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“In these days the angel of topology and

the devil of abstract algebra fight for the soul
of every individual discipline of mathematics.”
Hermann Weyl.
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Introduction

The present work consists of two different parts: the main one (Chapters 1 and 2) is devoted
to introduce additional structure on groups which arise naturally in the theory of shape. In
the second part (Chapter 3), some generalizations of the theory of covering spaces are studied
and, in particular, one is proposed according to the spirit of the theory of shape.

The starting point of this doctoral thesis are the works [25, 26, 68, 69, 70] in which the
authors introduced and exploited some ultrametrics in the set of shape morphisms between
two (pointed) topological spaces. In particular, if the domain space is particularized in (S*, 1),
the construction made in [68] allows to give an ultrametric on the shape group 71 (X, zg) of
a compact metric space X, as it was observed in [69] and detailed [80]. If the space X
is non-compact metric, the construction leads to a generalized ultrametric, in the sense of
Priess-Crampe and Ribenboim [78, 79].

In [7], D. K. Biss introduced the idea of topologizing the fundamental group of a topolog-
ical space, in such a way that the topology on 71 (X, xg) was a group topology which allows
to detect the (non) existence of universal covering for X. The approach consists just in taking
on 71 (X, xg) the quotient topology from the compact-open topology on the loop space of X,
Q(X, 1‘0) .

However, there are some errors in the referred paper, specifically, the error related with our
work is revealed by P. Fabel in [33] showing that, in general, the group operation on 7 (X, z¢)
with the quotient topology is not continuous. Using a similar point of view, different authors
tried to endow the fundamental group with a topology such that (X, zg) is a topological
group and the projection ¢ : Q(X, z9) - 71 (X, xg) is continuous.

The idea of introducing a topology on 71 (X, x¢) is not new at all. Earliest works around
this idea seem to be by W. Hurewicz [46] and specially by J. Dugundji [27]. After the paper
of Biss, some other works have appeared in which the fundamental group is endowed with
different topologies. The most relevant are, among others, [36] where the so-called whisker
topology is used, [19, 20] where the lasso topology is introduced, and [13] where the author
works with a slight modification of the quotient topology.

Another relevant tool in algebraic topology are the Cech homology groups. One of the
key points for the construction of the ultrametric on 71 (X, z¢) is the fact that this group is
obtained as an inverse limit. The mentioned homology groups H,(X;Z) are constructed as
inverse limits. The classical construction of these groups does not come from the theory of
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shape, but it is also recovered via shape expansions. However, the inverse structure of these
groups has not been used to obtain a topology of them as it has been done for shape groups.

In relation with covering spaces, it is well-known that if X is path-connected, locally
path-connected and semilocally simply connected, then there exists the universal covering of
X, i.e., there is a path connected, locally path-connected and simply connected topological
space X, and a continuous and surjective map 7 : X — X with the unique lifting property
of certain maps. In this case, X can be identified with homotopy classes of paths emanating
from a prefixed base point xy € X. In addition, there is a correspondence between intermediate
(normal) coverings of X and normal subgroups of m1 (X, z) (see e.g. [83]).

However, if the previous hypothesis on X are not required, the theory is not as satisfactory.
In particular, there exists compact metric spaces without universal covering. Some authors
had tried to obtain a theory which, including the classical point of view, gives a nice framework
for a wider class of spaces.

There are some early works on this ideas, such as [58]. Specially remarkable, in the
framework of the theory of shape, is the concept of overlay introduced in [37] by Fox. Most
recent are [4, 8, 36, 19, 20, 16] and several papers from the authors of [66]. Some of the
mentioned works try to adapt the idea of what a covering is by slight modifications of the
requirements for a covering, while others take [8] as starting point: Based on the classical
theory, Bogley and Sieradski consider in that paper the so-called universal path space, that
is, the set of homotopy classes of paths emanating from the base-point xg € X as the natural
candidate to be the universal covering. Endowing the universal path space with different
topologies (e.g. whisker, lasso, quotient) it is possible to study what properties from the
classical theory still hold.

Objectives

The present dissertation have three main objectives.

Our first goal is to prove the existence of a group topology on the fundamental group such
that the projection from the loop space is continuous, and to relate it with the inverse limit
topology of the shape group. We also would like to connect this constructions with classical
results of Spanier, Hurewicz and Dugundji.

The second objective is to exploit the inverse limit structure of the Cech homology groups
to construct a complete ultrametric on H,(X). The adaptation of the construction of this
homology seems needed in order to apply methods used for shape morphisms.

Finally, we are interested in the generalization of the theory of covering spaces. For this
part, we would like to give a new candidate for a generalized universal covering in the sense
of Fischer and Zastrow. In addition, we will search for a new topology on the Universal Path
Space, comparing it with the topologies already existent on it.
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Outline and results

In Chapter 1 we use similar ideas as in [68] to construct a pseudoultrametric in w1 (X, zq)
which generates a topology satisfying the above mentioned requisites (Theorems 1.2.2, 1.2.7
and 1.2.12). This work was done in [80] for the compact metric case, and in the present
work it is shown that this topology coincides in fact with the pull-back of the inverse limit
topology via the canonical homomorphism ¢ : 71 (X, z¢) - 71(X, z9) (Corollary 1.2.25). The
interest in this topology on (X, z0) has been recovered in [14] (see section 3.4), and also
in [71] where the same results are re-obtained. In the case of ¢ being a monomorphism, the
pseudoultrametric on 71 (X, z¢) is in fact an ultrametric. For completeness, the construction
for the non-compact metric case is indicated here also (Proposition 1.2.22) and some examples
of how the topology and algebra interact are provided.

As it is shown in this first chapter, some of the topologies already appeared in the literature
are intimately related with relevant subgroups of m1 (X, zp), and more precisely, subgroups
contained in Kery which correspond to different equivalence relations on 7 (X, zg) (Section
1.3). Here we study the relative position of the correspondent equivalence classes, quotient
groups and topologies induced on 71 (X, z(), showing which ones are contained in the others
(Proposition 1.4.1 and Theorems 1.4.2 and 1.4.6) and giving counterexamples for the relations
which do not hold. This work of comparison of the topologies continues [87] and it has also
been done independently by J. Brazas an P. Fabel in [18].

It seems that the previous comparison depends on some local properties of the space X.
In particular, the local path connectivity of X provides an important class of spaces in which
some of the above topologies coincide (Corollary 1.4.14). Moreover, we extend here these
results to the class of approximative absolute neighbourhood retracts in the sense of Clapp
(AANR(¢), which is a wider class of spaces not necessarily locally-path connected (Corollary
1.4.29).

In Chapter 2 we adapt the techniques of [68] for shape morphisms to Cech homology
groups. It has been necessary to redefine the Cech homology groups in terms of what we have
called approximative homology (Definitions 2.1.3). This homology is just the reinterpretation
of homology groups using approximative sequences of cycles, as Borsuk introduced shape
groups using approximative maps [10]. From this point on, it is possible to follow the outline
of [68] to obtain an ultrametric on H,(X;Z) for any compact metric space X (Theorem
2.1.18). Furthermore, this ultrametric on H +(X;Z) generates a group topology (Proposition
2.1.24) and the structure obtained is shape invariant (Theorem 2.1.32).

The point of view of the preceding constructions recovers the fact that the information
of X, when X is a polyhedron (Proposition 2.1.22), is completely encoded in the algebraic
structure of the group, in the sense that the topology obtained is uniformly discrete for
X (while it is not discrete in general). Also, the construction for arbitrary X is described
here, obtaining again a generalized ultrametric in the sense of Priess-Crampe and Ribenboim
(Theorem 2.1.43). We enunciate here the correspondent topological versions of the classical
Hurewicz homomorphism (Theorem 2.2.2).



