 x S? x T* stemmed from the found-
ational article [3], where it was proposed to realise the AdS3/CFTs correspondence. (K3 could
replace T4 without major changes in the remainder of the text.) The near-horizon limit of
the combination of the D1/D5 system, which consists of D1-branes and D5-branes, with the
F1/NS5 system, which consists of F1-strings and NS5-branes, gives rise to AdS3 x S x T4,
The D1/D5 and F1/NS5 systems are responsible for the and three-form fluxes,
respectively. The isometry supergroup of the action on AdSz x S C AdSs x S% x T4
is PSU(1,1|2); x PSU(1,1|2)r, which has sixteen supercharges, half of the supercharges
of PSU(2,2[4). The dual CFTy under the AdS3/CFTy correspondence is presumably the
deformation of the so-called symmetric product orbifold of T* [85], which exhibits N = (4,4)
supersymmetry. The AdS3/CFTy correspondence has been stated with increasing accuracy at
the point of pure flux over the years (see, for instance, [86] and references therein). On
the contrary, the formulation of the AdS3/CFTy correspondence with mixed and
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flux waits for further clarifications. [

Reference [89] started the analysis of AdSz x S? x T* in the Ramond-Neveu-Schwarz
(RNS) formalism. Reference [90] wrote, for the first time, the action on AdSz x S x T*
with mixed flux by imposing a gauge-fixing condition with respect to k-symmetry transform-
ations. Reference [91] rephrased the classicalaction on AdS3 x S? as a non-linear o-model
on PSU(1,1|2); x PSU(1,1|2)z/SL(2,R) x SU(2) along the lines of |17]. Reference [91] also
noticed that the flux implies a modification of the Wess-Zumino term of |17].
Reference [92] addressed the quantisation of type IIB superstring theory on AdSs x S* with
mixed flux. To this end, [92] applied the hybrid and formalism to the PSU(1,1|2)
Wess-Zumino-Novikov-Witten model, which corresponds to AdS3 x S3 with pure
flux, with additional [RR] flux present.

If the flux vanishes, the quantum spectrum of energies of the PSU(1,1|2) WZNW|
model is exactly computable. The spectrum follows from the analysis of unitary irreducible
representations of the Ka¢-Moody algebra of the world-sheet currents in the formalism.
Reference [93] computed the spectrum of the SL(2,R) [WZNW| model that realises bosonic-
string theory on AdSs with pure [NSNS| flux. The spectrum is distributed among different
spectrally flowed sectors characterised by an integer number. The organisation of the spec-
trum mimics that of the current algebra. The current algebra in each spectrally flowed sector
is built on the representations spanned by the zeroth-level generators of the current algebra.
The zeroth-level generators realise two possible sequences of representations of SL(2,R): the
principal discrete series and the principal continuous series. The labels of representations in
the principal discrete series satisfy a unitarity bound that differs in each spectrally flowed
sector. The results of [93] were generalised in [94] to the PSU(1, 1|2) [WZNW]| model, which
has analogous properties to the SL(2,R) [WZNW| model.

Integrability enabled new advances in type IIB superstring theory on AdSz x S3 x T with
mixed flux. Based on the analysis of [95] of integrability at the point of pure flux, [88]
proved that the classical non-linear o-model on AdS3 x S? with mixed flux is integrable by
constructing the Lax connection. The presence of [NSNS| flux is reflected in a topologically
non-trivial WZ] term in the action. The Lax connection degenerates if the [RR] flux van-
ishes. The action of the non-linear o-model on AdS3 x S? is equivalent to the action
on AdS3 x S? x T4. Equivalence holds under the imposition of a gauge-fixing condition with
respect to k-symmetry transformations. If the [RR] flux vanishes, the non-linear o-model
on AdS; x S with mixed flux reduces to the PSU(1,1|2) [WZNW]| model.

Following [75], reference [96] computed the tree-level S-matrix for magnons over the
vacuum of AdSs x S? x T4, which is a state. As opposed to magnons in AdSs x S°,
magnons can be massless in AdS3 x S% x T4. Massive and massless excitations correspond

® Solutions to type IIB supergravity on AdSs x S® x T* in general involve more parameters than the com-
mon radius to both AdS; and S*, and the amount of and fluxes. For instance, 87| formally
realised AdSsz x S® x T* as the marginal deformation of the near-horizon limit of a system of Fl-strings and
NS5-branes with non-trivial dilaton, axion, and @ seven-form which drop in the proper near-horizon limit.
In this text, we make the customary assumption that AdSz x S* x T* realises free type IIB superstring theory
in such a way that the non-linear o-model of [88] realises the truncation to AdSs x S*. We refer to [87] and

references therein for a discussion of the moduli of type IIB supergravity in general.
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to the non-linear o-model on AdS3 x S? and to the flat T*-directions, respectively. (The
flat T*-directions are in fact also responsible for the existence of states other than the
vacuum, associated to massless fermionic states, as [97] first noted; see [98] and refer-
ences therein.) The construction of [96] led [99] to obtain an asymptotic all-loop S-matrix for
massive excitations. Reference [100] checked the proposal of [99] at one-loop and two-loops.
Following [76], reference [99] also wrote the dispersion relation of massive magnons by drawing
on the shortening condition of the central extension of the isometry superalgebra. While the
dispersion relation is in general non-relativistic, the NSNS|flux destroys the periodicity of the
dispersion relation with respect to the momentum of magnons. The dispersion relation be-
comes relativistic and chiral at the point of pure[NSNS|flux. The S-matrix furthermore breaks
down at the point of pure [NSNS| flux due to the contraction of the isometry superalgebra in
the light-cone gauge. Reference [101] corroborated the dispersion relation obtained [99] by
means of classical solutions with semi-classical Noether charges. Reference [102] used [99] to
write a set of asymptotic all-loop Bethe equations. The thermodynamic limit of the Bethe
equations of [102] match the finite-gap equations of the non-linear o-model on AdS3 x S? with
mixed flux. Reference [102] also computed the dressing phase at leading-order. The dressing
phase in the massive sector was also studied at tree and one-loop order in [102-104]. Refer-
ence [105] enhanced the asymptotic all-loop S-matrix of [99] to include massive and massless
excitations. The associated dressing phase was studied in [106], thus extending the dressing
phase of [107],108] at point of pure flux.

Even though the previous advances are not directly valid if the [RR] flux vanishes, integ-
rability still applies to AdSz x S3 x T* with pure flux. Reference [109] anticipated
and |110] established that the spectrum of the PSU(1, 12) [WZNW| model is retrievable from
an integrable spin chain. Supplementary bosonic and fermionic fields in the world-sheet
CFT; account from the embedding in T* [111]. Reference [109] proposed an asymptotic all-
loop S-matrix for magnons over the vacuum in the light-cone gauge. The S-matrix is
based on T T-deformations. Reference [110] proved the cancellation of finite-size corrections
in the thermodynamic Bethe ansatz. The Bethe equations are then exact. Reference |110]
realised that the explicit resolution of the equations is feasible. Thus, the Bethe equations
supply the spectrum in representations of the current algebra built on the (highest-weight and
lowest-weight) principal discrete series of PSU(1,1|2) in every spectrally flowed sector. They
also admit exceptional solutions that violate the unitarity bound of the principal discrete
series. Reference [112] argued that exceptional solutions give the spectrum of the principal
continuous series of PSU(1, 1|2) in spectrally flowed sectors.

1.3 Overview

This thesis is devoted to the analysis of bosonic strings on AdSs x S? with mixed and
flux, and with pure flux. Our strategy is based on the use of techniques applied
in the semi-classical limit of AdS5 x S°. Our goal is to provide results on the classical and
semi-classical limit of type IIB superstring theory on AdSs x S? x T4 that help to clarify the
system itself and the AdS3/CFTs correspondence. The thesis has the following structure.
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Chapter [2| is a review of classical integrable non-linear g-models. We discuss coset
models based on semi-symmetric spaces and permutation supercosets. We present the
bosonic-string action on AdS3 x S* with flux. We review the Lax connection
on AdS3 x S? with mixed flux. We use the Lax connection to construct local spectral
curves for factorised solutions.

Chapter is based on [P1]. We consider pulsating strings on AdS3 x S? with flux.
We present the integrable deformation of the system under flux following [P6].
We construct and analyse classical solutions on AdS3 x S! exhaustively. We write their
dispersion relation in a closed form by choosing properly closed-string moduli. We
retrieve the short-string and long-string classes of pulsating strings of Maldacena and
Ooguri in the limit of pure [NSNS|flux. We construct the local spectral curve of pulsating
strings on AdSs x S', which is an elliptic curve, and map it that of minimal surfaces.
We prove the singularisation of the elliptic curve in the limit of pure flux.

Chapter is based on [P3]. We consider minimal surfaces that subtend an annulus at the
boundary of Euclidean AdS3 with flux. We construct and analyse connected and
disconnected minimal surfaces exhaustively. We present the two classes of connected
minimal surfaces in the limit of pure [NSNS| flux. We compute the regularised on-shell
action in the presence of flux. We construct the local spectral curve of minimal
surfaces in Euclidean AdSs, which is an elliptic curve. We use modular functions to
analyse the elliptic curve. We prove the singularisation of the elliptic curve in the limit

of pure flux.

Chapter 5| is based on [P4, P7]. We compute the effective action of the SL(2,R)
and SU(2) spin-chain o-models of the PSU(1,1|2) WZNW| model in every spectrally
flowed sector. We compute the effective action by performing a series with respect to
the semi-classical effective coupling of the gauge-fixed classical action. We obtain again
the effective action from the world-sheet spin chain. We postulate the coherent states
in the world-sheet. We prove the that temporal and spatial intervals are discrete and
related to each other. We apply an unconventional [LI] limit to obtain a semi-classical
path integral over coherent states, whereby we deduce the effective action. We conclude
that the results of both approaches agree.

Chapter [6] contains conclusions and possible lines of research. We comment briefly
on [P2,P5].

Appendix [A] summarises our conventions for world-sheet objects.

Appendix [Bf provides the defining representation of su(1, 1|2) used in subsection
Appendix |C| presents the coordinate systems of AdS3 x S? and related objects.
Appendix @ presents the finite-gap equations of AdS3 x S? with mixed flux.

Appendix [E] is a review of the background on elliptic curves for sections and
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1.3. Overview

 Appendix [F] writes the conventions for the elliptic integrals and Jacobian elliptic func-
tions used in sections and and lists properties and formulae.
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Chapter 2

Classical integrable non-linear o-models

Classical integrability arises in free type II superstring theory realised on semi-symmetric
spaces. Classical integrability is explicit in the formulation of the [GS] action in terms of the
non-linear o-model on the supercoset that underlies the semi-symmetric space.

Reference [113] took the first step towards the uncovering of classical integrability in
free type II superstring theory. Reference [113] rephrased the action of [114], based on
the ten-dimensional Minkowski background Mg, as the action of a supercoset model en-
dowed with a three-dimensional (WZ] term. The[WZ] term involves both bosonic and fermionic
components of the left-invariant current of the supercoset model. The imposition of invari-
ance of the action under k-symmetry transformations fixes the overall coefficient of the [WZ]
term |114]. Reference [17] applied the approach of [113] to the AdSs5/CFT4 correspondence
by representing free type IIB superstring theory on AdSs x S® with pure five-form flux as
a non-linear o-model on PSU(2,2(4)/SO(1,4) x SO(5). The supercoset is a semi-symmetric
space because psu(2,2|4) admits a Zg-automorphism. Reference |115] noticed the importance
of the Zs-automorphism and used it to prove that the [WZ] term is topologically trivial. The
[WZ] term admits a two-dimensional formulation that just involves the fermionic components
of the left-invariant current which renders the entire action local. Reference |[116] wrote an
invariant formulation of the action under the Z4-automorphism.

Reference |19] realised that the bosonic truncation of the supercoset model consists of an
integrable coset model on AdS; = SO(2,4)/SO(1,4) and another on S® = SO(6)/SO(5).|I| The
Virasoro constraints bind together both models, but they do not destroy classical integrability
in either of them. The Lax connection of each model remains valid and generates an infinite
hierarchy of conserved charges. E| Reference [18] extended the Lax connection of [19] to the full
background by drawing on the Zs-automorphism of AdSs x S°. The Zs-automorphism permits
to write the Lax connection as a linear combination of the components of different grading of

L We often identify AdS,,; with a coset. Even thought the identification abridges our discussion, we must
emphasise that AdS,y1 is actually the universal cover of the coset; AdS4z+1 would otherwise include closed

time-like curves. We make the distinction between the coset and its universal cover explicit when necessary.
2 Classical integrability defined in terms of the existence of the Lax connection is called weak integrability.

Hamiltonian classical integrability, or strong integrability, requires the conserved charges generated by the
Lax connection to be in involution with respect to the symplectic structure. We ignore this property in this
text. We refer to subsection 2.3 of [117] for a review of Hamiltonian classical integrability in the AdS;/CFT4

correspondence, which includes a complete set of references on strong integrability.
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the left-invariant current. Reference [18] suggested that the existence of the Lax connection
in the supercoset model is equivalent to the invariance under k-symmetry transformations of
the action. Reference [118| further hinted towards the equivalence of both properties with
quantum world-sheet conformal invariance at one-loop. Reference [119] demonstrated the
equivalence between invariance under k-symmetry transformations of the action and quantum
world-sheet conformal invariance at one-loop. Reference [7] proved that the existence of the
Lax connection is equivalent to the invariance of the action under k-symmetry transformations
(and to quantum world-sheet conformal invariance at one-loop as a consequence).

The existence of the Lax connection ultimately relies on the structure of AdSs x S° as
a semi-symmetric space. This fact poses the question of the classical integrability of other
AdSg1-backgrounds that have a Zj-automorphism. Reference [120] built on the algebraic
classification of semi-symmetric spaces to exhaust AdS;;i-backgrounds on which non-linear
o-models admit a Lax connection. The Lax connection in every semi-symmetric space mimics
the decomposition in components of different grading of the Lax connection in AdSs x S°.
The imposition of both quantum world-sheet conformal invariance at one-loop and invariance
under k-symmetry transformations single out consistent semi-symmetric spaces. The upshot
is the existence of two consistent semi-symmetric spaces: AdSs x S° with pure five-form
flux, which realises type IIB superstring theory, and AdS; x CP3 with purefour—form flux,
which realises type IIA superstring theory. The coupling of supercoset models to a CFT2 on
an external manifold permits to include semi-symmetric spaces of non-critical dimension.
Two of them are permutation supercosets with pure [RR] three-form flux and consistently
realise type IIB superstring theory. They are AdSs x S3 x S? x S!, whose permutation super-
coset is D(2,1;a), x D(2,1;a)g/SL(2,R) x SO(4), and AdS3 x S? x T#, whose permutation
supercoset is PSU(1,1|2), x PSU(1, 1|2) g/SL(2,R) x SU(2). The supercoset models on both
permutation supercosets were first constructed in [95] in the light of integrability.

Reference [88] extended the action of these permutation-supercoset models through a
topologically non-trivial [WZ] term. The [WZ] term accounts for the presence of flux
in the background and preserves the integrability of the supercoset model. The [NSNS| flux
coexists (‘mixes’) with the flux. Topologically non-trivial terms exist in permutation
supercosets because their bosonic truncations are group manifolds (as opposed to general
semi-symmetric spaces). The action of a principal chiral model, a coset model on a group
manifold, admits a topologically non-trivial terms [121-124]. Even though the term
is non-local, it respects the locality of the equations of motion. The topologically non-trivial
[WZ] term lifts to a permutation-supercoset model through the addition of non-local terms,
which involve both bosonic and fermionic components of the left-invariant current. The
lifted WZ] term preserves the locality of the equations of motion. The Lax connection exists
if a constraint is satisfied. The constraint intertwines the coefficients of the topologically
trivial and non-trivial[WZ] terms, and the RR]flux and the [NSNS| flux. The constraint implies
both quantum world-sheet conformal invariance at one-loop and invariance under k-symmetry
transformations. The Lax connection still decomposes under the Z4-automorphism. Hence, it
is the linear combination of components of different grading even under the presence of
flux. References [88},/102] showed that the coefficients of the sum are deformed nonetheless.
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Moreover, the permutation-supercoset model reduces to a model if the RR] flux
vanishes. The Lax connection of the model degenerates if the [RR] flux vanishes.

In this chapter, we present the non-linear o-model on AdS3 x S3 with flux, which
corresponds to the bosonic truncation of the permutation-supercoset model of type IIB su-
perstring theory on AdSz x S3 x T4 with mixed and flux, and pure flux.
The chapter has the following structure. In section [2.1} we construct the action of classical
integrable supecoset models. In subsection [2.1.1] we construct the action of supercoset models
based on general semi-symmetric spaces. We then discuss the conditions required by type II
superstring theory in general semi-symmetric spaces and present consistent backgrounds. In
subsection [2.1.2] we specify the procedure of the previous subsection to the class of permuta-
tion supercosets within semi-symmetric spaces. We extend the action through a topologically
non-trivial W7 term. We finally present the permutation-supercoset of interest. In subsec-
tion [2.1.3] we introduce the bosonic truncation of the action on our permutation supercoset
to AdS3z x S? with flux, which corresponds to a principal chiral model. We present
and comment on the resultant Polyakov action plus a two-dimensional [WZ] term for the B-
field. In section [2.2] we focus on classical integrability in our permutation-supercoset model
on AdS3 x S3 with mixed and flux. In subsection we construct the Lax
connection in a general semi-symmetric space and specify it to our case. In subsection [2.2.2
we present the monodromy matrix. Reference [66] built on the Lax connection and the mono-
dromy matrix to obtain local spectral curves for arbitrary factorisable classical solutions on
symmetric spaces. We close subsection with an extension of the procedure of [66] to
AdS3 x S? with flux. Throughout this chapter we use world-sheet differential forms.
We list our conventions for world-sheet differential forms and tensor objects in appendix [A]

2.1 The action of non-linear o-models

We devote this section to the action of classical integrable non-linear o-models on supercosets.
In subsection we present supercoset models on semi-symmetric spaces in the context
of type II superstring theory. We follow [95,/120,/125], where we refer the reader for a more
exhaustive discussion. In subsection we specify the construction of the previous section
when the semi-symmetric space is a permutation supercoset. We then extend the action
with a non-trivial term following [88}|102]. Again, we refer to these references for a
more exhaustive discussion. For readability, we have included a brief digression on principal
chiral models with non-trivial term along the lines of [122,/123]. We focus on the case
of AdS3 x S% x T* with mixed [RR]and [NSNS|flux, and [NSNS| flux at the end of the subsection.
In subsection we introduce the bosonic truncation of AdSz x S x T4 and present the
Polyakov action plus a two—dimensionalterm for bosonic strings on AdSs x S3 With
flux. Considerations on Lie superalgebras of the section can be found in [126].

2.1.1 The action of non-linear o-models on semi-symmetric spaces

Let G be a Lie supergroup. It has two composition laws: the left and right multiplications.
Let H be a Grassmann-even (bosonic) subgroup of G. The supercoset G/H is the set of
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equivalence classes with respect to the right multiplication of elements of G by elements of H.
The supercoset is a manifold whose points are equivalence classes in G/H. The canonical
extension of the left multiplication of G to the supercoset G/H is a transitive action (G/H is
a left homogeneous space with respect to G).

Let g be the Lie superalgebra of G. The supercoset G/H is a semi-symmetric space
if g has a Zs-automorphism Q with respect to the Lie superbracket [-,-]. The automorph-
ism Q satisfies Q2 = (—)F, where (—)f" denotes the Grassmann-parity involution of g. The
automorphism 2 induces the decomposition g = g, ® g; @ go @ g3, where Q(g,) = i*g,. Sub-
spaces gy and gy are bosonic, whereas g; and g; are Grassmann-odd, that is fermionic. By
definition, gy = b is the Lie algebra of H. The subscript a of g, is called grading. Subspaces
of different grading satisfy [g,, 8y] C 8(a-+b)moda-

The decomposition of g in terms of g, is orthogonal with respect to the supertrace. The
supertrace is not defined in g but in a representation of g, which we assume to be a supermatrix
finite-dimensional representation. E| We do not discriminate between g and its representation
hereafter as no misunderstanding will arise. Moreover, every g that we consider admits a
supertrace. The supertrace str is a form in g that is bilinear, cyclic, and Q-invariant. As we
have already mentioned, g, are orthogonal with respect to str:

str(M Mp) =0, My,€g,, a+b#0 mod4. (2.1)

To make str explicit, we must know further specifications of g, for instance the dimension of g
and the normalisation of its generators.

We introduce the fields involved in a non-linear o-model on a semi-symmetric space now.
The fields are differentiable embedding maps from a two-dimensional smooth manifold X,
called world-sheet, into the supercoset G/H, called both background and target space. There-
fore, the fields map points of ¥ onto equivalence classes of G/H. To write the action we
must consider differentiable embedding maps g : ¥ — G endowed with a equivalence relation.
Two mappings g,¢9’ : ¥ — G are equivalent (they represent the same configuration in the
non-linear o-model) if there exists a third mapping h : ¥ — H such that ¢’ = gh pointwise.

Embedding maps g : ¥ — G allow us to define the Maurer-Cartan form, also known as
left-invariant current. The left-invariant current is a g-valued world-sheet one-form defined
by j = g~ 'dg, where d denotes the exterior derivative in the world-sheet. By using €, we can
decompose j as

j=¢g'dg=jgo+ji+jo+iz, Ju€0, - (2.2)

Under the mapping between equivalent representatives g — gh, the components of different
grading transform as

jor b Yoh+h7Ydh,  jo— h Yah, a=1,2,3. (2.3)

3 If the complexification of g is psu (N|N)q, g is not realisable in terms of (2N x 2/V)-supermatrices; see,
for instance, section 9 of [125]. In this case, one can realise g in the defining representation of su (N|N). in
terms of (2N x 2N)-supermatrices under the identification of elements that differ by multiples of the identity
supermatrix. We adopt this approach to construct psu(1,1|2)-valued supermatrices in appendix



21 2.1. The action of non-linear o-models

The component jy behaves as a connection, whereas the remaining components transform in
the adjoint representation of H. Moreover, the left-invariant current is flat by construction:

dj+jnj=0, (2.4)

where A denotes the exterior product in the world-sheet. If we project (2.4)) on each sub-
space g,, we obtain

djo +jo AN jo+Jj1 Aja+jaAja+iaAj1 =0, (2.5)
dji+joNji+aNjotj2ANjs+i3Njz2=0, (2.6)
dja +JjoAj2+i1 Aji+J2Ajo+ s Njs =0, (2.7)
djs +joAjs+j1Aj2+i2 Aji+i3ANjo=0. (2.8)

The flatness condition is necessary to both write the equations of motion of the action and
demonstrate of exactness of the term thereof.

The action of a supercoset model on a semi-symmetric space G/H follows from two require-
ments: invariance under the local right action of H and 2-invariance. The former requirement
ensures that G/H is actually the target space; the latter that the structure of semi-symmetric
space is preserved. The left and right multiplications of G in G/H are transitive, implying
that G is the isometry supergroup. The Noether theorem is applicable to the action and
yields the Noether charges of the model. If G/H is not only a semi-symmetric space but also
a background of type II superstring theory, G and H realise symmetries of the background.
Invariance under the local right action of H equals local Lorentz invariance [7]. This fact
together with leads to the identification of h : ¥ — H with gauge fields and H with a
gauge-symmetry group. In addition, G is the supergroup of background isometries, whose
maximal Abelian subgroup yields the energy and the angular momenta.

In fact, we must impose three additional conditions in order for the action to realise
type II superstring theory [17]. First, the invariance of the action under world-sheet diffeo-
morphisms and Weyl transformations of the world-sheet metric, that is classical world-sheet
conformal invariance. Second, the invariance of the action under s-symmetry transforma-
tions, which is a fermionic gauge symmetry. This symmetry accounts for the superfluousness
of half of components of the target-space spinors in the action. If G/H is further a crit-
ical ten-dimensional background of either type ITA or IIB superstring theory, k-symmetry
transformations permits to eliminate sixteen out of the thirty-two components of the Ma-
jorana or Majorana-Weyl spinors, respectively. The k-symmetry transformations enlarge
gauge-symmetry group of local Lorentz transformations H with supersymmetry transforma-
tions [127]. The k-symmetry transformations on G/H are realisable through the local right
action by infinitesimal fermionic elements of G, that is a fermionic element of g and a trans-
formation of the world-sheet metric [7,127]. Third, the action of the supercoset model must
reduce to the [GS| action of type II superstring theory on Mjq in the limit large radius of the
background [17]. This condition ensures that the action has the correct form in the limit of
vanishing curvature of the background.
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All these conditions determine the action of the supercoset model unambiguously:

VA . o
S = —4/ str(ja A *j2 + qj1 A js) (2.9)
T Jx

where A = R*/a’? is the string tension, being R the radius of the supercoset and o’ the Regge
slope, E| * denotes the Hodge-duality operator in the world-sheet and ¢ is a parameter. The
parameter ¢ must be real in order for the action to be a real (in the sense of Grassmann num-
bers). The first term in the action involves the world-sheet metric through *. Therefore,
it yields the Virasoro constraints, that is the equations of motion of the world-sheet metric.
The first term reduces to the Polyakov action when G/H is truncated to the maximal bosonic
coset thereof. The second term is a two-dimensional [WZ] term. It does not affect the Virasoro
constraints because it does not involve the world-sheet metric. The second term is in fact a
rephrasing of a topologically trivial three-dimensional [WZ| term. The three-dimensional [WZ]
term is the integral over a three-dimensional manifold B whose boundary is 3 of the following
exact three-form

O =str(j1 Aj1 Aja — Js Ajs AJje) = idstr(jl AJ3) (2.10)

where we have used j, to denote the extension the components of different grading into B
with a slight abuse of notation. The proof of the local exactness of draws on ([2.1)
and (2.5)-(2.8). Exactness holds globally if b is the maximal Q-invariant locus of g [115], a
property that holds for semi-symmetric spaces by construction.

Note that the action (2.9) enjoys the right symmetries. The absence of jy in and
the cyclicity of str in the integrand implies gauge-invariance. The Q-invariance of str implies
that of the action. The action is explicitly invariant under world-sheet diffeomorphisms.
The definition of % implies that is also invariant under Weyl transformations of the world-
sheet metric. As opposed to the previous symmetries, the invariance under k-symmetry
transformations is not automatically satisfied by . The action is only invariant if and only
if g = £1. The condition ¢ = £1 is equivalent to the existence of a Lax connection [7}/18]. The
condition is also equivalent to quantum world-sheet conformal invariance at one-loop [18,/119].
Moreover, the action has the correct flat background limit. The flat action is obtained
by expanding around g = 1 [120].

The equations of motion of are obtained through the local right action of G on
the embedding maps by an infinitesimal parameter e: g — g + dg, where dg = ge. Being

* In general, X is the ’t Hooft coupling defined in the CFT, side of the AdS4y1/CFT, correspondence.
The dependence of A\ on the string tension, and, hence, on both the radius of a maximally symmetric AdSg41-
background R and o' is determined by the duality. On AdSs x S®, the relationship v = R? /a’ holds
exactly [128]. On AdSs x CP?, the relationship VA ~ R*/a’ holds at leading order and breaks down at
subleading order when o’ — 0; see, for instance, section 14 of |129]. We denote the string tension of
by v/A in other backgrounds by analogy and notational simplicity. In particular, in AdSs x S with mixed
flux the string tension is R2/o/ at leading order and subleading order when o’ — 0; see footnote 5 of [102].
If the flux vanishes, the string tension exactly equals R?/a/, which in turn equals the level [92]:
R?/a’ = k; see (2.41). Moreover, we emphasise that the isolation of R in front of the action implies that the
target space of the fields is a maximally symmetric AdS441-background with R = 1.
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infinitesimal, € is g-valued. Therefore, € is decomposable in components of different grading ¢,.
The equations of motion then follow from the requirement that the variation of (2.9) with
respect to each €, vanishes up to boundary terms. H The equations of motion read

d* jo+ jo Axjo+*ja Ajo—q(ji N1 —JsANJjs) =0, (2.11)
#J1 A Jo + j2 A*j1 +q(ji A ja +J2 Aj1) =0, (2.12)
#73 A jo + j2 A*j3 — q(js N j2 +ja A j3) =0 . (2.13)

The flatness condition (2.5)—(2.8)) and the properties of * are necessary to obtain ([2.12))
and (2.13)). The h-valued component €y does not provide any equation of motion as it intro-

duces an infinitesimal gauge transformations, under which is invariant by construction.

The action ([2.9) is invariant under the global (left and right) action of G on the embedding
maps. Thus, the Noether theorem can be applied to (2.9). The conservation law of the
Noether current turns out to be equivalent to the equations of motion of f. To
make the equivalence explicit, we introduce the g-valued world-sheet one-form

k = 2jo — q(*j1 — *J3) . (2.14)
We can then rephrase (2.11)—(2.13)) compactly as
dxk+*kANj+7Axk=0. (2.15)

This form is appropriate to relate the equations of motion with the conservation law of the
Noether current:
dxJ =0, (2.16)

where the Noether current is J = gkg~!.

The symmetries of guarantee that the associated supercoset model realises classical
type II superstring theory. In order for a semi-symmetric space actually realise quantum
type 11 superstring theory, world-sheet conformal invariance must hold at the quantum level.
Quantum world-sheet conformal invariance holds if two conditions hold (under the imposition
of the conformal gauge-fixing condition to the world-sheet metric). The conditions are the
vanishing of the p-function of A and the determination of the intrinsic central charge of the
world-sheet CFTy to ¢ = 26 [120]. The background-field expansion renders both conditions
into properties of G/H at one-loop [120]. (The first perturbative order is O(1/AY/*) here.)
The vanishing of the S-function is satisfied if and only if the Killing form of G degenerates.
The Killing form is proportional to the supertrace through k", the dual Coxeter number of g.
Thus, the vanishing of the S-function of X is equivalent to 2Y = 0 [120]. Moreover, ¢ depends
on the dimension of G/H and the rank of k-symmetry transformations thereof. Fixing ¢ = 26,
is equivalent to requiring the fulfilment of the Virasoro constraints [120].

5Boundary terms can be ignored under the imposition of proper boundary conditions to the embedding
maps. However, the choice of boundary conditions is not unique. In this text, we impose periodic boundary
conditions in chapters and (corresponding to a closed-string world-sheet) and Dirichet boundary conditions
in chapter [4| (corresponding to an open-string world-sheet). We shall specify the boundary conditions there.
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There exists two semi-symmetric spaces that satisfy h¥ = 0 and ¢ = 26 [120]. First,

PSU(2,2[4)
SO(1,4) x SO(5)
This supercoset is AdSs x S® with pure five-form flux, and it is a consistent background
of type IIB superstring theory. The action (2.9) is equivalent to the action irrespective of
the gauge-fixing condition with respect to k-symmetry transformations [17]. Second,
OSp(2, 2(6)
SO(1,3) x U(3) °

(2.17)

(2.18)

This supercoset is AdS,; x CP3 with pure four-form flux, and is a consistent background
of type ITA superstring theory. The action is equivalent to the action only under a
partial gauge-fixing condition with respect to k-symmetry transformations [130}/131].

The and backgrounds are the unique semi-symmetric spaces on which type
IT superstring theory can be consistently realised. Nonetheless, the action is also ap-
plicable to another class of backgrounds: the direct product of a non-critical semi-symmetric
space G/H and an external manifold [120]. The action in this case corresponds to a
supercoset model that describes the truncation of type II superstring theory to G/H. The ex-
ternal manifold, for its own part, supports an external CFTs coupled to the supercoset model
through the Virasoro constraints. The action enjoys the right symmetries (local Lorentz
invariance, (2-invariance, invariance under isometry transformations in the background, dif-
feomorphisms, and Weyl transformations) except for the invariance under k-symmetry trans-
formations. If the supercoset model is considered on its own, it is invariant under k-symmetry
transformations. The invariance permits to eliminate the redundant components of the target-
space spinors of G/H, whose number depends on the dimension of G/H. Nonetheless, the
invariance is violated when the model is coupled to the external CFTs. It is violated because
the world-sheet metric is coupled to the external CFTs and transforms under s-symmetry
transformations [95]. The violation of the invariance under s-symmetry transformations per-
mits to retain the sixteen non-redundant components of the target-space spinors in type II
superstring theory (which, on the whole, is itself invariant).

Type II superstring theory on the direct product of a non-critical semi-symmetric space
and an external manifold must also respect quantum world-sheet conformal invariance. The
requirement implies consistency conditions on G/H again [120]. The S-function of A again
vanishes if h¥ = 0 for g. On the other hand, ¢ must be promoted to a extrinsic central
charge ¢/, which is defined as ¢ but with the Virasoro constraints loosened [120]. If ¢/ < 26,
the deficit of the central charge of the theory can be balanced by imposing that the central
charge of CFT3 on the external manifold is 26 — ¢/. The action is identified with the
action (whose target-space is non-critical if ¢’ < 26) under the imposition of a gauge-fixing
condition with respect to k-symmetry transformations [954/120].

There exists two non-critical semi-symmetric spaces that are permutation supercosets [120],
that is semi-symmetric spaces for which G = G x Gp. First,

D(2,1;a);, xD(2,1;a)
SL(2,R) x SO(4)

(2.19)
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The supercoset is AdSs x S? x S3 with pure three-form flux; AdSs x S3 x S3 x S!, which
embeds ([2.19)), is a consistent background of type IIB superstring theory. The parameter «
quantifies the relative radii of the pair of S in (2.19)). Second,

PSU(1,1)2), x PSU(1,1|2)
SL(2,R) x SU(2)

(2.20)

The supercoset is AdSz x S with pure three-form flux; AdSs x S? x T4, which em-
beds , is a consistent background of type IIB superstring theory. The two consist-
ent backgrounds are in fact connected [95]: if we apply the & — 0 (or @ — 1) contraction
to AdS3 x S2 x S? x S!, we obtain AdS3 x S? x T*.

Semi-symmetric spaces that we have considered so far are just supported with [RR] flux.
In general, there exists an obstruction in supercoset models that forbids the addition of
a topologically non-trivial term [124]. The topological obstruction translates into the
impossibility for a semi-symmetric space to support thee-form flux. Permutation su-
percosets permit to circumvent the obstruction because their bosonic truncations are group
manifolds [121-123]. The action can be extended with a topologically non-trivial
term in this case [88,102,|105]. In the case of (2.19)) and (2.20]), the topologically non-trivial
[WZ] term reflects that a[NSNS| thee-form flux in the semi-symmetric space mixes with the [RR]
three-form flux. We consider general classical non-linear o-models on permutation supercosets
with flux in the next subsection.

2.1.2 The action of non-linear o-models on permutation supercosets

We begin with the specification of the semi-symmetric spaces in subsection to per-
mutation supercosets. Permutation supercosets are semi-symmetric spaces G/H such that
G = Gp x Gg, where Gy, g are two isomorphic Lie supergroups. The subscripts in G g
stand for left and right. (The nomenclature is based on the AdS3;/CFTjy correspondence,
where Gz, x Gr must match the conformal supergroup of the dual CFTy with N' = (4,4)
supersymmetry.) We denote by G’ the Lie supergroup isomorphic to both Gy, g. Every group
element g € G, X Gp is decomposable like g = (g1, gr), where gr, r € G r. By definition, H
of G, x Gp is the diagonal embedding of the bosonic subgroup of G’ in G, x Gr. Permutation
supercosets Gz, x Gr/H (insofar as supercosets) are the set of equivalence classes with respect
to the right multiplication (g1, 9r) — (g9rh, grh), where (h,h) € H. The bosonic truncation
of G, x Gp/H is isomorphic to the bosonic truncation of G’, which is a Lie group. In addition,
the canonical extension of the left multiplication of Gz x Gg to the supercoset G x Gr/H
is (g9z,9r) ¥ (9.9, 9rIR), With g7 p € GL R.