On the other hand, if we pay attention to the Cech cohomology groups H*(X;Z), it is
not possible to obtain this kind of additional structure. If we want to follow the idea that
the algebra is enough when X is a polyhedron, the topology obtained must be necessarily
discrete. However, it is still possible to find connections between homology and cohomology
if we use S' as group of coefficients for cohomology, instead of the integers Z. Using the
theory of Pontryagin duality, we stablish that Cech cohomology groups H*(X;S"') are the
Pontryagin duals of Cech homology groups H, (X,Z) (Theorem 2.3.6). Hence, the universal
coefficient theorem for H, (X ;Z) remains valid in this case, just replacing the homomorphisms
functor Hom(-,S') by the continuous homomorphisms functor CHom(-,S'). This allows
us to reinterpret the Cech cohomology groups as Pontryagin duals of ultrametric abelian
groups.

In Chapter 3, we focus on theories generalizing the theory of covering spaces. In [36],
Fischer and Zastrow introduce the concept of generalized universal covering and, following
the line of [8], they consider the so-called whisker topology on the Universal Path Space. The
main result of this paper is that if X is shape injective, then the Universal Path Space with
the whisker topology is a generalized universal covering.

Here we propose a slight modification of this construction: instead of taking homotopy
classes of paths, we take shape classes of paths emanating from the base-point. Thus, we
obtain a space X and amap7: X - X satisfying the same properties as a generalized covering
in the sense of Fischer and Zastrow, except that X is not simply connected (Propositions
from 3.2.5 to 3.2.11). We obtain Keryp as its fundamental group, which represents the neutral
element in shape, instead of the neutral element in homotopy. As a consequence (Corollary
3.2.12), when X is shape injective, X coincides with X and we recover all the results of [36].

As a part of a collaboration with A. Zastrow [81], we extend to the universal path space
the topology on 71(X,xo) given in the first part of the thesis. This is done with the lifted
system (Subsection 3.3.2), that is, the inverse system of covering spaces of an inverse system
which defines the shape of X. The universal path space is mapped into the inverse limit of this
lifted system in an analogous way as 71 (X, zg) is mapped to 71 (X, zp). In [87], the authors
compare the whisker, the lasso and the quotient topologies on the universal path space. We
complete this comparison, establishing the relation of this topology induced by the shape
with the other ones (Section 3.4). Again, the local-path-connectivity appears as condition
for the coincidence of the lasso and shape-induced topologies (Theorem 3.4.6).

At this point, the relation of this second part with the first one is unveiled. In the first part,
we constructed an ultrametric in 71 (X, zo), which led to a pseudoultrametric in w1 (X, zo).
Classically, it is possible to identify the fibre 7~*(xg) of the covering projection 7 : X — X
with the fundamental group m (X, zg). The topological counterpart is then reflected here,
since 7 !(xp) inherits a topology from X, and it coincide with the topology generated by
the pseudoultrametric on 71 (X, xp) (Proposmon 3.5.3). If we look at the inverse limit of the
lifted system, we can identify 71 (X, ) with a fibre of the limit of the projections, and the
topology inherited coincides with the topology generated by the ultrametric defined on the
first part.
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Conclusions

In this doctoral thesis we have answered positively to the question of the existence of a
topology on the fundamental group which makes 1 (X, o) into a topological group and such
that the projection from the loop space is continuous. We have compared this topology with
others appeared in the classical literature, and we have showed that some ideas from the
theory of shape were already implicitly in works of Spanier, Hurewicz and Dugundji.

We have been able to construct a complete ultrametric on Cech homology groups which,
in addition, has allowed us to establish connections with the cohomology groups via the
Pontryagin duality. This construction has lead to a shape invariant.

Finally, we have extended some known results about the theory of generalized universal
coverings. The topology introduced on the Universal Path Space is the correspondent gener-
alization of the topology on the fundamental group given by the pseudoultrametric and this
topologies have been satisfactorily compared with others topologies used in the framework of
generalized coverings.






Introduccion

El presente trabajo consiste en dos partes diferenciadas: la principal de ellas (Capitulos 1 y
2) estd dedicada a introducir estructura adicional en grupos que aparecen de manera natural
en el contexto de la teorfa de la forma. En la segunda parte (Capitulo 3), se plantea cémo
generalizar la teoria de espacios recubridores y, en particular, se propone una linea de trabajo
relacionada con la teoria de la forma.

El punto de partida de esta tesis doctoral son los trabajos [25, 26, 68, 69, 70] en los
que los autores introducen y utilizan algunas ultramétricas en el conjunto de los morfismos
shape entre dos espacios topolégicos punteados. En particular, si el dominio es (S, 1), la
construccion realizada en [68] permite explicitar una ultramétrica en el grupo shape 71 (X, z¢)
de un espacio métrico compacto X, como ya fue observado en [69] y [80]. Si el espacio
no es métrico compacto, la construccién nos lleva a utilizar el concepto de ultramétrica
generalizada, en el sentido de Priess-Crampe y Ribenboim [78, 79].

En [7], D. K. Biss introduce la idea de topologizar el grupo fundamental de un espacio,
de forma que la topologia en m1 (X, () sea una topologia de grupo que permita detectar la
(no) existencia de un recubridor universal para X. La forma de proceder sugerida es tomar
en m (X, z0) la toplogfa cociente inducida por la topologia compacto-abierta en el espacio de
lazos Q(X, xg).

Sin embargo, hay algunos errores en el articulo mencionado: en concreto, el error rela-
cionado con el presente trabajo fue puesto de manifiesto por P. Fabel en [33], mostrando
que, en general, la operacién de grupo en (X, zg) con la topologia cociente no es continua.
Utilizando un punto de vista similar, varios autores han tratado de dotar al grupo funda-
mental con una topologia, de forma que 71 (X, zo) sea un grupo topoldgico y la proyeccién
q:QUX,z9) - m(X,x0) sea continua.

La idea de introducir un topologia en 71(X,z¢) no es nueva del todo. Los primeros
trabajos alrededor de esta idea parecen ser de W. Hurewicz [46] y, especialmente, de J.
Dugundji [27]. Tras el articulo de Biss, han ido apareciendo algunos otros trabajos en los que
el grupo fundamental es dotado de diferentes topologias: uno de los mas relevantes, entre
otros, es [36] en el que se utiliza la denominada topologia whisker. En [19, 20] se introduce
la topologia lasso y en [13] el autor trabaja con una modificacién de la topologia cociente.

Otra herramienta relevante en topologfa algebraica son los grupos de homologfa de Cech.
Uno de los puntos claves de la construccién de la ultramétrica en 71(X,xg) es el hecho
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de que este grupo se obtiene como un limite inverso. Los mencionados grupos de homologia
H,(X;7) también se construyen como limite inverso. La construccién cldsica de estos grupos
no proviene de la teoria de la forma, pero se puede recuperar utilizando expansiones. Sin
embargo, la estructura de limite inverso de estos grupos no ha sido utilizada para obtener
una topologia tal y como se hizo para los grupos shape.

En relacién con los espacios recubridores, es bien conocido que si X es conexo por caminos,
localmente conexo por caminos y semilocalmente simplemente conexo, entonces existe el
recubridor universal de X, es decir, existe una aplicacién sobreyectiva 7 : X — X con la
propiedad de elevacion unica para ciertas aplicaciones. En este caso, X se puede identificar
con las clases de homotopia que emanan desde un punto base xg € X prefijado. Es mas, existe
una correspondencia entre recubridores intermedios de X y subgrupos normales de 71 (X, z¢)
(ver [83]).

Sin embargo, si las hipdtesis anteriores sobre X no se cumplen, la teoria no resulta ser
del todo satisfactoria. En particular, existen espacios compactos métricos que no tienen
recubridor universal en el sentido anterior. Algunos autores han tratado de obtener una
teoria que, incluyendo el punto de vista cldsico, diera cabida a una clase mas amplia de
espacios.

Existen algunos trabajos alrededor de estas ideas, tales como [58]. Especialmente resenable
en el marco de la teoria de la forma , es el concepro de overlay, introducido por Fox en [37].
Miés recientes son [4, 8, 36, 19, 20, 16] y varios articulos de los autores de [66]. Algunos de los
trabajos mencionados intentan adaptar la idea de lo que se entiende por espacio recubridor,
mediante ligeras modificaciones de las propiedades que se les requieren mientras que otros
toman [8] como punto de partida: Basados en la teoria clésica, Bogley y Sieradski consideran
en ese articulo al espacio universal de caminos, esto es, el conjunto de clases de homotopia de
caminos emanando de un punto base xg € X, como el candidato natural a ser el recubridor
universal. Equipando al espacio universal de caminos con diferentes topologias (por ejemplo,
whisker, lasso o cociente) es posible estudiar qué propiedades de la teoria clasica se siguen
conservando.

Objetivos

La presente memoria tiene tres objetivos principales.

Nuestro primer objetivo es demostrar la existencia de una topologia de grupo sobre el
grupo fundamental que haga que la proyecciéon desde el espacio de lazos sea continua, rela-
cionando ésta construccién con la topologia de limite inverso del grupo shape. Nos planteamos
también conectar estas construcciones con resultados clésicos de Spanier, Hurewicz y Dugundji.

En segundo lugar, queremos sacar partido de la estructura de limite inverso de los grupos
de homologia de Cech para construir una ultramétrica completa en ﬁn(X ). La adaptacién
de la construccién de esta homologia es necesaria para poder aplicar los métodos utilizados
para morfismos shape.
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Finalmente, nos interesamos en la generalizacién de la teoria de espacios recubridores.
Para esta parte, queremos dar un nuevo candidato a recubridor universal generalizado en el
sentido de Fischer y Zastrow. Ademas, queremos introducir una nueva topologia en el espacio
universal de caminos y situarla en relacién con otras topologias utilizadas en él.

Estructura y resultados

En el Capitulo 1 utilizamos ideas similares a las empleadas en [68], para contruir un pseudoul-
tramétrica en 71 (X, zo) que genera una topologia que satisface los requisitos mencionados
anteriormente (Teoremas 1.2.2, 1.2.7 y 1.2.12). Este trabajo fue hecho en [80] para el caso
compacto métrico, y en el presente trabajo se muetra que esta topologia coincide, de hecho,
con la topologia inicial asociada a la topologia de limite inverso y al homomorfismo canénico
v :m(X,2z9) - 71(X,20) (Corolario 1.2.25). El interés en esta topologia sobre 1 (X, z¢) se
ha recuperado [14] (seccién 3.4), y también en [71] donde se obtienen resultados andlogos.
En el caso en el que ¢ es un monomorfismo, la pseudoultramétrica en m (X, z¢) es, de hecho,
una ultramétrica. Por completitud, indicamos aqui también la construcciéon para el caso no
compacto métrico (Proposicién 1.2.22) y se proporcionan diferentes ejemplos en los que la
topologia y el dlgebra interactian.

Como se muestra en el primer capitulo, varias de estas topologias estdn intimamente
relacionadas con subgrupos de 71 (X, xg) y, més precisamente, con subgrupos contenidos en
Kery y que corresponden con diferentes relaciones de equivalencia en 71 (X, z¢) (Seccién 1.3).
Estudiamos aqui la posicion relativa de las correspondientes clases de equivalencia, los gru-
pos cocientes y las topologias inducidas sobre m (X, xg), mostrando cuéles estdn contenidas
en otras (Proposicién 1.4.1 y Teoremas 1.4.2 y 1.4.6) y aportando contraejemplos para las
relaciones que no se satisfacen. Este trabajo de comparacién continia el iniciado en [87] y
ha aparecido también, de forma independiente, en [18].

Parece que esta comparacion depende de las propiedades locales del espacio X. En par-
ticular, la conexién local por caminos aporta una clase importante de espacios en los que
algunas de las topologias estudiadas coinciden (Corolario 1.4.14). Mds ain, extendemos aqui
estos resultados a la clase de los retractos aproximativos en el sentido de Clapp (AANR(¢),
que es una clase mas amplia de espacios no necessariamente localmente conexos por caminos
(Corolario 1.4.29).

En el Capitulo 2 adaptamos las técnicas de [68] en morfismos shape para los grupos de
homologfa de Cech. Es necesario redefinir los grupos de homologia de Cech en términos de
lo que hemos llamos homologia aproximativa (Definiciones 2.1.3). Esta homologia es pre-
cisamente la reinterpretacién de los grupos de homologia mediante sucesiones aproximativas
de ciclos, de la misma forma que Borsuk introdujo los grupos shape utilizando aplicaciones
aproximativas [10]. Desde este punto, y siguiendo el guién establecido en [68] se obtiene una
ultramétrica en H,(X;Z) para cualquier espacio métrico compacto X (Teorema 2.1.18). Mas
atin, esta ultramétrica sobre H,(X;Z) genera una topologfa de grupo (Proposicién 2.1.24) y
la estructura obtenida resulta ser un invariante del tipo de forma (Teorema 2.1.32).
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El punto de vista de las construcciones anteriores recupera el hecho de que la infor-
macién de X estd totalmente codificada en la estructura algebraica, cuando X es un poliedro
(Proposicién 2.1.22), en el sentido de que la topologia que se obtiene es uniformemente disc-
reta (mientras que, en general, no es discreta). También hacemos aqui la construccién para
un espacio X arbitrario, obteniendo también una ultramétrica generalizada en el sentido de
Priess-Crampe y Ribenboim (Teorema 2.1.43). Mostramos aqui también la versién corre-
spondiente al homomorfismo clasico de Hurewicz (Teorema 2.2.2).

Por otro lado, si prestamos atencién a los grupos de cohomologia de Cech H “(X3;Z), no
es posible obtener este tipo de estructura adicional. Si queremos reproducir la idea de que el
algebra es suficiente cuando X es un poliedro, la topologia obtenida debe ser necesariamente
discreta. Sin embargo, es posible encontrar conexiones entre la homologia y la cohomologia
utilizando S' como grupo de coeficientes para la cohomologfa, en lugar de Z. Utilizando
la teoria de dualidad de Pontryagin, establecemos que los grupos de cohomologia de Cech
H*(X;S") son los duales de Pontryagin de los grupos de homologfa de Cech (Teorema 2.3.6).
Asi, el teorema de coeficientes universales para H,(X;7Z) sigue siendo valido en este caso, pero
reemplazando el functor de homomorfismos Hom/(—-,S') por el de homomorfismos continuos
CHom(-,S"'). Esto permite reinterpretar los grupos de cohomologia de Cech como duales
de Pontryagin de grupos abelianos ultramétricos.