The Lie superalgebra of G, X Gg is g = g7, @ gp, where gy, p are the Lie superalgebras
of G, g, respectively. We denote by g’ the Lie superalgebra of G’ isomorphic to both g LR Per-
mutation supercoset are semi-symmetric spaces because the direct-product structure of g;, ® gp
always permits to define the action of a Zs-automorphism 2 [88,/95]. To abridge the discus-
sion, we introduce a supermatrix representation of g; @ gr [102], which we recall that we
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identify with g; & gp itself. We can then write M € g7, @ gp as the supermatrix

Mp, 0
M = [ oL MR] , (2.21)

where M, g € g, g are supermatrices themselves. The action of €2 is defined by [102]

Mp 0 ] : (2.22)

M) = [ 0 (=M

where (=) is the Grassmann-parity involution in g’. We note that we write (_)E,R = (—-)F
with a slight abuse of notation; the involution in g; ®gp is (=) @ (—)¥. Moreover, the
supertrace in gy @ gp is str = stry, +strg, where stry, r are the supertraces of 9L.R-

The left-invariant current j = g~ 'dg is a g;, @ gp-valued world-sheet one-form built on the
embedding maps g : ¥ — G X Gg of the non-linear o-model on a permutation supercoset.
The form g = (g1, gr) and allows us to express j as

. -1
= [jL 0] = [gL (;igL gRl(égR] ) (2.23)

where j;, = ngdgL is called left current (not to be confused with left-invariant current),
and jp = g}_%lng is called right current. We can further decompose jr g with respect to (—)F.
The bosonic components of jj, r are jg r» Which satisfy (=) jg R = jg - The fermionic
component of jj, rp are jﬂR, which satisfy (—)Fng = —j{,R. The decomposition of jz, r in
terms of j}i r and j}j r bermits to reformulate the decomposition of j under €. The
action ([2.22]) provides us with

=1 :jf gjﬁ . 0 - (2.24)
i :% -jf —Oijﬁf ijfijﬁ] , (2.25)
=3 _jLBEjg o j}%’)] ’ (2.26)
i o % _jf Bijﬁ _ijfo+j£ (2.27)

We can now use (2.24)—(2.27) to rephrase (2.3) and ([2.5)—(2.8)) for j, compactly. Consider the

pattern of j, under the local right action of H first. Under the mapping between equivalent
representatives (gr., gr) — (gr.h, grh), the components ng and jER transform as

Jtr— h P gh+h A, GE g BT Rh (2.28)

Therefore, jLB r behave as a connection and jf r transform in the adjoint representation.
Formula (2.3) follows from ([2.28]). Consider the flatness condition for j, now. Since j satisfies
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the flatness condition ({2.2), so they do jr g. If we project the flatness condition of jz r on
the eigenspaces of (—)f in each g L.R» We obtain

dng+ng/\ng+j£R/\j£R =0, (2.29)
djf R+ IJERNILR+ LR NIER=0. (2.30)

The equations f together with f imply 7.

Previous considerations permit us to write to the action in terms of jg r and jﬁ R
in the class of permutation supercoset. The resultant action enjoys all the properties listed
in subsection We have specified the basics of supercoset models based on permutation
supercosets to clarify the introduction of topologically non-trivial terms [88]. This type
of terms can be added to since the bosonic truncation of Gy x Gr/H is a Lie
group [124]. In terms of the supermatrices , the existence of the topologically non-
trivial [WZ] term is a consequence of the existence of an outstanding supermatrix within the
class of permutation supercosets [102]. The supermatrix is

1 0
W = lO _1] ) (2.31)

The grading of W is two because implies Q(W) = —W. The supermatrix W permits
to retain Q-invariance in the action of topologically non-trivial [WZ] terms.

Topologically non-trivialWZ] terms in permutation-supercoset models are largely based on
their counterparts in permutation-coset models, called principal chiral models. Principal chiral
models with topologically non-trivial WZ] terms realise bosonic-string theory on backgrounds
with flux. Furthermore, the class of principal chiral models encompasses the non-linear
o-model on AdS3 x S? with flux on which we eventually focus. We then make a brief
digression on principal chiral models with [VLZ] terms.

Principal chiral models are a class within coset models based on symmetric spaces. A
coset F/H (where F is a Lie group and H is the subgroup thereof) is the set of equivalence
classes with respect to the right action of H. A symmetric space is a coset F/H for which f,
the Lie algebra of F, has a Zs-automorphism 2. The action of the coset model in a symmetric
space is invariant under the local right action of H and Q-invariant. Principal chiral models
are coset models based on symmetric spaces that are permutation cosets. Permutation cosets
are defined by the fact that F = Fj, x Fg, where Fy, g are two isomorphic Lie groups. Let F’
denote the Lie group isomorphic to both Fr, . The subgroup H of F, x Fg is the diagonal
embedding of F’ in Fj, x Fgr, which is isomorphic to F’ itself. Therefore, we can impose a
gauge-fixing condition with respect to the local right action of H in the action of the principal
chiral model such that the target space is identifiable with F’. The gauge-fixing condition
trivialises the action of €2, which can be consistently ignored.

Principal chiral models are then coset models whose target space is just a Lie group F'.
We assume that F’ is compact and simple for the simplicity. The action is constructed along
the lines of subsection We introduce differentiable embedding maps f : ¥ — F'; we
assume that the world-sheet ¥ equals S? topologically. We then construct the left-invariant
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current j = f~'df, which is a f'-valued world-sheet one-form (f’ is the Lie algebra of F'). The
action of a principal chiral model parallels the first term of the action (2.9):

SpoM = Cl/ tI‘(j VAN *]) , (2.32)
P

where tr(-) denotes the matrix trace of f'. In general, the renormalisation-group flow acts
on c¢1. The global symmetry group of is /' xF ~F; xFpg.

To introduce a[WZ] term, we observe that the second homotopy group of every Lie group
is trivial, that is mo(F’) = 0. No topological obstruction forbids the extension of f : ¥ — F’
to f : B — F’, where B is a three-dimensional manifold such that B = X. The extension f
matches f at 3. A term is defined by the product of three copies of j = f~1df:

Swz = 02/ tr(} /\j /\j) . (2.33)
B

Despite the fact is non-local, the variation the of term by an infinitesimal parameter
of f' integrates to ¥.. Therefore, the equations of motion of Spcn + Swz are local. The central
property of is its multiple-valuedness. Even though continuous deformations of f do
not modify the term, different f in B may not be continuously connected among them.
Since 73(F’) = Z for every compact and simple Lie group, extensions are arranged into classes
labelled by an integer. The path integral associated to (2.33) must be singled-valued, and,
thus, the difference between the [WZ] terms of any pair of extensions must an element of 27Z.
This requirement fixes k = 24mcy, where k is called level. Stability demands that the level
is a natural number [123]. The quantisation condition prevents k from being affected by the
renormalisation-group flow.

The F' [WZNW| model at level k is a principal chiral model wherein ¢; = 3¢y = k/8m.
The F'[WZNW|model is special in that it is a fixed point of the renormalisation-group flow. At
the fixed point, the isometry group F’ x F’ of the principal chiral model lifts to F/_ x F’_ [132],
where the group F/, (the group F’_) denotes the local action by F'-valued functions that just
depend on the light-cone world-sheet coordinate o (respectively, c~). The enhancement is
reflected in the equations of motion of the action of the F/ [WZNW| model, which reduce to
chiral equations of motion. The general solution is f = fi f_, where fy = fi(o%), due to
the Polyakov-Weigmann identity [124].

Previous considerations on principal chiral models and [WZ] terms can be transferred to
permutation-supercoset models. First, we must remember that the truncation of G, x Gg/H
to its bosonic component leads to a principal chiral model. The bosonic truncation of the
action is up to the replacement of j by jo. The use of jy reflects that we are taking
not only the Lie-group structure but also the symmetric-space structure of the permutation
coset. We would like to include in the action a term like , such that j is replaced by
the extension of jo into a three-dimensional manifold B such that B = 93. The action must
be Q-invariant to respect the symmetric-space structure. The WZ] term is not Q-invariant
nonetheless. We can supply with Q-invariance by drawing on W in . If denote
by j. both the world-sheet one-forms and their extensions into B with a slight abuse of
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notation, the improved {2-invariant term (with a convenient normalisation) is

Swz = q\ﬁ/jétl"(w(h Nij2 N J2)) (2.34)

The use of W in is in fact equivalent to the redefinition str’ = str;, —strg in ; see
appendix D of [96].

Even though suffices in principal chiral models, it is not the topologically non-
trivial term in permutation-supercoset models. If were added to the action ,
the locality of the equations of motion would be lost. The local right action action of Gy, x Gg
in through a g; @ gp-valued infinitesimal parameter (which provides the equations of
motion) would not integrate to a local term. The reason is that f leave a non-local
remnant involving j; and js [88]. The non-local remnant can be eliminated if the term
is enhanced with additional terms involving j; and js. Additional terms must have grading
two, so that they are Q-invariant when balanced with W in [102]. The topologically
non-trivial term is furthermore unique [8§].

The extension of the action on permutation supercosets through a topologically
non-trivial term is [88}|102]

No\ , o
S:_E Str(]2/\*jg+q31 /\33)
. (2.35)

+ str(W (22 A ja A jo + 3j1 A Jg A ja + 3j3 A ji A j2))

Mor [y

where ¢ and ¢ are real in order for the action to be real (in the sense of Grassmann numbers).
The equations of motion of ([2.35)) are [88},/102]:

d * j2 + jo A xja + xj2 A jo — q(j1 A g1 — j3 A j3) + qW (252 A jo + j1 A Js

+73 A jl) =0, (2.36)
$J1 A Jo + j2 Axj1 4+ q(Gi A g2 +Ja Aj1) — W (s Aja +ja Aj3) =0, (2.37)
*jg A Jo + jo Axjs — q(Js N ja+ja N js) —qgW(ji Aja+ja Aji1) =0, (2.38)

which extend —.

The equations of motion are equivalent to the conservation law of a Noether cur-
rent J = gkg~!, in parallel with f. The presence of the additional term
in is reflected in an extension of the one-form & in :

k= 2jo 4 q(xj3 — *j1) — qW (2 * jo + *j1 + *J3) . (2.39)

The Noether current follows from the invariance of under the global (left and right)
action of G, X Gg.

The action enjoys the symmetries of any supercoset model based on a semi-symmetric
space: invariance under the local right action of H and Q-invariance. If the supercoset model
describes the truncation of type II superstring theory to Gy x Gr/H, the action must
enjoy other symmetries apart from local Lorentz invariance and 2-invariance (together with
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background isometries with respect to G, x Gg). Invariance under world-sheet diffeomorph-
isms and Weyl transformations is manifest in . On the contrary, is not invariant
under k-symmetry transformations for arbitrary values of ¢ and ¢g. (Recall that the violation
of the invariance under k-symmetry transformations in the supercoset model occurs when it
is coupled to an external CFT5.) If we impose the invariance to (2.35), we obtain [88]

Fre=1. (2.40)

It is worth noting that reduces to the constraint ¢ = +1 of subsection at the
point ¢ = 0. The permutation-supercoset model becomes a G’ [WZNW| model at level k
at the point ¢ = 0. The constraint at any rate is equivalent to the existence of a
Lax connection [88,/102]. If the permutation supercoset of corresponds a consistent
background, that is to either or , the constraint is equivalent to quantum
word-sheet conformal invariance at one-loop [8§]. |E| We emphasise that each pair ¢ and ¢
satisfying specify a single consistent background in this case.

We specify the permutation-supercoset model of interest now, namely . The mode
corresponds to the truncation of IIB superstring theory to AdSs x S € AdS3 x S x T* with
mixed RR]and[NSNS|flux. The target space is PSU(1,1]2), x PSU(1,1|2)z/SL(2, R) x SU(2).
The model is supplemented with a CFTy on T4 € AdS3 x S2 x T%. We need supermatrices
of psu(1,1|2)r ® psu(1,1|2)g to write explicitly . We choose the defining representa-
tion of su(1,1]2)z @ su(1,1|2)r, wherein the supermatrices of psu(1,1|2); @ psu(1,1|2)g are
defined (consult footnote [3| of this chapter). We present our conventions in appendix
The supermatrices permit to express the action in the coordinates of the embedding
of ¥ into PSU(1,1|2), x PSU(1,1|2) ;. The expression is involved and unenlightening due
to the presence of target-space spinors, which are brought into play by through . One
must furthermore impose a gauge-fixing condition to the world-sheet metric and with respect
k-symmetry transformations to match the action of type IIB superstring theory [95].
The [GS| action of type II superstring theory is however just known explicitly at second or-
der [133] and fourth order [134] in the target-space spinors. Moreover, we are interested
in the bosonic truncation of the action, which we present in the next subsection. In the
light of the situation, we just present to various statements based on the introduction of
the psu(1,1]2) @ psu(l, 1|2) z-valued supermatrices.

First and foremost, both the RR] and three-form fluxes are proportional to the sum
of volume forms of AdSs and S* [96,/105]. The proportionality coefficients of the and
the fluxes are ¢ and ¢, respectively; see . The constraint then intertwines
both fluxes. We shall assume 0 < ¢ < 1 and ¢ = /1 — ¢2. We make the assumption for
conciseness. We could introduce other ranges for ¢ and ¢ that are compatible with

5The statement holds if ¢ does not vanish. If § = 0, other permutation supercosets are consistent with
type II superstring theory. The emergence of new consistent permutation supercosets is a consequence of the
vanishing of the one-loop S-function of \ irrespective of the Killing form of the supergroup G x Gg [88|. (The
total central charge must be ¢ = 26 however [120].) The vanishing of the S-function of X is in turn connected
with the fact that a G’ model is a fixed point of the renormalisation-group flow. Nonetheless, h¥ = 0
holds for permutation supercosets that interpolate between the limits of pure @ flux and pure M flux.
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with minor modifications. The point ¢ = 0 is called limit of pure fluz as the flux
vanishes. The point ¢ = 1 is called limit of pure [NSNS fluz as the [RR] vanishes. Finally, the
range 0 < g < 1 is called mized-flux regime.

The topologically non-trivial term in the permutation-supercoset model on AdS3 x S3
quantises v/X. The quantisation of v/X is a consequence of the single-valuedness of the path
integral and also of the topology of PSU(1,1|2) [92]. According to the normalisation of the
action , the quantisation condition is

k=qV\, (2.41)

where k£ € N is the level. Note that holds if theﬂux does not vanish in AdSs x S3.

The permutation-supercoset model becomes the PSU(1, 1|2) [WZNW)| model at the level k
in the limit of pure flux [92/94]. The level is given by the quantisation condition (2.41)),
which reduces to & = v/A. The action of the supersymmetric PSU(1, 1|2) WZNW]| model can
be rephrased as the sum of three terms [94]. The first term is the action of the bosonic SL(2, R)
'WZNW|model at the level k+2 [93], whose target space is AdSs Withﬂux. The second
term is the action of the bosonic SU(2) [WZNW|model at the level k — 2 [123], whose target
space is S? with flux. The shift of the level of the bosonic[WZNW|models follows from
considerations on the path integral of the model [94]. The third term couples the bosonic
fields of the two previous models between them, and it couples bosonic fields with fermionic
fields. This term modifies the chiral equations of motion of the bosonic SL(2,R) and SU(2)
WZNW] models.

The truncation of the permutation-supercoset model that we have discussed so far is
the principal chiral model on AdSsz x S? plus a term for the flux, which realises
bosonic-string theory in a non-critical background. The central element of the model is the
classical action, which is a Polyakov action plus a two-dimensional [WZ] term that accounts
for the [NSNS| flux. We devote the following subsection to this action and its properties.

2.1.3 The action on AdS; x S® with Neveu-Schwarz-Neveu-Schwarz flux

We want to construct the principal chiral model on AdSs x S? plus a term for the
flux from the permutation-supercoset model that embeds it. We must first trun-
cate PSU(1,1]2); x PSU(1,1]2)g/SL(2,R) x SU(2) to its bosonic component. The bosonic
component is the permutation coset

SL(2,R), x SU(2), x SL(2,R); x SU(2)

Ad =
S5 % 8 SL(2,R) x SU(2)

(2.42)

Since we have truncated the target space to , we must truncate the left-invariant cur-
rent j = g~ 'dg to its bosonic component. Recall that the left-invariant current decomposes
in the left current j;, and the right current jp according to (2.23). Being psu(1,1|2)-valued,
both jr g are supertraceless supermatrices of the form (and supplemented with the

constraints (B.5)), , and (B.7)) on their constitutive matrices). The currents jr r split
into ijg r and jf - The components jg r are block-diagonal supermatrices whose blocks are
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bosonic and given by and ; the components jf’ r are block-anti-diagonal super-
matrices whose blocks are fermionic and given by . The bosonic truncation of psu(1,1|2)
to s[(2,R) @ su(2) amounts to the imposition of jﬂR = 0. It is clear that jER = ( is consistent
with the equations of motion (2.36])—(2.38). We use jr, r for the bosonic component to keep
the notation simple. According to (]2.25D and q2.27|>, jf: r = 0 imply ji; = j3 = 0. Therefore,
we just need to consider the bosonic component jp in and jo in . We could
introduce in the action to obtain an expression in terms of jr g. The resultant

action corresponds to a principal chiral model on (2.42) plus a term for the [NSNS| flux.
We can obtain a simpler expression for the action following our discussion on prin-

cipal chiral models in subsection [2.1.2, We have emphasised there that a permutation
coset F, x Fp/H is isomorphic to the Lie group F' = Fy, . The observation applies to (2.42)).
Therefore, we need to identify AdS3 x S? with SL(2, R) x SU(2). We perform the identification
through the imposition of a gauge-fixing condition with respect to local Lorentz transform-
ations of SL(2,R) x SU(2) in (2.42). (Recall that a generic embedding map g = (9r,9r)
into SL(2,R); x SU(2), x SL(2,R), x SU(2), transforms like (g7.,9r) — (grh, grh) under
the local right action of SL(2,R) x SU(2) by h.) We set gr = 1. The principal chiral model
then involves embedding maps of the form g = (gr,1). This form makes manifest that the
principal chiral model is based on AdS3 x S? = SL(2,R) x SU(2).

Since jr = g;zlng = 0, just jr = ggldgL remains, which is a s[(2,R) @ su(2)-valued
world-sheet one-form. The block-diagonal (8 x 8)-supermatrices and simplify to

. _ligp 0O

== ) 24
. 1ljr O

== o 2.44

The left current is the block-diagonal (4 x 4)-supermatrix
|0
L = lo b] . (2.45)

The (2 x 2)-matrices [; and lp are sl(2,R)-valued and su(2)-valued world-sheet one-forms,
respectively; see , , and . In the remainder of the text, we also denote both Iy
and Iy by j with a slight abuse of notation. We denote the corresponding embedding maps
by g. Whether j corresponds jr,, [, or Iy will be clear from the context.

If we use , the action (|2.35]) reduces to

5o Y2 str'(j A ) + qﬂ str'(j A A ) (2.46)
81 Jx 2471 Jp
were we have used that str = stry +strp and denoted by str’ the supertrace (B.2). Note
that the traces over s[(2,R) and su(2) occur with opposite signs in (B.2)). The action
corresponds to a principal chiral model on SL(2,R) x SU(2), see (2.32]) and (2.33]).
Our analyses in chapters are based on specific coordinate systems of AdS3 x S2. Co-

ordinate systems parameterise of g7, and j;, through the coordinates of the target space Z4.
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Coordinate systems allow us to advance a explicit form for the target-space metric G ap
of AdS3 x S3. Coordinate systems also allow us to write, locally, the three-form flux as
the exterior derivative of the Kalb-Ramond two-form B called B-field. The B-field is uniquely
determined modulo the addition of an exact two-form. The appropriate coordinate system in
each case depends on the traits of the problem being considered. We list in appendix [C] the
coordinate systems of AdS3 x S? that we use in chapters Appendix [C| also contains the
parameterisation of gy and j; that correspond to each coordinate system, the target-space
metric, and the B-field.

Whatever the coordinate system is, the action always presents the following form:

S = —f/dr/da (\/—hho‘fBGAB(Z) +eaﬂBAB(Z)) 0a22052"7 (2.47)
7

where we have assumed the Einstein summation convention on lower-case Greek indices,
which run over world-sheet indices, and upper-case Latin indices, which run over background
indices. We have assumed that the world-sheet is Lorentzian, where 7 and o parameterise the
time-like and space-like world-sheet directions, respectively, h,g is the world-sheet metric, B
is the skew-symmetric symbol. We refer to appendix [A| for conventions. The action is
the Brink-di Vecchia-Deser-Howe-Zumino-Polyakov action plus a [WZ] term, called Polyakov
action for short. We shall also need the counterpart of in an Euclidean world-sheet.
We refer to appendix [A] again for our conventions on the Wick rotation of the world-sheet.

The ranges of the world-sheet coordinates in depend on the boundary conditions
of Z4. Chapters [3| and [5| are based closed-string Lorentzian world-sheets. Therefore, Z4 sat-
isfy periodic boundary conditions with respect to ¢ and do not satisfy any particular boundary
condition with respect to 7. The ranges are 7 € (—o00,00) and o € [0,27). Chapter [4|is based
on action associated to open-string Euclidean world-sheets. Target-space coordinates Z4 are
supplied with Dirichlet boundary conditions at the conformal boundary of Euclidean AdSs.
To write the ranges of the ¢ and 7 we need to specify open-string world-sheet. For further
details, we refer to chapter [4]

The equations of motion of h,g in provide the Virasoro constraints:

Gap(2) (aaZAaBZB - ;ha,@mﬁawzf‘aazﬂ =0. (2.48)

The Virasoro constraints ensure that Weyl invariance, which implies that classical world-
sheet conformal invariance is respected by the solution to the equations of motion. There
exist two main gauge-fixing conditions of h,s that simplify the Virasoro constraints. First,
the conformal gauge-fixing condition: hog = 144 if the signature is (—, +) and hyg = d4p if the
signature is (4, +). It fixes two local symmetries of the action: world-sheet diffeomorphisms
and Weyl transformations. The Virasoro constraints read

Gap(Z)(ZAZP +2YZ8) =0, Gap(2)Z2Z% =0, if hap =g , (2.49)
Gap(Z)(ZAZ8 — 7478 =0, Gap(2)Z2ZB =0, if hap=0dus , (2.50)

where ~ denotes the derivative with respect to 7 and the prime ' with respect to o. We

use (2.49) and (2.50)) in chapters |3| and 4 respectively. Second, the static gauge-fixing con-
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dition, which solves (2.48)) directly. E] The Virasoro constraints are solved by identifying the
independent world-sheet metric with the induced metric on the world-sheet:

has = Gap (2) 0220525 . 2.51
3 3

The action (2.47)) is accordingly rephrased as the [Nambu-Goto| (NG) action (plus the
term). The condition (2.51)) fixes hog under Weyl transformations, but not under world-sheet

diffeomorphisms. The static gauge-fixing condition is complete when two target-space space

coordinates are properly identified with 7 and 0. We use the static gauge-fixing condition
in section The conformal and static gauge-fixing conditions provide equivalent classical
actions. The corresponding generating functionals (or partition functions) are equivalent in
the semi-classical limit A\ — oco. It is worth emphasising that the equivalence extends to the
quantum level at one-loop at least [135}/136].

2.2 The classical integrable structure

We devote this section to the classical integrable structure of the permutation-supercoset
model on AdS3 x S? in the mixed-flux regime. In subsection we present the Lax con-
nection on a semi-symmetric space following [95,/137]. We then extend the Lax connection
under flux following [102] and write its bosonic truncation. We refer to these references
for a more thorough discussion. In subsection [2.2.2] we present the monodromy matrix on
a closed-superstring world-sheet along the lines of [95,|137]. We refer to these references for
a more throughout discussion. We close subsection [2.2.2] with an extension of the proposal
of [66] to AdSz x S with flux. (See subsection 2.4 of [138] for a summary of the
proposal of [66].) The method permits to construct a spectral curve for factorised classical
solutions irrespective of their boundary conditions.

2.2.1 The Lax connection

We start from the Lax connection in a supercoset model on a general semi-symmetric space G/H.
The Lax connection is a flat go-valued world-sheet one-form L, where g- be the complexific-
ation of g. The Lax connection L is defined by the fact its flatness condition

AL+ LAL=0, (2.52)

implies both the flatness condition (2.5)—(2.8) and the equations of motion ([2.11))—(2.13]) of j,.

The Lax connection depends on the world-sheet coordinates o® and the complex parameter x,
which is called spectral parameter; in general, L is a multi-valued functions of x. Both
and f follow from the imposition that holds almost everywhere in x. The
series of L around every x generate an infinite hierarchy of conserved charges via the quasi-
momenta, which are related to L through the monodromy matrix (see subsection .

"The Virasoro constraints (2.49)) and (2.50) can be solved in symmetric spaces by drawing on the Pohlmeyer
reduction. The change of variables in the Pohlmeyer reduction is non-local however, which hinders computing
expressions in the initial Z4. See subsection 4.4 of |12] for a summary and references of the Pohlmeyer

reduction in the context of classical solutions on AdSs x S°.
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The Lax connection is obtained by means of an educated guess, which relies on 2 to
write L as a linear combination of j,. The imposition of and the use of f
and f yields an overdetermined system of non-linear algebraic equations for the
coefficients. A one-parameter family of solutions exists if and only if ¢ = 1 is satisfied in
the equations of motion. Recall that ¢§ = 1 is implied by the invariance under x-symmetry
transformations of the action [7]. (We have excluded ¢ = —1 for conciseness and later clarity.)
The family of solutions is parameterised by a coefficient, which is an arbitrary function of x.
The coefficient is fixed by using the analytic structure of the quasi-momenta [60)].

In the end [18], the result is

2
¢+ 1 2z r+1 r—1
L=3i o — jo + 1/ i1+ i3 . 2.53
Jo+x2_1j2 x2—1*‘72+ x_1]1+ $+113 ( )

The Lax connection displays some remarkable properties. First, 2 acts on (2.53)) as

O(L (0®,z)) = L(c®,1/x) . (2.54)

Second, the Lax connection is related to the symmetry algebra. In particular, (2.53)) has a
simple pole at = co, whose residue is related to the Noether current:

res L =k, (2.55)
T=00

where k is (2.14) and J = gkg~! is the Noether current. Note that L then has a simple pole
at x = 0 because of (2.54). Third, (2.53)) has simple poles at x = +1, whose residues are

res L = +(jo F *J2) . (2.56)
r==+1

Fourth, the coefficients of the bosonic components jy and jo are rational functions of zx.
In AdSs x S°, furthermore leads to a set of finite-gap equations that match the ther-
modynamic limit of the Bethe equations of N' =4 theory [61].

The attainment of the Lax connection in the permutation-supercoset model on AdS3 x S3
in the mixed-flux regime parallels the general case [88,102]. The starting point is again a flat
world-sheet psu(2(2)c 1, @ psu(2|2)c, r-valued one-form L, where psu(2|2)¢ is the complexifica-
tion of psu(1,1|2). Being psu(2|2)c,®psuc(2]2)c,r-valued, L admits the decomposition
in left and right components Ly, g € psu(1,1(2); p. By definition, the flatness condition (]m[)
of L implies the flatness condition f and the equations of motion (2.36))(2.38). The
ansatz for L is again a general linear combination of j,. The imposition of and the use
of — and — provides an overdetermined system of non-linear algebraic
equations for the coefficients. A one-parameter family of solutions exists provided that the
constraint holds for ¢ and ¢. Thus, the existence of a Lax connection is equivalent
to quantum world-sheet conformal invariance at one-loop and invariance under k-symmetry

transformations of the action [88]. The family of solutions is parameterised by a coefficient,
which is an arbitrary function of both x and ¢q. The free coefficient is determined by the
following requirements [102]: L matches in the limit of pure flux , the action of §
on L is given by , the residue of L at x = oo provides the Noether current similarly
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to , and the coefficients of jy and jo in remain rational functions of z. In ad-

dition, L must be compatible with the thermodynamic limit of the Bethe equations of the

permutation-supercoset model, which were written in [102] by using the S-matrix of [99].
The Lax connection that fulfils these conditions is the following [102]:

LT G @+ 1/5)" T G —s) @+ 1/s)  PE
r+1 z—1
N . - 2.57
Y S VO M e e Vo =
RO G s @ — 1) G+ s)@—1/s) "
+ 1 -1 .
€T €z ]3,R R (2.58)

e e R Vet 9e - 1/s)

where, recall, ¢ = /1 — ¢2 and
[1—¢q
S =4/ —. 2.59
1+g¢ ( )

The Lax connection has some new properties that are worth mentioning. First, the residue
of (2.57) and(2.58)) at x = oo is corrected by 1/q with respect to (2.55)):

1
res L = -k, (2.60)
q

=00
where k is . The residue at * = oo is not defined in the limit of pure flux.
Second, the simple poles of the Lax connection are shifted from x = 41 in the limit
of pure flux to © = +s and x = £1/s in the mixed-flux regime. The pairs z = s, —1/s
and x = —s,1/s are the simple poles of (2.57) and (2.58)), respectively, whose residues read

. . 1 . .
resLy = s(jo,L —*jo,r),  res Lp=——(jor+*j21) (2.61)
r=s r=-1/s S
. . 1 . .
res Lp = —s(jo,r +*j2,r) » res Lrp = —(jo,r — *jo,R) (2.62)
x=—s z=1/s S

Finally, the coefficients of (2.57) and (2.58]) in map to each other under ¢ — —gq.

The Lax connection degenerates in the limit of pure flux. The limit of pure
flux merges the simple poles x = +sat x = 0 and x = +1/s at x = oo, where ([2.57)) and (2.58])
reduce to

Ly, = jo,r +*ja,1 » (2.63)
Lr = jo,r — *j2,R - (2.64)

Therefore, the dependence of L on both z and the fermionic components of j is lost. E| We
stress that not only the Lax connection but also the Zhukovsky variables that underpin the
Bethe equations of [102] are not defined in the limit of pure [NSNS| flux.

8Reference 88| considers that the degeneration reflects the simplification of the equations of j, into the
equations of motion of the PSU(1, 1/2) [WZNW|model. On the other hand, [102] noted that the degeneration is
not bound to occur if other coefficients for L are chosen, but in this case all the assumptions that lead to
and cannot hold. For instance, footnote 3 of |[102] writes an alternative L that is regular the limit of

pure INSNS| flux at the expense of the degeneration of 1) in this limit.
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We conclude by writing the bosonic truncation of the Lax connection in (2.57)) and (2.58),

which we use in the next subsection. We follow subsection and impose a gauge-fixing con-
dition with respect to local Lorentz transformations of SL(2,R) x SU(2). We then write em-
bedding maps of the principal chiral model on AdS3 x S? as in terms of the SL(2,R) x SU(2)-
valued mapping g. We eventually draw on and to obtain the following gauge-fixed
bosonic truncation of L:

b= . i)&qﬁ DLt ernynat (2.65)
be="7z +qsg;(;q—1/s)‘7'+ fi(erS)fx—l/S) A (266)
whose limit of pure flux is
Li=30+5), (267)
Lg = %(j + %5) . (2.68)

2.2.2 The local spectral curve

We begin with the monodromy matrix of a supercoset model on a general semi-symmetric
space G/H. In order for the monodromy matrix to be definable, a non-contractible loop must
exist in Y. Therefore, we assume that Y is a closed-superstring world-sheet. Since the closed-
superstring world-sheet is cylindrical, it just has one non-contractible loop. (We focus on free
type II superstring theory, where the string-interaction coupling vanishes; closed-superstring
world-sheets have minimal genus, that is they are cylindrical.) The non-contractible loop is
the mapping v : [0, 27] — 3, where 79 = 7(0) = v(27) € ¥ is the base point. Non-contractible
means that v is not homotopic to the trivial mapping onto ~p.

We consider the auxiliary problem d¥ = — LW now, where ¥ depends on both ¢% and =«.
Being nilpotent, d implies the flatness condition . The monodromy matrix is defined as
the Gg-valued function of x that encodes the monodromy of ¥ under its parallel transport
by L along v, where G¢ is the complexification of G.

Therefore, the monodromy matrix is the path-ordered exponential of the Lax connection:

M =&p (- %L) . (2.69)

The monodromy matrix display a definite pattern under various transformations [95,137]. The
monodromy matrix transforms in the adjoint representation of H under gauge transformations,
that is M +— h='Mh. Since L is flat, M defined by any non-contractible loop homotopic to
equals . The monodromy matrix transforms as M — P~1M P under the change of 7o,
where P denotes the path-ordered exponential of L along the simple curve that connects g
and the new base point. Thus, the conjugacy class of M is gauge-invariant and independent
of the shape of v and so they are their eigenvalues. The eigenvalues are isochronous if v is
specified to a space-like section of constant 7. Moreover, the pattern of M under €2 follows

from ([2.54]).
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The diagonalisation of yield the quasi-momenta, whose number equals the rank
of g. The quasi-momenta are single-valued meromorphic functions of the spectral parameter
over a Riemann surface, which is called spectral curve. The spectral curve comprises multiple
cycles and sheets on account of the branch-cuts of the quasi-momenta. The integration of
the meromorphic differential built on the quasi-momenta yield the set of closed-superstring
moduli, which are the action variables of the associated classical solutions. The determination
of the quasi-momenta is a Riemann-Hilbert problem, which is equivalent to the so-called
finite-gap equations: a set of linear integral equations for the density functions of the quasi-
momenta. In appendix @, we review the finite-gap equations of [102] of the permutation-
supercoset model on AdS3 x S? in the mixed-flux regime. In this subsection, we present an
extension of the proposal of [66] to the principal chiral model on AdS3 x S? with flux.
The extension allows us to obtain the local spectral curve in sections and

Reference [66] relied on [65] to advance a systematic procedure to construct a local spectral
curve for factorisable classical solutions. The procedure just draws on the Lax connection,
which is local. The procedure permits to obtain a spectral curve in an open-string world-sheet,
where non-contractible loops may not exist. Locality also circumvents the computation of the
path-ordered exponential in . Moreover, the proposal of [66] leaves out the integration
of an Abelian differential over the spectral curve and the moduli of the solution. In order
for the moduli to be defined, the analytic structure of the quasi-momenta, which is affected
by the boundary conditions, would be required. In spite of their limitations, local spectral
curves can be used to classify classical solutions to some extent.

Our starting point is the principal chiral model on AdS3 supported with [NSNS| flux and
the SL(2, R)-valued embedding map g. We have truncated the background to AdSs as we shall
be concerned with this case in sections and we could have focused on S? analogously.
(Since AdS3 x S? is a direct product, the local spectral curve comprises the local spectral
curve of each space such that they are intertwined by the Virasoro constraints.) Let j be the
AdS3-component of . A string configuration is factorisable if its j fulfils two conditions.
First, either

j(Ta U) - S(U)j(Tv O)Sil (U) ) (2'70)

or

j(r,0) = 8(1)5(0,0)S~ (1) , (2.71)

where S is a SL(2,R)-valued function of 7 in and a SL(2,R)-valued function of o
in . Second, S71dS is a constant SL(2, R)-valued world-sheet one-form. We further
assume that o in or 7 in (2.71)) are defined over [0, 27) since we shall encounter this range
in sections [3.3]and and we also make the assumption because the discussion is simplified.
We specify the procedure to for definiteness; being the steps of the specification to (2.71))
are almost identical.