En el Capitulo 3, nos centramos en teorias que generalizan la teoria de espacios recubri-
dores. En [36], Fischer y Zastrow introducen el concepto de recubridor universal generalizado,
y siguiendo la linea de [8], consideran la topologia whisker en el espacio universal de caminos.
El resultado principal de ese articulo es que si X es shape-inyectivo, entonces el espacio uni-
versal de caminos con la topologia whisker resulta ser un recubridor universal generalizado.

Proponemos aqui una ligera variacién de esta construccién: en lugar de tomar clases de
homotopia de caminos, utilizamos clases shape de caminos que emanan del puntos base. Asi,
obtenemos un espacio X y una aplicacién 7 : X — X que satisface las mismas propiedades
que un recubridor universal generalizado en el sentido de Fischer y Zastrow, salvo que X
no es simplemente conexo (Proposiciones desde 3.2.5 a 3.2.11). Obtenemos que su grupo
fundamental es Kerp, que representa el elemento neutro en shape, en lugar de en homotopia.
Como consecuencia (Corolario 3.2.12), cuando X es shape-inyectivo, se obtiene que X coincide
con X y se recuperan los resultados de [36].

Como parte de la colaboracién con A. Zastrow [81], se extiende al espacio universal de
caminos la topologia de 71 (X, xo) que se estudia en el primer capitulo. La construccién se
realiza a través del sistema elevado (Suseccién 3.3.2), esto es, el sistema inverso de espacios
recubridores que se obtiene de un sistema inverso que define la forma de X. Existe una
aplicacién del espacio universal de caminos en el limite inverso de este sistema elevado, que
es andloga al homomorfismo que existe entre m(X,z0) v 71(X,x0). En [87], los autores
comparan las topologias whisker, lasso y cociente sobre el espacio universal de caminos. Aqui
completamos esta comparativa, estableciendo la relacién de esta topologia inducida por la
forma con respecto a las otras (Seccién 3.4). Nuevamente, la conexién local por caminos
aparece como condicién para la igualdad de las topologias lasso e inducida por la forma
(Teorema 3.4.6).
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En este punto, aparece la relacién de la segunda parte con la primera. En la primera
parte, se construye una ultramétrica en 71(X,x9) que lleva a una pseudoultramétrica en
71(X, x0). De forma clasica, se puede identificar la fibra 771 (2¢) de la proyeccién recubridora
7: X - X con el grupo fundamental 7 (X, o). La construccién topolégica se refleja aqui,
en el hecho que 77! (z¢) recibe una topologfa de X, que coincide con la topologia generada
por la pseudoultramétrica sobre 71 (X, zg) (Proposicién 3.5.3). Si atendemos al limite inverso
del sistema elevado, podemos identificar igualmente 71 (X, xg) con la fibra del limite de las
proyecciones, y la topologia recibida coincide con la topologia generada por la ultramétrica
definida en la primera parte.

Conclusiones

En esta tesis doctoral hemos respondido afirmativamente a la cuestién planteada de existencia
de una topologia en el grupo fundamental que hiciera de 71 (X, zg) un grupo topolégico y tal
que la proyeccion desde el espacio de lazos fuera continua. Hemos comparado esta topologia
con otras aparecidas en la literatura clasica y hemos mostrado como algunas ideas de la teoria
de la forma estaban ya implicitas en trabajos de Spanier, Hurewicz y Dugundji.

Hemos contruido una ultramétrica completa sobre los grupos de homologia de Cech que,
ademas, ha permitido establecer conexiones con los grupos de cohomologia a través de la
dualidad de Pontryagin. Esta construccién ha dado lugar a un invariante del tipo de forma.

Finalmente, hemos extendido algunos resultados sobre la teoria de recubridores univer-
sales generalizados. La topologia introducida en el espacio universal de caminos es la corre-
spondiente generalizacion de la topologia sobre el grupo fundamental dada por la pseudoul-
tramétrica y estas topologias han sido comparadas satisfactoriamente con otras topologias ya
utilizadas en el marco de los recubridores en sentido generalizado.
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Preliminaries

We review here the basics of different concepts that we shall use all along the present work,
and also remind some important results that we shall need at different places of our exposition.

Algebraic topology

Fundamental group

Let X be a topological space. If z,y € X, a continuous map « : [0,1] - X such that «(0) =z
and (1) =y is called a path from x to y. The points z,y are the end-points of the path a.
We say that « starts at (or emanates from) z. If = = y, then « is called a loop.

We shall denote by @ the reverse path of «. In other words, @ is a path with the same
trace as «, but in the opposite direction. If a: [0,1] = X, then a(t) = a(1 -1t).

If ¢ € X, the path space of X based at xg is the collection of all paths starting at zq. It
shall be denoted by P(X, o). Analogously, the loop space of (X, x¢) is denoted by (X, xg)
and is the collection of all loops in X based at xg. The concatenation of o and 3 is denoted
by a * 8 and it is defined as a path such that

a(2t) if te[0,1]
axB(t) =
B(2t-1) ifte[i1]

Given two paths «, 5 :[0,1] > X with a(0) = 8(0) and «(1) = §(1), we shall say that a
continuous map
H:[0,1]x[0,1] > X
is an homotopy between o and B if a(0) = 5(0), a(1) = (1) and H satisfies H(0,t) = a(?),
H(1,t)=p5(t), H(s,0) =a(0)=5(0) and H(s,1) = (1) =3(1) for each s€[0,1].
On P(X,xg) it is defined the relation

«a =~ 3 < there exists an homotopy H between « and 8

which is an equivalence relation. The equivalence class of an element shall be denoted by [«]
and we call it the homotopy class of the path «. Analogously, the same relation is defined by
restriction to Q(X,zp).



The quotient space of Q(X,xzy) by the relation of homotopy of loops is known as the
fundamental group of (X,xzq), denoted by (X, xz¢). It is well-known that 71 (X, x0) is a
group under the operation of concatenation of classes [a] * [8] = [a * B].

Inverse and direct systems and limits

Let A be a set:

e A relation A < X in A it is called a preorder if it satisfies reflexive and transitive
properties. Then A is called a preordered set. If in addition the antisymmetric property
is satisfied, A is called an ordered set.

e A is a directed set if A is preordered and also for each A1, Ay € A there exists A3 € A such
that A\ < /\3 and Ao < )\3.

e Let A, M be directed sets. A correspondence ¢ : A - M is an order-preserving map if
A< X in A implies ¢(\) < p(\') in M.

Given a category C we can consider its procategory, that is, the family of inverse systems
of objects and arrows of the category with a certain equivalence class of maps of systems.
Along this work we shall restrict ourselves to categories of topological spaces or compact
metric spaces (and continuous maps), groups (and homomorphisms) or topological groups
(with continuous homomorphisms as arrows). In addition, the definitions and results that we
recall in this preliminaries are not general at all. For deeper explanations, see [30] and also
[65].

An inverse system in a category C over a directed set A is a collection
X ={Xx,par, A}
where for each X € A, X, is an object of C and for A\, \" € A with X\ < )" there is an arrow of C
Pax s Xy = X\

such that:

i) pax is the identity of Xjy;

11) Pax ©px oy =pay in C for each A, )\’, MNe A with N>\ >\

The objects X are called terms and the arrows py y are called bonding morphisms. In
the special case A = N, we refer to an inverse system as inverse sequence. In that case, only
the morphisms p,,+1 are needed, since p, ., are defined by composition.

Let X = {X ,pan,A} and Y = {Y),,qu v, M} be two inverse systems. A map of inverse
systems is given by a map ¢ : M — A (which can be supposed ordering-preserving, without



loss of generality) such that for each p € M there exists a map f, : Xy = Yy and the
diagram

Po(u) p(u”)
Xoy = Xou)

ful lfur

Y, Yy

G p!

is commutative for p < p1/. We shall denote by (fy, ¢) : X =Y a morphism of inverse systems.

For Z = {Z,,r,,/,N}, it is possible to define a composition of morphisms of systems
(fu:®) : X = Y and (gv,%) : Y — Z in the obvious way: it is enough to consider the
composition

¢pop: N —- A
and the maps

hw = 9v o fw) * Xgow(w) = Zuv-

In some special cases (in particular for compact metric spaces) the inverse limit of the
inverse system X = {X,,pax, A} can be defined as

Xeo =lmX = {(2) € [] | pax(zh) =72},
AeA

joint with projections
Pt Xoo > Xy

such that py o p) = pa.

If we have a map of inverse systems (f,,¢) : X - Y, then an unique map between the
inverse limits is induced. We shall denote it by foo : Xoo = Yoo or by lim f : im X — limY.
This map satisfies:

fu°p¢(,u) =quo foo
for every pu e M.

Similarly, a direct system in a category C over a directed set A is a collection
X ={Xxpan, A}
where for each X € A, X, is an object of C and for A\, \" € A with A < )" there is an arrow of C
pan s Xn = Xy
such that:

i) pan is the identity of Xj;

11) DX AT ODAN = DA in C for each )\, )\’, )\” € A with )\” > A, > A



Let x) and x) be elements of X, and X/ respectively. This two elements are identified,
x) ~ zy, if and only if pyav(x)) = paar(zy) for some X € A with X' > A\, \. Then X* =
UxeaX2/ ~ . An equivalent formulation is that an element is identified with all its images
under the bonding maps of the directed system, that is, xy ~ paa(xy).-

An special case in which we shall use direct limits is in groups. For a direct system
{Gx,pxr, A}, we consider the collection of elements gy € G identified with the previous
relation, and denote it by G*°. The operation in G* is defined as the class generated by
the sum of representatives of each class in a common factor G). Alternatively, G can be
regarded as a suitable quotient of the direct sum ®)cpGy. The elements gy — pxx(gy) (for
A > )\) generate a subgroup H of @)cAGy. Then, G* = @ A Gy/H.

The space X*° (resp. the group G*°) is called direct limit of the direct system. In addition,
there are maps p)y : X\ — X called injections of X into X*°.

Analogous expositions are valid for inverse and direct systems and limits of pairs (in par-
ticular, for pointed spaces), so we omit it for brevity. The details of definitions, constructions
and results can be found in [57].

Singular homology

Let A" = [ag, ..., an | be the geometric n-simplex in R™"! and let G be an Abelian group. We
usually take G = Z if no other group is specified. An n-simplex in X is a continuous function
o: A" - X. An n-chain in X is a (finite) formal sum of the form

k
Zniaz- =N101 +Ng09 + ... + NOk
i=1

where each o; is an n-simplex in X and n; takes values in G for all i. Given two n-chains
o and 7 their sum o + 7 is defined as the formal sum of the correspondents addends of each
chain. We will denote by C,(X,G) the group of all n-chains in X with coefficients in G, or
shortly C,(X) if G =Z.

Given an n-simplex o : A" - X, the boundary of o is an (n-1)-chain defined as follows:

n

do = Z(:)(_l)ia|[ag,...,di,...,an]

where ay, ..., a,, are the vertices of A™ and, as usual, [ag, ..., @;, ..., a, ] is the proper face of A"
that not contains the vertex a;.

This boundary defined over n-simplexes, is extended over all n-chains acting separately
in each simplex of the chain, i. e. if o = Zf’;l n;0; is a n-chain, its boundary is

k k
do = 8( anal) = anaal
i=1

i=1



Hence, we have a boundary map

0:Cu(X,G) > Cpr(X,G).

If an n-chain o satisfies that 0o = 0, we say that o is an n-cycle and if there exists a (n+1)-
chain ~ such that 0 = o we say that o is a n-boundary. We denote by Z,,(X,G) and B, (X, G)
the groups of cycles and boundaries respectively. It is obvious that Z,(X,G) = Kerd and
B, (X,G) = Im0 (in the corresponding dimensions). Hence, we have arrived to the classical
definition of the singular homology group of X,

Kero

Hn(Xa G) = Imd

It is also well-known that every continuous map f : X — Y induces a chain map fu :
Cn(X) = Cp(Y) such that fu0 = 0fg. So also an homomorphism f. : H,(X) - H,(Y)
between singular homology groups is induced.

Cech homology and cohomology

With every topological space X one can associate an inverse system C(X) = { Xy, pyur, A}
called the Cech system of X. As we shall briefly recall here, this inverse system is in the
category HPol of polyhedra (and continuous maps) up to homotopy.

The indexing set A is the set of all normal coverings U of X ordered by the relation of
refinement of coverings (U < U’ if and only if U’ refines U). Recall that a normal covering
is an open covering U of X which admits a partition of unity subordinated to U (this is the
case for normal spaces, in particular for paracompact and Hausdorff spaces).

Each term Xj is the nerve |[N(U)| associated to the covering U. In |N(U)| there exists a
vertex corresponding to each set U € U and {U,...,U,} expand an n-simplex if and only if
Un---nU,+@.

Finally, for U <U’, let pyy be the simplicial projection pyye 2 |[N(U)| — [N (U')| sending
a vertex U' e U’ to a vertex U € U with U’ ¢ U. This map is not uniquely determined, but any
other projection between the nerves is homotopic to this. Hence, the projection is unique up
to homotopy.

Similarly, for U € A, pyy : X - Xy is a canonical projection uniquely determined up to
homotopy. Furthermore, pyi © pyr =~ py-

If we apply the simplicial homology functor to the Cech inverse system, we get an inverse
system of groups:

Hy (X) = {Hn (X)), pax, A}

where p) y» is the correspondent induced map in homology. The inverse limit of this system

H,(X)=1limH,(X) = im{H,, (X)), pxx, A}



is called Cech homology group of X. This is also a functor which, for a continuous map
f:X =Y, induces an homomorphism f, : H,(X) - H,(Y).

Similarly, for cohomology we obtain a direct system of groups:
H"(X) = {H"(X)),pxr, A}
where py ,, is the induced map in cohomology. The direct limit of this system

H™(X) =limH"(X) = im{H" (X)), px v, A}

is called Cech cohomology group of X.

Theory of shape

The theory of shape is a branch of topology that provides a coarser classification of topological
spaces than homotopy theory does. Necessary concepts shall be introduced in the following
section but, roughly speaking, the idea is to approximate the given topological space X by
an inverse system of nice spaces (e. g. by polyhedra), in which the classical homotopy theory
works as expected, and then pass to the limit. For a systematic definition of shape, see first
chapters of [65] (see also [11] for foundations of shape for compact metric spaces).

Along this work, we are going to use two different approaches to the the theory of shape.
The first one is the classical way as Borsuk introduced it for compact metric spaces at the very
beginning of this theory. The second one is the categorical point of view given by Mardesic
and Segal, using inverse systems. We shall use one approach or the other, depending on the
purposes of each section of the work.

Borsuk’s theory of shape
Let X be a compact metric space. It is a well-known fact that X can be embedded as a

closed subset in (Q, p), the Hilbert Cube with a prefixed metric. For convenience, we usually
shall take a convex copy of this space:

o (s tone [ 41

with the /5 norm.