The truncation to AdSs implies that L is a sl(2,C), & sl(2, C)g-valued world-sheet one-
form and M is a SL(2,C);, x SL(2, C)g-valued matrix. Due to (2.21), both L and M are
decomposed into Ly r € sl(2,C)r,r and M g € SL(2,C)r R, respectively. In the represent-
ation of psu(1,1|2) that we consider (see appendix [B), the components Lz r and My g are
(2 x 2)-matrix-valued. Formulae and relate Ly and Lg to j, respectively.
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We focus on My, for definiteness. If we choose v to be a section of constant 7, we have

21
AQJ::§§3<]€ daLLU@;a)> , (2.72)

where we have kept implicit the dependence on z. Since j factorises, so it does Ly, by virtue
of (2.65)). By using the properties of M under gauge transformations, we obtain

2m
My, = &p (/o doS(o)Lro(T, 0)51(0)>

(2.73)
= S(0) exp(2mA)S~1(27) ,
where A is the following sl(2, C)-valued function of x:
A=Lp, +S719 . (2.74)

Following [66] (see (2.7), (3.1) and (3.2) thereof), we postulate the local spectral curve to be
defined by the polynomial

4
det(y — 2q(z — 8)(z + 1/8)A) = y* — 4¢%(x — s)*(x + 1/s)* det A = y* — Zanx” , (2.75)
n=0
where a,, are coefficients. If we had started from Mpg, we would have obtained up to
the replacement of Ly, by Lgs, in and the replacement of s and —1/s by —s and 1/s
in , respectively.

Our definition deserves some comments. We have removed the poles of L, at x = s,—1/s
(the poles of Lr at x = —s,1/s) to render the local spectral curve algebraic. We have used
the (2 x 2)-matrix form of L, r together with and to write the right-hand side
of as a quartic polynomial. Moreover, we have removed the factor ¢> = 1 — ¢?. This
choice allows us to obtain finite a,, in the limit of pure flux. ]

The definition also allows us to advance some observations. First, A just depends
on Ly, (or Lp) via (2.74). Therefore, is always definable provided that factorisability
holds. This fact permits the definition of a local spectral curve irrespective of the existence
of non-contractible loops on Y. Second, the dependence on ¢ in must be ultimately
deleted because My, g are (pseudo-)isochronous. This property can be used as a cross-check
to validate explicit expressions. Third, the local spectral curve defined by is an elliptic
curve, that is a compact algebraic variety of complex-dimension one whose genus is one.
Finally, locality implies that the correspondence between factorisable classical solutions and
local algebraic curves via is neither one-to-one nor onto [65]. The reason is that the
closed-superstring moduli that discriminate between solutions are not available in a local

9Subsection 3.2.1 of reference [66] also presents a method to determine whether the Virasoro constraints
are fulfilled by looking at a,. Formulae and imply that the method must be rectified under
the presence of [NSNS| flux. We do not inquiry this problem as the Virasoro constraints are always satisfied
by construction in the local spectral curves which we obtain. Moreover, one could in principle use the local

spectral curve to reconstruct ¥ in the auxiliar problem, and g afterwards, along the lines of section 6 of [65].
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spectral curve. Despite the impediment, local spectral curves can still be used to analyse
factorisable classical solutions. We classify in particular factorisable classical solutions by
means of the modular functions of the associated elliptic curve. We review the necessary
background on elliptic curves for sections [3.3] and [4.3] in appendix [E]



Chapter 3

Pulsating strings with Neveu-Schwarz-Neveu-Schwarz flux

The central role of spinning strings in the AdS;/CFT4 correspondence prompted several lines
of research. The connection between closed-string ansatze and effective integrable mechan-
ical systems in AdSs x S® stands out among them [37,38]. The connection is based on the
Pohlmeyer reduction of the coset model on AdSs x S°: since the Pohlmeyer-reduced model
is integrable, integrability should be indirectly reflected in the initial coset model. Mechan-
ical systems enable the systematic construction of classical solutions and their semi-classical
Noether charges in terms of hyperelliptic functions and hyperelliptic integrals, respectively.

Reference [37] first systematised the construction of mechanical systems by means of the
spinning-string ansatz on AdSs x S°. The ansatz reduces the equations of motion of the coset
model on AdSs x S° to those of a mechanical system. It collapses the infinite hierarchy of
higher conserved charges of the non-linear o-model into the finite set of fist integrals of the
mechanical system [47,48]. The spinning-string ansatz is specified in the global coordinate
system of AdSs x S?. Coordinates of the maximal Abelian subgroup of AdSs x S°, the Cartan
coordinates, are proportional to 7. Non-Cartan coordinates are periodic trial functions of o.
The ansatz leads to the sum of the actions of two mechanical systems: the three-dimensional
Neumann systems on AdS5 and S°. The (d+ 1)-dimensional Neumann system consists of d+1
one-dimensional simple harmonic oscillators in a d-dimensional sphere. (The ansatz in $24~!
provides the (d + 1)-dimensional Neumann system; the ansatz in AdSy4_1 rather provides an
analytic continuation of the Neumann system whose oscillators are placed in a d-dimensional
hyperboloid.) The existence of d independent first integrals in involution, called Uhlenbeck
constants, implies the Liouville integrability of the Neumann system.

Reference [38] generalised the spinning-string ansatz of [37] by allowing winding numbers
in AdS5 x S°. The addition of quasi-periodic trial functions of o to the Cartan coordinates
accounts for the winding numbers. These trial functions are cyclic coordinates in the mech-
anical system and eventually generalise the Neumann system to the system. The
system involves an additional centrifugal potential for each oscillator of the Neumann system.
The coefficients of centrifugal potential are the canonically conjugate momenta of the cyclic
coordinates. The Uhlenbeck constants of the Neumann system lift to first integrals of the
system, and, thus, Liouville integrability holds. The system interpolates between
the Neumann and Rosochatius systems. The Neumann system corresponds to vanishing
centrifugal potential. The Rosochatius system corresponds to vanishing harmonic potential.

41
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The Rosochatius system is the model of geodesic motion on a d-dimensional ellipsoid (or its
non-compact counterpart); see, for example, appendix A.1 of [139).

Neither the Neumann system nor the [NR] system incorporate the Virasoro constraints,
which must be imposed to the classical trajectories of the mechanical system. In particular,
the Virasoro constraints impose that the total mechanical energy vanishes and lead to the
dispersion relation of spinning strings. The energy E admits a series in A and the semi-
classical Noether charges. If the total Lorentzian spin S is semi-classical and large, and the
total angular momentum J is negligible in S°, the series of E is non-analytic in A and S. If J
is semi-classical and large, the series of E is analytic in A and J. The coefficients of the series
involve, apart from the semi-classical Noether charges, the winding numbers and the mode
numbers that follow from the periodicity of the non-Cartan coordinates.

Reference [38] noted that the interchange of 7 and o in the spinning-string ansatz leads
to the system that follows the pulsating-string ansatz. Harmonic frequencies map to
winding numbers. The Noether charges are just proportional to the momenta of the cyclic
coordinates and determine the centrifugal potential. This advantage over the spinning-string
ansatz is counterbalanced by the automatic fulfilment of periodicity in . No mode numbers
can be defined. The impediment renders the Bohr-Sommerfeld quantisation necessary [49].
The energy E of pulsating strings admits series in A and the semi-classical and large adiabatic
invariant N. If classical solutions do not pulsate in S°, the series of E is non-analytic in A
and N [49]. Otherwise, the series of E is analytic in A and N otherwise [44[49./50]. []

The relationship between closed-string ansatze in AdSs x S° and mechanical systems raises
the question of its realisation on other AdSz;i-backgrounds, AdSs x S? C AdSz x S? x T4
withﬂux in particular. The deformation is expected to be integrable on the basis of [96],
which presented the Pohlmeyer reduction of the permutation-supercoset model on AdSz x S3
with mixed flux. (The analysis of [96] is an extension of the results of [142] in the limit of
pure flux.) The spinning-string ansatz of [38] enabled [143,144] to obtain the integrable
deformation of the system by flux. The system of [143,/144] comprises the spinning
strings considered earlier, see subsection 2.3 of [101] and section 7 of [102]. The flux
does not break Liouville integrability. If the mode number vanishes, F admits a series in
the semi-classical and large Noether charges [143]. The coefficients of the series involve the
parameter of the flux apart from the semi-classical Noether charges and the winding
numbers. The series simplifies in the limit of pure flux, where the dispersion relation is
exactly computable. The limit of pure flux permits to compute the dispersion relation
exactly even for non-vanishing mode numbers [144].

The results of [143}]144] raise the question of whether other classical solutions on AdSg x S3
with mixed flux that are analysable by similar techniques but whose dispersion relation is more
tractable exist. In this chapter, we analyse pulsating strings on AdS3 x S? in the mixed-flux
regime and in the limit of pure [NSNS| flux. The chapter has the following structure. In
section we rederive the integrable deformation of the system of [143,/144] by using the

'Reference [140] proved that the supercoset model on AdSs x S® admits a Pohlmeyer reduction. Therefore,
mechanical systems can be argued to exist beyond the bosonic truncation of AdSs x S°. As a matter of
fact, |[141] constructed the integrable system of the SU(1|1) sector of AdSs x S°.
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pulsating-string ansatz. In Section we analyse pulsating strings on AdSs x S C AdS3 x S3
with [NSNS|flux. In subsection [3.2.1] we construct classical solutions in the mixed-flux regime.
We write a closed formula for the dispersion relation of pulsating strings on the basis of
considerations on the SL(2,R) model. In subsection we retrieve the pulsating
strings of the SL(2, R) [WZNW|model of [93] by Maldacena and Ooguri. We recover the short-
string and long-string classes of [93] in the limit of pure flux of subsection In
section [3.3] we follow subsection [2.2.2]to construct the local spectral curve of pulsating strings
of section which is an elliptic curve. We write the mapping to the local spectral curve of
minimal surfaces of section In the limit of pure flux, we prove the singularisation
of the elliptic curve and classify classical solutions.

This chapter is based on [P1]. E| For background material on the connection between
closed-string ansatze and mechanical systems, we refer to [10,|12]. We refer to [101,{146-148§]
for the deformation by flux of giant magnons. We refer to [146,149-153| for deformed
generalised folded strings. We refer to [154-160| for the deformed (m,n)-strings .

3.1 The deformation of the Neumann-Rosochatius system

In this section, we construct the integrable deformation of the system by flux. We
use the pulsating-string ansatz and formally obtain the same mechanical system as the one
of |143}144] for spinning strings. We illustrate illustrate the method of [P6] by rederiving the
Uhlenbeck constant. We also comment on the scope of the method.

Our starting point is the global coordinate system (C.6) and (C.10) of AdS3 x S? with
flux. The metric and the B-field read (C.9) and (C.13)), and (C.19) and (C.20), re-

spectively. The pulsating-string ansatz consists of the trial functions

coshp =2z9(r), sinhp=2z (1), t=70(r), v=70I(r)+ko,

cosf =ri(r), sinf=ro(r), ¢1=0a1(7)+mio, ¢2=as(T)+meo,
where k1, mq € Z are winding number, and z, and r, are constrained by

— =1, (3.3)

1"%—}—1"%21.

Periodic boundary conditions on ¢ hold because k1, m, € Z. Note that ¢ has no winding
number on account for the definition of AdSs as the universal cover of SL(2, R).

If we impose the conformal gauge-fixing condition hag = 1,3, and consistently
truncate the equations of motion of the Polyakov action . The truncation follows from
the action of an effective mechanical system whose coordinate along the temporal direction

?Reference [P1] and sections and build on the seminal content of subsection 3.5 of [145]. We correct
and clarify [P1] in this chapter. We also use the chapter to address some issues. We use section to illustrate
the method to compute Uhlenbeck constant proposed in [P6] in the trivial case of [143][144]. We use section [3.2]
to complement our analysis of local spectral curves of section [3.3] with explicit solutions. In subsection [3:2.2} we
make more precise the analogy of pulsating strings and minimal surfaces of subsection [£.1.2] and we introduce

the class of solutions of constant radius that reappear in subsection @
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is 7. The Lagrangian of the truncation of the equations of motion follows from the introduction

of (3.1) and (3.2)) into (2.47). It reads

277““ i+ 226 ) — k322 — 2qk, 2380 — A1 (— 2+ 2 +1)
(3.5)
+ ) (P2 + riad — mZrl) + 2qr3(madn — macy) — Ao(rf + 15 — 1)

a=1

where n°0 = —p!' = —1, and the Lagrange multipliers A; and Ay impose (3.3) and (3.4)),
respectively. (In the Hamiltonian formalism, and are second-class constraints [37].)
The Lagrangian realises the integrable deformation of the system of [143}/144]. If we
introduce and in , the Virasoro constraints reduce to

1

ot + 2280 + ki +Zr + (a2 +mra] =0, (3.6)
a=0
‘ 2
k12261 + Zmargda =0. (3.7)
a=1

We do not write the equations of motion of r, and z, (see equations (8)—(11) of [P1]). We
just note that they are independent. The sets z, and f§,, and r, and «, are just intertwined
through the Virasoro constraints and . Moreover, the generalised coordinates [,
and « are cyclic in . Therefore, their associated canonically conjugate momenta

ug = =230 — qz7k1 (3.8)
uyp = Z%Bl s (39)
v) =134 + qrimy (3.10)
vy = T%dg — qr%ml . (3.11)
are conserved. If we invert (3.8)—(3.11)), we obtain
: ug + qklz%
By = -2 IEL (3.12)
0
. u
b=, (3.13)
1
2
4 = L 12me (3.14)
1
2
G = Uﬁrq# . (3.15)
2

The momenta ((3.8)—(3.11]) are proportional to the energy E, the Lorentzian spin S; and the
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angular momenta J,, respectively:

E = /27r do— = —V g, (3.16)
S1_/0 4023 = Vug (3.17)

5@0
2 \/»
J1 = do— = Vv, 3.18
' /0 U&Pl ! (3.18)
27
Jo = da——\fv 3.19
? /0 02 2 (3.19)

The Noether charges are, in principle, semi-classical, that is O(ﬁ) We also introduce the
total angular momentum J = J; 4+ J, for later convenience.
The Hamiltonian H associated to (3.5)) is H = Hy + Ha, where

1 . ) ug + qk122)%2 u?
Hi =3 _z§+z%+z%k%——( 0 521 DA 1+A1( R2+224+1)] (3.20)
0 2]
2 212 212
1 : (v1 — gmar3) (v2 4+ gmar3)
=5 [Zl(rgwgmgH 2 2+ 2 2+ Ao(ri+rd-1)| . (3:21)
a=

We have not introduced the momenta of z, and r, because they are just z, and 7, respectively.
Both H, are conserved on their own due to the independence of their Hamilton equations.
The functions H; and Ho are the Hamiltonians of an integrable deformation of the two-
dimensional [NR] system over a circumference and a branch of a hyperbola, respectively. Both
mechanical systems have three first integrals, (the Hamiltonian or , the pair
of momenta and , or and ) for four generalised coordinates with one
constraint. We deduce that each mechanical system is separately integrable. The Virasoro
constraints force the classical trajectories of and to represent pulsating strings,
as they guarantee classical world-sheet conformal invariance.

Integrability of the (d 4+ 1)-dimensional undeformed Neumann system (recall that d + 1
denotes the number of non-cyclic coordinates subject to one constraint) follows from the
conservation of d independent first integrals: the Uhlenbeck constants [37]. The integrability
of the (d 4 1)-dimensional system follows from the d + 1 conjugate momenta of the
cyclic coordinates and d enhanced independent Uhlenbeck constants [38]. The Uhlenbeck
constants of the [NR] system are in fact a degenerate limit of the Uhlenbeck constants of the

2(d + 1)-dimensional Neumann system [38]. Given a deformation of the (d 4 1)-dimensional
[NR] system that preserves the cyclicity of d + 1 generalised coordinates, integrability can be
proved by obtaining a deformation of the Uhlenbeck constants. This goal can be achieved,
for instance, by using an ansatz for the deformation [144}161] or by drawing on the deformed
Lax connection [139,/162]. The mechanical system of and is two-dimensional,
and, hence, the Uhlenbeck must be proportional to the Hamiltonian. We can compute them
using the procedure proposed in [P6] in this rather trivial example.

First, we must solve the constraints and in the limit of pure flux. The

step is equivalent to the restriction of the coordinates of the phase space to the constraint
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submanifold, and it is accomplished by using the initial coordinates # and p in (3.1). The
step removes A1 and Ay from (3.20) and (3.21]), respectively.

Second, we must consider the Uhlenbeck constants. We denote the pairs of Uhlenbeck
constants of the [NR] systems of H; and Hy by Fy and Fi, and I; and Iy, respectively. The
Uhlenbeck constants satisfy the constraints [38,144], which read

1

H, = 5(lngl —ud—uy), —-Fp+F=-1, (3:22)
1

Hy = S(mih +mih+vi+03), h+h=1. (323)

Note that the vanishing winding number of ¢ implies the absence of Fj in H;. We assume
that k7 does not vanish, which implies that the world-sheet has extension in AdS3. We also
assume that m? differs from m3, which implies that the world-sheet has extension in AdSg. If
these conditions were not satisfied, we would confront a degenerate point-like case of the [NR]
system connected to the Rosochatius system; see (2.12) of [162]. If we invert (3.22)) and (3.23]),
we obtain

2H; + ud + u? — k3

Fo= , (3.24)
ki
2Hy + uf + u?
Fi=— +];O . ) (3.25)
1
Oy — m2 — 02 — 2
e L ) (3.26)
my —m3

2Hy — m2 — v2 — 02
=" A 12 (3.27)

my —my

Since each H, is conserved, so they are the associated Uhlenbeck constants.
Given a deformation of the two-dimensional system that preserves both the cyclicity
of two coordinates and the conservation of the Hamiltonian, we can derive the Uhlenbeck

constants if we assume that (3.24)—(3.27)) still holds. In the case of (3.20]) and (3.21]), formu-
lae (3.24)—(3.27) provide

1 . . 22 22
Fo=(1-¢%22+ el (2041 — 2120)% + (uo — qk1)* 5 +ui=5 + ¢°K7 |, (3.28)
1 20 <1
2y .2 1 . 2 \2 22% 223
Fi=0-q%)2+ 2 (2041 — 2120)" + (uo — qk1)* = +ui— |, (3.29)
1 20 21
I = (1= g2rd = ——— | (e — ra1)? + (01 — qmz)2ﬁ + (v2+ qml)Qﬁ
! m% - m% 7“% 'r‘%
+2qmvg — ¢*(m3 — m%)] : (3.30)
b= (= @~y [ — 1o (01— qma) 2 + (g + g )21
= — T T1T9 — T9T V1 — gm -y v m -y
2 q )T m% — m% 172 271 1 — gma r% 2 T qmy r%

+2qm1v2] - (3.31)
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which match, up to the sign of ¢ and some constants, (2.24) and (4.14) of [144].

We emphasise that the application of the method of [P6] is merely justified by complete-
ness. We could have used the Hamiltonian. However, we note the the scope of the method
of [P6] is not limited to deformations of the two-dimensional system. The method is in
principle applicable to integrable deformations of the (d + 1)-dimensional system that
preserve the ciclicity of d + 1 coordinates. The procedure there would start from all the pos-
sible consistent truncations of the deformed system to one dimension, where the previous
steps are applicable. Next, the pairs of Uhlenbeck constants of each mechanical system would
be uplifted to the (d + 1)-dimensional system by demanding the compatibility among
different truncations. The method, which is entirely algebraic, should permit to avoid the
cumbersome steps that arise in the alternative approaches of [139(144,161.[162]. We emphasise
that this approach does not guarantee that the deformation of the Uhlenbeck constants of the
deformed (d+ 1)-dimensional system are in involution, and this property must be studied
separately. However, the problem is superfluous in the deformation of the two-dimensional
system, where just one independent first integral exists.

Formulae f allow us to reduce of the equations of motion of the model to
a couple of independent first-order ordinary differential equations. These equations can be
conveniently parameterised by coordinates that solve and . These are the ellips-
oidal coordinate ( if the oscillators are confined to a circumference and the hyperboloidal
coordinate p if they are confined to the branch of a hyperbola. Formulae f are
rational functions of ¢ and u. In the end, f provide simple equations of motion
that involve a cubic polynomial ( and p. Even though the polynomial roots are intricate, the
solution is formally available; see (23)—(27) of [P1]. We can write tractable expressions if the
mechanical system is truncated consistently. We adopt this approach in the next section.

3.2 Pulsating strings on AdS3 x S!

In this section, we analyse and construct pulsating strings on AdSz x S' € AdS3 x S? with
flux, where S' is an equator S3. In subsection we write the solutions together with
their dispersion relation in the mixed-flux regime. Our results generalise under [RR] flux the
pulsating strings of the SL(2, R) [WZNW|model constructed in section 2 of |93] by Maldacena
and Ooguri. To write the dispersion relation we draw on considerations on the SL(2,R)
(WZNW| model. In subsection we connect subsection with [93]. We retrieve the
short-string and long-string classes and the threshold between them. We use elliptic integrals
and Jacobian elliptic functions in this section. Our conventions, together with properties and
formulae, are collected in appendix [F]

3.2.1 Pulsating strings in the mixed-flux regime

First, we must truncate consistently. Since the equations of motion of are divided
into two independent sets, we can truncate the ansatz to AdS3 x S! by finding a solution
to the equations of motion along S' C S3. The solutionisr =1, ry =0, oy = wr, and ay = 0,
for instance. The total angular momentum J is proportional to w through J = v Aw, see (3.18)
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and . The truncation of the pulsating-string ansatz represents the degeneration of the
world-sheet inside S, where it is a geodesic that surrounds S® along a great ring. We thus
obtain the geodesic motion of the Rosochatius system in S?, whose Hamiltonian is Hs in
with mqy = mo = 0.

The Virasoro constraints (3.6) and (3.7)) simplify to

. ug + qky22)? . u?
zg—i-—( 0 q21 1) :z%+%+kfzf+w2, (3.32)
0 A1
u1k1 =0. (333)
Equation (3.32) provides the dispersion relation. Equation (3.33|) implies either u; = 0

or ky = 0. If k; = 0, we would have a degenerate world-sheet which is a geodesic in AdSs.
Therefore, we must set u; = 0. In subsection [3.2.2] we shall connect the geodesic motion
in AdS3 of k1 = 0 with solutions with k1 # 0 via the spectral flow of the SL(2,R) [WZNW]|
model.

We follow [144] now and define the hyperboloidal coordinate u by

2 2
SRy AL, (3.34)
poop—ky
or, equivalently, by
2
2 M 2 — kY
20=1"5, 2= (3.35)
0 k'% 1 k%

The positivity of the hyperbolic radius p > 0 in (3.1)) implies > k?. The hyperboloidal
coordinate satisfies

4 . . N2
o = (2041 — z140)" 3.36
Ap(p — k7) ( ) (3.36)

If we use (3.35) and (3.36)) in, for instance, the expression of Fy in (3.29)), we obtainlﬂ
2 = —4(n = k)(@0* + [(uo — gk1)* — (F1 + @)kilp — (uo — qk1)?k7)
=447 (13 — 1) (1 — p2) (1 — 1)

(3.37)

where we have used ¢ = /1 — ¢? for compactness. The roots p, of the cubic polynomial read

(F1 + %)kt — (uo — qk1)? — \/[(Fl + @Akt — (uo — gk1)?]* + 4% (uo — gk1)?k7

H1 = 262 )
oo = K2, (3.39)
(Fy + @®)k? — (up — qk1)? + \/[(F1 + k3 — (up — qk1)?)? + 432 (up — qk1)%k3
3 = = :
2¢?

3 Equation defines an elliptic curve. It would be then possible to analyse the solutions to by
using the quantities of appendix [E} In this section, we solve directly instead. We defer the construction
of an elliptic curve for pulsating strings until section [3.3] where we rely on subsection [2.2.2] We prefer the
curve of sectionover the one defined by because of two reasons. First, in section we just need a
coordinate system wherein pulsating strings are factorisable, not a privileged coordinate system. Second, the
curve of elliptic section [3-3] relies on the spectral parameter, which is independent of the coordinate system,
whereas the curve of is defined by u itself. The same argument applies to in subsection m
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We consider the limit of pure [RR] flux and the mixed-flux regime first, where 0 < ¢ < 1.
The roots g are finite. Equation implies that F; > 0. The roots are arrayed in
the hierarchy p; < po < ps. Furthermore, they satisfy pp < 0 and 0 < pg < pg. Since p is
real and subject to pu > k? = po, implies that p belongs to po < p < ps. This bound
implies that p can be either constant or non-constant.

We assume that p is non-constant first. We can solve by an integration and a
subsequent inversion. If we use , we obtainlﬂ

= g L2 s 1 ) iy — ) (3.39)

where sd(z,m) is defined in (F.35)), the elliptic modulus is

p= M3 H (3.40)
w3 — p2

and we have set the integration constant to zero. Note that the u; < ps < ps implies that &
belongs to the fundamental domain: 0 < x < 1. Solution (3.39) periodic on 7 due to (F.43).
The period is

2K
L= _ () , (3.41)
V(1 —¢)(us — )
where K(m) is defined in (F.2). The bound pue < p < ps is respected because of (F.51)).
The behaviour of the pulsating string is the following. The world-sheet of the solution is

confined within a finite region of AdSs because the hyperbolic radius p is bounded. Inside
this region, the pulsation occurs. Consider one pulsation. The solution (3.39)) collapses to
the centre of AdS3 at p = 0 when 7 = 2nL, with n € Z. The more 7 increases, the more the

radius of the solution (3.39)) increases. The maximum radius py = arcsinh(y/us — k2/|k1|) is
reached at 7 = (2n + 1)L. The radius of the solution ([3.39) then decreases until it collapses
again at p = 0 when 7 = (2n + 2)L. Each pulsation corresponds to a lobe in the world-sheet.

The world-sheet consists of a concatenation of the lobes linked at the end points.
Equation (3.37) also permits to write ¢ = By in (3.12]) through a direct integration. For-

mula (F.27)) leads us to

 (uo — gk1)k + qklmT
1

(w0 — gk1) (K — )

/(1= %) (us —

where II(z,n,m) and am(z, m) are defined in (F.6) and (F.32)), respectively, and the elliptic
characteristic reads

t =
(3.42)

11 (am(y/ (0 ) s ) ),m)

U= (ps = p2)p1 (3.43)

(p3 — pa)pe

4Pulsating strings in the mixed-flux regime were also constructed in [163]. The difference between [163] and
this section is the treatment of the dispersion relation and limit of pure [NSNS| flux of pulsating strings. If we
identify Ry = us/ki—1, R_ = p1/k? —1 and m = k; in [163], we retrieve our expressions, in particular |D
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Note that v < 0. The pulsations are isochronous with respect to t. The target-space period T’
elapsed in one pulsation is

2|(uo — gk1) (K — p)II(v, k) + [(uo — gk1)kT + ghr ] K(»)]
v/ (1= ¢2)(uz — 1)

T=— (3.44)

)

where II(n, m) is defined in ([F.6)).

Consider the case where p is constant. The right-hand side of must vanish identic-
ally. Since ¢ < 1, either u = k? or u = p3 must hold. If u = k?, the world-sheet collapses
at p = 0. There is a polar coordinate singularity at p = 0 in the global coordinate system,
where v is not defined. If we set p = 0 and k1 = 0 in , we obtain t = —ug7r. The
pulsating string collapses to the [BMN] vacuum: a point-like solution whose world-sheet is a
null geodesics along direction of ¢ at the centre of AdS3 that surrounds S? along an equator.

If 4 = pg3, the hyperbolic radius is non-vanishing and constant: py = arcsinh(y/us — k%/|k1]).
It follows from t depends linearly on 7. The solution does not pulsate; the world-sheet
is a cylinder of constant py. We emphasise for later convenience that, given the parameters
that determine p, in , the value of pg > 0 is unique.

We can write the dispersion relation of pulsating strings on AdS3 x S! with flux in
a closed form. The closed form extends the results of [93] beyond the limit of pure flux.
We begin with solutions of non-constant u. The mechanical system has three first integrals, H;
and ug, for four generalised coordinates with one constraint. Formulae and
states the proportionality between u, and the Noether charges: E = —v/Aug and S1 = vV Auy.
The Virasoro constraints (3.32)) and (3.33) are alien to the mechanical system and must be

imposed to classical trajectories. Equations (3.17)) and (3.33]) imply S; = 0. Equation (3.32))
implies H; = J?/), and, therefore, it implies the dispersion relation.

The mechanical model has three independent first integrals, but we have just identified
two closed-string moduli, namely E and S;. To write a sensible dispersion relation, we
must identify an additional modulus. As opposed to spinning strings, periodicity on o does
not supply the mode number of pulsating strings. Omne convenient choice of modulus is
the adiabatic invariant IV that follows from the quantisation of the action variables of the
mechanical system [49,50]. This approach was adopted, with J = 0, in section 3 of |163]
and subsection 4.4 of [164] near the limits of pure flux and flux, respectively. The
resultant dispersion relation is not closed however.

We adopt an alternative approach. First, we make some preliminary observations on
the SL(2, R) [WZNW|model [93|. The world-sheet CFT5 has different spectrally flowed sectors
that organise the unitary irreducible representations of the current algebra and the spectrum
of energies. These representations are built on representations of SL(2, R) spanned by zeroth-
level generators; see subsection 4.1 of [93]. The zeroth-level generators realise the unitary
irreducible representations of the principal discrete series, called short-string representations,
and the principal continuous series, called long-string representations. Short-string repres-
entations are labelled by the Casimir invariant co = —I(l — 1), where [ € R. Unitarity holds
if 1/2 <1 < (k+1)/2; see appendix C of [165]. Long-string representations are labelled by
ca = —Il(l — 1), where [ = 1/2 4 is. Unitarity holds if s € R.
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If & — oo, the Casimir invariant appears at the semi-classical level: ¢y ~ k? — oo.
The Casimir invariant turns out to appear in the ratio a? = +4cp/k?, where + and —
correspond to short-string and long-string representations, respectively. The quantity Fka?/4
is the on-shell energy-momentum tensor of the point-like strings of short-string representations
(corresponding to —) and long-string representations (corresponding to +). Point-like strings
give rise to pulsating strings under spectral flow. The spectral flow maps « to the frequency
of pulsating strings. The frequency is the analogue of the mode number of spinning strings.

We argue that we can use a beyond the limit of pure flux by the following argument.
The formalism (specifically, in closed-superstring field theory; see [164] and references
therein) corresponds to a non-local deformation of the world-sheet CFTy that is treated per-
turbatively. The Hilbert space does not contain long-string representations since the [RR]flux
spoils their unitary [165]. The Hilbert space however contains short-string representations,
at least from the perturbative point of view. Then « is a meaningful closed-string modulus
in the mixed-flux regime for short-string representations when A — oc.

In sum, we use «, the frequency of the pulsating string, to derive the dispersion relation.
If we look at , we deduce that

ot = @P(pz — ) = [E2(FL + ) — (uo — qk1)?) + 4¢% (uo — qk1)?k3 . (3.45)
If we use the expression of F} in (3.29)) and (3.32), we end up with
A(uo — qk1)*kf + 4k (kf — w?)(uo — gk) + (kf —w?)? —a' = 0. (3.46)

This equation is a quadratic algebraic equation for ug. If we solve the equation for ug and

use (3.12)), we obtain

E = —;ﬁ [q (k%Jr‘f) F %4—(;2 (k% - J;)] : (3.47)

The dispersion relation corresponds to pulsating strings of (3.39)) and (3.42]).
If the solution has constant p, « is not definable. We need to obtain the dispersion relation
separately. If u = k?, we have zg = 1 and 2z; = 0. If we use (3.32), we obtain

E=1J|, (3.48)

which is the dispersion relation of states in AdSs x S°, see (1.4).
If u = ps, we have instead zg = cosh pg and z; = sinh pg. We decide to express the
dispersion relation in terms of py (even though is not a sensible closed-string moduli). If we

use (3.32)), we obtain

2
E =\ (qlﬁ sinh? pg T \/k% sinh? pg + JT cosh po) ) (3.49)

The dispersion relation, as written in (3.49)), will allow us to clarify the limit of pure NSNS
flux. In particular, it will allows us to justify the enhancement of the class of solutions
with constant pg.
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Some observations are in order. First and foremost, (and as well) involves two
branches if the radicand does not vanish. We keep both branches as the limit of pure [NSNS|
flux gives rise to two classes of pulsating strings. Each class corresponds to one sign of .
The threshold between them corresponds to the case of vanishing radicand. Since the [RR]flux
destroys the unitarity of long-string representation [92,(165], the positive branches of
and are nonetheless likely to be forbidden. (The exclusion is qualitatively supported
by the behaviour of pulsating strings in the mixed-flux regime: classical solutions of short-
string representations display bounded pulsations in AdS3 as opposed to classical solutions
of long-string representations.) Second, the dispersion relation does not automatically
correspond to pulsating string sourced to vertex operators that are primary operators. The
property is satisfied if the Noether charges of the generators of SL(2,R) that lie outside
the Cartan algebra vanish [30]. If we wrote the action in terms of , applied
the Noether theorem and used the pulsating-string ansatz , we would obtain that the
condition holds. Third, neither nor display thescaling in the semi-classical
limit J ~ v A — 0o with A/ J? fixed and small; see (|1.10). The violation scaling is a
consequence of the introduction of « in and pg in . If a semi-classical adiabatic
invariant N were introduced [49], the appropriate Scaling could be recovered if N and J
scale properly. Finally, the dispersion relation should hold in A — oo, where it could
receive corrections under quantisation. Corrections indeed arise in the limit of pure
limit; see (75) and (80) in subsection 4.4 of [93].

3.2.2 Maldacena-Ooguri pulsating strings

We focus on the limit of pure flux now, where ¢ = 1. We can apply the limit from
the outset in . We can also apply the limit to , , and the dispersion rela-
tion . We choose the last point of view because it makes clear the connection with the
mixed-flux regime. The results are the same irrespective of the starting point. We focus on
solutions with non-constant u and analyse the solutions with constant u in the end.

Pulsating strings in the limit of pure flux fall into two classes separated by a
threshold. The classes are called short-string class and long-string class and are associated
to short-string and long-string representations, respectively. The limit of pure flux
reduces to a quadratic polynomial. Since p, must respect pu; < po < us, either ug
or 13 must diverge. The sign of (ug—k1)?—k? Fy dictates which root diverges. The short-string
class corresponds to (ug — k1)? > k2Fy, where pu1 diverges; the long-string class corresponds
to (up — k1)? < k?Fy, where pu3 diverges. The point (ug — k1)?> = k?F; corresponds to the
threshold, where both p; and ps diverge. The limit of pure flux reduces (3.37) to a
linear polynomial in the threshold.

The classical solution reflects the degeneration of as the reduction of and
to trigonometric and hyperbolic functions in the short-string and long-string classes, respect-
ively. In the threshold,(3.39)) and reduce to polynomials. We note that (ug—k;)? — k‘%F it
for pulsating string is analogous to k% —2kp for connected minimal surfaces in subsectionm
the sign of k? — 2kp discriminates between two different classes in limit of pure flux. In
section we bear the analogy out by writing the map between the local algebraic curves
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of pulsating strings and minimal surfaces.
Let (uo — k1)? > k?Fy, which corresponds to the short-string class. If we apply the limit

of pure NSNS/ flux to (3.38)), we obtain

_ ]{71)21{32
S = k2 __(uo L 3.50
M1 oo, U2 15, M3 (UO — k1)2 _ k%Fl ( )

The elliptic modulus (3.40|) vanishes: x = 0. If we use (F.55)), we obtain that (3.39) is

kiF
_ 1.2 141 2 _ 2 _ 12
w=ki+ (o — k)2 — 12 F sin (\/(uo k1) k:lFlT) . (3.51)
The frequency is
o = \/(’LLO — k‘1)2 — k‘%Fl y (3.52)

consistently with (3.45)). Formula (3.51) implies that the period L simplifies to
L= T . (3.53)
\/(UO — k1)2 — k%Fl

This formula also follows from the introduction of (F.16)) in (3.41)).
The behaviour of the pulsating string in the short-string class is analogous to that in the

mixed-flux regime. The world-sheet consists of a chain of lobes confined within a finite region
of AdSs. Each lobe corresponds to a pulsation. The hyperbolic radius p is bounded, and the
maximum radius of the solution is

k2Fy
= arcsinh - : 3.54
po = arcsin <\/(u0 R R 1) ( )

Moreover, (3.42)) simplifies to

t = —k17 — arctan o — k1 tan <\/(u0 —k1)? — k%FlT) , (3.55)
\/(U() — k1)2 — ]{Z%Fl

where we have used that the elliptic characteristic (3.43|) reduces to

kIR
(’LLQ — k1)2 — k%Fl ’

v = —sinh py = — (3.56)
and also (F.15)) and (F.52)). Each pulsation is isochronous with respect to ¢t and the target-

space period is

k
T = 1 + (3.57)

\/(U(] — k1)2 — k%Fl

which follows from (3.42)) once we use (F.16) and (F.18].
We rephrase (3.51) as sinh p = sinh pg| sin(a7)| now, where pg is (3.54)) and (3.55)) is

tan(—k17) + cosh pg tan(ar)

tant = (3.58)

1 — cosh pg tan(—k;7) tan(at)
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We have introduced the redefinition « — —sign(ug—k1)a, irrelevant to the dispersion relation.
If we identify ¢ = —¢ + 7/2 and k1 = —w, where w is the spectral-flow parameter, E| we
reproduce (34) of [93] (up to the replacement 1/coshpy — coshpy). The upshot of the
identification is that pulsating strings in the short-string class are generated by the time-like
geodesic at centre of AdSs, that is the BMN] vacuum under spectral flow.

If we apply the limit of pure flux to the negative branch of , we obtain

k 1 [J?
petas k(-] 550

where we have used 1} to write VX = k. If we identify k; = —w and J = V/4hk, this
expression agrees with (33) of [93] (up to the replacement of a? — (1/2)a?). Formula
is the dispersion relation of pulsating strings in the short-string class.
Let k2 F) < (ug — k1)?, which corresponds to the long-string class. The application of the
limit of pure flux to (3.38) provides
(uo — k1)*k7

= — =k? = . 3.60
M1 k%FI — (UO — k1)2 y M2 15 M3 &% ( )

As opposed to the short-string class, the elliptic modulus (3.40) becomes one: k = 1. Accord-
ing to (F.59)), the expression (3.39)) reduces to

k{Fy
]{I%Fl — (Uo — k1)2

=k 4+

sinh? (\/k2Fy — (ug — k1)27) . (3.61)

The solution (3.61]) is unbounded, consistently with the divergence of i3, and aperiodic. To
define the frequency «, we apply the limit of pure [NSNS| flux to (3.45)). We obtain

o = \/k‘%Fl — (UO — k1)2 . (3.62)
Moreover, aperiodicity is reflected in the divergence of (3.41]). If we use (F.22)), we are led to
L=c. (3.63)

The behaviour of the pulsating string is the following. The world-sheet of the solution is
unbounded in AdS3 because the hyperbolic radius p is unbounded. Just one pulsation occurs.
The solution collapses at the centre of AdSs at p = 0 when 7 = 0. Since the growth of p
is not bounded, increases indefinitely until it reaches the conformal boundary of AdS3
at p = oo when 7 = 0co. The reverse situation holds between 7 = —oo and 7 = 0: starts
from p = oo and collapses at p = 0. Therefore, the world-sheet consists of two half-lobes
connected at the centre of AdSs.

To write , we have relied tacitly on the choice of the integration constant in (3.39)).
We could have shifted 7 +— 7 + K(k)/v/(1 — ¢2)(us — 1) in (3.39) without further con-
sequences. However, if we had applied the limit of pure flux to , we would have

5 The equality w between k; is rather accidental and just concerns pulsating strings. The spectral-flow

parameter w in general just labels spectrally flowed sectors in the world-sheet CFT4; see section 3 of [93].
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obtained p = oo instead of . The seeming inconsistency is a consequence of the loc-
alisation of p in the region where reaches the boundary of AdSs, instead of in the
region where traverses the bulk of AdS3. We encounter an analogous situation in
subsection where we need to fix properly the integration range to construct connected
minimal surfaces with k2 — 2kp > 0 in the limit of pure flux.

Moreover, (3.42)) reduces to

ug — k1
\/k‘%Fl — (U() — /6‘1)

t = —kiT — arct tanh (\/k?F; — (ug — k1)? , 3.64
1T — arc an( 5 an (\/ 111 (uo 1) 7)) ( )

where we have used that elliptic characteristic (3.43|) simplifies to

o (ug— k)
k‘%Fl — (UO — k1)2 ’

(3.65)

V=

together with ([F.21) and (F.56)). The motion is no longer isochronous, but involves one
everlasting pulsation. Therefore, the target-space period diverges:

T =00, (3.66)

as also follows from the application of (F.22) and (F.24)) to (3.44]).
To match [93], we must reword (3.61)) and (3.64). Let sinh p = cosh po|sinh?(ar)|, with

—k
po = arcsinh [uo — k| , (3.67)
\/k‘%Fl — (UO — k1)2

and (3.64)) as

tan(—k17) + sinh pg tanh (—sign(uo — kl)\/k%Fl — (up — k1)27’)

tant = , (3.68)

1 — sinh pg tan(—k17) tanh (—sign (uo — k1) \/k%Fl — (up — k1)27'>

where we have introduced the redefinition o — —sign(ug — k1)a again. Note that pgy in
is not the maximum radius since is unbounded. If we identify ©» = —¢ and k1 = —w, we
match (44) of [93]. The upshot is that pulsating strings in the long-string class are generated
by space-like geodesics in AdS3 under spectral flow.

If we apply the limit of pure flux to , we are led to

: (3.69)

where we have replaced v/A by k by virtue of (2.41). If we identify k; = —w and J = v/4hk,
we recover equation (40) of [93]. The dispersion relation (3.69) is the dispersion relation of
pulsating strings in the long-string class.
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Let (ug — k1)? = k?Fy, which corresponds to the threshold between the short-string and
long-string classes. If apply the limit of pure [NSNS|flux in (3.38)), we obtain

p1=—00, pp=k?, puz=oc. (3.70)
The coordinate p in (3.39) now reads
p= K+ k3 (up — k1)*r? (3.71)

which is retrievable from both (3.51)) and (3.61)). The expression (3.71) is bounded and
aperiodic. The limit of pure NSNS flux of (3.45) vanishes:

a=0. (3.72)
Aperiodicity is reflected in the divergence of the period:
L=c. (3.73)

The behaviour of the pulsating string is similar to that present in the long-string class. The
world-sheet reaches the boundary of AdSs at p = oo when 7 = +oo. Moreover,
simplifies to

t= —1{317' . (374)

Hence, the target-space period is infinite:
T = o0. (3.75)

Solution (3.71) and (3.74]) are generated by a null geodesic in AdSs under spectral flow.
Finally, if we apply the limit of pure [NSNS| flux to (3.47)), we obtain

1 J?
E=-- = .
5 (klﬁ + k1k> ; (3.76)

where we have used .

Until this point, we have considered the limit of pure flux of solutions to
whose p is non-constant. We focus on solutions with constant p now.

Being point-like, 1 = k? does not couple to the B-field. Therefore, the limit of pure
flux is superfluous.

Consider u = ps3. In the short-string class, the situation of u = us is parallel to that of
the mixed-flux regime. The solution does not pulsate, but instead remains at the constant
value pg = arcsinh(y/pug — k?/|k1]). The world-sheet is a cylinder. The coordinate ¢ depends
linearly on 7 via . The dispersion relation in terms of pg is, by analogy with , the
negative branch of with ¢ = 1 and VA = k.

In the long-string class, where us = oo, the hyperbolic radius diverges: pg = oco. If we
choose the positive branch of , we encounter that the energy also diverges £ = oc.
Hence, we must exclude p = pus = oco.
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In the threshold between the short-string and long-string classes, the class of solutions
with constant p, that is constant hyperbolic radius pg is enhanced. If we set both ¢ = 1
and (ug —k1)? = k3F} in , we deduce that the quadratic polynomial vanishes identically
for ug = k; irrespective of . We then obtain a continuous class of solutions parameterised
by po. The class corresponds to J = k|ki| and E = kkp in , where the dispersion
relation becomes independent of py. (The choice of branch of depends on the sign
of k1; recall that there is no reason to prefer either sign in the threshold.) Note that u = k?
is the particular case with pp = 0 in this class. If we identify k1 = —w, we retrieve (38)
of [93]. The point J = k|w| saturates the unitarity bound of the w-th spectrally flowed sector
in the world-sheet CFTy of the SL(2,R) WZNW| model of [93] when k — oo; see of
subsection We encounter this class of solutions insofar as solutions to the effective
action in subsection Moreover, we refer to section 3 of 93] for an analysis of this
class of solution in the semi-classical limit of the world-sheet CFT5.

3.3 The local spectral curve of pulsating strings

In this section, we construct the local spectral curve of the pulsating strings with flux
of section [3.2 We follow the procedure of subsection 2.2.2l We map the local spectral curve
of pulsating strings to that of minimal surfaces on section[2.2.2 We write local spectral curve,
which is an elliptic curve, in the Weierstrass form. We prove that the limit of pure [NSNS|
flux renders the elliptic curve singular [E] We discuss the emergence of the short-string and
the long-string classes of subsection [3.2.2l We refer to appendix [E] for the basics of elliptic
curves that we use in this section.

According to subsection the first step is writing the left current j in AdSs; which
renders the pulsating-string ansatz on AdS3 x S! factorisable. Formula (C.8]) leads to the
factorisability as defined in . If we introduce in with 81 = 0, the world-sheet
components of j are

. 2 > _1/80 . o . . ;
. 125080 e” "0 (2041 — 2120 +1202150) | -1
_s| .. G A% s 3.77
J [e‘ﬁo(z()zl — 2120 —1202100) —i2¢po ( )
2 —iBo

.. 29 (§] Z021 -1

Jo =1k1S leiﬁo 2071 _2 ] ST (3.78)
where
_ |exp(iki0/2) 0

5= [ 0 exp(—ikio/2) (3.79)

Note that S~'dS does not depend on o.
The next step is the computation of the determinant of A, defined in (2.74]). The matrix A
involves the truncation of Ly to AdSs in (2.65). If we introduce (3.77)) and (3.78) in (2.65)),

we obtain

- 1 k2 4 ki o, : 3
det A = e = (15 1 22 (4@ FO =gl k)@ )
1

_272[2(2021 — 2120)? — 222 B0(Bo — 2qk1) — K2 (4¢%28 — 222 — > + 1)]952)

(3.80)
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By using (3.12)) and (3.32), we can rephrase (3.80)) as

B k2% (x* + 1) + 4k1q(qky — uo) (23 — ) + 2(3¢%k? — 4quoky — k3 + 2w?)x?
a 4% (s — x)%(1/s + x)? '

The local spectral curve is defined by (2.75)) through (3.81]).
We note that (3.81)) does not depend on 7, in agreement with the isochrony of the mono-

dromy matrix. We also emphasise that the total angular momentum J = v/Aw of the pulsating
string enters in through . Moreover, if we had used Lg, given in instead,
we would have obtained up to z — —z and the replacement of s and —1/s by —s
and 1/s, respectively. Therefore, L defines the same local spectral curve.

If w = 0, there exists a mapping between and the determinant of A in
for minimal surfaces in Euclidean AdSs;. Hence, there exists a mapping between the local

det A (3.81)

spectral curves of pulsating strings and minimal surfaces. (Recall, as [65] remarked, that the
correspondence between local spectral curves and factorisable classical solutions is neither
one-to-one nor onto.) The mapping is k1 — k and ug — p. The condition w = 0 is necessary
because minimal surfaces of section[d.I|have vanishing total angular momentum. The mapping
is partly justified by the fact that both pulsating strings of section [3.2] and minimal surfaces
of section follow from the system in the limit of pure flux [64] and the fact that
the [NR] system manifests an integrable deformation by flux in each case. We note
however that neither the [NR] systems nor the integrable deformations are derivable from a
common ansatz. The ansatze of pulsating strings and of minimal surfaces are not
compatible in general. The claim follows from , which relates the global coordinate
system and the Poincaré patch of AdSs. H

The local spectral curve of pulsating strings is defined by the quartic polynomial of
via (3.81). Hence, it is an elliptic curve. We can write the local spectral curve in the

Weierstrass form (E.1)) by a birational transformation. The modular forms in (E.1)) are
64

g2 = g[k% — dquok + (% + 3)uk? + (3¢° — Dw?k? — dquow?ky + w?] | (3.82)
256
93 =% (2 — 12quok} + 3[(5¢” + 3)uf + (3¢> — V)w?|(kF + w?)k?
+2[(q? - 9)uf — 3(3¢> + 1)wJquok? — 12quows +2°) . (3.83)

The roots e, in can be computed through and ; the modular discriminant A
and the j-invariant can be computed through and , respectively. The resultant
expressions are intricate and do not offer any significant insight.

We can overcome this impediment by focusing on two special cases that simplify the
modular functions of the elliptic curve. The first case is w = 0, which corresponds to vanishing

total angular momentum. The value w = 0 does not simplify the solution (3.39) and (3.42])

5We could draw on to advance the local spectral curve of minimal surfaces in Euclidean AdSs x St
with flux, whose limit of pureﬂux was written in [138]. The mapping is k1 — k, uo — p and w? — a,
where a is a non-vanishing real number [138]. Nonetheless, the inclusion of a would obscure modular functions;
compare ([3.82) and ([3.83) with (4.45) and (4.46). The impediment would prevent an analysis parallel to section
in the mixed-flux regime (but not in the limit of pure flux).
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but rather the dispersion relation . The analysis of this case w = 0 would mimic the
one of section 4.3 due to the mapping k1 — k and ug — p. Unlike minimal surfaces, pulsating
strings with w = 0 however do not display any property that encourages us to consider this
case from the elliptic curve. We then refer the reader to the parallel analysis of section [4.3]
The second case is ¢ = 1, which corresponds to the limit of pure [NSNS|flux. If we set ¢ =1

in (3.82) and (3.83)), the modular forms simplify to

go = %(k% — 2kyug + w?)? | (3.84)
g3 = —%(k% — 2ugk + w?)3 . (3.85)
The roots in reduce to
el = %(kf — 2k1ug + w?) | (3.86)
ey = ;[—(k% — 2kyug + w?) + 3|k} — 2k1ug + W?] (3.87)
e5 = ;[—(kf — Yyug + w?) — 3[k2 — 2o + w2 (3.88)

At least two of the three roots coincide. The sign of k‘% — 2kjuo + w? determines which roots
do so. If we look at (3.29) and , we conclude k3 — 2kjug + w? = (ug — k1)% — k2 I,
which is the quantity that discriminates between the short-string and long-string classes in
subsection If k% — 2k1ug + w? > 0, we have e; = ey and the elliptic curve is associated
to the short-string class. If k% — 2kiug + w? < 0, we have e; = e3 and the elliptic curve is
associated to the long-string class. If k% — 2k1ug + w? = 0, we have e; = ey = e3 and the
elliptic curve is associated to the threshold between the short-string and long-string classes.
In section we encounter that the sign of k2 — 2kp, the counterpart of k% — 2k1ug, governs
the limit of pure flux of the elliptic curve. This fact strengths the parallels between
pulsating strings and minimal surfaces that we have commented in subsection [3.2.2)

The coincidence of two or three e, implies that the limit of pure [NSNS| flux singularises
the elliptic curve. From either the use of and in or the coincidence of
among roots, we indeed deduce

A=0. (3.89)

The type of singularity depends on whether go = 0 or go # 0. In both the short-string
ans long-string classes, where g # 0, the elliptic curve presents a node singularity. In the
threshold, where g3 = 0, the elliptic curve presents a cusp singularity.
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Chapter 4

Minimal surfaces with Neveu-Schwarz-Neveu-Schwarz flux

The AdS5;/CFT, correspondence establishes a connection between supersymmetric Wilson
loops in V' = 4 theory and open-superstring partition functions in Euclidean AdSs x S°.
References [62/63] proposed the duality, which states that the correlator of Wilson loops with
support on a curve equals the partition function over open-superstring configurations with
boundary conditions along the same curve at the conformal boundary of Euclidean AdSs x S°.

In the strong-coupling limit of N’ =4 theory, the steepest-descent approximation is
applicable to the open-superstring partition function. The correlator of Wilson loops along
the curve is encoded in the regularised on-shell action of the classical solution with Dirichlet
boundary conditions along the curve at the conformal boundary of Euclidean AdSs x S°. (Ten
Dirichlet boundary conditions are equivalent to four Dirichlet and six Neumann boundary
conditions if the curve smooth; see subsection 3.1 of [166].) The classical solution is called
minimal surface because it solves the Plateau problem in Euclidean AdSs x S°. The on-shell
action of minimal surfaces is the area of the world-sheet and diverges. The divergence is a
consequence from the imposition of boundary conditions at an infinite distance.

Since the on-shell action diverges, it must be regularised. References [62,/63] proposed a
regularisation to perform the computation. The regularisation is based on the introduction
of a cut-off € in the Poincaré parch. The cut-off € restricts the integration of the action to a
finite region inside the bulk of Euclidean AdSs. The series of the on-shell action around € = 0
isolates the divergent term. Reference [166] showed that the divergence is induced by the
simple pole of the action at € = 0 if the parameterisation of the curve is smooth: the minimal
surface is governed by the conformal factor of the Poincaré patch near the boundary. The
residue of the on-shell action at ¢ = 0 is the perimeter of the curve with respect to the
flat Euclidean metric. The zeroth-order term, the finite remnant, is the regularised on-shell
action. Reference [166] proved that it equals the on-shell Legendre-transformed action.

To cancel divergences, [62,/63] introduced with boundary counterterms. Reference [167]
reproduced these counterterms by means of a reference open-string configuration with the
same Dirichlet boundary conditions as the actual minimal surface. If this configuration solves
the equations of motion and the Virasoro constraints, the configuration is related to a partition
function itself. Both approaches yields equivalent results.

References [62,63] realised the duality between Wilson loops and minimal surfaces in
two cases. First, the duality between [BPS| Wilson loops and minimal surfaces ending at an
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infinite line. Second, the duality for the QQ-potential and semi-cylindrical minimal surfaces
in Euclidean AdSs that end at a pair of parallel infinite lines [62,/63]. The world-sheet of
both classes of minimal surfaces extends over Euclidean AdSs and is fixed at a point of S°.
References |166,/168] later analysed circular Wilson loops, and [166] also considered Wilson
loops over curves with non-smooth cusps. References [169H171] then constructed minimal
surfaces ending at coaxial circles, and [172-174] constructed minimal surfaces that extended
over S°. These results raised the question of the systematisation of minimal surfaces that
delineate generic curves at the boundary of Euclidean AdSs x S°.

Progress towards the answer was initiated in [64]. Reference [64] used the spinning-string
ansatz of [38] to construct minimal surfaces with Dirichlet boundary conditions at smooth
curves. The ansatz reduces the equations of motion of minimal surfaces to those of an effective
integrable mechanical system. The mechanical system comprises classes of minimal surfaces
that end at one infinite line or circle, two parallel infinite lines and an annulus.

Minimal surfaces nonetheless have properties with no analogue in spinning strings. First,
minimal surfaces are characterised by the parameters of the curves at the boundary; for in-
stance, the distance between two lines and the ratio of the radii of an annulus. The expression
of the first integrals of the mechanical system in terms of the parameters of the curves in a
closed form is often not available. Second, the solution to the equations of motion with Di-
richlet boundary conditions at the boundary of Euclidean AdSs x S® is in general non-unique:
more than one minimal surface can end at a given curve. Both connected and disconnected
minimal surfaces can end at a pair of parallel lines. Connected minimal surfaces ending at
an annulus cease to exist if the ratio of the radii is greater than a threshold [170L|171], while
disconnected minimal surfaces always exist. Two different connected minimal surfaces can
furthermore end at the same annulus |138].

The construction of minimal surfaces through mechanical systems is not the only connec-
tion of Wilson loops with integrability via the AdS;/CFT4 correspondence. Reference [65]
used spectral curves to analyse minimal surfaces. Spectral curves rely on the existence of non-
contractible cycles on the world-sheet. To overcome the problem of the existence of non-trivial
cycles on open-string world-sheets, [65] used that a spectral curve can be defined by using the
logarithmic derivative of the monodromy matrix, which is a flat connection. Reference [65]
then used local functions with appropriate features to construct local spectral curves for
open-string world-sheets. Factorisability, defined for spinning strings in [3§], hold in the cases
analysed in [65]. Reference [66] postulated a procedure to obtain the local spectral curve
of factorisable classical solutions (see subsection [2.2.2)). References [175[176] alternatively
defined spectral curves in the Pohlmeyer-reduced non-linear o-model, where classical solu-
tions are expressed through Riemann #-functions. The equivalence between the approaches
of [175,|176] and [65,/66] was proved in [177] by means of the Pohlmeyer-reduced Lax con-
nection. The approach of [65]66] presents downsides: locality obstructs the computation of
string moduli from the quasi-momenta.

The duality between Wilson loops and minimal surfaces poses the problem of the construc-

tion of minimal surfaces in other Euclideanised AdS ;4 1-backgrounds where the AdSy41/CFTy
is less understood. In this chapter, we analyse annular minimal surfaces in Euclidean AdSg
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in the mixed-flux regime and in the limit of pure flux. The chapter has the following
structure. In section we construct minimal surfaces with Dirichlet boundary conditions
along an annulus of Euclidean AdSs. In subsection [{.1.T], we construct connected and discon-
nected minimal surfaces in the mixed-flux regime. In subsection [£.1.2] we analyse the limit
of pure flux of the minimal surfaces of subsection and prove the appearance of
two classes of minimal surfaces separated by a threshold. In section we compute the
regularised on-shell action of the minimal surfaces of section [£.1] We regularise the on-shell
action by introducing a cut-off and cancel divergences by using a reference minimal surface.
n section we follow subsection to construct the local spectral of minimal surfaces
of which is an elliptic curve. We analyse connected minimal surfaces in terms of elliptic
invariants. We prove that the limit of pure flux singularises the elliptic curve and
identify the two classes of subsection

This chapter is based on [P3]. |I| We refer to [178] for an early review on the application
of the AdS5;/CFT, correspondence to Wilson loops; we refer to [179] for a review of the
topic from the point of view of localisation. Reference [150] constructed minimal surfaces
on AdS3 C AdS3 x S? x T* with flux that end at a light-like cusp. Reference [180]
constructed minimal surfaces on AdS3 x S? x $3 x S! with flux.

4.1 Minimal surfaces on Euclidean AdS;

In this section, we construct minimal surfaces that subtend an annulus at the boundary of
Euclidean AdS3 with [NSNS|flux. Our results generalise under flux the annular minimal
surfaces of [64] and section 2 of [138] on the basis of the ansatz of [64]. In subsection [4.1.1]
we construct minimal surfaces in the mixed-flux regime. We differentiate connected and
disconnected minimal surfaces, and construct classical solutions. We analyse the effect of
the flux on the ratio of the radii of the annulus of connected minimal surfaces and
extend the analysis of [170,|171] under flux. In subsection we consider the limit
of pure flux of minimal surfaces of subsection We prove the appearance of two
classes separated by a threshold for connected minimal surfaces. We use elliptic integrals
and Jacobian elliptic functions in this section. We refer to appendix [F] for our conventions,
properties and formulae. We refer to appendix[F|for our conventions, properties and formulae.

4.1.1 Minimal surfaces in the mixed-flux regime

Our starting point is the annular ansatz of [64]. The ansatz is written in the Poincaré

patch of Euclidean AdSs (C.14), where the metric and the B-field read (C.17) and (C.21]),
respectively. We must adjust the coordinate system (C.14]) to describe an annulus at the

boundary of Euclidean AdSs. We introduce the polar coordinates r € [0,00) and 6 € [0, 2),

We expand and clarify minimal surfaces and local spectral curves of sections 2 and 3 of [P3] in sections
and [£:3] respectively. We add the discussion on the regularised on-shell action in section 2:I.3] We make some
changes with respect to [P3] and correct a few errors. We refer to section 2 of [P3] for the application of

the SL(2,Z) symmetry of type IIB superstring theory to minimal surfaces that we do not consider here.
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defined by 2° = rsin 6 and z! = rcosd. The ansatz consists of the trial functions E|
r=r(0), O=kr, z=2z0), (4.1)

where 7 and ¢ are the coordinates along the temporal and spatial directions of the Euclidean
world-sheet (see appendix, and k € Z\{0} is a non-vanishing integer winding number.lﬂ (Tt
is clear that £ differs from the level of the model.) We set the target-space coordinates
of S to fixed values, which provides a consistent truncation. Since (4.1)) must describe an
annulus at the boundary of Euclidean AdSs, (4.1]) satifies with Dirichlet boundary conditions
with respect to o:

r(=L/2)=Ry, r(L/2)=Ry, z(—L/2)=2(L/2)=0, (4.2)

where R; are the two radii of the annulus at the boundary.

The world-sheet described by and subtends an annulus centred at the origin of
the boundary of Euclidean AdSs in the Poincaré patch . The world-sheet of minimal
surfaces can be either connected or disconnected. Given R;, can in fact correspond to
both connected and disconnected minimal surfaces. The existence of a connected solution is
dictated by the value of R, whereas disconnected solutions always exist. Whether R; or Ro
corresponds to the outer or the inner radius depends on the value of R = Ry /R;.

The coordinate T parameterises the rim of the annulus, and, thus, 7 € [0,27). The in-
teger k accounts for the winding along the inner and outer circumferences of the annulus. The
coordinate o parameterises the penetration of the world-sheet into the bulk of Euclidean AdSs.
The range of ¢ is finite for connected minimal surfaces with non-vanishing dilatation charge
in the mixed-flux regime, hence our choice o € [-L/2, L/2]. The boundary conditions
then state that the world-sheet reaches the boundary of Euclidean AdS3 at o = £L/2. Being
centred at the origin, o € [—L/2,L/2] also facilitates the application of the limit of pure
flux, where o € (—00,00). On the contrary, both connected solutions with vanishing
dilatation charge and disconnected solutions (in both the mixed-flux regime and limit of pure
flux) will demand us to change the interval to o € [0, 00) .

#We note that matches the conventions of [64], that is the customary conventions where 7 parameterises
the boundaries of the open-string world-sheet. The ansatz differs from ansatze used in the bibliography,
where 7 and o are interchanged. These other ansatze were used to compute the correlators of two circular
Wilson loops alone |138]/170L171] and circular Wilson loops with a local operator [181,/182]. Other conventions
are justified by the knowledge of the AdSs/CFT4 correspondence between Wilson loops and minimal surfaces.
If the annulus degenerates to a punctured circle (and the total angular momentum in S° is large), the minimal
surface encodes the correlator of a circular Wilson loop and the BMN] vacuum when [64168][174]. In Lorentzian
signature, the vacuum is dual to a null geodesic in AdSs x S® [20]; the Wick-rotated counterpart is a
complexified geodesic in S° parameterised by 7 [174]. (We refer to [173] and especially footnote 3 of [181] for
a discussion of this point.) If we interchanged 7 and o and inverted the sign of the ¢, we would in any case

obtain classical solutions that the alternative ansatz to 1) would provide.
3In Euclidean AdSs x S°, k must be negligible compared to the number of units of flux N in the planar

limit N — oo. The AdSs/CFT4 correspondence must be otherwise analysed with D3-branes or even in terms
of the back-reaction of Euclidean AdSs x S°; see section 1 of [183] ad references therein. From the point of
view of the AdS3/CFT> correspondence, analogous considerations could be needed in (4.1). However, a better

understanding of the duality is necessary to clarify this point.
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If we impose the conformal gauge-fixing condition h®? = §8, consistently truncates
the equations of motion of the Wick rotation of . The truncation follows from the action
of a mechanical system whose coordinate along the temporal direction is 0. The associated
Lagrangian is E|

L= 2—12( 24 2% 2qkrr! + k*r?) | (4.3)
The mechanical system of (4.3]) is integrable due to the existence of two first integrals: the
dilatation charge p and the Hamiltonian. The dilatation charge follows from the invariance

of (4.3) under z — Az and r — Ar, with A a constant. The Noether theorem provides
2
T 08 0S A
A= / dr (r' + z') =Vp= £(1"7“' + 22 — qkr?) . (4.4)
0 or! 02! 22

The Hamiltonian is not only conserved, but vanishes,
NCIIC R (4.5)

due to the unique non-trivial Virasoro constraint in (2.50)).
We can solve (4.4) and (4.5 by a change of variables from z and r to u and v:

U v 1 U
2= —e', r=-—v—c'. 4.6
V14 u? V14 u? (46)

The inversion of (4.6) leads us to

u:E, v=1logVz2+1r2. (4.7)

r

The coordinate u is non-negative, and u = 0 corresponds to the boundary of Euclidean AdSs.
In the coordinate system of [64], u is related to a hyperbolic radial coordinate and v is
the Wick-rotated coordinate along the temporal direction of Euclidean AdSs. The coordin-

ates (4.7)) allow us to rephrase (4.4) and (4.5) as

u? = —p*ut + (k* — 2gkp)u® + (1 — ¢A)k? (4.8)
/ p—gk
_ 4.

These equations satisfy the boundary conditions (4.2), which become
u(—=L/2)=u(L/2) =0, wv(—L/2)=logR;, wv(L/2)=IlogR, . (4.10)

We can construct minimal surfaces and compute R if we solve and then integrate
taking into account . In this subsection, we restrict ourselves to the limit of pure
flux and the mixed-flux regime. We apply the limit of pure flux in subsection 4.1.2
To solve , we discriminate between |p| > 0 and p = 0. If |p| > 0, the right-hand
side of is a biquadratic polynomial in u, and minimal surfaces are always connected. In

“In the limit of pure flux, (4.3) is connected with the system [64]. Following section one could
consider (4.3) in light of an integrable deformation of the system, expressed in unconventional although

appropriate generalised coordinates.
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this case, R; indirectly determine p. On the contrary, if p = 0, the quartic term of the right-
hand side vanishes. Thus, the polynomial is quadratic. Minimal surfaces can be either
connected or disconnected in this case. We can construct connected solutions either directly
or by applying a limit to classical solutions with [p| > 0. Disconnected minimal surfaces follow
from the considerations on connected ones. The radii R; of disconnected minimal surfaces is
arbitrary. We assume [p| > 0 first, and we focus on p = 0 at the end of the subsection.

If |p| > 0, we can write (4.8)) as
u? = p*(u? +u®)(uf —u?) (4.11)

where

+(k* — 2qkp) + /(k? — 2qkp)? + 4(1 — ¢?)k?p?
2p? ’
By definition, us are non-negative. The inequality u% > 0 holds because 0 < ¢ < 1. Since u
is real and subject to u > 0, equation implies 0 < u < uy.
We can solve by a direct integration and a subsequent inversion. If we consider the
two branches of u/ separately and use , we eventually obtain

u? = ui cn? (m/u%r +u?o, /{) , (4.13)

where cn(z,m) is defined in (F.34) and the elliptic modulus is

ul = (4.12)

RN (4.14)
Vud 4+ ut

We recall that (4.13)) is just valid in the interval o € [—L/2,L/2]. Formula (4.13) together
with (F.42)) implies that the length L of the range of o is

I 2K(k)
|p|,/ui +u?

where K(m) is defined in (F.2). The elliptic modulus (4.14) belongs to the fundamental
domain: 0 < x < 1.
We discuss the behaviour of connected minimal surfaces now. The world-sheet delineates

(4.15)

a circumferences of radius Ry at u(—L/2) = 0, which corresponds to the boundary of Eu-
clidean AdSs;. Formula states that u increases from u(—L/2) = 0 until u(0) = u4,
which corresponds to the positive branch v/ > 0. The coordinate u reaches the maximum
value u(0) = uy at the midpoint ¢ = 0 since w is invariant under ¢ — —o. In this first
interval, the world-sheet gradually enters into the bulk of Euclidean AdSs. Beyond the
turning point u/(0) = 0, the negative branch u' < 0 starts. The negative branch extends
from u(0) = uy to u(L/2) = 0. In the second interval, the world-sheet gradually returns
to the boundary. The world-sheet reaches the boundary and describes a circumference of
radius Rg, when u(L/2) = 0. The world-sheet has the shape of a half-torus. We conclude
that the minimal surface that solves has a connected world-sheet.

We could integrate directly, but the resultant expression is not particularly enlight-
ening. We refer to (2.20) of [P3] for an expression for v. It is more instructive for the analysis



67 4.1. Minimal surfaces on Euclidean AdS;

of connected minimal surfaces to integrate (4.9) between ¢ = —L/2 and ¢ = L/2. This
step permits us to express the ratio of the radii of the annulus R = Ry/R; in terms of the
parameters of the connected minimal surface. If we use (F.29)) and (F.30]), we obtain

2p(1 +u?) K(k) — 2(p — qk)II
Ip|(1 4 u%)y/u +u?
where II(m,n) is defined in (F.6|) and the elliptic characteristic is
2
i H (4.17)

UV =
1+u1

The expression cannot be explicitly inverted to write p in terms of R, k and q.

Formula provides R, rather than each R; separately. The reason is that the ratio
of the radii is the scale-invariant, meaningful quantity that we can be assemble from R; |64,
138|. Therefore, we can fix one radius without loss of generality. We set Ry = 1 until the
end of the section to simplify the discussion. (We must restore R; in section since our
regularisation will not respect conformal invariance [178].) Conformal invariance also implies
the equivalence of minimal surfaces under the inversion R — 1/R. The mapping R — 1/R
is equivalent to p — —p and k£ — —k. We shall see in section that the regularised on-
shell action is indeed invariant under p — —p and k — —k. Therefore, we assume p > 0
in the following discussion. (We shall restore a generic p in the discussion around of
subsection [4.1.2]) We note that disconnected minimal surfaces are invariant under R +— 1/R
because the independent R; can be paired in two different ways.

We plot with £ > 0 and k£ < 0 in figure We have written R in terms of p/k
because is a function of of p/k up to the sign of k. Figure shows that R in (4.16) is
in general a bounded function of p for fixed k and ¢. Therefore, determines the values
of R for which connected minimal surfaces exist. We can analyse the effect of the flux
in by considering R a function of p for fixed 0 < ¢ < 1. To perform the analysis, it
is convenient to use some relevant quantities. We introduce them in the following discussion
and list some numerical values of these relevant quantities in table [.I] The situation, which
extends the results of [170,/171] under flux, is the following.

k>0 k<0
q |p+/k| Ry | Ro q |p+/k| Ry | Ro
0.000 | 0.581 | 2.72 | 1.00 0.000 | 0.581 | 2.72 | 1.00
0.250 | 0.462 | 4.55 | 1.83 0.250 | 0.857 | 1.75 | 0.618
0.500 | 0.402 | 8.89 | 3.35 0.500 | 2.04 | 1.18 | 0.299
0.750 | 0.379 | 27.2 | 6.12 0.750 - 1.00 | 0.164

Table 4.1: Relevant quantities of connected minimal surfaces for 0 < ¢ < 1.