Recall that, given X in Q and € > 0,

B(X,e) ={yeQ|p(y,X) =inf{p(y,z)|ve X} <e}

is the ball of radius € centered at X.



A fundamental sequence {f,} : X — Y is a sequence of maps f, : @ — @ such that for
every neighbourhood V of Y there exists a neighbourhood U of X and an integer ng € N such
that

folu = fns1|U in V for every n > ng.

It is possible to compose fundamental sequence, and the definition of the identity fun-
damental sequence {1x} is also clear. Now, it is possible to define a equivalence relation
between fundamental sequences as {f,} ~ {gn} if and only if for every neighbourhood V' of
Y there exists a neighbourhood U of X and an integer ng € N such that

folu 2 gnlu in V' for every n > ny.

It is clear that this relation is compatible with the composition of fundamental sequences,
it is associative and the class of the identity fundamental sequence is the identity class. This
classes of fundamental sequences shall be called shape morphisms. Two compact metric spaces
X and Y are said of the same shape if there exists fundamental sequences {f,}: X - Y and

{gn}:Y = X such that {f,o0g,} ~{ly} and {gno fn} ~ {1x}.

Inverse system approach to shape

We can also describe the shape of a space in terms of inverse limits. Let HPol be the
category whose objects are polyhedra and continuous maps between them as arrows, up to
homotopy. Let HTop be the category of homotopy topological spaces and continuous maps
between them. Since HPol is dense in HTop (see [65] for basic definitions) there exists an
HPol-expansion of any topological pointed space (X, (). Assume that

(X,x0) = {(Xx,22),pA N, A}

is the inverse system in HPol, such that py x : (Xx, 7)) — (X z,,) (We can suppose that
(A, <) is a directed set) and

P = {Prahrer + (X, 20) — (X, %0)

the H Pol-expansion of X. The maps satisfy that py x o py = py for all X <X and they must
respect the base points.

The connection with the Borsuk’s theory of shape is the following: it is well-known that
there exists a sequence X, of polyhedra and maps f,n+1 @ Xni1 = X, such that the inverse
system {X,,, funs1: 1 € N} has X as its inverse limit!. More specifically, given a compactum
X in the Hilbert cube, and for any € > 0 there exists a polyhedron P which is a neighbourhood
of X in @ such that X ¢ P c B(X,e). Consequently, there exists a sequence of positive real
numbers {&, } converging to zero such that for each n € N there exists a polyhedron P,, (which
is again a neighbourhood of X in @) and

QQB(X751) 27)1 QB(X,E,‘Q) QPZ QQX

'This is, essentially, a result of Alexandroff and Freudenthal which can be found in Ch. I, §5.2 of [65].
There is proved that every compact metric space is the inverse of some inverse sequence of compact polyhedra.



We consider inclusion maps iy n+1 : B(X,en+1) = B(X,e,) or also ppp+1 : Prs1 = Pr and,
clearly, the inverse limit is X for both inverse sequences {B(X, &), inn+1} and {Pn, Pnn+1},
since NB(X,e,) = X. We shall refer to this inverse sequence as Borsuk’s inverse sequence
or neighbourhood inverse sequence. See appendix of [65] for the equivalence of this two
approaches to shape.

For the pointed and pairs cases the definitions are completely analogous. We have already
introduced a very special expansion of a topological space, which is no other than the Cech
inverse system. The algebraic invariants of the theory of shape can be constructed with any
expansion of the space X and, in particular, the Cech system justifies the name given to the
inverse limit H, (X) of the inverse system

Hy, (X) = {Hn(X2), paxs, A}

for any inverse system associated to X.

Similar construction can be done with homotopy groups. Let

(X,x0) = {(Xx, ), A A}

be an inverse system such that

{pa} s (X, 20) = (X, %0)

is an HPol,-expansion of a pointed space (X, z¢). By applying the homotopy groups functor
(=) to each term, we get the inverse system

(X, x0) = {mn (X, 22), DA, A}
where p) y« is the map induced in homotopy. The inverse limit of this inverse system

(X, x0) = l(iinﬂn(X,xo)

is called n-shape group of (X, (). The most important case is for n = 1, in which the shape
group in the theory of shape plays the same roll as the fundamental group in homotopy
theory.

By definition of inverse limit, the elements of 71 (X, o) are collections of homotopy classes
(a) = {[ar]} where [ay] € m1(Xy,x)) and such that py«([an]) = [@r]. Moreover, there
exists a natural map from the fundamental to the shape group, that assigns to each homotopy
class [a] in m (X, xg) the sequence generated by [«], which is ([a]) = {[px o ]}

v: m(X,zg) — 71(X,20)
[a] —  <[a]>

This canonical morphism is neither injective nor surjective in general.



Theory of covering spaces

We resume here the classical theory of covering spaces. For details, see [83] or [39].

A covering space os a space X is a space X together with a map 7 : X->X satisfying the
evenly covering condition: there exists an open cover {Uy} of X such that for each \, 771 (Uy)
is a disjoint union of open sets in X, each of which is mapped by m homeomorphically onto
Uy.

From the definition, some properties about lifting are derived. Recall that a lift of a
map f:Y - X isamap f:Y — X such that 7o f = f. In particular, it is deduced from
the definition the homotopy lifting property which also implies the path lifting property as a
special case. Moreover, we have the following lifting criterion:

Proposition 0.0.1 If 7 : (X,%) — (X,z0) is a covering space, and f: (Y,yo) - (X,z0)
is a map with Y path-connected and locally path-connected, then there exists an unique lift
[ (Yiyo) = (X, To) of fif and only if f.(m1(Y,y0)) € ma(m1 (X, Tp)).

If the covering X is path-connected and satisfies that 71 (X,%o) = {1}, then it is called
the universal covering of X. It is easy to check that this covering is unique if it exists. In
fact:

Proposition 0.0.2 Let X be a path-connected and locally path-connected topological space.
Then, there exists its universal covering X if and only if X is semilocally simply-connected.

Given a path-connected, locally path-connected and semilocally simply-connected space
X with a base point zg € X, we can define the set

X ={[a]]| a is a path in X starting at zo}

where [a] denotes the class of the path « with respect homotopies of paths (that is, relatives
to end-points). The map 7 : X — X defined as 7([«]) = a(1) is well-defined and plays the
roll of a the projection. This map receives the name of end-point projection.

To define the topology on X, it is enough to consider open sets U of X such that U) -
7m1(X) is trivial (being this map induced by the inclusion U < X). For such an open set U
and a path a with a(1) € U, let

B([a],U) ={[a*~]|~ is a path in U with v(0) = a(1)}.
The family of sets
{B([a],U)|[a] € X,U ¢ X with m(U) - m(X) trivial}

is a base for a topology on X which in fact satisfies the properties of the universal covering.
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Miscellanea of topics

Finally we give some others definitions, results and facts that we would need along the present
work.

Ultrametrics and generalized ultrametrics

The definition of what a metric is stays clear. If we replace the condition of the triangle
inequality by a stronger condition we obtain the definition of an ultrametric. Let X be a set
and d: X x X - R a map. dis an ultrametric if for every x,y, z € X, the next properties are
satisfied:

i) d(z,y) >0 and d(z,y) =0 if and only if x = y;

i) d(z,y) = d(y,»);
iii) d(z,y) < max{d(z,z),d(z,z)} (strong triangle inequality).
If d is an ultrametric, the pair (X,d) is called wltrametric (or non-Archimedean) space.

Also note that the third property implies the usual triangle inequality d(z,y) < d(z, z)+d(z,y)
so every ultrametric space is, in particular, a metric space.