In the limit of pure RR]flux, where ¢ = 0, R reaches a global maximum R{ > 1 at p4 > 0.
The value p; cannot be written in a closed form [13§]. The correspondence between p and R is
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Figure 4.1: The quantity R of connected minimal surfaces against p/k for 0 < ¢ < 1.

in general two-to-one. Thus, two different connected minimal surfaces with the same boundary
conditions exist. The correspondence between p and R is just one-to-one at p = p, where a
unique connected solution exists. Moreover, R = 1 bounds from below and corresponds
to p = 0 and p = co. (The value p = oo corresponds the semi-cylindrical minimal surface,
associated to the QQ-potential in the AdS5/CFTy correspondence; see appendix H of [138].)

In the mixed-flux regime, where 0 < ¢ < 1, the behaviour of R with respect to p depends
on the sign of k. If k > 0, the value R, increases as g increases. The value p; oscillates
around p = k/2 as ¢ increases. The value R = 1, which corresponds to p = oo, bounds R
from below. The value of R at p = 0 shifts to Ry > 1. The correspondence between p and R
is one-to-one for 1 < R < Ry and two-to-one for Rg < R < Ry.

If £ < 0, the situation is complementary. The more ¢ increases, the more R decreases.
The value py tends to p = oo as ¢q increases. The value Ry < 1, which corresponds to p = 0,
bounds R from below. The value R = 1 holds at p = co. The correspondence between p
and R is one-to-one for Ry < R < 1, and two-to-one for 1 < R < R;. The value p; = oo is
reached at ¢ =~ 0.652. From there on, R = 1 starts to bound R from above, while Ry < 1 still
bounds R from below. The correspondence between p and R is one-to-one.

The effect of the flux on the coexistence of the classes of connected and disconnected
minimal surfaces is the following. First, we recall that disconnected minimal surfaces have
arbitrary R. If k > 0, the [NSNS| flux enlarges the range 1 < R < Ry for which both classes
coexist, because it increases the maximum R, > 1. If £ < 0, the flux introduces the
new range Ry < R < 1 for which both classes coexist, which becomes gradually wider.

We turn our attention to p = 0 now. Both connected and disconnected minimal surfaces

exist. We consider connected minimal surfaces first. The limit p — 0 of the ratio of the
radii (4.16]) is Ry. The value Ry exists and is finite. The equality Ry = 1 holds in the limit
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of pure RR] flux, which implies that the boundaries of the annulus merge and the annulus
collapses into a single circumference. This is not longer the case in the mixed-flux regime,
where Ry follows our discussion on .

From the point of view of the quartic polynomial , p — 0 realises the divergence of
two out of four roots, which renders quadratic. If we apply p — 0 to , we obtain

ui:oo, u? =1-¢2. (4.18)

Therefore, 0 < u < oo as a consequence. We conclude that u is unbounded. To compute u,

we can either solve directly (4.11)) with p = 0 or apply p — oo to (4.13]).

If we apply p — 0 to (4.14), we obtain £ = 1, which implies L = oo via (F.22)). The
length for the interval of o diverges, but R is finite. If we applied p — 0 to (4.13)), we

would obtain v = co. The result is a consequence the localisation of around the upper
bound w4 at the midpoint of the interval o € [—L/2, L/2], which p = 0 translates into the
localisation of around the divergent upper bound u; = oo at the midpoint of the
infinite interval o € (—o0, 00). To write u, we must replace the range of o.

We then consider the interval o € [0, L], whose midpoint is ¢ = L/2. The boundary con-
ditions are the same up to the replacement o +— o + L/2. If we solve consistently
with the shifted boundary conditions and use , we are led to

2,2
2 _ _Uju— 2 [ 2 2
u” = i sd (p u++u_a,/<> , (4.19)

where sd(z,m) is defined in (F.35)). If we apply p — 0 to (4.19) and take into account (4.12])

and (4.14)), we obtain

= (1 — ¢*)sinh?(ko) , (4.20)

where we have used . Formula implies that v’ does not reach any finite turning
point, consistently with our expectations. The positive branch of u’' ranges from u(0) = 0
to u(oco) = oco. The negative branch of v’ ranges from u(o0) = oo to u(0) = 0. Formula
also follows from with p = 0. To obtain , we must fix the boundary condition at
the leftmost point «(0) = 0 and duplicate to reproduce each branch of u'.

To elucidate the behaviour of the minimal surface , we come back to the coordinates r
and z through . We have a different expression for each of the two branches of u' (the
coordinate v would have accounted for the difference if the corresponding solution had been
written). The connected minimal surface with p = 0 is

\/W gsinh(|k[o) (4.21)
1 — gtanh(k \/1_|_q sinh?(ko) ’
1-— qtanh(kzo) \/1 + 2 sinh2(k0)

where i = 1 corresponds the positive branch of u/, i = 2 corresponds the negative branch
of «/, and we have introduced ¢ = /1 — ¢% to compact the expressions. According to 1}
and (4.22)), the situation is the following.
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If 0 = 0, the world-sheet delineates a circumference of radius r = Ry = 1 at the boundary
of Euclidean AdSs3, which corresponds z = 0. The coordinate o then increases; the world-
sheet separates from the boundary and enters into the bulk. The world-sheet penetrates
until ¢ = oo, where z = /(1 +¢)/(1 —¢q) and » = 0. The value r = 0 means that the
radius of the world-sheet vanishes. As opposed to connected minimal surfaces with |p| > 0,
the world-sheet closes. The first component of the world-sheet has the shape of a dome that
subtends a circle of radius Ry = 1. Once the minimal surface reaches o = oo, it turns around
and returns to the boundary. The second component of the world-sheet has the shape of a
dome again, but it subtends a circle of radius Ry = R. The full world-sheet, which consists
of two components, is connected because the apexes of the domes come into contact.

Each component subtends a circle of radius R; that is wrapped |k| times. Hence, |k| = 1,
each dome provides the deformation under flux of the circular minimal surface in the
Euclidean AdSs x S° dual to the circular Wilson loop [166,168]. (If |k| > 1, each dome is
equivalent to the superposition of |k| equally-oriented hemispherical world-sheets with |k| = 1
and has a counterpart Euclidean AdS; x S° [64].) We bear this identification out in section
from the point of view of the local spectral curve.

The analogy with connected minimal surfaces in Euclidean AdS5 x S° suggests us that

disconnected minimal surfaces are (4.21) and (4.22), but with R being arbitrary instead of

given by (4.16|). We can confirm our guess by solving (4.4) and (4.5) with p = 0. Classical
solutions with p = 0. are consistent with any R; in (4.2). The disconnected world-sheet

consists of two separate domes that subtend a circle of radius Ry = 1 and Ry = R, respectively.

(Recall that conformal invariance at the boundary of Euclidean AdSs still permits us to
set Ry = 1.) If R coincides with (4.16) when p — 0, the disconnected world-sheet becomes
connected due to the union of the domes at their apexes.

4.1.2 Minimal surfaces with pure Neveu-Schwarz-Neveu-Schwarz flux

We focus on the limit of pure flux, where ¢ = 1. Following subsection [L.1.1] we
discriminate between |p| > 0 and p = 0. We focus on connected minimal surfaces with |p| > 0
first. We begin with the pure flux limit of R in . We drop the assumption of
positivity on p that we held in subsection for clarity.

In the limit of pure NSNS flux, where ¢ = 1, the behaviour of R with respect to p depends
on the sign of k. If k£ > 0, the maximum at p; = k/2: Ry = oo. If k? — 2kp < 0, R is finite

and reads
km
R = _— ] . 4.23
P ( = 2k:p\> (423)

The correspondence between k/2 < p < oo and 1 < R < oo is one-to-one. The value R =1
corresponds at p = oo. If k? — 2kp > 0, that is if —oo < p < k/2, we have R = co. In
particular, Ry = oo at p = 0. We encounter two regimes separated by a threshold.

If k < 0, the situation is complementary. If k? — 2kp < 0, R is finite and given by .
The value R = 1 corresponds to p = —oo. The correspondence between —oo < p < k/2
and 0 < R < 1 is one-to-one. If k2 — 2kp > 0, that is if k/2 < p < oo, we have R = 0. In
particular, Ry = 0 at p = 0. We find again two regimes separated by a threshold.
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The enlargement of the range of R that we have remarked in subsection culminates
in the limit of pure flux. Connected minimal surfaces exist for every 1 < R < oo
if k>0andevery 0 < R<1ifk<O0.

Conformal invariance states the equivalence between R +— 1/R for minimal surfaces, as
we have already mentioned in section It is clear that R — 1/R is equivalent to p — —p
and k — —Fk in the limit of pure flux. We then assume k > 0 until the end of the
subsection without loss of generality. The analysis of k < 0 is analogous.

The sign of k> — 2kp dictates which alternative for connected minimal surfaces in the
limit of pure [NSNS| flux is realised. This fact hints at a classification into two classes that
depends on the sign of k? — 2kp. The situation is analogous to that of pulsating strings of
subsection [3.2.2] which fall into the short-string or the long-string classes depending on the
sign of (ug — k1)? — k? F1. We shall confirm the parallelism in subsection

From the point of view of the quartic polynomial , the limit of pure flux implies
the vanishing of two out of four roots. If k% — 2kp < 0, ui =0 holds. If k> —2kp >0, u2 =0
holds. If k% — 2kp = 0, both pairs of roots vanish: uQ+ =u?® =0.

Let k% — 2kp < 0. It follows that reduces to

k% — 2k
w2 =0, w=-_" (4.24)
p
The elliptic modulus (4.14)) vanishes: x = 0. If we set ¢ = 1 in (4.13]), we obtain
u=0. (4.25)

Therefore, the world-sheet is adhered to the boundary of Euclidean AdSs. The length of the
interval (4.15)) simplifies to

™

L———"~ 4.26
V=) (4:20)

where we have used ([F.13). We finally conclude
R =exp(kL) , (4.27)

which follows from .

If k? — 2kp < 0, the response of connected minimal surfaces to the flux is the
following. The world-sheet departs from the circumference of radius R; = 1 at the boundary
of Euclidean AdSs, enters into the bulk until v = u, turns around and arrives to the boundary
at a circumference of radius Ry = R. The more ¢ increases, the more u4 decreases, and the
world-sheet penetrates less distance into the bulk. In the limit of pure [NSNS| flux, uy = 0,
and the world-sheet does not detach from the boundary. The world-sheet just ranges between
the inner and outer circumferences of the annulus, with which coincides.

Let k2 — 2kp > 0. It follows from that read

2
ui:ﬂ, u> =0. (4.28)
p
The elliptic modulus equals one: kK = 1. The solution reduces to

u® = u? sech? (\/k2 — 2kp a) , (4.29)
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where we have used (F.58). The length of the interval (4.15)) diverges:
L =00, (4.30)

where we have used ([F.22)). We have stated before that R = co. If we however express (4.15))
and (4.16)) as asymptotic series around ¢ = 1, we can relate R and L at leading order:

R~exp(kL), q—1. (4.31)

If k2 — 2kp > 0, the response of minimal surfaces to the flux is the following.
The increasing of ¢ does not prevent the world-sheet from penetrating into the bulk of Kuc-
lidean AdSs, but dilates the outer boundary of the annulus. In the limit of pure flux,
the outer circumference collapses at the point of infinity. Hence, the annulus degenerates.
The world-sheet has the shape of half of a horn torus.

We note that relies on the choice of the interval o € [—L/2,L/2] in the mixed-
flux regime. If we had chosen o € [0, L], we would have (4.19), and the application of the
limit of pure flux would have provided u = 0. The situation is analogous to that of
connected minimal surfaces with p = 0 in the mixed-flux regime. As opposed to , the
expression is localised around w4 at the midpoint of ¢ € [-L/2,L/2]. If L — oo,
can reach uy, but cannot. The shift of the interval of ¢ is tantamount to keeping the
integration constant in solving the equation of motion; to compute we then need to
fix the integration constant in the mixed-flux regime properly. The situation is analogous to
that of pulsating strings in the long-string class of subsection [3.:2.2

Let k% — 2kp = 0, which the threshold between the previous classes of connected minimal
surfaces. We have that (4.12) read u% = u? = 0. The solution is u = 0. The length of the
interval is L = oco. It follows from that R = co. The world-sheet of the connected
minimal surface k% —2kp = 0 adheres to the boundary of Euclidean AdSs and ranges between
the boundaries of a degenerate annulus. The threshold shares features with both classes.

Consider p = 0. First, we focus on the limit of pure flux of the connected minimal
surface. We have R = co. To obtain the minimal surface, we apply the limit of pure
flux to and . We must consider just the part of the classical solution associated
to Ry = 1; the other, associated to Ry = 0o, degenerates. The result is

z2=0, (4.32)
r =exp(ko) , (4.33)

Formula holds, in principle, everywhere but at z = /(1 + ¢)/(1 — ¢), where the limit
of pure flux provides z = oo. The point z = co however belongs to the conformal
boundary of Euclidean AdS3;. We can compute the r associated to z = co. If we set 0 = oo
in , we obtain r = oo, which is R = co. We conclude that the world-sheet adheres to
the boundary and that it ranges between the boundaries of a degenerate annulus. One might
have expected the adhesion of the world-sheet when k? — 2kp < 0, but not when k2 —2kp > 0.

We clarify the limit of pure flux of connected minimal surfaces by considering their
behaviour with respect to the variation of p. We begin with p = 0. The world-sheet does
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not abandon the boundary. Once p increases, the world-sheet detaches from the boundary
of Euclidean AdS3 at z = oo, while R = oco. The more p increases, the less distance the
world-sheet gradually penetrates into the bulk. Once p reaches p = k/2, the minimal surface
adheres to the boundary. From then on, he world-sheet remains at the boundary and R is
finite and given by .

Connected minimal surfaces with p = 0 and k? — 2kp = 0 are indistinguishable in the
limit of pure flux. Analogously, every connected minimal surface with k? — 2kp < 0
with given R is paired with the the limit of pure [NSNS|flux of a disconnected minimal surface
with the same R < 1. To prove the statement, we must express the connected minimal
surface in terms of z and r through (and introduce an unimportant shift in the
range of ). We are then led to (4.32) and (4.33). The expression holds between o € [0, L],
where L is related to R via .

If we apply the limit of pure flux to each component of a disconnected minimal
surface, we obtain and , with Ry = R arbitrary. The world-sheet consists of
two concentric circles at the boundary. Since the two pieces overlap, the disconnected world-
sheet becomes connected. Each pair B = 1 and Ry = R of disconnected minimal surface

corresponds to one R in (4.23]).

4.2 The regularised on-shell action

In this section, we compute the regularised on-shell action of the minimal surfaces of sec-
tion We apply the regularisation of [62,/63]. We find the proper counterterms by means
of a reference minimal surface, following [167] and subsection 2.3 of [138]. The regularised
on-shell action extends that of subsection 2.3 of [138] in the limit of pure flux.

We begin with a brief review of the regularisation of [62,/63] for minimal surfaces with
Dirichlet boundary conditions along smooth curves. The regularisation comprises three steps:
the introduction of a cut-off at z = € in the action, the isolation and cancellation of the simple
pole at € = 0, and the computation of the finite remnant, that is the regularised on-shell action.
The result drives the partition function associated to the minimal surface when A\ — oco. The
counterterms that cancel the simple pole can be obtained by subtracting the on-shell action
of an open-string configuration |167]. If the open-string configuration is a minimal surface,
the finite remnant is the ratio of two partition functions when A — oc.

The direct application of the regularisation of [62,/63] to the minimal surfaces of section
raises some objections. First, we ignore the dual objects to the minimal surfaces of section
through the AdS3/CFTy correspondence (if any). The lack not only implies that we cannot
ensure that the result corresponds to the limit A — oo of actual dual objects, but also that
we cannot confirm that the regularisation is correct from the point of view of the AdSz/CFTs
correspondence. Second, we must modify the regularisation of [62,63] to embrace the topolo-
gically non-trivial WZ] term of the three-form flux. We have expressed the flux
as the exterior derivative of the B-field, which is defined modulo a gauge ambiguity, that is
modulo the addition of an exact world-sheet two-form. We have then written the local (W7
term in . The gauge ambiguity affects neither the equations of motion nor the Virasoro
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constraints. The gauge ambiguity however matters in the computation of the regularised
on-shell action: exact world-sheet two-forms can contribute in the form of boundary terms.

Our answer to the objections is the following. First, the computation of the regularised
on-shell action is meaningful by itself (as the result of the steepest-descent approximation in
path integral of the partition function) irrespective of the AdS3/CFTy correspondence. The
finite remnant of minimal surfaces could encode the limit A — oo of a dual object, but the
duality is not necessary for the computation to be consistent. Second, we exclude boundary
terms introduced by the gauge ambiguity of the B-field by an additional condition. We just
admit exact world-sheet two-forms that are the exterior derivative of one-forms that vanish
at the boundary of Euclidean AdSs3, and, hence, one-forms that vanish at the boundary of the
open-string world-sheet. (Therefore, p in is not corrected by boundary terms either.)
This condition is the gauge invariance of the action with respect to the B-field in an open-
string world-sheet [’

We compute the regularised on-shell action now. Following section [4.I} we discriminate
between 0 < ¢ < 1 and ¢ = 1, and we discriminate between minimal surfaces with |p| > 0
and p = 0. We begin with connected minimal surfaces with |p| > 0 in the mixed-flux regime.

First, we introduce the cut-off z = €, which circumscribes the integration of the action to
the bulk of Euclidean AdSs. It is convenient to use the coordinate u in instead of z, as the
use of simplifies the computation. We must then incorporate the cut-off at each branch
of u'. Let u1 = u(—L/2+ 01) and uy = u(L/2 — 02) be the cut-offs in the branches v’ > 0
and u' < 0, respectively. They are related to z = € as u; = ¢/R; and uy = ¢/Ry (up to
higher-order corrections in e that vanish at e = 0). Note that we restored R; in since
the regularisation does not respect conformal invariance.

The on-shell action is

e U2 1 7’k qk(p — qk
S:ﬁ(/ _/)du [QZ_Q(ZQQ)
wo a2 —u?) LY u?+1

. 2 2Y(0,2 _ 4,2 : 2
(e VR vded b 0 e

2,2 B 2.2
| N

— ah(p — ak) VA (B, v, k) + , (4.35)

p|(1 4+ u? )y /u? +u? vy lu—u
where we have introduced in in the first step, we have used and
in the second step, and we have used and in the third step. The func-

tions F(z,m), E(z,m), and II(z,n,m) are defined in (F.1|), (F.3), and (F.5), respectively,
[ reads

(4.34)

u
B = arccos — , (4.36)

U+t
5To write the on-shell action (4.34), we shall ignore a total derivative, which arises from the term
via (4.7)). The resultant boundary term diverges at u = 0. We have cancelled the contribution by adding an

exact world-sheet two-form that does not satisfy our assumptions. The introduction is correct for two reasons.

First, the conformal boundary of Euclidean AdSs changes under coordinate transformations |[184]. Second, the
B-field that satisfies the assumptions of appendix in terms of u and v would have led us directly to 1|
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and k and v are (4.14) and (4.17)), respectively. Formula (4.34) follows from both the

action and the conformally gauge-fixed Polyakov action.
The next step is the introduction of the series around € = 0 of (4.34)), which provides both
the divergence and the finite remnant. If we use u; = R;/€, we obtain

_ [=27.2 /.2 2 _
xlkl(R1 + R q°k*\Jus + u” 21.2

R

2PV T R — (
2 € lp|lutu® Ip|u? y/u2 2
plut\/ut + uz

- A (4.37)

gk(p — gk) I
(v,k)| +O(e) ,
p|(1 4+ uk)\/Jut +u? |

where E(m) is defined in (F.4)).
The series (4.37)) has a simple pole. Simple poles account for the divergence of the action
of minimal surfaces that subtend smooth curves [170]. The reason for simple poles is that

+

the conformal factor of the metric in the Poincaré patch drives the integrand in the vicinity
of the boundary. The conformal factor is also responsible for the proportionality between the
residue of on-shell action at € = 0 and the perimeter of the curve with respect to the flat
metric at the boundary [170]. In formula (4.37), the conformal factor is responsible for the
proportionality between the residue and the sum of the lengths of the two circumferences of
radii Ry and Ry ranged |k| times at the boundary. We note that the residue is not conformally
invariant due to the violation of conformal invariance by the regularisation. |§|

We must find the counterterms that cancel the divergence of at € = 0. We then look
for the appropriate reference minimal surface. Unlike minimal surfaces in Euclidean AdSs,
the residue of l) is dressed by ¢ = v/1 — ¢? due to the flux. The reference minimal
surface must then couple to the B-field. The adequate candidate is the deformation under
flux of the circular minimal surface of subsection see and . Since
we must duplicate the circular minimal surface to cancel the pole of , the reference
minimal surface is indistinguishable from the disconnected minimal surface with radii R;
subsection (or from the connected solution if Ry/R; satisfies (4.16) with p = 0).

We set p = 0 in the mixed-flux regime now. We restrict ourselves to one component
of and , and we duplicate the result later. Let R be the radius of the circumfer-
ence. The cut-off is then ug = u(op) = R/e. (Recall that o € [0, 00) before the regularisation.)
The on-shell action is

S—\F/\/mdu‘k| <q2+ @ >
w VR T—@ \u? 1+’ (4.38)
VA @rlk|lR
T2 e
Formula displays the proper simple pole. We can then us e to cancel the diver-
gence of . Moreover, the finite remnant of follows from the application of p — 0
to up to a factor of two. Note that the finite remnant of does not depend on R.

— VAlk|(1 = garctanh ¢) + O(e) .

In the AdS5/CFT4 correspondence, the violation of conformal invariance persists after the removal of the
regularisation, which implies a conformal anomaly for Wilson loops; see, for instance, subsection 2.1 of [178].
The conformal anomaly concerns extended objects of N = 4 theory, not local operators.
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The regularised on-shell action S’ is (4.37) minus twice (4.38) and reads

, PR\ Jud + Pk
S = -2\ WE(“)_‘ | QWK(K)
+U— VA A
(4.39)
k(p — qk
N gk(p — qk) (v, k) — |k|(1 — garctanh q)
P+ ud)yfud + 2

The quantity drives the limit A — oo of the ratio between of the partition function of
a connected annular minimal surface in the mixed-flux regime and the partition functions of
two reference circular minimal surfaces.

Formula deserves some observations. First, S’ = 0 holds for connected minimal
surfaces with p = 0 and disconnected minimal surfaces in the mixed-flux regime. Second, S’
is invariant under k£ — —k and p — —p. Invariance is consistent with our discussion on R
in , where we have argued R — 1/R represent equivalent situations. Third, S’ in
cannot be directly written in terms the quantity R in , which characterises connected
minimal surfaces. Pairs of connected minimal surfaces whose R is the same and whose S’
differs furthermore exist for each k and 0 < ¢ < 1. Therefore, a numerical analysis study is
mandatory to study the relationship between R and S’.

We close the section with a discussion of the limit of pure flux, where ¢ = 1. We
have encountered in subsection [.1.2] that connected minimal surfaces fall into two classes.
The sign of k? —2kp states which class is realised. Following subsection we assume p > 0
and k > 0 for brevity. The analysis of the alternatives is analogous.

If k? — 2kp < 0, connected minimal surfaces adhere to the boundary of Euclidean AdSs.
We cannot introduce a cut-off at z = ¢, and the steps that have led us to are not
valid. The on-shell action is evaluated directly at the boundary. Connected minimal surfaces
however coincide with reference minimal surfaces in the limit of pure flux. We can
then argue that the regularised on-shell action is S’ = 0. The same argument holds for p = 0
and disconnected minimal surfaces.

If k2 — 2kp > 0, connected minimal surfaces penetrate into the bulk of Euclidean AdSs.
We can apply the limit of pure flux to . The result is S’ = co. If we applied the
regularisation from the outset, we would encounter S ~ log(R;/¢€) + log(Rz/€) when ¢ — 0.
(Recall that we restore Ry and Ry in the regularisation.) This class of divergences are typical
of curves with non-smooth points [166]. The annulus has a non-smooth point because R = oo,
which corresponds to either Ry = 0 or Ry = oo, and one boundary of the annulus always
collapses into a point. The regularisation does not remove divergences [166]. Since S’ = oo,
connected minimal surfaces with k2 — 2kp > 0 are in fact are not realisable. A limiting
procedure on both R; is € may overcome the problem, but this is an open question.

4.3 The local spectral curve of minimal surfaces

In this section, we construct the local spectral curve of minimal surfaces with flux of
section We follow the procedure of subsection We write local spectral curve, which
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is an elliptic curve, in the Weierstrass form. We connect special values of the j-invariant with
distinguished minimal surfaces. We eventually focus on the limit of pure [NSNS| flux, where
the elliptic curve singularises. We identify the two classes of subsection [{.1.2] We collect the
necessary background material on elliptic curves for this section in appendix [E] Moreover, we
refer to section 2.4 of [138] for a brief analysis of the local spectral curve of annular minimal
surfaces in the limit of pure RR] flux.

The starting point of the procedure of section is writing the left current j in Euc-
lidean AdSs with render the ansatz is factorisable. Formula implies factorisability

as defined in (2.71)). If we introduce (4.1)) in (C.16)), the world-sheet components of j read

SV r 1
Jr = ; (T2+Z2)T _,r2‘| S ) (440)
. _ ol ' + 22! r’ 1
Jo = S;2 [(2’2 — 72 —2rz2 —(rr' + 22) 5, (4.41)
where
_ |exp(ikT/2) 0
5= l 0 exp(—ikr/2)| - (4.42)

Note that S~'dS does not depend on 7.

Next, we must compute the determinant of A, which is the matrix under the
replacement of 7 by . The matrix A involves the truncation of L; to Euclidean AdSs
in . (We emphasise that % +— i in because of the Wick rotation 7 — —iT; see
appendix [A]) If we introduce ([4.40) and (4.41)) in (2.65), we obtain

1 k2 k r? 22 +rr’
det A = St ke 1+ 5] - E T @8
e (S_x)2(1/8+$)2<4(x 1+ q( +Z2> | @ —2)
1 {22+ 2qk(z2 +rr')  K2(2¢2 —1)r? K232 -1)| ,
— — . 4.4
= | > + 2 + . x (4.43)
If we use (4.4)) and (4.5)), (4.43) simplifies to
2-9( 4 — 3 212 12\.2
dot A — k*q*(x* + 1) + 4kq(qk — p)(x° — x) + 2(3¢°k* — 4qpk — k°)x ' (4.44)

4% (s — x)%(1/s + x)?

The local spectral curve follows from through .

The expression does not depend on o. Independence on o is in agreement with the
isotropy of the monodromy matrix. Moreover, if we had started from Lg, given in ,
we would have obtained up to z — —z and the substitution of s and —1/s by —s
and 1/s, respectively. Therefore, the local spectral curve that Lr would provide is identical
to that of . Finally, we note that equals the determinant through the
mapping k — k1 and p — ug. We have commented on the mapping in subsection

The local spectral curve of minimal surfaces defined by via, involves a quartic
polynomial. Thus, it is an elliptic curve. We can obtain the Weierstrass form of the elliptic
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curve (E.1)) by a birational transformation. The modular forms of (E.1)) read
64

g2 = 5 K[l — dapk + (¢ +3)p°)] (4.45)
256
g3 = —Wk3[2k3 — 12gpk* + (15¢° + 9)p°k + 2(¢* — 9)qp”] . (4.46)

The roots of (E.2) read

4

el = §(k2 — 2qkp) , (4.47)
2 2

ez = 5[~ (K" — 2gkp) + 3\/k2 — dqpk + 4p2k] , (4.48)
2

es = 5[~ (k* — 2qkp) — 3\/K2 — dqpk + 4p2k] . (4.49)

If we introduce (4.45)) and (4.46) in (E.5)), we obtain that the modular discriminant is

A = 65536p* (1 — ¢*)2(k? — 4qpk + 4p*)KS . (4.50)

Formulae (4.45)) and (4.46]) also permit us to obtain the j-invariant through , which reads

(k? — 4kpq + (¢ + 3)p*)°
Y1 = q?)?(k* — dqpk + 4p?)
We focus on the mixed-flux regime first. Then, we analyse the limit of pure flux.

We note first that p = 0 holds for disconnected minimal surfaces of section [4.1] throughout

the mixed-flux regime. The elliptic quantities (4.45)—(4.51)) are then blind to differences among
disconnected minimal surfaces. We do not expect the elliptic curve to reflect connectedness

j = 256 4.51
; (4.51)

because it is local. Disconnected minimal surfaces share the elliptic curve with connected
minimal surfaces with p = 0. We restrict ourselves to connected minimal surfaces hereafter.

The j-invariant classifies non-singular elliptic curves. We recall that the j-invariant admits
three distinguished values, j = 0, j = 1728, and j = oco. These values single out special elliptic
curves. The values j = 0 and j = 1728 reflect the enhancement of the Zs-automorphism of the
elliptic curve to a Zg-automorphism and a Zs-automorphism, respectively. The value j = oo
corresponds to the singularisation of the elliptic curve. The modular form go dictates the
type of singularity.

We propose to associate special values of the j-invariant with distinguished connected
minimal surfaces. We compute the real values of p associated to a given j-invariant in the
limit of pure [RR] flux. We then assume that the relationship holds under the flux and
use the j-invariant to identify the deformation of connected minimal surfaces. We argue that
we can relate 5 = 1728 and j = oo to distinguished solutions. More precisely, we argue that
we can identify 7 = co and j = 1728 with the hemispherical and semi-cylindrical minimal
surfaces, respectively. On the other hand, no real p lead us to 7 = 0 in the mixed-flux regime.

We begin with j = oo. By solving 1/j = 0 with ¢ = 0, we obtain p = 0. We have shown
in subsection that p = 0 uniquely corresponds the connected minimal surface that

consists of two domes [166,168|, see (4.21)) and (4.22]). Since the presence of two components

is nonetheless irrelevant for local spectral curve, we identify j = oo with the hemispherical
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minimal surface. The value j = co does not classify the singular elliptic curve completely.

We must compute go. If we set p = ¢ =0 in (4.45) and (4.46]), we obtain

g2 = §k4 : (4.52)
512

We identify the deformation of the hemispherical minimal surface by flux with the
singular elliptic curve with a node singularity.

If we solve 1/j = 0 for p with 0 < ¢ < 1, we obtain p = 0. The local spectral curve of the
solution is unaffected by the flux. The result is consistent with our considerations in
subsection We have associated p = 0 to the hemispherical minimal surface throughout
the mixed-flux regime.

If we set p = 0 in the roots (4.47)—(4.49)), we obtain

4
el =ey = ng , (4.54)
8 2
e3 = ——k*. (4.55)
3
Since e; and e coincide, we conclude that
A=0, (4.56)

which also follows from when p =¢q = 0.

We consider j = 1728 now. If we solve j = 1728 for p with ¢ = 0, we obtain p = co. The
value p = oo corresponds to the semi-cylindrical minimal surface, which subtends two parallel
infinite lines at the boundary of Euclidean AdSs [62,63]. To obtain the semi-cylindrical
minimal surface from the ansatz , we must rescale 7 and o, and apply R; — oo in
with Ro — Ry fixed; see appendix H of [138]. Note that |k| = 1 would be needed since winding
along the infinite lines is forbidden. The elliptic curve, which is blind to global issues, does
not account for this condition. We keep k general to clarify the discussion. We identify the
semi-cylindrical surface with the elliptic curve endowed with a Z4-automorphism.

If we solve 7 = 1728 for p with 0 < ¢ < 1, we obtain p = k/2q. (If k < 0, the limit of pure
flux of p = k/2q becomes p = —oo instead of p = oo, but both p = +oo correspond to
the point at infinity.) The result hints at the identification of the connected minimal surface
with p = k/2q with the semi-cylindrical minimal surface with flux. Even though the
connection is not manifest from classical solutions of subsection we recall that curves at
the conformal boundary of Euclidean AdSs are determined up to conformal transformations. |Z|

"The correspondence between minimal surfaces and local spectral curves is neither one-to-one nor onto |65,
66]; the elliptic curve may simply correspond to the annular minimal surface with p = k/2g. However,
our identification is somewhat supported by the semi-cylindrical minimal surface deformed by [NSNS| flux of
section 10 of [185]. This minimal surface adheres to the boundary in the pure limit of flux and connects

infinitely distant lines. This properties parallel those of the connected minimal surface with k% — 2kp = 0.
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If we set p = k/2q in (4.45) and (4.46]), we obtain

1-— q2
go =16 2 (4.57)

g3=0. (4.58)

We identify the deformation of the semi-cylindrical minimal surface by [NSNS|flux with elliptic
curve associated to j = 1728.

If we set p = k/2q in the roots (4.47)—(4.49)), we obtain

€] = 0 s (4.59)

1 — g2
eq = 21/7‘1\/@;14 , (4.60)
1— 2
e3=—2y/ ng K|k . (4.61)

If we set p = k/2q in (4.50)), we obtain that the modular discriminant is

(1—-¢%)?
¢

A = 4096 (4.62)
In the limit of pure flux, we have p = k/2, which corresponds to the threshold between
the two classes of connected minimal surfaces of subsection
The elliptic curve associated to j = 1728 and the discussion on R in of subsec-
tion[4.1.1]suggests us the following situation. The situation involves different minimal surfaces
with the same boundary conditions along the parallel infinite lines. Recall first that we have
stated that p = oo corresponds to R = 1 and to the semi-cylindrical minimal surface in
the limit of pure [RR] flux. We have also stated that p = co corresponds to R = 1 in the
mixed-flux regime. We have argued at the same time that p for the semi-cylindrical minimal
surface is p = k/2q in the mixed-flux regime. We propose to attribute the duplicity to the
non-uniqueness of the problem. Dirichlet boundary conditions at two parallel lines at the
boundary of Euclidean AdSs are compatible with both connected and disconnected minimal
surfaces. In the limit of pure RR]flux, p = oo corresponds to both classes. Connected minimal
surfaces couple to the B-field and correspond to the elliptic curve with p = k/2¢. On
the contrary, p = oo continues to correspond to disconnected minimal surfaces, whose ansatz
does not couple to the B-field, see formula (21) of [173]. Connected and disconnected minimal
surfaces would be indistinguishable in the limit of pure [RR] flux, and the flux would
differentiate them.
We turn to the limit of pure [NSNS| flux, where ¢ = 1. We perform first the series of the
j-invariant in around ¢ = 1. We obtain
. 64(k —2p)t o 64(k —2p)%(k? + 4kp — 2p?)
j=—7""0-q) " - 3
p p
N 16(3k3 + 8k3p — 4k*p? — 16kp> + 48p*)
P’

(1—q)*

(4.63)

+0(1—gq).
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It follows that j = oo always holds in the limit of pure [NSNS| flux unless k2 — 2kp = 0.
If we set ¢ = 1 in the roots (4.47)—(4.49), we obtain

4
e1 = g(k;? — 2kp) , (4.64)
2
ey = g[—(k2 — 2kp) + 3|k* — 2kp|] , (4.65)
_ 2 g2 _ 312 _
€3 = 3[ (k* — 2kp) — 3|k* — 2kp]|] . (4.66)

Two out of three roots coincide at least. The sign of k? — 2kp, the quantity that discriminates
between the two classes of the minimal surfaces of subsection dictates which roots
coincide. If k? — 2kp < 0, e; = ez holds. The elliptic curve corresponds to class of minimal
surfaces that adhere to boundary of Euclidean AdSs. If k% — 2kp > 0, e; = ey holds. The
elliptic curve corresponds to the class of minimal surfaces that subtend a degenerate annulus
at the boundary Euclidean AdSs. If k2 — 2kp = 0, we conclude that e; = e3 = e3 = 0. The
elliptic curve corresponds to the threshold between the previous classes of minimal surfaces.
We have argued on the basis of the elliptic curve that the threshold corresponds to the
limit of pure [NSNS| flux of the semi-cylindrical minimal surface. It is worth noting that this
situation is analogous to the one that we encounter for the long-string and short-string classes
of pulsating strings. The quantity that controls the local spectral curve of pulsating strings
is indeed k? — 2kjug + w?, the counterpart of k2 — 2kp under the mapping of section
Since at least two out of the three roots f coincide, the modular discriminant
vanishes:
A=0, (4.67)

which also follows from setting ¢ = 1 in (4.50]). Therefore, the elliptic curve is singular (even
for p = k/2). The type of singularity is dictated by g2. If we apply the limit of pure NSNS

flux to (4.45)) and (4.46)), we obtain

64
9= S~ 2hp)?. (1.68)
512

The elliptic curve has a node singularity if k2 —2kp # 0, in which case go # 0. On the contrary,
it has a cusp singularity if k% — 2kp # 0, where go = 0. The cusp singularity corresponds to
the threshold k% —2kp = 0, in parallel to the situation of the elliptic curve of pulsating strings
in section 3.3l
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Chapter 5

Wess-Zumino-Novikov-Witten spin-chain o-models

The semi-classical limit of the AdS;/CFT4 correspondence allowed the matching between the
energies of classical solutions on AdSs x S® and the conformal dimensions of their dual long
primary operators in N' = 4 [SYM] theory. The agreement posed two questions. First, the
availability of the matching of spectra irrespective of specific solutions in the semi-classical
limit. Second, the realisation of classical solutions themselves from the spin chain of N' = 4
theory. Reference [51] proposed a simultaneous answer to both questions.

The answer of [51] relies on the construction of an effective action in the semi-classical
limit J ~ v/A — 00, and it was advanced in the SU(2) sector of the AdS;/CFT, correspond-
ence. The effective action corresponds to an SU(2) spin-chain o-model. It is retrievable from
both sides of the duality. The effective action admits the series in the effective coupling \/.J?
by construction. The series implies the matching of the spectra at leading order in \/J>
and also of the infinite hierarchy of conserved charges of the non-linear o-model and the spin
chain. From the point of view of N' = 4 [SYM] theory, the effective action builds on coherent
states. Coherent states precisely realise closed-string configurations in the semi-classical limit.

In the SU(2) sector of AdS; x S°, the starting point of [51] was the Polyakov action
on R x S®. References [44152] clarified that the derivation of [51] consist of three steps. First,
the identification of fast and slow coordinates among target-space coordinates. They are
defined by the fact their generalised velocities are respectively large and small with respect
to the effective coupling \/J? when it is fixed and small. Second, the imposition of a gauge-
fixing condition to the fast coordinates in the Hamiltonian formalism, which [44] rephrased
as a static gauge-fixing condition under a formal T-duality. Third, the series of the gauge-
fixed action with respect to \/J?, which leads to the effective action. Being small compared
to A\/J?2, the generalised velocities of the slow coordinates are consistent with the series. The
effective action is linear in the generalised velocities of the slow coordinates and quadratic in
the derivatives of the slow coordinates with respect to o, the spatial derivatives.

In the SU(2) sector of the N’ =4 theory, the starting point of [51] was the XXX
Heisenberg model. The XXX, Heisenberg model is the spin chain that encodes the spectral
problem at one-loop under the mapping of [31]. Reference [51] in particular began with
a transition amplitude in the spin chain. The derivation of the effective action involves
two steps. First, the representation of the transition amplitude as an exact path integral
over coherent states. The construction of the path integral is standard [186]: the temporal

83
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interval of the spin chain is first discretised, the spectral decomposition of the identity over
coherent states is used next, and coherent-state configurations are finally written in an analytic
series with respect to the coordinate along the temporal interval. (The path integral has the
problem [186]; for instance, the existence of non-analytic coherent-state configurations, the
definition of the path-integral measure and the convergence of the path integral.) The second
step is the [LL]limit of the action inside the exact path integral. The [LI]limit is the continuum
limit on the spatial interval of the spin chain. It is semi-classical by construction. The [LI]
limit provides the effective action. The coordinates that parameterise continuously the spin
chain match the world-sheet coordinates. Coherent-state coordinates in the effective action
match the slow coordinates.

The proposal of [51] was extended in a number of directions. References [441[52] analysed
higher orders in A/J2. Spin-chain o-models in other bosonic sectors were also constructed.
References [55-57] constructed the SL(2, R) spin-chain o-model in the SL(2, R) sector; [55/187]
and [44] analysed the SU(3) sector in the SO(6) sectors, respectively.

Reference [101] applied the proposal of [51] to the SU(2) sector of AdSz x S3 x T4 in
the mixed-flux regime. Reference [101] started from the Polyakov action on R x S3, which
has a term that incorporates the flux. Reference |101] followed the steps of [51]
to obtain the effective action of the SU(2) spin-chain o-model. Due to the flux, the
generalised velocities of the slow coordinates are not suppressed by the effective coupling but
in a combination with the spatial derivatives. The effective action of |[101] consists of a term
that is linear in both the generalised velocities and the spatial derivatives, and a quadratic
term in the spatial derivatives. The quadratic term vanishes in the limit of pure flux.

Type 1IB superstring theory on AdSz x S3 x T* with pure flux admits a spin chain
whose finite-size corrections cancel. Reference [110] built on |[109] to construct the integrable
spin chain that encodes the spectrum of the PSU(1, 1|2) WZNW]model exactly (see section|[1.2]
for a summary). This situation raises the question of whether the effective action of a given
sector of AdSz x S3 with pure flux is retrievable from the spin chain of [110]. In this
chapter, we construct the SL(2,R) and SU(2) spin-chain o-models in the PSU(1,1|2) WZNW
model. We obtain the effective action from both the Polyakov action and from the spin chain
of [110] in the semi-classical limit.

Our derivation of the effective action starting from the spin chain of [110] is atypical. We
summarise it for clarity. First, we postulate the coherent states in a given sector. We keep the
relationship between coherent states and states in the world-sheet CFTy of the PSU(1, 1]2)
[WZNW] model implicit. Our guess for coherent states is somewhat justified by the fact they
eventually yields the correct effective action in both the SL(2,R) and the SU(2) sectors. We
then consider a transition amplitude in the spin chain. We argue that the temporal interval
is discretised in terms of the spatial interval of the spin chain. We apply a [LI] limit to the
transition amplitude. The[LI]involves the synchronised continuum limit of both the temporal
and spatial intervals of the spin chain. The [LI]limit provides us with a path integral which
is already semi-classical, as opposed to exact. The [LT]limit also provides us with the bound
that discriminates among spectrally flowed sectors.

The chapter has the following structure. In section we construct the SL(2,R) [WZNW
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spin-chain o-model. In subsection [5.1.1} we obtain the effective action from the Polyakov
action on AdSs x S! with pure flux. We follow the steps of [44,[57]. We briefly consider
the emergence of the solutions of subsection [3.2.2] In subsection [5.1.2] we obtain the effective
action from the SL(2,R) sector of the spin chain of [110]. We follow the procedure that we
have summarised in the previous paragraph. In section we construct the SU(2) [WZNW,|
spin-chain g-model along the lines of section In subsection we obtain the effective
action from the Polyakov action on R x S? with pure flux. We follow the steps of
subsection In subsection we compute the effective action from the SU(2) sector
of the spin chain of [110]. We follow again the procedure that we have summarised in the
previous paragraph.

The chapter is based on [P4,P7]. ] We refer to [11] for a review of spin-chain o-models in
the AdS5;/CFT, correspondence. We refer to [188] and [189] for the construction of coherent
states in unitary irreducible representations of on SL(2,R) and SU(2), respectively. We refer
to appendix A of [55] for a summary of the construction of coherent states on general groups.

5.1 The SL(2,R) Wess-Zumino-Novikov-Witten spin-chain o-model

In this section, we construct the SL(2, R) WZNW]|spin-chain o-model by obtaining the effect-
ive action in the semi-classical limit. In subsection [5.1], we derive the effective action from the
classical SL(2, R) [WZNW|model, which corresponds to the SL(2, R) sector of AdS3 x S* with
pureﬂux. Our starting point is the Polyakov action on AdS3 x S! with pureﬂuX,
where S! is an equator of S3. Our approach builds on [44], which focused on the SU(2) sector
of AdSs x S°, and [57], which applied the method of [44] to the SL(2,R) sector thereof. We
also consider the emergence of the solutions of subsection [3.2.2] briefly. In subsection we
derive the effective action from the SL(2,R) sector the spin chain of [110]. We postulate the
coherent states of the SL(2,R) sector on the basis of [188]. We then the steps that provides
to the effective action, in particular the [LT] limit.

5.1.1 The effective action from the classical action on AdS; x S?!

We begin with the division of target-space coordinates into two sets, called fast coordinates
and slow coordinates. Fast coordinates parameterise time-like and space-like directions in the
target space. Their generalised velocities are large in the limit ¥ — oco. We must impose
the static gauge-fixing condition to fast coordinates under a formal T-duality of the coordin-
ate along the space-like direction. Fast coordinates parameterise the temporal and spatial
directions in the continuum limit of the spin chain. Slow coordinates are the remaining co-
ordinates. The generalised velocities of slow coordinates are not suppressed when k — oc.

'n subsection[5.2.1] we rederive for completeness the results section 4 of [101] in the limit of pureﬂux.
In subsection we improve the derivation of [P4] following [P7]. The point of view of [P7] is advantageous
because it avoids unnecessary assumptions on the transition amplitude of [P4] and clarifies some features of
the associated path integral. The effective action obtained from either the steps of subsection or [P4] is
nonetheless the same. We do not discuss of subleading corrections advanced [P4] it is unclear if it is correct in
the light of [P7].
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Instead, linear combinations of generalised velocities and spatial derivatives of slow coordin-
ates are suppressed when k& — oo. Slow coordinates parameterise coherent states in the
continuum limit of the spin chain.

We need an adequate coordinate system in AdSs x S' to get a split into fast and slow
coordinates. We use the Hopf fibration of both AdS3 and S? [55,57]. Consider AdSs. The
Hopf fibration reveals the local resemblance between Hy x S' and PSL(2,R), of which AdS3
is the universal cover. The Hopf fibration specifically accounts for the fibre-bundle struc-
ture of PSL(2,R), whereby Hj is the base space and S! is the fibre. The gauge group of
the fibre bundle is U(1). The Hopf fibration is conveniently expressed in the embedding
coordinates of AdSs:

YO+iv3=evZz,, Yi4ivZ=e€2Z, (5.1)

The coordinate « is real and parameterises the fibre S' and Z, are complex coordinates
subject to the constraint —ZyZy + Z1Z1 = —1. The action of U(1) on a and Z, respectively
reads @ — a +  and Z, — exp(—if)Z,, and, thus, it preserves the constraint of Z,.
Therefore, Z, parameterise the base space Hy. By construction, the coordinate « is fast,
whereas Z, are slow.

The effective action that we obtain in subsection is not expressed in ; it is
written instead in the global coordinate system . The comparison with subsection
requires us to identify « and Z, in . The relationship between and is not
straightforward due to the action of U(1) group of the fibre bundle on o and Z,.

To resolve the ambiguity, we draw on the the gauge-fixing condition for the fast coordin-
ates with respect to the world-sheet coordinates. According to [44], we must impose the
static gauge-fixing condition to the fast coordinates, which fixes a proportionally to 7. Each
admissible identification of « in leads to a gauge-fixing condition. However, we need
a proper choice « for the comparison with subsection Reference [110] constructed the
spin chain on the basis of the light-cone gauge-fixing condition, where t is proportional to 7.
Since we must ensure that the static and light-cone gauge-fixing conditions are compatible,
we conclude P

a=t, Zy=coshp, Z =e'¥sinhp, (5.2)

where ¢ = ©¥—t. We identify ¢ with the fast coordinate and p and ¢ with slow coordinates. We
shall consistently implement this identification by means of the static gauge-fixing condition.
Analogous identifications were introduced in [55-57].

We must identify the fast coordinate along the space-like direction, which is singled out
by the Hopf fibration of S® [44,52]. The Hopf fibration manifests the fibre-bundle structure
of 83, whereby S? is the base space and S is the fibre. In , we express the Hopf fibration
through the embedding coordinates and the global coordinate system of $3. We
perform the truncation to AdSz x S! by setting set # = 0 in . Hence, the base space S?
collapses to a point. The fast coordinate is the coordinate ¢ along the equator S' C S3.

Having identified the fast and slow coordinates, we can start the derivation of the effective
action. We begin with the Polyakov action on AdSz x S' with pure flux. The

*We introduce t + /2 — t in |i to match the conventions of [P7] in this subsection.
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metric in the global coordinate system is (C.9)); the B-field is (C.19) with ¢ = 1. If we
introduce ¢ =1 —t in (C.9) and (C.19), we obtain the Lagrangian
k
L=— y [ 7P (—Batdpt + 2sinh? pdutdsp + sinh? pBadsp + Oapdsp + Ouddsd)

— 2¢*P sinh? pOatdgp } .

To write (5.3)) from (2.47)), we have used (2.41]) with ¢ = 1, and we have replaced h,g by the
unimodular world-sheet metric v,3 = hqog/v/—h for later convenience. We have not imposed

(5.3)

any gauge-fixing condition to v,3. The coordinates of the target space in (5.3 are supplied
with periodic boundary conditions:

t(r,o+2nm) =t(r,0), ¢(r,0+2m) =¢(r,0)+ 21N, (5.4)
p(r,0 +2m) = p(1,0) ,  @(7,0 +2m) = ¢(7,0) + 2mm ,

where m,n € Z are winding numbers. The number n determines the level-matching condi-
tion [110].

We must impose the gauge-fixing condition to the fast coordinates now. We look for a
static gauge-fixing condition compatible with the light-cone gauge-fixing condition of [110].
We focus on ¢ first. The light-cone gauge-fixing condition for ¢ in [110] is py, = J/2m,
where pg denotes the canonically conjugate momentum of ¢ and J denotes the total angular
momentum:

k 21
J = —%/0 doy™On - (5.6)

Fixing ¢ proportionally to o is not consistent with . The direct use of py = J/27 would
require us the Hamiltonian formalism [44152]. We can both find a static gauge-fixing condition
and avoid the Hamiltonian formalism by the formal T-duality of ¢ into 5 [44.[57].

We T-dualise ¢ into QAS on the basis of the Buscher procedure (see, for instance, |[190]). We
replace d¢ by a one-form A in , and we add a term to the Lagrangian:

k ~
L L— —¢e*P0,A5 . (5.7)
2T

The Lagrange multiplier $ ensures that A is closed, that is dA = 0. Being closed, A is locally
exact, which means that A = d¢ locally. If exactness held globally, we could integrate out QAS
in and A = d¢ would provide again. Nonetheless, the world-sheet is cylindrical,
its first Betti number equals one, and A may not be globally exact. We overcome this
obstruction by arguing that T-duality is formal (two-dimensional in the nomenclature of [44]),
which means that T-duality is a computational device and that global issues can be ignored.
Formal T-duality allows us to derive the correct action of the SL(2,R) spin-chain o-model
without need for the Hamiltonian formalism. Thus, we ignore topological issues concerning
the global exactness of A. We also pass over the dual quantisation of and the dilatonic
contribution from the path-integral measure (which would vanish in any case).
Bearing in mind the previous caveat, we can eliminate A from by solving its equations
of motion. We obtain
Ay = —ea5755a5$ . (5.8)
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If we introduce (5.8)) in (5.7)), we arrive to the Lagrangian (5.3)) up to the replacement of ¢
by ¢ (once we omit the contribution of a total derivative). The central advantage of formal

T-duality concerns (5.6)). If we use (5.8 in this formula, we conclude

o~

b (Gr2m) — 3(r.0)) . (5.9)

T or

J

Therefore, p, = J/27 translates into the static gauge-fixing condition $ = (J/k)o. The
coordinate QAS parameterises the spatial direction of the spin chain in the continuum limit.

We are interested in the semi-classical limit, where J ~ k — oco. The coordinate ¢ is fast
by assumption. By definition, its generalised velocity v? = 77*d,¢ is large when k — oo.
The condition py = —(k/27)v® = J/27 then implies that .J is not semi-classical, but also
large large. The ratio J/k is non-vanishing and large, and, thus, k/J is small. Therefore, we
have that k/J is a sensible effective coupling, just as A/J? in AdSs x S° [30]E|

In addition, we must impose the static gauge-fixing condition to ¢t. As we have discussed
before, the light-cone gauge-fixing condition of [110] demands ¢t = a7. The choice reflects the
coincidence of the time-like directions on the target-space and the world-sheet, as well as the
temporal direction of the spin chain in the continuum limit. No obstruction forbids ¢ = ar
as the fields in the Lagrangian do not satisfy any explicit boundary conditions with respect
to 7. We determine the proportionality coefficient a by arguing that ¢ is fast if a is large
when k£ — oo [51,/56]. If we further insist on the scaling of the energy that follows from
the effective action E (see ), we conclude that a = J/k. E|

In sum, the static gauge-fixing condition is

t= ET , (;AS = %o— .

We can use in the equations of motion that follow from (once ¢ is replaced by <$)

This step is convenient because the equations of motion supplies us with a cross-check to
validate the equations of motion from the effective action. If we use ([5.10]), the equations of

motion of (5.3 read

(5.10)

%(%’y‘” — Du[(7?P — P sinh? pdsp] = 0 , (5.11)
%[SinhQ Py + sinh(2p) (v — p')] 4 Oa (v sinh? pdsp) = 0 , (5.12)
%smh(zp)(w ) — 0a (7P sp) + %sinh@p)’yaﬁaacpaggo —0, (5.13)
% Wy =0, (5.14)

where v# = 470, p and v¥ = 479, are the generalised velocities of p and ¢, respectively.
The equations of motion are split in terms that are multiplied by J/k and terms that are

31t may seem that series in k/J are not analytic as k is not quantised in the SL(2, R) [WZNW| model [93].

However, this is not the case: k is indeed quantised in the PSU(1,1|2) model [92].
4 Alternatively, we could have followed [441/57). We would have fixed £ = 7, and we would have rescaled 7

afterwards in a action with a term akin to (5.15). The same observation applies to ¢ in subsection

E-Z4
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not. Both sets of equations must be satisfied separately for the consistency of series in the
effective coupling k/J. At leading order in k/J, equations and imply that *?
is divergenceless. Since the unimodular world-sheet metric .4 is covariantly constant with
respect to the torsionless connection, we deduce y*# = ¥ + O(k/J). This result simpli-
fies and (5.13)), which respectively reduce to p+ p' = O(k/J) and ¢+ ¢’ = O(k/J) (as
long as p does not vanish). The generalised velocities v” and v¥ are not suppressed by k/J.
They are suppressed in the combination with p’ and ¢'. The appearance of p’ and ¢’ is due
to the flux in AdS3 x S'.

The next step we need to take is the reduction of the gauge-fixed action to a [NG| form
with a M term. We then restore h,g in the Lagrangian and solve the Virasoro constraints
by identifying h,g with the induced metric on the world-sheet as in . We obtain

k oo 2m
S=—— dT/ do (\/—h 7 sinh? pcp’) . (5.15)
2w — 00 0 k

The expression of h is arranged in powers of the inverse effective coupling J/k; explicitly,

J4 J3 . 2 . J2 .2 /2 s 1.2 .2 2 2
h=— e + 25 sinh” pp — ﬁ[—p + p'“ + sinh® p(—¢* 4 cosh® pp'?)] (516)
= 25 sinh? pp/(pg' = p'¢) + sinh? p(pg’ — p'p)” .

We deduce that we can perform an analytic series of (or rather (k?/J%)S/k) with
respect to k/J. Note also that /—hh*® = n* + O(k/J), consistently with (5.11]) and (5.14)).

We perform the series of with respect to k/J. If we neglect terms at O(k/J) and
omit the divergent constant contribution of the fast coordinates, we obtain

J o) 2w
S = / dT/ do sinh? p(p + ¢') . (5.17)
21 J oo 0

The effective action corresponds to a SL(2,R) spin-chain o-model and is linear in both ¢
and ¢’. Formula (5.17) is in exact agreement with the expression for the effective action (5.41))
that we derive in subsection from the spin chain. The equations of motion of (5.17) are
anti-chiral:

sinh(2p)(p + p')
sinh(2p)(¢ + ')

0, (5.18)
0. (5.19)

The equations of motion (5.18)) and (5.19) are consistent with (5.12)) and (5.13)), respectively.
The general solution to (5.19)) and (5.18) are ‘right-moving waves’:

p(T, 0) = p(T - U) ) (5'20)
o(r,o)=p(t—0) . (5.21)

Classical solutions ((5.20)) and ([5.21]) are endowed with the periodic boundary conditions ([5.5)).
Equation ([5.4]) supplies the boundary conditions of ¢ and ¢. The periodicity of ¢ trivially holds
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due to (5.10). The quasi-periodicity of ¢ imposes an additional constraint on (5.20)). If we
use ([5.19)), the constraint reads

2
2mn = —2/ do sinh? py' | (5.22)
0

where we have ignored O(k/J) terms.

Formulae and encompass the semi-classical limit of classical solutions that
are reproducible from the spin chain, in particular pulsating strings of subsection We
begin with p = 0. There is a polar coordinate singularity at p = 0 in the global coordinate
system, where neither ¢ nor ¢ = 1 —t are defined. Therefore, we set v = 0. This point-like
classical solution is the vacuum, which is the ground state of the spin chain of [110]. It
corresponds to p = k? of subsection

The pulsating-string ansatz demands p = p(7), t = t(7), and 1 = kyo, where (5.4)
implies k1 = m. The static gauge-fixing condition ((5.10) and (5.21)) and (5.20)) imply p = po
and t = (J/k)7, and also m = J/k. Thus, the semi-classical limit of pulsating strings be-

longs to the continuous class of constant radius pg that we have discussed at the end of
subsection The solutions with p = pg raise in the threshold between pulsating string
in the short-string and the long-string classes. The spectral-flow parameter w equals m
up to the sign. As we have commented in subsection [3.:2.2] the continuous class of solu-
tions arises when J saturates the unitarity bound of the w-th spectrally flowed sector in the
world-sheet CFTy. Moreover, the world-sheet never collapses to a geodesic as the winding
number m = J/k is always large.

Our solutions are compatible with the unitarity bound of [93] on the principal discrete
series of SL(2,R) discussed in [109,/110]. We prove in subsection that J/k is indeed
bounded from below by w if k& — oo, see (5.37)). Solutions with p = pg are also compatible
with the claim made in [112] on the violation of the unitarity bound in the principal continuous
series. The reason is that & — oo permits the saturation of the end points of the unitarity
bound by exceptional solutions to the Bethe equations.

5.1.2 The effective action from the spin chain in the SL(2,R) sector

We rederive the effective action from the SL(2,R) sector of the spin chain proposed
in [110]. We begin with a review of the aspects of the spin chain of [110] that we need. We
refer to [110] for details that we skip.

The spin chain of [110] encodes the spectrum of the PSU(1, 1|2) WZNW|model in a system
of all-loop Bethe equations. The Bethe equations are built on the transition amplitudes of
the all-loop S-matrix. The Bethe equations are not only asymptotic but also exact due to the
cancellation of wrapping corrections. The Bethe equations determine the set of admissible
momenta for magnons above the vacuum. Magnons are eigenstates of the Hamiltonian
of the spin chain that consist of a linear superposition of oscillators, that is creation oper-
ators with definite momentum above the [BMN] vacuum. Single magnons, in particular, are
expressed as a linear superposition each of whose terms involves just one oscillator.
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The dispersion relation of single magnons follows from the imposition of a shortening
condition to the Hamiltonian of the spin chain. The condition reads

k 2
2 _
H? = (QWPJFM) , (5.23)

where H denotes the Hamiltonian of the spin chain, P denotes the momentum operator,
and M is a linear operator that shifts the dispersion relation according to the excitations on
which it acts. The Hamiltonian is semi-definite positive due to a[BPS| bound. Therefore, the
dispersion relation involves the positive branch of the absolute value following from (5.23)).
Magnons are called chiral and anti-chiral if the expression inside the absolute value of the
dispersion relation is positive and negative, respectively.

We focus on the SL(2,R) sector of the spin chain. Sector denotes a choice of the type
of oscillator that acts on the [BMN]| vacuum. The type of oscillator is determined by its
representation labels under the superisometry algebra of AdSz x S3 x T#. The various types
of oscillators in the general mixed-flux regime of AdSz x S3 x T* are listed in [105]. E| The
matrix elements of the S-matrix between states with different kinds of oscillator are in general
non-trivial. Thus, the determination of whether a sector is closed or not is elaborate. The
limit & — oo allows us to circumvent this problem because it maps sectors to truncations of
the classical PSU(1, 1]2) [WZNW|model. A sector is closed if the corresponding truncation is
consistent, which is a property that immediately holds for the SL(2,R) sector.

In fact, there are not one but two SL(2,R) sectors in the spin chain: the left-handed
sector SL(2, R)r, and right-handed sector SL(2,R)r. Both sectors are present because AdSs
is SL(2,R) = SL(2,R)1, x SL(2,R)r/SL(2,R) as a permutation coset (see (2.42))). The du-
plicity is reflected in the eigenvalue m of M in ([5.23)). The vacuum has m = 0. Single
magnons that transform under SL(2,R);, have m = 1; single magnons that transform un-
der SL(2,R)gr have m = —1. The dispersion relation of composite magnons follows from
these considerations. The important point is that the restriction of m reflects the restriction
of the spin chain to a sector of given handedness. For definiteness, we focus on the SL(2, R)y,
sector of the spin chain.

The last element of the spin chain of [110] that we need to begin is the number of sites J of
the spin chain, which is bounded. |E| The number of sites J equals the total angular momentum
of the BMN]| vacuum in the spin-chain frame where the spin chain is defined. The value J is
constrained by a unitarity bound [93}/110], which differs among spectrally flowed sectors. In

SReference [105] listed the canonical harmonic-oscillator creation and annihilation operators in the m
limit. We denote by oscillator the deformation by the string tension of the creation operators of |[105] along
the lines of [74]. Both the oscillators and the creation operators of |[105] carry the same representation labels.
Oscillators have not explicitly appeared in the bibliography to the best of our knowledge.

SReference [110] identifies J with the length of the spin chain. The choice clarifies the decompactification
limit where the S-matrix is definable. The convention is shared by [51] in the SU(2) sector of N' = 4 m
theory. We follow [44[52] in the SU(2) sector of N' = 4 theory and [55/56] follow in the SL(2,R) sector
thereof, where J denotes the number of sites of the spin chain. Our identification clarifies the [CT]limit. Both

choices are related by a rescaling of ¢ in the effective action. The same observation holds in subsection @
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particular, the unitary bound of the w-th spectrally flowed sectors reads
kw+1<J<Ekw+1)-1, (5.24)

where w denotes the integer spectral-flow parameter and k& € N denotes the level. In writ-
ing , we have further assumed that £ > 1 and w > 0. The exclusion of £ = 1 is
unimportant because we are interesting in k& — oo. We have made the assumption w > 0
for simplicity. One may consider w < 0 by inverting the sign of J in without major
modifications in the subsequent derivation.

In general, the action of a spin-chain o-model is built on coherent states. Coherent states in
the spin chain are constructed from the tensor product of J copies of one-site coherent states.
The construction of one-site coherent states is prescribed by the Perelomov procedure. The
procedure requires three elements: a group, a representation thereof, and a reference state.
The reference state must be invariant under the action of the maximal Abelian subgroup of
the group up to a phase.

The group is SL(2,R). The unitary irreducible representations of SL(2,R) that are non-
trivial are infinite-dimensional; see, for instance, subsection 4.1 of [93]. We choose the repres-
entation by postulating an ansatz for one-site coherent state. Specifically, we postulate that
one-site coherent states belong to the j = 1/2 lowest-weight representation in the principal dis-
crete series of SL(2, R), which is realised in each one-site Hilbert space H,, witha =0, ..., J—1.
Our ansatz is supported by the effective action we obtain in , which matches of
subsection We must emphasise that the representation of coherent states under SL(2, R)
does not coincide with the representation of zeroth-level generators of the current algebra.
We assume instead the existence of the mapping between our coherent states and states in
the world-sheet CFTy of the PSU(1, 1|2) WZNW| model. Moreover, we choose the reference
state in each H, as the state whose isotropy group is maximal.

One-site coherent states are in this way unambiguously determined. They read

oo
|Ta) = sech p, Z e~ IM%a tanh™ p, |m) , (5.25)

m=0
where |m) is an orthonormal basis of H,. One-site coherent states would present a global
phase in general, but suffices to recover . (On the contrary, we keep the global
phase coherent states of subsection ) The pair p, and ¢, is the discrete counterpart
of p and ¢ in the coordinate system . The range of both p, and ¢,, and p and ¢ is the
same; p, and ¢, will in fact match p and ¢ under the application of the [LI]limit. We have
defined short-hand notation 7, as

Mg = [cosh(2p,), — sinh(2p,) sin @g, sinh(2p,) cos 4] , (5.26)

which labels the one-site coherent state. The vector ((5.26]) is assembled from the expectation
value of the generators of s[(2,R) in (5.25).
A general coherent state in the Hilbert space of the spin chain H = Ho ® ... @ Hj_1 is

J—1
) = @ |7ia) - (5.27)
a=0
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Since the spin chain is closed, we must furthermore identify 7y with 7 ;. This identification
permits to realise the periodic boundary conditions of closed-string configurations in the con-
tinuum limit of the spin chain. We furthermore identify the particular state with every p, = 0,
which consists of J copies of |0), with the vacuum. Coherent states are an over-
complete basis of H. This fact implies two correlative properties which we use later. The first
is the resolution of the identity operator in H in the coherent-state basis:

1= [ duli )] (5.28)

where du[f] is the measure which comprises the product of one-site measures du[f,]. [] The
second property is that coherent states are not orthonormal, but rather satisfy

J-1
(A’ = H [cosh pa cosh pl, — ¢(¥a=%a) sinh p, sinh pfl} - . (5.29)

a=0
Once we have presented the spin chain and our coherent states, we can start considering
the [LTJ] limit of the spin chain. The starting point is the transition amplitude between an
initial state |U1) at ¢ = —7/2 and a final state |WUq) at ¢ = T'/2. The parameter t is the
coordinate along the temporal direction of the spin chain. The limit 7" — oo must be applied

as the time-like direction in the world-sheet is non-compact. The transition amplitude is

Z = lim (Uy|exp(—iHT)|¥;) . (5.30)
T—o00

This transition amplitude involves the Hamiltonian H. The action of the Hamiltonian in the
spin chain is not directly available, but encoded in the quadratic constraint . The form
of H is not achievable in general because it depends on the specific state in which it acts. To
proceed, we assume that |¥;) (or the final state |¥Us)) to is a magnon, that is an eigenstate
of H, P and M with eigenvalues E, p and m, respectively. (Note that E > 0 due to the fact H
is semi-definite positive, p is quantised since the spin chain is closed, and m > 0 because |¥1)
belongs to the SL(2, R)y, sector; these properties are secondary for the limit.) The magnon
is expressed as a linear superposition of coherent states since they form a basis of H. (The
decomposition is non-unique because the basis is overcomplete.) Let the dispersion relation
of |¥y) be

E=- (;p—i- m) . (5.31)

We have assumed that |¥;) is anti-chiral in view of the equations of motion (5.18)) and (5.19)).
We can replace the Hamiltonian H by E in (5.30)). We can then replace E with (5.31). If we

"We write neither du[f] nor du[f,] explicitly for two reasons. First, AdSs is the universal cover of SL(2,R).
Therefore, ¢ is not compact, and the use of the measure of SL(2,R) in (2.14) of |56 is not applicable, see
thereof. (Reference [56] introduced the compact counterpart of ¢ in SL(2,R), and decompactified ¢ in the
effective action.) Second, the measure at j = 1/2 is defined through an analytic continuation of the measure of
arbitrary j [56]. These impediments are not directly relevant for us as du[fis] eventually becomes a formal path-
integral measure [dyu] in the path integral (5.39). We finally note that we do not need dp[fia] in subsection [5.2.2]

either. In this case, however, du[fi,] is quite straightforward; see, for instance formula (9) of [P4]
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lift p to an operator level, ([5.30) reads

Z = lim '™ (Uy| exp(iT(k/27)P) |¥;) . (5.32)

T—o0

This form is suited to the path-integral representation of the transition amplitude.

To construct a path integral, we have to introduce a partition of [-7/2,7/2]. We
slice [-T'/2,T/2] in N subintervals [tn+1,tq] of equal step length At = T/N. The end points
of the subintervals are t, = (2a — N)T/2N, with a = 0, ..., N. If we introduce the resolution
of the identity between the end points of every pair of consecutive subintervals,
is rephrased as

N-1
2= i [ dulin)... [ duliolTaiin) (H & A (7 1] exp(i At(k/2m) P >ﬁa>> Wy (7o) -
a=0

(5.33)

Here, ’ﬁa> = |ﬁa’0> X ... &R ‘ﬁa,J—l% \I/1<ﬁ0) = <ﬁ0’\P1> and \Pg(ﬁN) = <\I/2‘ﬁN> Note
that Wy (7ip) and Wy(7iy) are wave functions in the basis of coherent states.

Formula involves the matrix elements of U = exp(ieP), the anticlockwise shift

operator, raised to the power (k/2m)At/e, where € is the spatial step length. Any shift in the

spin chain must correspond to an integer multiple of times e. In order for U to be defined
on H, the step length must then satisfy

At = —e¢. (5.34)

Therefore, the temporal interval of the closed spin chain is discretised. In general, one
may write At as a positive integer multiple of (5.34), but At = (27 /k)e is always obtained
when [—T/2,T/2] is divided into the maximum amount of subintervals.

The condition (5.34]) allows us to reformulate ([5.33]) as

N-1 J—1
. i Atm
7 = TIE};O duy.. /duo\Ilg niN) (Hoe 1—[0 [coshpa+1acoshpaa 1
@ “ (5.35)

. -1
_ oilpat1ra=Paa-1) ginh Pa+1,q Sinh pa’a_l} > U, (7o) ,

where we have used

Ulfta) = Q) aa-1) (5.36)
a=0

and the scalar product . Formula is susceptible to the application to the|LL|limit.

For customary spin chains in quantum mechanics, such as the Heisenberg XXX /5 model,
the limit yields an effective action in the form of a non-linear o-model [186]. The
limit is a spatial continuum limit applied to the classical action inside an exact path integral
over coherent states. The [LI] limit is defined by ¢ — 0 and J — oo with the spin-chain
length R = Je fixed. Under the assumption that coherent states depend analytically on their
site labels, the leading term in the [LT] limit of the action provides the non-linear o-model.
The exact path integral over coherent states follows from a continuum limit that precedes
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the [LI] limit. This continuum limit is applied to a transition amplitude with respect to the
temporal interval parameterised by ¢. This continuum limit is standard in path integrals, and
it involves At — 0 and N — oo with 7' = NAt fixed under the assumption that coherent
states depend analytically on ¢.

The application of an analogous steps to is forbidden. First and foremost, the step
lengths At and € are intertwined as stated by , which implies that T'= 2aNR/kJ. If
the continuum limits with respect to o and a in keep T and R respectively finite, the
condition N/kJ ~ O(1) must hold. The limits N — oo and J — oo must be synchronised:
the limit in involves the simultaneous application of the limit At — 0 and N — o
with T' = NAt fixed and € — 0 and J — oo with R = Je fixed. Furthermore, the limit
is a semi-classical limit, that is the limit presupposes J ~ k — oco. The inequality
bounds J in terms of £ and w. Since the spectral-flow parameter remains finite, J — oo
already implies & — oo (which in turn implies that At — 0). The counterpart of
if J~k—o0is

w<Jk<w+1. (5.37)

The inequality indicates that the spin chain belongs to the w-th spectrally flowed sector
in the semi-classical limit, see formula (59) of [93]. We emphasise that the effective coupling
of subsection is k/J. Therefore, states that the limit is accurate in highly
spectrally flowed sectors.