There are different generalizations of the concept of ultrametric. In particular, the def-
inition of generalized ultrametric we are going to use is due to S. Priess-Crampe and P.
Ribenboim:

Definition 0.0.3 Let X be a set and (I, <) be a partial ordered set with a least element 0.
A generalized ultrametric on X is a map d: X x X — I" such that for z,y,z € X and v €T,
it satisfies:

1) d(z,y) =0 if and only if z = y.

2) d(z,y) =d(y,z).

3) If d(z,y) <v and d(y,2) <7, then d(z,y) <.

If only properties 2) and 3) hold, it is said that d is a pseudoultrametric.

If we delete the second part of the first property on the previous definition, we obtain a
generalized pseudoultrametric.
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Topological groups

Recall that a topological group is a triple (G, *, T) where (G, *) is a group and T is a topology
on G such that the maps g ~ ¢ ! and (g,h) = g * h are continuous. Such a 7 is called a
group topology on G.

Given a continuous group homomorphism h : G - H between topological groups, if h is
simultaneously isomorphism and (uniform) homeomorphism, h is called (uniform) topological
isomorphism and G and H are said to be (uniformly) topologically isomorphic.

Polyhedra, ANR’s and CW-complexes

In the preliminaries above, we have dealt with polyhedra. But also we could change our
exposition with ANR’s or CW’s from the following;:

Theorem 0.0.4 Fvery CW-complex X has the homotopy type of a polyhedron P. In addition,
for a space X the following conditions are equivalent:

i) X has the homotopy type of a compact polyhedron.

it) X has the homotopy type of a compact ANR.

Recall that if X,Y are topological spaces, and U is an open covering of Y, it is said that
two maps f,g: X = Y are U-near if for every x € X there exists an open set U € U such that

f(x),9(x) € U.

Similarly, if H : X x[0,1] - Y is an homotopy, we say that H is an U-homotopy if for
every x € X there exists an open set U € U such that H(x,t) € U for every t € [0,1]. We shall
say that two continuous maps f,g are U-homotopic if there exists an U-homotopy between
them.

Proposition 0.0.5 Let X be a metrizable space, Y a polyhedron and U = {Ux|\ € A} an
open covering of Y. Then there exists an open covering V of Y which refines U such that
for every pair of continuous maps f,g: X - Y which are V-near and for every V-homotopy
J:Ax[0,1] =Y from a closed set A c X with J(x,0) = f|la and J(x,1) = g|a, there exists
an U-homotopy H : X x [0,1] — Y which is an extension of J, that is, H(x,0) = f(x),
H(z,1) = g(z) and H|ax01) = J-

The corollary of the proposition 0.0.5 which we are interested in, is the following:

Corollary 0.0.6 If Y is a polyhedron, then there exists an open covering V such that any
two paths with the same end-points which are V-near are path-homotopic.
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Proof. Taking U as the trivial covering U = {Y'}, we obtain the corresponding covering V
given by Proposition 0.0.5 above.

Now, let us take two V-near paths f,g:[0,1] = Y with f(0) = g(0) = yo and f(1) =g(1) =
y1. For the closed set A = {0,1} of [0, 1], we can consider the trivial homotopy J : Ax[0,1] - Y
defined by J(0,t) = yo and J(1,t) = y;.

Again by 0.0.5, we obtain an U-homotopy H which extends J. Thus, H actually is an
homotopy relative to {0,1}, so f and g are homotopic as paths. ]

Observe that in the case of compact metric spaces, the previous results can be reformulated
in terms of metrics and ¢ — ¢ expressions.



Chapter 1

The shape group and the
fundamental group

In this first chapter we develop the techniques which shall allow us to construct ultrametrics on
different groups related to the theory of shape. In particular, we first introduce a ultrametric
on the shape groups of a compact metric space. After that, we also give a way to generalize
that construction to the arbitrary case.

We reproduce those constructions in the case of the fundamental group, obtaining a
pseudoultrametric in the compact metric case, and we also give the generalization to the
arbitrary case. Finally, we relate this additional structure with other topologies on the
fundamental group previously appeared in the literature.

1.1 Ultrametric on the shape group

The works [25, 26, 68, 69] are the starting point of this section. In particular, in the intro-
duction of [69] the following remark about a particular case of [68] is made: the techniques
used in [68] remain valid in order to obtain a complete ultrametric on the shape group of a
(pointed) compact metric space X. This observation was developed in [69] and also in [80].

After recalling the main steps of the construction of the ultrametric on 71 (X, zg) for a
compact metric space X, we shall give an appropriate generalization of the construction for
an arbitrary topological space X. This part also follows the line of [25, 26].

Compact metric case

Let (X,zp) be a compact metric space with a fixed base point xy € X, and consider it
embedded as closed subspace of the Hilbert Cube (Q,p). Given two loops f,g:[0,1] - @,
we can define

F(f,g)=inf{e>0]| f ~ g as loops in B(X,¢)}.

13
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The definition of F(f,g) for the pointed case requires f and g to be loops based at the
same point, and also f and g to be homotopic as loops. We are interested in the case when
the loops in @) are based in xg € X.

Definition 1.1.1 A sequence {f,} of loops in @ is said to be F-Cauchy if for every £ > 0
there exists ng € N such that F(f,,, fn) < € for all m,n > ng. We say that two F-Cauchy

sequences of loops in @, {f,} and {g,}, are F-related if the sequence f1,¢1, f2, g2, f3,... is
again F-Cauchy. We shall denote this relation by {f,}F{gn}.

The same definitions remain to be valid for the pointed case, using sequences { f,,} of loops
all of them based at xg € X. The proofs of the following results are omitted, since they can
be found at the mentioned paper [68]. Also, similar proofs but in the context of homology
shall be done in chapter 2.

Proposition 1.1.2 i) The F-relation is an equivalence relation.
i1) For every pair {an},{Bn} of F-Cauchy sequences, there exists limy,_oo F'(ctn, Bp).

iii) Let {an}, {Bn},{al},{B)} be F-Cauchy sequences such that {ay, } F{al} and {8, }F{p],}.
Then lim,,_ 00 F(aann) = limy, o0 F(a;NIB’;L)

An element of the shape group 71(X,z¢) is a shape class of a (pointed) approximative
map from (S, 1) to (X, o).

Proposition 1.1.3 Let {ay,} be a sequence of loops au, : (S1,1) - (Q, o). Then:

i) {an} is an approzimative sequence if and only if it is F-Cauchy.

i1) Let B, another F-Cauchy sequence of loops based at xo. Then, {ay,} is related with {5y}
as approximative sequences if and only if they are F-related.

Hence, it is possible to identify each element of 71(X,zg) with a class of F-Cauchy
sequences. Then, given («), (f) € 71 (X, z¢), we can define:

d(<a>7 <5>) = T}I_)HC}OF(ana/Bn)
where (o) = {a,} and (8) = {8}

Theorem 1.1.4 The pair (71(X,x9),d) is a complete ultrametric space.

Some of the properties of this ultrametric space are summarize in the following:

Proposition 1.1.5 If (X, x0) is a compact metric space, then:
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a) If X is an ANR, then 7t1(X,x0) is uniformly discrete.

b) If (Y,yo) is another pointed compact metric space, every continuous map f: (X, xg) —
(Y,y0) induces a continuous homomorphism f. : 71(X,z9) — 71(Y,y0) of topological
groups.

c) If (X,x0) and (Y,yo) have the same (pointed) shape, then 7t1(X,x¢) and 71(Y,y0) are
topologically isomorphic.

d) There exists a norm |- | on 71(X,xz0), which is both left and right invariant. It is
enough to take || = d(a,1).

e) 71(X,xg) is separable. Hence, if X is an ANR, then card(71(X,xq)) < Ro.
f) 71(X,20) has a base of clopen neighbourhoods of 1. Hence, it is zero-dimensional.

g) 71(X,x0) is countable if and only if it is discrete.