We apply the limit to following the previous discussion. If we assume that p,
and ¢, o depend analitically on «a and a, and we assume that € and At = (27 /k)e are small,

we can write (5.35)) as

N-1 J—1
7 = Th—Igo duy.. /d,uo\llg nN H ( iAtm H [1 + isinh? Poa(Atpaq + ego’cw)

a=0 (5.38)

+0(e)] ) Uy (i)

where * and ' denote derivatives with respect to t, and x, = ae, respectively. If we introduce
the short-distance cut-off € (or, equivalently, At), we can consider the expression between
round brackets the formal product of two continuous products. We can then reword
as the path integral

= [Tl ¢ s (7-) (539)

The path integral involves various elements. First, the classical action. At leading order
in €, the classical action reads

1 00 R
:/ &/)mf
€J _co 0 R
where p = p(t,z) and ¢ = ¢(t,x) are the continuous counterparts of p,q and ¢q . Note

we have applied the limit 7" — oo with respect to the interval over t. The expression ([5.39))
also involves the path-integral measure [du|, which is the formal measure that arises from

k
m + sinh? p (gp + %wl)] , (5.40)
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the product of measures du[fi,]. The path integral extends over continuous coherent-state
configurations 7 = 7i(¢, x) with respect to [du]. As we have anticipated, these coherent-state
configurations satisfy periodic boundary conditions: 7i(¢t,x + R) = 7i(t,z). They are also
subject to the asymptotic boundary conditions 7i(d+00,x) = fiteo(x), Where 7io, and 7i_
are the continuous counterparts of 7y and 7y, respectively. |§| Finally, the path integral
involves W1 (7i_~) and Wy(7is). They are the counterparts of the wave functions Wy(ig)
and Wo(7iy) in the limit.ﬂ

We have to introduce a change of variables to retrieve the effective action of sub-
section The change of variables is based on the form , which is a action with
a [WZ] term. To obtain the effective action in subsection we performed a series of the
action with respect to k/J. Apart from an overall factor of J, the N-th derivative in
both 7 and o appears at order O((k/J)"). We must find the same pattern here to obtain
the series in the effective coupling k/J. To put in the proper form, we set 7 = kt. We
also set R = 1, that is e = 1/J and ¢ = 2wz to match the conventions of section In
this way, we conclude

o 27
S = J/ dT/ do sinh? p(p + ¢) | (5.41)
2m —00 0

which matches the action of the SL(2,R) spin-chain o-model under the identification
of homonymous world-sheet and target-space coordinates.

We emphasise that we have omitted the constant contribution of m in . Our as-
sumption is that m (the eigenvalue of the magnon under M) is finite in the limit & — oc.
Thus, its integral is O(1/k), which is subleading in the large J/k expansion. In addition, we
have assumed that |¥;) is an anti-chiral magnon, see . If |¥1) had been a chiral magnon,
we would have obtained up to the replacement ¢’ — —¢’. This change trades ([5.20))
and by ‘left-moving waves’. The chirality of the magnon then maps to the chirality of
classical solutions in the SL(2,R) spin-chain o-model.

5.2 The SU(2) Wess-Zumino-Novikov-Witten spin-chain o-model

In this section, we derive the action of the SU(2) [WZNW| spin-chain o-model by obtaining
the effective action. In subsection we derive the effective action from the classical SU(2)
model, which corresponds to the SU(2) sector of AdSz x S? with pure flux.
We begin with the Polyakov action on R x S? with pure flux, where R is the time-
like direction of AdSs at the centre of the global coordinate system. Our approach builds
on [44157], just as subsection In subsection we derive the effective action from

8Path integrals alike have been constructed for the partition function spin chains in the bibliography;
see, for instance, the textbook reference [186]. The partition function, defined under a Wick rotation, reads Z =
limp_, oo trexp(—TH). The path integral of Z extends over 7 that are periodic not only in z but also in ¢.
Periodicity quantises the coefficient of the [WZ] term. Our approach differs because the starting point is
transition amplitude between two states rather the partition function.

In a sense, the wave functions act as sources at t = 0o of the semi-classical solutions to , since ¥y
determines the energy of the system. This point of view makes hints at an analogy with closed-superstring
vertex operators AdSs/CFT4 correspondence [13H15];see subsection .
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the SU(2) sector the spin chain of [110] along the lines of subsection but we keep the
global phase of coherent states. We omit the steps that parallel closely those of section [5.1

5.2.1 The effective action from the classical action on R x S3

The first step is the identification of fast and slow target-space coordinates. We use the Hopf
fibration of AdS3 and S? as in subsection We have argued in subsection the fast
coordinate of AdS3 is ¢ in . The coordinate ¢t parameterises time-like direction R C AdSg
along the centre of the global coordinate system . We perform the truncation to R x S3
by setting p = 0 in and . The base space Hs collapses into a point.

We must identify the fast coordinate along the space-like direction of S3. As we have
already anticipated in subsection [5.1.1} the Hopf fibration makes manifest the fibre-bundle
structure of S®, whereby S? is the base space and S! the fibre. The gauge group of the bundle
is U(1). If we use the embedding coordinates of S3, the Hopf fibration corresponds to

X'4iX?2=¢YR;, X*4+iX'=¢YR,. (5.42)

The coordinate ¢ is the fast coordinate that we have used in subsection ¢ parameterises
the fibre S'. On the other hand, R, are complex coordinates subject to Ri Ry + RoRa = 1.
The action of U(1) on ¢ and R, is ¢ — ¢ + x and R, — exp(—ix)R,. Since the action
of U(1) preserves the constraint of R,, they parameterise S?. By definition, R, are slow.

The effective action that we obtain in subsection [5.2.2]is written in the global coordinate
chart of S3. We need to identify ¢ and R, in . The action of U(1) nonetheless
obstructs a direct identification. We overcome the ambiguity by imposing the compatibility
between the static gauge-fixing condition and the light-cone gauge-fixing condition of [110].
We have already stated in subsection that the light-cone gauge-fixing condition for ¢
reads py = J/2m. (Recall that ps denotes the canonically conjugate momentum of ¢ and J
denotes the total angular momentum.) Invariance under shifts of ¢ of the Polyakov action
must be provide to J via the Noether theorem. We conclude

1t P2
¢ = 9
where ( = (p1 — ¢2)/2. The coordinates 6 and ¢ are slow. The identification ([5.43)) was also
introduced in [44/52,[101]. We note that ¢ in subsection parameterises an equator S!
in S3. This case corresponds to § = 0, where 5 in not defined and ¢ equals .

Ry =¢'Ccosf, Ry=e “cosh, (5.43)

We begin with the derivation of the effective action. The starting point is the Polyakov
action on R x S? with pure NSNS| flux. The metric in the global coordinate system is (C.13));

the B-field is (C.20) with ¢ = 1. If we introduce (5.43) in (C.13) and (C.20), we are led to
the Lagrangian

L=— ﬁ [ 1P (=0atst + Oad03 + 203 (20) DadDsC + alDpC + 0a0030)

(5.44)
— 4¢P 5in? 00, 605¢ | |

where we have used (2.41]) with ¢ = 1, and we have replaced h,g by the unimodular world-
sheet metric v48 = hap/Vv/—h. The coordinates t and ¢ in 1) satisfy the periodic boundary
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conditions (5.4)). The coordinates 6 and ¢ in ([5.44) also satisfy the periodic boundary condi-

tions:
O(r,o0+2m) =0(r,0), ((1,0+2m)={((r,0)+ 27, (5.45)

where [ € Z is a winding number.

We must impose the static gauge-fixing condition to the fast coordinates. The steps
parallel subsection [5.1.1] First, we look for an static gauge-fixing condition for ¢ equivalent
to pyp = J/2m, where the total angular momentum reads

k 2
J = ~5 do[Y™* (D + c08(20)94C) — 2sin? 00,(] . (5.46)
T Jo
We perform a formal T-duality to convert ¢ into (25 We follow the Buscher procedure, which
prescribes the introduction of the world-sheet one-form A via (5.7). The equations of motion
for A are solved by

Ao = —ea5757(87<$ — 25in? 00,¢) — cos (20) DaC - (5.47)

Note that (5.47)) is always invertible because the Killing vector along the direction of ¢ has
not fixed points. Equation (5.47) leads us to the Lagrangian
k - N
L=- [ 7% (0t Opt + 020056 — 45in* 00a605¢ + 45in* 00aCD5C + DabOp0)
T

~ (5.48)
+ 26 cos (26) 8041585(} .

The B-field in does not affect the term in , which is introduced by the formal
T-duality [44,51]. If we use in , we obtain (5.9). We conclude that pg = J/27 is
equivalent to ¢ = (J/k)o. Our discussion of subsection also allows us to state that k/.J
is a sensible effective coupling in the semi-classical limit, and that we must set ¢t = (J/k)7.
The static gauge-fixing condition is then . The pair ¢t and gg parameterise the temporal
and spatial directions of the spin chain in the continuum limit, respectively.

We write the equations of motion of under the static gauge-fixing condition
now. These equations of motion, analogously to 7, provide us with means to
validate the equations of motion of the effective action. They read

% YT =0, (5.49)
%aww — D0 (25in? 0795 + c0s(20)e*P95¢) = 0, (5.50)
%[—aww + 5i0(260) (6 — Y7%00B)] + 204 (sin? 07*P95¢) = 0 , (5.51)
%sin(Z@)(é —4700,C) — %aa(yaﬂaﬁe) 4 sin(20)70,¢05¢ = 0 (5.52)

where v? = 77%0,0 and v¢ = v7*9,( are the generalised velocities of # and ¢, respectively.
Equations (5.49)—(5.52)) involve terms that are multiplied by J/k and terms that are not. The
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consistency with the series in the effective coupling k/.J demands both sets of equations to be
satisfied separately. Equation (5.49) and (5.50) imply v*# = n*® 4 O(k/.J). Equations
and (5.52) imply 6 — 6 = O(k/J) and ¢ — ¢’ = O(k/.J), respectively (unless either § = 0
or # = 1/2). The generalised velocities v/ and v¢ are not suppressed by k/J. They are

suppressed in the combination with 6’ and ¢’. The appearance of §' and (’ is due to the
flux in R x S3.

The next step is to reduce the action of to a form with a term. If we
replace 7 by v/—hh®? in , and we use d2_51|) and m, we obtain

S = ;/_ZdT/:Wda (icos(w)g'—\/fh) , (5.53)

where

J4 J? s02 -t J? )2 /2 s 02 2 /2 12
— —5 t 45 sin 00 — 5[0+ 0" + 4sin” 0(— cos” 6¢7 + (%)

’fJ k k (5.54)
— 4 sin2 0¢'(0¢" — 0'C) + 4sin2 (¢’ — 0'C)? .

h =

The expression (5.54) is arranged with respect to .J/k. Moreover, v/—hh®? = n®8 + O(k/.J),

consistently with (5.49) and (5.50)).
If we perform a series in (5.53|) with respect to k/J, we obtain

[ 2m
S = 2‘]/ dT/ do(cos (20) ¢ + 2sin?0¢') | (5.55)
T J-x 0

where we have omitted a divergent constant contribution of the fast coordinate and terms
at O(k/J). The effective action corresponds to a SU(2) spin-chain o-model and
matches of subsection The effective action matches the limit of pure
flux of (4.9) in [101] under the identification of § and ¢ in with 7/2 — 6 and S
in (4.9) of [101], respectively, and the replacement of T and o by ¢t = (J/k)7 and ¢ = (J/k)o
as local world-sheet coordinates in . The equations of motion of are chiral:

sin(20)(0 — ') =0, (5.56)

sin(20)(¢ —¢') =0, (5.57)
consistently with and . The general solution to ([5.56) and are ‘left-moving
waves’:

O(r,0)=0(tr+0), (5.58)

((r,0)=C((T+0). (5.59)

The classical solution (5.56|) and (5.57) are endowed with the boundary conditions (5.45)).
The boundary conditions of ¢ in equation (5.4)) imposes the additional constraint

2
2mn = — do cos(26)¢ . (5.60)
0

Formulae (5.58) and ([5.59) encompass the semi-classical limit of classical solutions that
are reproducible from the spin chain. We refer to section 4 of [101] for examples, namely
spinning strings and dyonic giant magnons.
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5.2.2 The effective action from the spin chain in the SU(2) sector

We derive the effective action from the SU(2) sector of the spin chain proposed in [110]
now. Except for the ansatz of coherent states, the derivation of the effective action from the
transition amplitude is identical to that of subsection Therefore, we omit some steps.

We recall that the exact Bethe equations of [110] encode the admissible momenta of
magnons in the spin chain. Magnons are created by oscillators above the [BMN| vacuum,
the ground state of the spin chain. The dispersion relation of the magnons is given by the
shortening condition . We truncate the spin chain to the SU(2) sector; the truncation
is consistent in the strong-coupling limit & — co. Two SU(2) sectors are present in the spin
chain: the left-handed sector SU(2); and the right-handed sector SU(2)p. Single magnons
that transform under SU(2); correspond the eigenvalue m = 1 of M in . Single magnons
that transform under SU(2)j correspond to m = —1 of M in (5.23). The vacuum
satisfies m = 0. We restrict ourselves to the SU(2), sector for definiteness. Finally, the
number sites is J. In the w-th spectrally flowed sector, J satisfies the unitarity bound .

We present the coherent states that permit to construct the spin-chain o-model now. Co-
herent states of the spin chain equal the tensor product of J copies one-site coherent states. We
construct one-site coherent states following the Perelomov procedure, as in subsection [5.1.
We need a group, a representation and a reference state.

The group is SU(2). The unitary irreducible representations of SU(2) are finite-dimensional.
We postulate that one-site coherent states belong to the s = 1/2 fundamental representation
of SU(2), which is realised in each one-site Hilbert space H,, with a = 1, ..., J — 1. Our ansatz
is supported by the agreement between and the effective action . We assume
the existence of a mapping between coherent states and states in the world-sheet CFTs of
the PSU(1,1|2) model in parallel to subsection Moreover, the isotropy group of
each of the two states in the basis of H, is the same. Hence, either state can be the reference
state. Let |1) and |2) constitute a basis of H,. We assign the role of reference state to |1).

One-site coherent states are unambiguously determined and read

|7lq) = e Xa(e™ 1% cos B, [1) + e'% sin , |2)) . (5.61)

As opposed to the one-site coherent states of subsection (see (5.25))), the state (5.61)
keeps the global phase x,. The range of the global phase is x, € [0,27). The global phase

maps to the U(1)-valued gauge field in the final effective action under the limit. We
use Y, to retrieve . On the other hand, 6, and (, are the discrete counterparts of
and ¢ in , whose range share. The pair 8, and (, matches the pair # and ¢ under the
application of the limit. Finally, we have introduced the short-hand notation 7, to label
one-site coherent states. The vector 7, is defined by

Tia = exp(i Xq)[sin(20,) cos(2¢,), sin(26,) sin(p,), cos(260,)] , (5.62)

which labels the one-site coherent state. The components between square brackets, which
form a real vector, are build on the expectation value of the generators of su(2) in (5.61).
The additional global phase to (5.62]) in order to account for y, in (5.61)).
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General coherent states in the Hilbert space of the spin chain H = Hy ® ... ® Hjy_1 have
the form , where i is identified with 77 to provide closed-string boundary conditions
in the continuum limit. We identify the vacuum with the tensor product of J copies
of |1). Coherent states form an overcomplete basis of H. Thus, it provide the resolution of
the identity in H alike . Coherent states are not orthonormal, but satisfy

J-1
(r|a") = H elxa=xa) (ei(c"_%) cos B, cos B, — e~ 1(¢e=) gin 6, sin 62) . (5.63)
a=0

The coherent states that we have postulated permit to obtain the effective action under the
application of the [LT]limit. The steps are the formally same to those in subsection [5.2.2] and
the only difference is introduced by . For this reason, we do not detail the derivation,
but offer a summary instead.

The starting point is the transition amplitude Z in between the initial state |¥;)
and the final state (U3|. We assume that |¥;) is a magnon. We assume that |¥;) is chiral.
Hence, the dispersion relation is E' = ((k/27)p+m). We then restore the momentum operator
in Z, we slice the interval of the time coordinate, and we insert the resolution of the identity
over coherent state between consecutive time subintervals. The resultant expression involves
the clockwise shift operator, which implies that the temporal and spatial step length are
proportional through . The next step is the application of the limit that we have
discussed in subsection [5.1.2} The [LI]limit is a synchronised continuum limit in the temporal
and spatial intervals of the spin chain. The [LT]limit is furthermore semi-classical because it
implies J ~ k — oco. The unitarity bound in the w-th spectrally flowed sector is rephrased
as . The limit leads us to the path-integral representation of Z, which is of the
form . Finally, if we perform the change of variables that we have introduced in ,
we obtain the effective action.

The effective action reads

o) 21
S = % /_ L /O do + cos(20) — ( + cos(20)C")] . (5.64)

The pair 7 and o, which parameterise the temporal and spatial intervals of the continuous
spin chain, match the homonymous world-sheet coordinates in (5.55)). The fields x = x (7, 0),
¢ = ((r,0), and § = O(7,0) are the continuous counterpart of the coordinates of coherent
states that follow from . The pair ¢ and € matches the pair of homonymous target-space
coordinates in . On the contrary, x lacks a parallel in .

The field y is a U(1)-valued gauge field. The field x accounts for redundancy in the global
phase of one-site coherent states . We can identify y with the gauge field associated to
the term in the action . If we integrate x, we obtain x(4o00,0). If assume that the
fields decay fast enough at 7 = 400, we can set x(+o00,0) = 0. On the contrary, we cannot
ignore x/, whose integration leads to x (7, 2m) —x(7,0). The term x(7, 27) — x(7, 0) contributes
to the angular momenta of dyonic giant magnons, which follow from the aperiodic limit of
periodic classical solutions [191H193]. Since dyonic giant magnons are solitons over the
vacuum, we must fix ¥’ in such a way that the angular momenta of dyonic giant magnons are
finite. Reference [101] proved that finiteness holds if and only if x’ = —('.
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If we impose ' = —¢’, we obtain

[e's) 2T
S = 2']/ dr/ da(cos(29)f + 2sin? 6¢’y , (5.65)
T J -0 0

which matches the action of the SU(2) spin-chain o-model . We note that is
based on the assumption that |¥;) is a chiral magnon. If |¥;) had been anti-chiral, we would
have obtained up to the replacement ¢’ — —¢’. This change trades (5.58) and (5.59))
by ‘right-moving waves’ The chirality of the magnon then maps to the chirality of classical

solutions in the SU(2) spin-chain o-model.



Chapter 6

Conclusions and outlook

In this thesis, we have analysed bosonic strings on AdS3 x S® with flux. We have
adapted different approaches that were applied to the AdS;/CFT4 correspondence in the
semi-classical limit of AdS5 x S°. We have obtain results on the semi-classical limit of type IIB
superstring theory on AdS; x S* x T* with mixed and flux, and with pure
flux. Our results should shed light on the AdS3 x S* x T* background and the AdS3/CFTy
correspondence, and they open various research lines that comment on hereunder.

In chapter [3, we have analysed pulsating strings on AdSz x S' with flux. We have
constructed classical solutions. In the limit of pure [NSNS| flux, we have recovered the short-
string and long-string classes of [93]. We have computed , the dispersion relation of
pulsating strings in the mixed-flux regime in a closed form, which extends to the mixed-flux
regime the dispersion relation of [93]. To write , we have used the frequency of pulsating
strings « instead of the conventional semi-classical adiabatic invariant N. We have argued
that a is a sensible closed-string modulus. If « is a sensible closed-string modulus when
A — 00, then provides data to determine dressing phase of AdSz x S3 x T* with mixed
[RR]and [NSNS|flux [102/{104,/106], in particular at tree level [70]. Moreover, it may be possible
to use to make precise statement in the AdS3/CFTs correspondence, in parallel with
the duality between N = 4 theory and type IIB superstring theory on AdSs x S°.

Based on advances made on the AdS;/CFTy correspondence, E| [P2] analysed quantum
fluctuations around classical solutions in AdSs x S3 x T* in the mixed-flux regime, in partic-
ular around the spinning strings of [143]. Reference [P2] proved that the one-loop energy in
the mixed-flux regime is finite in the semi-classical limit (J ~ v/A — oo with A/J? large), but
did not manage to obtain an analytical expression. Reference [P2] also proved that one-loop
energy vanishes in the limit of pure flux and argued that the vanishing also holds for
the more general spinning strings of [144]. The reason for the computation of the one-loop
energy of classical solutions is that it provides data to determine the dressing phase at one-
loop [77]. The results of [P2] raise the question of whether quantum corrections around the
pulsating strings with [NSNS|flux of chapter [3|are more manageable. To compute the one-loop
energy, one could follow the parallel computation of [195] for pulsating strings in AdSs x S°.

!The analysis of quantum fluctuations around classical solutions on AdSs x S® was pioneered in [221/301,35)
136]. We refer to |194] for a review of the topic and a complete set of references. Moreover, we refer to |143]

for the computation of the one-loop energy of the BMN vacuum in the mixed-flux regime.
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Pulsating strings of chapter [3| nonetheless have features that demand the adaptation of the
steps of [195], namely the use « instead of N, the mixture of and fluxes, and
quantum fluctuations along the T#-directions, which give rise to massless excitations.

In chapter we have analysed annular minimal surfaces on Euclidean AdS3 with
flux. We have constructed connected and disconnected classes of minimal surfaces in the
mixed-flux regime. We have proved that the ratio of the radii R in determines whether
connected minimal surfaces exist, and that disconnected minimal surfaces exist for every R.
We have also computed the regularised on-shell action S’ in (4.3)). Formula vanishes for
disconnected minimal surfaces due to our choice of regularisation. By analogy with Wilson
loops in N = 4 theory, one could expect that specifies the strong-coupling limit
through the AdS3/CFTs correspondence. There are different lines of research that could help
to clarify both the status of minimal surfaces themselves and their duals.

First, the analysis of phase transitions. If more than one classical solution exists for
given Dirichlet boundary conditions, the application of the steepest-descent approximation
to the open-superstring partition function selects the minimal surface whose S’ is lower. The
situation in the limit of pure flux is the following [64},|138,/169]. Recall first that there
exist two connected minimal surfaces for each R in . Given R, one of the two connected
minimal surfaces always have the greatest S’. Therefore, it is not preferential. Whether
the alternative connected minimal surface or the disconnected minimal surface predominates
depends on R. If R is small, S’ < 0, and connected minimal surface prevail. If R is large
enough (but lower than the maximum R, ), S’ > 0, and disconnected minimal surface prevail
instead. The change of connectedness of the predominant minimal surface is the Gross-
Ooguri first-order phase transition [169]. The extension of the phase transition under
flux should be more involved. The reasons are that either one or two connected minimal
surfaces exist for each R and that the flux widens the range of R where connected
minimal surfaces exist.

Second, the analysis of quantum fluctuations around minimal surfaces. In the AdS;/CFTy
correspondence, minimal surfaces in Euclidean AdS5 x S° drive the expectation value of dual
Wilson loops at leading order when A — co. Quantum fluctuations around classical solutions
provide the subleading order through the one-loop effective action I'y. E| Reference [P5] ana-
lysed quantum fluctuations around the deformation of the circular minimal surface by
flux of chapter[d] Gaussian integration in the path integral of the partition function eventually
reduces quantum fluctuations to a set of functional determinants of differential operators that
provide I';. In the mixed-flux regime, the computation of the functional determinants of [P5]
involves the following steps. First, the conformal transformations that permits to define dif-
ferential operators with respect to a flat inner product. The flux entirely factorises in
the remnant and cancels due to Weyl invariance |136].E| Then, the computation of functional
determinants through the Gel’fand-Yaglom method [167], the Abel-Plana formula [198], and

2The systematic analysis of quantum corrections to minimal surfaces in the AdSs/CFT, correspondence

was initiated in [136]. We refer to [196] for a review of the topic and a complete set of references.
3Reference [197] argues that the [NSNS| flux does not factorises, and, thus, the [NSNS| flux affects T';.

However, [197] seems to disregard the conformal anomaly.
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the regularisation of [199]. The result, which coincides in the limit of pure flux and in
the mixed-flux regime, is I'1 = —logv/2m. The heat kernel bears this result out [200]. In
the limit of pure flux limit, [P5] argued that I'; trivialises due to the adhesion to the
boundary of Euclidean AdSs. It would be interesting to extend the computation of I'; in [P5]
to the annular minimal surfaces of chapter 4| (The computation of I'y for annular minimal
surfaces in AdSs x S was performed in [138].) Since the flux does not factorise any
more, it must explicitly affect functional determinants. Moreover, [P5] assumed Dirichlet
boundary conditions for massless fermionic fluctuations. Another research line that is worth
considering is the computation of functional determinants with other boundary conditions for
massless fermionic fluctuations. Alternative boundary conditions have proved to be adequate
in the AdS4/CFTj correspondence [201,)202]. In addition, a stability analysis that parallels,
for instance, [203] would be worth pursuing.

Moreover, we have proved that connected minimal surfaces on Euclidean AdS3 fall into two
classes separated by a threshold in the limit of pure flux. The organisation is analogous
to that of pulsating strings in short-string and long-string representations. The parallelism
is supported by the local spectral curves of minimal surfaces and pulsating strings, which
can be mapped between them. This fact illustrates that classical solutions and elliptic curves
offer complementary approaches, each of which sheds light on properties that would remain
obscured in the other. A question raised by the organisation of pulsating strings and minimal
surfaces concerns the local spectral curve of other classical solutions in AdS3 with
flux. The analysis should determinate whether the local spectral curve of other classical
solutions singularises in the limit of pure flux, and whether two classes separated by
a threshold appear. Our analysis of local spectral curves, which are elliptic, is furthermore
based on modular functions. It would be interesting to explore the extent to which these
modular functions could provide information about other classical solutions. In particular, it
is an open question whether modular functions could discriminate special classical solution,
in parallel with our analysis of minimal surfaces with j = 0 and j = oo of chapter [4]

In chapter [5, we have constructed the SL(2,R) and SU(2) spin-chain o-models in the
semi-classical limit of every spectrally flowed sector of the PSU(1,1|2) WZNW| model. We
have computed the associated effective action from both the classical action and the world-
sheet spin chain of [109,110], obtained the same result. Therefore, the quantum world-sheet
spin chain directly produces the classical SL(2, R) [WZNW)|model in the semi-classical limit.
The recovery of the[WZNW)] model fact suggests that the spin chain goes beyond the spectral
problem analysed in [109,110]. It may then possible to use the spin chain to compute other
quantities of the [WZNW| model. For instance, [110] noted that the spin chain may permit
the computation of the correlation functions of [204]. To clarify the scope of coherent states
in the spin chain of [109,110], some question must be answered.

The construction of the effective action from the spin chain is based on the ansatz for
coherent states. We have postulated coherent states , which belong to the j = 1/2
unitary irreducible representation of the principal discrete series of SL(2, R), and , which
belong to the s = 1/2 fundamental representation of SU(2). We have assumed the existence
of the mapping between coherent states in the spin chain and states in the world-sheet CFTs.
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In order for the derivation of chapter [5| to be complete, the explicit mapping between the
two sets of states is needed. The answer may rely on coherent states in the world-sheet
CFTy. Coherent states were defined in [205] as eigenstates of the lowering operator at the
level N = 1 of the current algebra of the SL(2, R)[WZNW|model. These coherent states consist
of an infinite linear superposition of states. Fach state belongs to a different negative level of
the current algebra. More precisely, the state at level —N’, where N’ € N, follows from the
application the rising operator at the level N = —1 to the vacuum N’ times. Coherent
states thus defined minimise the Heisenberg uncertainty relation of a pair of ‘position’ and
‘momentum’ operators [205]. (Inequivalent coherent states were constructed in [206], but
they do not minimise this relation in general.) To construct the coherent states , one
should endeavour to assemble the coherent states of [205] in states that transform in the
aforementioned j = 1/2 representation of SL(2,R). An extension of the coherent states [205]
would in fact be necessary to embrace all the spectrally flowed sectors. The relationship
between the sets of coherent states of [205] and would clarify the completeness of the
latter. Analogous considerations hold with respect to coherent states .

Subleading corrections to the SL(2,R) and SU(2) spin-chain o-models are also important.
Even though the lack of a proper characterisation of coherent states forbids computations
from the spin chain, it should be still possible to proceed starting from the classical action.
To compute subleading corrections, one may follow [44,/52]. Canonical perturbation theory in
particular would supply a systematic framework to address the task [44]. For the computation
to be meaningful, the SL(2, R) and SU(2) sectors must be closed at the order being considered.

One may also attempt to construct a fermionic spin-chain o-model. In the AdS;/CFTy
correspondence, fermionic spin-chain o-model was constructed in [53}54, 207-209]. The
simplest fermionic sectors of the PSU(1,1|2) [WZNW)|model are the four SU(1|1) sectors [105),
110]. The computation from the classical action bring new challenges [54]. For instance,
the imposition of an appropriate gauge-fixing condition for the x-gauge symmetry of the ac-
tion, the computation of consistent truncations, and the introduction of field redefinitions
to identify slow Grassmann-odd target-space coordinates. In the spin chain, the steps could
parallel those of chapter [l The steps would be the postulation of coherent states in a repres-
entation of SU(1|1), and the subsequent derivation of a semi-classical path integral in the
limit. Being nilpotent, Grassmann-odd variables may further clarify the [LT]limit. Again, the
complete derivation would require the explicit connection between coherent states and states
in the world-sheet CFT5.



Appendix A

World-sheet conventions

Classical type II superstring theory on a semi-symmetric spaces is realised by a classical non-
linear o-model. Fields in the classical non-linear o-model are defined over the world-sheet,
a two-dimensional manifold embedded in the permutation supercoset. In this appendix, we
settle our conventions for the elements of the word-sheet that we use throughout the body
of the text. First, we write our conventions for the world-sheet coordinates, the world-sheet
metric, and related objects. We then write our conventions for world-sheet differential forms
and operations among them- This appendix is especially relevant to chapter

We begin with the world-sheet coordinates. First, we consider a Lorentzian world-sheet.
The world-sheet coordinates are:

e The coordinate 7 = 0¥ along the time-like world-sheet direction.
e The coordinate ¢ = o' along the space-like world-sheet direction.

We consider an Euclidean world-sheet now. We obtain the world-sheet coordinates by Wick-
rotating the coordinates of the Lorentzian world-sheet as 7 +— —i7 and ¢ — 0. We adapt a
new nomenclature for the world-sheet coordinates to make the distinction between Lorentzian
and Fuclidean world-sheets explicit. The Wick-rotated world-sheet coordinates are:

e The coordinate 7 = ¢ along the temporal world-sheet direction.
e The coordinate ¢ = o' along the spatial world-sheet direction.

We can define tensor indices. We introduce lower-case Greek indices, which either run over 0
and 1, or 7 and 0. We assume the Einstein summation convention over them.

We list the objects with tensor indices in the world-sheet that we need hereunder. First, we
consider a Lorentzian world-sheet with the signature (—,+). We need the following elements:

o The world-sheet metric hqg.
o The inverse world-sheet metric h*?.
e The determinant of the world-sheet metric h.

o The unimodular world-sheet metric o8 = hqag/V—h.
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The inverse unimodular world-sheet metric y*# = /=hh*?.
oT — 1.

The skew-symmetric symbol €*? with €™ = —e

The inverse skew-symmetric symbol €,4 with €, = —€,- = —1. |I|

We consider an Euclidean world-sheet with the signature (4, +) now. We obtain objects

with tensor indices in the world-sheet through the Wick rotation 7 +— — it of the previous

objects. The Wick rotation 7 — —i7 amounts to the following replacements:

The replacements h.r — —h,r, hro — i1h s, and hye — hgo in the world-sheet metric.

The replacements h™™ — —h™", h7% +— —1h7?, and h°? — h?? in the inverse world-sheet

metric.
The replacement h — —h in the determinant of the world-sheet metric.
The replacement € — —ie*? in the skew-symmetric symbol.

The replacement €,3 — i€, in the inverse skew-symmetric symbol.

The Wick rotation of both ~,s and 72# follows from that of hag, h®? and h, but we do not
need them.

Given o2, €*?, and h®?, we can introduce world-sheet differential forms and their opera-

tions. First, we consider a Loretzian world-sheet. The elements that we need are:

The holonomic basis of world-sheet one-forms do®.

The exterior product do® A do? = (do® ® do® — do? @ do®)/2.
World-sheet zero-forms Ay = A.

World-sheet one-forms Ay = A,do® = A,.dr + A,do.

World-sheet two-forms Ay = (A,5/2)do® Ado? = A,ndr Ado

The exterior product of world-sheet one-forms A1 A By = A, Bgdo® A do?f
The exterior derivative of world-sheet zero-forms dAg = 0,Adc®.

The exterior derivative of world-sheet one-forms dA4; = 9, Agdo® A do?.

The Hodge dual of world-sheet one-forms xA; = \/—héaghB’YAWdO'a, where * is the
Hodge-duality operator.

We have omitted trivial items in the list, for instance Ag A A; = AgA; or dAs = 0.
We consider a Euclidean world-sheet now. Differential forms are formally invariant under

the Wick rotation 7 — —i7. The components of differential forms in the holonomic basis

transform under the Wick rotation. The Wick rotation 7 — —i7 amounts to the following

replacements:

!Equivalently, we could have introduced the tensor density €' = e”‘ﬁ/\/ —h and its inverse e’aﬁ =V —heag.
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e The replacements dr +— —idr and do — do in the holonomic basis of world-sheet
one-forms.

e The replacements A; — i A, and A, — A, in world-sheet one-forms A;.
e The replacement A,, — i A;, in world-sheet two-forms As.

e The replacement *A; — i*xA; in the Hodge dual of a world-sheet one-form, that is the
Wick rotation of the Hodge duality operator * — ix.

Our conventions imply that the action S transforms as iS — —S under 7 — —iT;

We close the appendix by commenting on the extension of one-forms on the world-sheet X
into a three-dimensional manifold B such that B = 0%. The extension is necessary to supply
the action with three-dimensional terms; see , , and . We consider a
Lorentzian ¥ first. We introduce the coordinate p = o2 on top of ¢ = 7 and ¢' = o to
parameterise the additional direction of B. We introduce dp in the holonomic basis of one-
forms in B. One-forms in B read A; = A,d7 + A,do + A,dp. The |W_"Z| term is built on a
three-form alike AN BAC = A,BgC,do® A do? Ado?, where do® A do? A do? is the totally
antisymmetric combination of do® ® do® ® do” (times the combinatorial factor 1/6). If ¥
were Euclidean, we would Wick-rotate the Lorentzian [WZ] term through 7+ —i7 to obtain
an Euclidean term.
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Appendix B

The defining representation of su(1,1|2)

The PSU(1,1|2);, x PSU(1,1|2)r/SL(2,R) x SU(2) permutation supercoset is the target space
of the non-linear o-model on AdSs x S? with mixed flux. The action of the model can be
made explicit in the defining representation of su(1,1|2); @ su(1,1|2)g, wherein the super-
matrices of psu(1,1|2); @ psu(l,1|2) g are defined. In this appendix, we write the conventions
for su(1,1|2) and psu(1,1]2) that we use in subsection The appendix is based on sec-
tion 9 of [125] for the most part.
We start from s[(2|2). The superalgebra s[(2|2) consists of supertraceless (4x4)-supermatrices

of the form

6, B (B.1)

A
v-le 5]
where A and B are (2 x 2)-matrices with complex bosonic (commuting) entries and ©1 and 4
are (2 x 2)-matrices with complex fermionic (anti-commuting) entries. The supertrace is
defined by

strM =trA—trB, (B.2)

and, thus, we have tr A = tr B for s[(2|2).
The defining representation of su(1, 1|2) is the invariant locus of s[(2|2) under the Cartan
involution

C(M)=-HM'H , (B.3)

where H = diag(1,—1,1,1) and  denotes the adjoint operation, namely transposition and
complex conjugation. The most general ©; and Oy that are invariant under the Cartan

611 b2 =01, 03
0, = . @y = | i fuf B.4
! [‘921 922] 2 [— 12 05 (B-4)

involution read

where * denotes the complex conjugation of fermionic numbers. The most general form of A
and B that are invariant under the Cartan involution is

A A - -—
A= |Au  Ag=-Ay ., Ay = —Ag B.5
L‘hz Aoy 11 11 22 22 (B.5)
By Bio — -
B=|"L . Bi=-Bn, Bm—=-Ba, B.6
[—312 Bﬂ] 11 11 22 22 (B.6)
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where  denotes the complex conjugation of bosonic numbers.

The bosonic truncation of su(1,1]2) is obtained by setting to zero the entries of (B.4),
which leaves A and B in (B.I). The bosonic truncation of su(1,1[2) forms a bosonic sub-
algebra. Matrices A span u(1,1), whereas matrices B span u(2). The constraint im-
plies A1 + Ao = Bi1 + Bas. Therefore, we deduce that the bosonic truncation of su(1,1|2)
is sl(2,R) @ su(2) @u(1l). (Note that sl(2,R) = su(1,1).) The u(1)-subalgebra of su(1,1|2) is
generated by the identity supermatrix. The Lie superalgebra psu(1,1|2) is defined as the quo-
tient of su(1, 1|2) over this u(1)-subalgebra. We drop the u(1)-subalgebra from and
by requiring

Al = —Az, Bii=-DBx. (B.7)

Matrices A and B then span the defining representations of sl(2, R) and su(2), respectively.
Finally, the Lie superalgebra of the permutation supercoset psu(1,1|2); @ psu(1, 1|2) g is built
on two copies of psu(1,1]2) defined in this way.



Appendix C

Coordinate systems

Our analyses in the body of the text are always performed in specific coordinate systems
of AdSsz x S? with flux. In this appendix, we present the coordinate systems that we
need chapters We first present the embedding coordinates, and write the target-space
metric and the [RR] and three-form fluxes. Embedding coordinates allow us to relate
the different coordinate systems which we eventually use. In the global coordinate system
and the Poincaré patch, we write the embedding map g, the left current j, and the metric.
We end the appendix by arguing and writting the appropriate B-field in the global coordinate
system and the Poincaré patch.

We start from embedding coordinates in AdS3 x S3. Embedding coordinates are defined
through the quadratic form that embeds both AdS3 and S? into their respective flat higher-
dimensional space. AdSs is the locus of R?? defined by

— @+ (V)2 - (V)= -1, (C.1)
where Y4 € (=00, 00). S? is the locus of R* defined by
(X2 4+ (X)) + (X3 + (X =1, (C.2)

where X4 € [—1,1]. We have set the radii of both AdS3z and S? to one since we have isolated
them in front of the Polyakov action via A (see footnote |4 of chapter . If we arrange Y4
and X4 in entries of (2 x 2)-matrices, it follows from and that AdSs = SL(2,R)
and S® 2 SU(2). The isomorphism can be alternatively deduced by considering the associated
permutation cosets (see subsection .

The metric of AdS3 is the pull-back by Y4 of :

dsing = _(dyo)z + (le)l + (dY2)2 _ (dY3)2 ) (C.3)
The metric of S? is the pull-back by X4 of (C.2):
ds?s = (AX )2 + (dX?)? + (dX3)? + (dX1)? . (C.4)

The [RR] and three-form fluxes are the proportional to the sum of the volume forms
of AdS; and S3:

F = —2q (volags, +volgs) , H = —2q (volags, + volgs) . (C.5)
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The orientation of the volume forms does imply any ambiguity because the constraint
implies —1 < ¢,q < 1. Recall nonetheless that we assume 0 < ¢ < 1 and ¢ = /1 — ¢? for
conciseness.

We consider the global coordinate system of AdS3 x S? now. The global coordinate sys-
tem is suited to analyse closed-string configurations. The coordinates the maximal Abelian
subgroup of both SL(2,R) and SU(2) are cyclic in the Polyakov action. Thus, the associated
Noether charges have manageable expressions.

The relationship between embedding and global coordinates of AdSg is

YY =coshpsint, Y!=sinhpcosy, Y?=sinhpsiny, Y =coshpcost, (C.6)

where p € [0,00), t € (—00,00). and ¥ € [0,27). We have decompactified ¢ on account of the
definition of AdS3 as the universal cover of SL(2,R). The decompactification forbids closed
time-like curves: world-sheets cannot wind along the direction of t. The coordinate system

(C.6) corresponds to

o= |t Sy ©n
and
; i(cosh? pdt + sinh? pds)) e~ i(t=4) [% sinh(2p) (dt 4+ dvy) + dp} (©8)
elt=4) {—% sinh(2p) (dt 4+ dvy) + dp} —i(cosh? pdt + sinh? pde)) '

Note that (C.8)) is a s[(2, R)-valued one-form because it has the form (B.5) and satisfies (B.7).
The metric of AdS3 reads

dsias, = — cosh? pdt® + dp?® + sinh? pdep? . (C.9)

The conformal boundary of AdSs is placed at p = co. We use ((C.6)) in chapter [3| and section
BTl

The relationship between embedding and global coordinates of S? is
X! =cosfcospr, X?=cosOsing;, X°>=sinfcospy, X*=sinfsinyps, (C.10)

where 0 € [0,7/2] and @1, @2 € [0,27). The coordinate system (C.10)) corresponds to

o= |5 S oy
and
- i (cos? Odyy —sin? Ods) e ilp12) [% sin(26) (dey +d802)+d9] (C.12)
ellere2) |1 sin(20) (dipr +dipy) — o — i (cos? fdipy —sin® Bdpo) |

Note that (C.12)) is a su(2)-valued world-sheet one-form because it has the form and
satisfies (B.7). The expression metric of S® in (C.4) is

dsgg = d#? + cos? 0d<p% + sin? 9dg0§ . (C.13)
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We use ((C.10) in section [3.1) and subsection

We consider the Poincaré patch now. We do not need the Poincaré patch of AdS3 but
of Euclidean AdS3. In terms of Y4, we obtain Euclidean AdSs by means of the Wick ro-
tation Y — —iY?. The Wick rotation turns into the quadratic form embedding the
Euclidean AdSs in R*!. As opposed to AdSs, Euclidean AdSs is not a group manifold. E| The
Poincaré patch is suited to analyse open-string configurations. Open-string configurations are
endowed with Dirichlet boundary conditions at the conformal boundary of Euclidean AdSs.
Unlike (the Euclidean counterpart of) the global coordinate system , the Poincaré patch
locates the conformal boundary of Euclidean AdSg at finite values of their coordinates.

The relationship between embedding coordinates and the Poincaré patch of Euclidean AdSs
is

vO _ 0 ve_ (%) + (z1)° + 22— 1
Tz n 22 ’

: o2 2 (C.14)
e @)@
oz B 22 ’

where 20, 2! € (—00,00), and z € (0,00). The coordinate system does not cover but half
the whole space; the complementary Poincaré patch corresponds to (C.14) with z € (—o0,0).
The coordinate system ((C.14]) corresponds to

124 (@97 + (21 2! +iaf
9= z xt —iz0 1 ’ (C.15)
and
1 zdz + (2t — i20) (dz! 4 1da?) dz! +ida”
7= 2|2 (dzt —ida®) — (2 — ix0)2 (dzt +id2®) — [2d2 + (2! —1i2Y) (da! +id2?)]
(C.16)

We emphasise that is not s[(2, R)-valued, that is neither has the form nor sat-

isfies . This fact is not contradictory with our construction of subsection because

Euclidean AdSj3 is not a group manifold (see footnote |1 of this appendix). The metric of

Euclidean AdSs3 reads

dz? + (dato)2 + (da:l)2
5 .

dSA2AdS3 = > (017)

The global coordinate system ((C.6) and the Poincaré patch are related. If we Wick-rotate
(C.14) back to the Lorentzian signature , which corresponds to x° — iz, we obtain
0 cosh psint 1 sinh p cos
xr = ; - 5 r = - . )
cosh pcost — sinh psiny cosh p cost — sinh psin ¥
1
cosh pcost — sinh psinvy

(C.18)

! BEuclidean AdS3 is not a group manifold. The action of the supercoset model cannot be supported with a
topologically non-trivialterm (see subsection‘ To overcome the obstruction, we considering that the
supercoset model on Euclidean AdSs is the analytic continuation of its Lorentzian counterpart. The analytic
continuation is introduced at the expense of complex-valued fields. We refer to subsection 7.3 of [92] for a
discussion.
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The conformal boundary of Euclidean AdS3 is located at z = 0. We use in chapter

We turn our attention to the B-field now. The B-field in a given coordinate system is not
unambiguously determined. Any B-field whose exterior derivative equals H in is, in
principle, admissible. The B-field is defined modulo a gauge ambiguity, that is the addition of
an exact two-form. The redundancy is ignorable in the action of closed-string configurations:
periodic boundary conditions erases the contribution of the exact two-form. However, the
ambiguity in the definition of the B-field matters in the action of open-string configurations.
The definition also matters for dyonic giant magnons, introduced in [191+H193], which are
aperiodic limits of periodic classical solutions. The exact two-form contributes in the action
through boundary terms, and, thus, it contributes to the Noether charges. In section 4.2, we
exclude boundary terms by demanding that they vanish at the boundary of the open-string
world-sheet. The condition imposes gauge invariance to the action with respect to the B-field
on the open-string world-sheet. We single the proper B-field out in the global coordinate
system and the Poincaré patch by three conditions.

First, invariance of the B-field under shifts along the directions on which the target-space
metric does not depend. We can impose the condition to , since does not depend
on either ¢ or 9, to , since does not depend on either ¢; or @2, and to ,
since does not depend on neither 2° or z!'. Second, the AdSs-component of the B-
field in a given coordinate system must share the behaviour of the metric in the vicinity of
the conformal boundary of (Euclidean) AdSs. This behaviour is controlled by the conformal
factor. We can impose the condition since the AdSs-component of H in is proportional
to the volume form of AdSs. The contributions of both target-space metric and the B-field
in the vicinity of the boundary of AdSs stand on an equal footing. Third, the S3-component
of the B-field in a given chart must yield a finite Noether charges for dyonic giant magnons.
The condition accounts for the realisation of dyonic giant magnons as solitons over the
vacuum and was derived in [101].

If we choose an orientation for the volume forms of both AdSs and S, we have the
following B-fields. The AdSs-component of the B-field in the global coordinate system
is

Bads, = gsinh? pdt A de) . (C.19)
The S3-component in the global coordinate system (C.10)) is

Bgs = —qsin? fdp; Adys . (C.20)
The Euclidean AdSs-component of the B-field in the Poincaré patch (C.10j isE|

Bads, = —i%dxo Adat (C.21)

2The imaginary unit of is cancelled against the imaginary unit of the Wick-rotated ¢*? (see ap-
pendix . Moreover, our assumptions ¢ = /1 —¢2 and 0 < ¢ < 1 from holds after the Wick rotation.
Neither the proof of invariance under x-symmetry transformations of the action nor of the existence of
the Lax connection in and explicitly involves the signature of the world-sheet metric [88]/102].



Appendix D

Finite-gap equations with mixed flux

The spectral problem of classical integrable non-linear o-models is encoded in the quasi-
momenta. The quasi-momenta are single-valued meromorphic functions of the spectral para-
meter over the spectral curve. The series of the quasi-momenta around points of the spectral
curve generates the infinite hierarchy of (local, multi-local and non-local) conserved charges.
The analytic structure of the quasi-momenta determines the closed-superstring moduli, for
instance filling fractions and mode numbers. The quasi-momenta admit an integral repres-
entation over the density functions. These density functions satisfy a set of linear integral
equations called finite-gap equations.

The application of spectral curves to the AdS;/CF Ty correspondence was proposed in [58].
Reference [58] constructed the spectral curve to the coset model on R x S3, which is a bo-
sonic truncation of the supercoset model on AdSs x S5. The approach of [58] was shortly
afterwards applied to other bosonic truncations of AdS5 x S°: reference [59] constructed the
spectral curve in the truncation to AdSz x S!, [210] in the truncation to R x S, and [211] in
the truncation to AdSs x S!. Reference [60] eventually constructed the spectral curve of the
supercoset model on the fully supersymmetric AdS5 x S®. Since [60] just relied on classical in-
tegrability of AdS5 x S® (in turn based on its structure of semi-symmetric space), the spectral
curve exist in other supercoset models that are relevant to the AdS,1/CFT, correspondence.
Reference [212] wrote the spectral curve of the supercoset model AdS, x CP3. Reference [95]
constructed the spectral curves in the permutation-supercoset truncations of AdSs x S? x T4
and AdS3 x S? x $2 x S! in the limit of pure flux. On the basis of [95], reference [137]
presented a uniform framework wherein previous algebraic curves were included together with
new ones. Reference [213] discussed the incorporation of an external CFTy to the spectral
curve of a non-critical semi-symmetric space. We refer to [214] for a review of the spectral
curve and the finite-gap equations in the context of the AdS;/CFT, correspondence. In this
appendix, we present the finite-gap equations of AdS3 x S? in the mixed-flux regime following
the original construction of [102]. We also follow [95,/137,213] and [126] regarding general
considerations on finite-gap equations and Lie superalgebras, respectively.

We begin with a brief presentation of the quasi-momenta of a non-linear o-model based
on a general semi-symmetric space G/H. To obtain the quasi-momenta, we must diagonalise
the monodromy matrix M in . We recall that M is a G¢-valued function of the spectral
parameter x. We also recall that the conjugacy class of M is invariant under gauge trans-
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formations of H and independent of the non-contractible loop that enters in the definition
of M. We finally recall that the action of €2 on M follows from . The set of conjugacy
classes of G¢ is isomorphic to the maximal Abelian Lie subgroup of G modulo the action of
the Weyl group [95]. If the rank of the Cartan subalgebra of g is N and a basis of bosonic
generators thereof is H 4, we can diagonalise as

N
M = Uexp (ZpAHA> Ut (D.1)
A=1

where p4 are the quasi-momenta and U is Gg-valued function of x.

The quasi-momenta are single-valued meromorphic functions of x over the spectral curve,
which is a Riemann surface, that is a compact analytic variety of complex-dimension one. The
quasi-momenta have branch cuts over the spectral curve, which consists of various sheets.
The branch cuts of pa arise due to the diagonalisation of M through U, which depends
non-trivially on . The monodromy of p4 across branch cuts is encoded in the action of
the Weyl group W and 27nZ-shifts. We make the customary assumption that the number of
branch cuts is finite and assume that the case with an infinite number of branch cuts can be
retrieved as a of limit [60]. (Finite in finite-gap equations stands for this assumption.) The
Z4-automorphism (2 of g relates the branch cuts of p4 in different regions of the spectral curve.
The action of 2 on p4 follows from the action on 2 on H 4. Since H 4 are bosonic, the action
of Q on p4 actually corresponds to a Zs-automorphism. In addition, ps have simple poles.
Simple poles correspond to essential singularities of M and are induced by the simple poles
of the Lax connection L at z = oo, z = 0, and = = +1 (see and , respectively).

We focus on the permutation-supercoset model on AdSz x S? in the mixed-flux regime
now. The target space is (2.20)), whose whose Lie superalgebra is psu(1,1[2) 1, & psu(1,1|2)z.
This Lie superalgebra has rank six. Hence, we have N = 6 quasi-momenta p4. Lie superal-
gebras in general possess multiple inequivalent systems of simple root. Therefore, they can be
endowed with multiple inequivalent Dynkin diagrams and Cartan matrices. We abide by the
conventions of [102] in this appendix. The conventions of |[102] lead to finite-gap equations
that match the thermodynamic limit of the associated Bethe equations [99]. Our conventions
amount to the choice of the Cartan matrix A’ = 03® A of psu(1, 1|2), @ psu(1,1]2) g, where o>
denotes the third Pauli matrix and

0 1 0
A=|1 -2 1|, (D.2)
0 1 0

is the Cartan matrix of psu(1,1]|2). We emphasise that does not correspond to the
representation of psu(1,1]|2) that we present appendix [B| and use in chapter

We consider the analytic structure of p4 now. We begin with their branch cuts. The mono-
dromy of p4 across the branch cut is encoded in the action of W and 27Z-shifts as we have
already mentioned. We restrict ourselves to the set of elementary Weyl reflections within W
for simplicity. The action of a general element of W is represented by the composition of
elementary Weyl reflections. Let C4 , be the set of branch cuts of p4, with n = 1,..., N4.
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By assumption, C4 , do not intersect for n =1,..., N4 and A fixed. We can characterise the
discontinuity of p4 across C4 , by a density function p4 , with support in C4 p:

pan () =ph () —pl(z) , z€Cupn, (D.3)

the superscripts ¥ and T denote the limit from above and below in the normal direction of C A,
respectively. Moreover, if p4 subject to a monodromy around the end point of C4 ., we have

6
parrpa+ Y Aappp +2Tman - (D.4)
B=1
This formula implies that C4 ,, fall into two classes. If Ag4 = %2, that is the A-th root is
bosonic, C'y 5, is a square-root branch cut. If A44 = 0, that is the A-th root is fermionic, C4 5,
is a simple-pole branch cut. (See subsection 2.3 of [60] for a detailed discussion.) To write
the finite-gap equations, it is convenient to rephrase as

1 6
3 ST Aup(py () +pg (2) = 2rmay, , x€Cay - (D.5)
B=1

The Z4-automorphism € relates different p4 at different points of the spectral curve and
intertwines C4, among them. The action of 2 on py4 is induced by the action (2.54)) on L
and reads

6
Qu(pa(z)) =pa(l/x) = > Sipps () (D.6)
B=1

where S squares to the identity matrix. We abide by the conventions of [102] again and
choose S’ = o' ® S, where ¢! is the first Pauli matrix and

1 -1 0
S=10 -1 of . (D.7)
0 -1 1

By using S, we can focus on p4 over |z| > 1 because relates p4 over |z| > 1 and |z| < 1.
We can divide Cy4,, into C’Zm with n = 1,..., N, which belong to |z| > 1, and Cy,, with
n=1,..., N, which belong to |z| < 1. If a given C4 , crosses the circumference at |z| = 1, we
split it into Cj’n and C' ,,. We denote the density function with support over C’in by pin.

In addition, p4 inherit the simple poles of L. The Lax connection has two types of simple
poles: the simple pole at © = oo (and at x = 0 by ), whose residue is , and
the simple poles at = = s,—1/s and x = —s,1/s, whose residues are and ,
respectively. The residues of py at * = oo are proportional then to the Noether charges
(integrals of the Noether current along the non-contractible loop that enters in the
definition of M). These Noether charges are linear combinations of the energy the angular
momenta; see formula (4.11) of [102]. We do not need the Noether charges to write the
finite-gap equations however.

We need the simple poles of py at x = +s and = +1/s. The Lax connection decomposes
into Ly and L by ; x = s,—1/s are simple poles of L; and x = —s,1/s are simple
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poles of Lr. The residues of Ly and Lg appear in (2.61]) and (2.62)), respectively. To write
the residues of p4, we need to split the quasi-momenta into two sets. First, the left quasi-
momenta pg = pa, with A = 1,2, 3, which have simple poles at z = —s,1/s. Second, the
right quasi-momenta p4_3 = pa, with A = 4,5,6, which have simple poles at x = —s,1/s.
(We refer to the objects associated to p4 and p4, for instance branch cuts and densities by
using " and ".) To simplify the finite-gap equations, we parameterise the residues asE|

. S, 3 .1 -
respa = 5(aa +ba) , e, Pa= 55 (@4 = ba) , (D.8)

y S, 3 PR S ¢
Jes pa=—5(da—ba), 15 A= ~ g, (@4 +ba) . (D.9)

The simple poles do not overlap with the branch cuts by assumption. In addition, both p4
and pa are defined up to the action of §2; finite-gap equations account for the ambiguity
through a constraint.

The quasi-momenta are exhaustively characterised by the densities and the residues. The
reasoning behind the claim is the following (see footnote 15 of [213]). We define the function f4
as p4 minus the simple-pole contribution from x = s and z = —1/s and the function fA as
P4 minus an analogous contribution from z = —s and z = 1/s. For each function fA
(function f 4), we define a closed contour I'4 in the complex plane whose interior encompasses
all C‘f’n (respectively Cv‘iin). This step is possible because the number of branch cuts is finite.
The function fA (respectively fA) is analytic in the outer region. Therefore, it admits a
Cauchy integral representation therein. Finally, we can deform I'4 until it surrounds the
associated set of branch cuts. The Cauchy integral is fragmented into a sum of integrals over
C’jin and Cv'jin, which are determined by /A)X,n and [)Kn. An integral representation for each f A
and f4 in this way follows. An integral representation for each p4 and p4 then also follows.

The upshot of the foregoing argument is that the quasi-momenta admit the following an
integral representation, called spectral decomposition [102]:

A~ —~ B 1 A+ / 1 A— /
A

gz —s)(z+1/s) ' 2mi x—a = 27

~ - l\; 1 ~+ / 1 ¥ — /
pa(z) = —Laat(@=aqr) A+./ dJ:/pA(:E)—f—,/ aPa® gy
q(x+s)(x—1/s) 2miJet  w—a'  2mije, x—ua
where
A+ A‘:At A+ + sz +
Cy = Ans PA= D P (D.12)
n=1 n=1
Q= vj Q= + N} +
n=1 n=1

!The residues and (2.62) satisfy algebraic constraints to account for the Virasoro constraints; see
formula (2.49) of [102]. Nonetheless, we do not need them to write the finite-gap equations. In the limit of pure
flux, the algebraic constraints admit an extension to if the permutation-supercoset model on AdSz x S3
and the CFT> couples to the external T* [213]. A similar extension should be possible here.
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As we have already mentioned, the action of €2 in allows us to omit a redundant set
of branch cuts, say CA’Z ,, and Cv’;{n We perform the step through some constraints. First, a4,

b 4, G4, and BA in the residues and satisfy

3
= Z ABGB , bA = ZSABbB (D.14)
B=1

Second, since is satisfied irrespective of the value x, the integrals over CA';1 and CV'Z are
expressible in terms of the integrals over CA'X and CV'X

L d:,;/'OA i / x/M (D.15)
2mi Jo, oz —a = Bori 22 (x—1/z") "’ '

1 Pa ’ ph ()
— da’ al do/ B~ D.16
2mi Jers R Bg 271'1/ x:c’Q(x—l/x’) ( )

Finally, the residues and require certain cancellations to occur. A necessary and
sufficient condition is that

2 1 ,pA / 1PB (z')
= — d . D.1
ba . dz E SA 2t Jo = (D.17)

2mi I

If we take the previous considerations into account and use the Shokhotski-Plemelj formulae,
we obtain the finite-gap equations of the non-linear o-model on AdSz x S? with mixed flux:

3 3 At (] (0
1 106 (@) . 1 ) Pe ()
> S A sncgf, P spel [ AL

— +
3101 L= c

b
__ZA BacaB—l— (q+qx)bp +27TT?LA,n, (D.18)

s)(x+1/s)
s 3 () ! (@)
ZZAAB [530][ngx xc_x ~ 5o Qm/évgdx :L"2(:UC—1/:E’)]

B=1C=1

zap + (G — qz) bp .
E A -2 n D.19
= ABq_(m-i-S) (x—1/s) Tma, ( )

where dashed integrals denote the Cauchy principal value.
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Appendix E

Elliptic curves

Factorisable classical solutions admit local spectral curves. We postulate the curve in sub-
section [2.2.2] and apply our proposal in sections [£.3] and [3:3] Our local spectral curve turns
out to be elliptic. In this appendix, we present the background material on elliptic curves
that we need in the body of the text. Since the content of the appendix is rather elementary,
a comprehensive bibliography is beyond our scope. We just refer the reader to [215] for an
accessible treatment of elliptic curves in the context of the Seiberg-Witten theory.

The elliptic curve is a compact algebraic variety of complex-dimension one whose genus is
one. In subsection the elliptic curve is defined by , which is the locus within C?
defined by a quartic polynomial. To analyse the elliptic curve, it is convenient to reph-
rase in the Weierstrass form, which involves a cubic polynomial. The Weierstrass form
is obtained through a birational transformation. Birational transformation (performable in
any computer-algebra software) preserve the analytic structure of an algebraic curve once it
is desingularised. The Weierstrass form of the elliptic curve is

y? = 42% — gox — g3, (E.1)

where go and g3 are called modular forms. The elliptic curve is in general endowed with a
Zs-automorphism, which acts on (E.1) as y — —y and x — x.
Let eq be the roots of the cubic polynomial of (E.1)). We can then rewrite (E.1)) as

v =4z —e1)(z — ex)(z — e3). (E.2)
If we compare (E.1|) and (E.2), we deduce that
e1+ex+e3=0, (E3)

and that go and g3 are symmetric polynomials of e,, namely
g2 = —4(e1ea + ezes +eze1) ,  go = dejezes . (E.4)
The discriminant of the cubic polynomial A, which is called modular discriminant, is
A= gg’ — 27932, = 4(e; — 62)2(62 — 63)2(63 — 61)2 , (E.5)
where the overall normalisation is conventional.
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The discriminant encodes the regularity properties of the elliptic curve. If A # 0, all e,
differ among themselves and the curve is non-singular. If A = 0, two or three e, are degener-
ate, and the curve is singular. The type of singularity depends on whether g2 # 0 or g5 = 0.
If g9 # 0, the elliptic curve has a node singularity. If go = 0, it has a cusp singularity.

If A # 0, the elliptic curve is isomorphic to a complex torus (via the Weierstrass function).
We define a complex torus T? from a parallelogram within C under the identification of
opposite edges. We assume without loss of generality that the vertices of the parallelogram are
located at {0,1, 7,7+ 1}, where 7 is the modular parameter of the torus. We assume J7 > 0,
that is 7 € H. Complex tori are endowed with a complex structure, which characterises
them. Two T? and T'? are isomorphic if their respective 7 and 7/ are related by a modular

transformation:

d

T’_H_,_aT-i-b a b
Cer4d’

]«EPSL@,Z). (E.6)

If 7 and 7/ further belong to H/PSL(2,Z) = {r e H: —1/2 <R7 < 1/2 ,|7| > 1}, the tori T?
and T'? are isomorphic when 7 = 7'.

The dependence of on 7 is encoded in go and g3. The modular forms gs and g3 have
respective weights four and six, that is go ++ (c7 + d)*g2 and g3 + (c7 + d)%g3 under .
Therefore, A is also a modular form, whose weight is twelve; see . The modular para-
meter 7 € H/PSL(2,Z) characterises the elliptic curve unambiguously. However, 7 cannot be
computed directly. We can equivalently identify the elliptic curve by means of the j-invariant.

The j-invariant is a modular form of weight zero, that is j — j under , which is both
one-to-one and onto in H/PSL(2,Z). The j-invariant is

93
jzlﬁ&i. (E.7)

Three values of the j-invariant stand out; they reflect special cases among elliptic curves.
First, j = 0, which corresponds to 7 = exp(27i/3) and go = 0. The torus is defined by
a rhombus. The Zs-automorphism of the elliptic curve is enhanced to a Zg-automorphism;
the latter acts on as y — exp(nmi)y and x — exp(27in/3)x, where n € Z mod 6.
Second, j = 1728, which corresponds to 7 =i and g3 = 0. The torus is defined by a square.
The Zs-automorphism of the elliptic curve is enhanced to a Z4-automorphism; the latter acts
on (2.75) as y +— exp(37win/2)y and = — exp(nri/2)x, where n € Z mod 4. Third, j = oo,
which corresponds to 7 = ico and A = 0. The elliptic curve is not a torus, but a singular
elliptic curve. We can consider the singular elliptic curve to be a degenerate torus defined
by a semi-infinite rectangle. The singularity of the elliptic curve is either a node or a cusp
depending on whether go vanishes or not, as we have already commented.

In sectionsand we use the quantities defined in the appendix (the modular forms g,
and g3, the roots ey, the modular discriminant A, and the j-invariant) to classify elliptic
curves. This classification complements the direct analysis of classical solutions. In sec-
tion we also use these quantities to classify the elliptic curve of classical solutions explicit
expressions are not available in the mixed-flux regime. This approach permits to argue the
behaviour of these solutions under flux.
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Elliptic integrals and Jacobian elliptic functions

Classical solutions in chapters [3| and involves elliptic integrals and Jacobian elliptic func-

tion. In this appendix, we present the elliptic integrals and the Jacobian elliptic functions

that we use in the main text. We enumerate definitions, properties, and formulae. Formulae

can be found on [216], whose conventions we follow.

Elliptic integrals

Definition
e Incomplete elliptic integral of the first kind:

sin ¢ 1
Flom) = /0 RV e e

e Complete elliptic integral of the first kind:

K(m) =F(n/2,m) .
e Incomplete elliptic integral of the second kind:
sin ¢
E(¢p,m) = / dzv1—m2z? .
0
o Complete elliptic integral of the second kind:
E(m)=E(n/2,m)

e Incomplete elliptic integral of the third kind:

1

sin ¢
(¢, n,m) :/ dz
0 (
e Complete elliptic integral of the third kind:
II(n,m) =1(7/2,n,m) .

125

1 —nz?)/(1 —22)(1 —m22?)

(F.1)

(F.2)

(F.4)

(F.5)
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The argument ¢ is called the Jacobian elliptic amplitude and it is real: ¢ € (—o0,00). The
argument m is called the elliptic modulus. We assume that the elliptic modulus belongs to
the fundamental domain: m € [0,1]. If m = 1, we assume that Jacobian elliptic amplitude
is bounded to ¢ € [—7/2,7/2] because quasi-periodicity (F.10)—(F.12) does not hold any
more, see (F.19)—(F.21)). The argument n of both II(¢,n,m) and II(n,m) is called elliptic
characteristic and is real: n € (—oo, 00).

Properties
o The functions (F.1), (F.3) and (F.5)) are odd with respect to ¢:
F(—% m) - - F(Qpa m) ) (F7)
H(_907n7 m) - —H(gp,n,m) : (Fg)

o The functions (F.1), (F.3) and (F.5|) are quasi-periodic with respect to ¢:

F(o + km,m) =F(p,m) + 2k K(m) , (F.10)
E(¢ + km,m) = E(p,m) + 2k E(m) , (F.11)
(¢ + km,n,m) = U(p,n,m) + 2kIl(n,m) , (F.12)
where k € Z.
o Let m = 0. The functions (F.1)), (F.3) and (F.5) read
E(p,0) =¢, (F.14)
(g, n,0) = arctan(y/1 — ntan ) ' (F.15)
vi—n
The functions (F.2)), (F.4]) and (F.6|) then read
K(0) = g : (F.16)
E(0) = g : (F.17)
1
H(n,O):N% if n<loor M0 = —— if n>1. (F.18)

o Let m = 1. The functions (F.1), (F.3) and (F.5) read

F(¢,1) = arctanh(sin ¢) , (F.19)
E(¢,1) =sing , (F.20)
Vnarctanh(y/n sin ¢) — arctanh(sin ¢)

H((p7n?1): n_l

(F.21)
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The functions (F.2)), (F.4) and (F.6) then read

K(1) =00, (F.22)
E(l)=1, (F.23)
II(n,1) = —sign(n — 1)oo . (F.24)
Formulae
e Let ¢, m and n be
) a—c)(x—Db) a—b (a —b)c

— A — = = . F.25
» e (a=b)(x—c¢c)’ " a—c’ " (a—c)b (F-25)

such that ¢ < b < x < a. The following formulae hold.

d 2
. - F(p,m) | (F.26)

A Vie—y)y—dy—c Va—c
dx

/bx Wa—ny—by—0o \2ﬁ [F“O’m) B (1 B b) Hw,m)] . (Fa)

e Let ¢1, 2, m and n be

p1 = arcsi z et P2 =a ccoss |, m = b = 71)2 (F.28)
resin r n ‘
! a\z2+p2] 0 72 b’ Vaz +bp2’ 2+1"

such that 0 < x < b. The following formulae hold.

r dy 1
= F ,m s F29
A'Wﬁ+ﬁmhw% Jﬁ+w(w ) (F-29)
b dy 1
= II(ps,m,n) . F.30
| A=A w0
/b dy V(@4 a?) (0 —a?)
T y2\/(y2 =+ a2)(b2 - y2) a?b?z (F31)
+¥F( m) — 7Va2+sz( m)
bQ\/m Y2, a262 Y2, .
Jacobian elliptic functions
Definition
o Jacobian elliptic amplitude:
am(z,m) = @(x,m) = F~Y(x,m) . (F.32)

The function F~!(z,m) is the inverse function of (F.1)) with respect to ¢.
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e Jacobian elliptic sine:

sn(z,m) = sin p(z,m) . (F.33)
o Jacobian elliptic cosine:
cn(xz, m) = cosp(x,m) . (F.34)
e Jacobian sd-function:
sd(z,m) = su (2, m) . (F.35)

- /T—mZsn2 (z, m)

The argument x is called the elliptic argument and belongs to the real line: z € (—o00, 00).

Properties
e The functions (F.32)), (F.33) and (F.35]) are odd with respect x:
am(—z,m) = —am(z,m) , (F.36)
sn(—z,m) = —sn(x,m) , (F.37)
sd(z,m) = —sd(z,m) . (F.38)

The function (F.34)) is even with respect to x:

cn(—x,m) = cn(z,m) . (F.39)

o If m <1, (F.32) is quasi-periodic with respect to x:
am(z + 2nK(m),m) =am(z,m)+nn, ne’z. (F.40)
If m < 1, (F.33)—(F.35|) are semi-periodic with respect to z:
sn(z +2K(m),m) = —sn(x,m) , (F.41)
cn(x + 2K(m),m) = —cn(x,m) , (F.42)
sd(z + 2K(m),m) = —sd(x, m) (F.43)

Therefore, the half-periodic and the period of (F.33)—(F.35) are 2K(m) and 4K(m),
respectively.

e The function (F.32)) vanishes at = 0:
am(0,m) =0 . (F.44)

If m < 1, (F.33)—(F.35)) have infinitely many zeros in the real line:

sn(2kK(m),m) =0, (F.45)
en((2k +1)K(m),m) =0, (F.46)
sd(2kK(m),m) =0, (F.47)

(F.48)

where k € Z.
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e The functions (F.33) and (F.34]) are bounded with respect to x and lie in the inter-

val [—1,1]. The extrema are reached at

sn((2k + 1) K(m), m) = sign(k)(=1)* , (F.49)
en(2kK(m),m) = (1)~ , (F.50)

where k € Z. If m < 1, (F.35)) is bounded with respect to z and lies in the interval
[-1/v/1—m2,1/v/1 — m?]. The extrema are reached at

1
sn((2k + 1) K(m), m) = sign(k)(—1)" — (F.51)
—m
where k € Z.
e Let m = 0. The functions (F.32)—(F.35|) read
am(z,0) =x , (F.52)
sn(z,0) =sinz , (F.53)
cn(x,0) = cosx (F.54)
sd(z,0) =sinz . (F.55)
o Let m = 1. The functions (F.32)—(F.35) read
am(zx, 1) = arcsin(tanh x) , (F.56)
sn(z,1) =tanhx , (F.57)
cn(z,1) = sechx | (F.58)
sd(z,1) = sinhx (F.59)
e The functions (F.34]) and (F.35) are related by the following transformation:
1
sd(z £ K(m),m) ==+ cn (z,m) . (F.60)

V1 —m?
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