As a consequence of item c¢) in the previous proposition, the topology induced by the
ultrametric on 71 (X, x9) does not depend on the chosen sequence. In particular, let us
consider the inverse sequence given by the neighbourhoods of X in @ :

X, =B (X,en) for each n e N

and the inclusion maps i, 41 : Xn+1 = Xy If the sequence {e,} is chosen as ¢, — 0, then the
inverse limit of this inverse sequence is Xo, = N X, = X.
As recalled in the preliminaries, we can assume to have an inverse sequence { Py, ppn+1}
of polyhedra, such that
Q2P12B(X,e1)2P32---2P,-12B(X,e,) 2P 2...

for a suitable sequence of positive real numbers {£,} converging to zero.

Since X ¢ X, for each n € N, the same holds for P,,. Then, we can take the point zy € X
as the base point of all of the polyhedra of the inverse sequence in order to get an inverse
sequence {(Pp, o), inn+1} With (X, xo) as its inverse limit. Then:

frl(Xv 1:0) = 11111{7‘('1(737“ -To), (/L'nn+1)>+}

Now, it is easy to represent an approximative map (o) : (S*,1) - (X, 20) as a sequence
{an} of loops ay, : (S1,1) = (P, 0), and we arrive to a reformulation of the ultrametric on
the shape group.

Proposition 1.1.6 There exists a complete ultrametric

d: ﬁl(X,xo)Xﬁl(X,xo) — 7?1(X,:U0)
(), (B) —d({a), (8))
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which agrees with the inverse limit topology on 71 (X, zg). In fact, d is defined as

0 ifan=~By in Py for everyneN
a(fa), (5D =1

5w ifm=max{neN|a, =, inP,}

Corollary 1.1.7 Each complete ultrametric on 71(X,xo) which induces the inverse limit
topology is uniformly equivalent to the ultrametric defined in Proposition 1.1.6.

Example 1.1.8 We can illustrate the above taking as compact metric space X = W to be
the Warsaw circle.

This space is the graph of the topologist’s sinus curve with its closure, with a simple arc
joining this two pieces (see picture 1.1).

Figure 1.1: An sketch of the Warsaw circle W.

Using the Borsuk’s neighbourhood system, we obtain an inverse sequence {( Xy, Tn ), Pnn+1}
where each X, is an annulus (all of them with the same base-point) and py, 11 is the corre-
spondent inclusion from X, ;1 into X,,.

If we consider the induced sequence in the fundamental groups {m1(Xy,Zn), (Prn+1)« ),
we obtain:

l<«—U0 «—7 <~— -

where the homomorphisms are the identity (since the inclusions p,,+1 are orientation pre-
serving). Obviously, this inverse sequence has Z as inverse limit. Hence, the shape group of
the Warsaw circle is 71 (W, z¢) = Z.

Now, given two shape classes («), (3) € 71 (W, zo) respectively represented by {[a,]} and
{[Bn]} where each [a,],[Br] are homotopy classes of loops in X,,, it is enough to set

d({a),(B)) < 1 < [a,] =[Br] in X, for all n>ng

no
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which is equivalent (compare with 1.1.6) to the ultrametric

where n is the first place where [ay,] # [Bn].
The following example shows that, in general, the topology on 71 (X, o) is non-discrete.

Example 1.1.9 Let us consider the Hawaiian Earrings space X = HE = Upeny Cp, where C,,
is the circle with center (0,1/n) and radio 1/n. Then, o = (0,0) is the tangency point of all
circles and we shall consider it as the base-point of X. We denote by [,, the loop, based at
xg, which runs counterclockwise along C,,.

I

()

Lo

Figure 1.2: The Hawaiian Earrings space.

For some n € N, let (l,,) be the shape class of the loop . It is clear that [, ~ ¢z, in
B(HE, %) if and only if m > n. Hence,

1
d({ln), {caq)) = —
n
and the sequence {(l,)} of shape classes generated by the loops of HFE satisfies

(In) — {ca)

for the ultrametric d.

Generalization to arbitrary topological spaces X.

We outline here the generalization to the arbitrary case, in the spirit of [25]. Let (X, zg) be
an arbitrary pointed topological space, and let

P={p}: (X,z0) > (X, x0) = {(Xx, ), pax, A}

be an HPol,-expansion of (X, xg).
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For a directed set (A, <), denote by L£(A) the set of all lower classes in A ordered by
inclusion. A lower class in A is a subset A c A such that if 6 € A and A € A with A <4, then
A € A. From now on we consider the empty set @ as a lower class. Moreover, it is defined the
reverse inclusion order in £(A), in such a way that A; < Ay if and only if A 2 As.

Remark 1.1.10 (£(A),<) is a partially ordered set with a least element which shall be
denoted by 0. Moreover, L(A)* = L(A) ~ {0} is downward directed.

Indeed, the properties of a partial order (reflexive, antisimetric and transitive) are easy
to check. The least element is just the lower class 0 = A.

To show that £(A)* is downward directed, let Aj, Ay € L(A)*. Consider Az = A; U A2.
Of course, Az < Ay, Ag. Let us check that Az e L(A)*.

Note that Ag is a lower class: if § € Ag, then 6 € A; or d € Ag. In any case, if A € A such
that A< d it is A€ Ay or A € Ag, since Ay, As are lower classes. Consequently A € As.

Moreover, Az # A. Suppose, on the contrary, that A = Ag = AjUAs. Since Ay, Ag € L(A)*,
it follows that A # A; N Ag # Ag. Take two elements § € A\ Ay and 6’ € Ay N A;. Since A
is a directed set, there exists an element §” € A such that 6" > §,8". As §” € A1 or §" € Ay, it
follows that 0" € A or § € Ay, giving a contradiction. So Az e L(A)*.

Theorem 1.1.11 Let (X,xg) be an arbitrary pointed topological space, and let

P={p}: (X,z0) > (X,x0) = {(Xx, ), Prx, A}

be an HPol,-expansion of (X, xq). Let 771(X,xo) be the shape group of (X, x). For (a),(5) €
71(X,x0), the formula

d({a),(8)) = {A e A pr({a)) = pA({B)) in Xx}

defines a generalized ultrametric

d: 7r‘—l(‘Xva :UO) x ﬁl(Xv xO) - (E(A)7S)
The connection with the compact metric case is evident from the following corollary.

Corollary 1.1.12 Let (Q, p) be the Hilbert cube, and assume X c Q as a closed subset, with
a fized base point xg € X. For each € >0, consider X. = B(X,¢), pointed in xo too. Also, for
e'>e>0, let peer : Xe > X and pe : X > X, the corresponding (pointed) inclusions. Finally,
let us denote (R*)™! the set of non-negative real numbers with the reverse usual order. Then,
the generalized ultrametric d constructed in Theorem 1.1.11 for the HPol,-expansion

p = {p:} : (X,20) > (X, %0) = {(Xc,20), peer, (R") 7'}

coincides with the ultrametric constructed in the previous subsection.
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Once we have an ultrametric, it is immediate to construct a topology from that. Using
the ideas of [41], we have the following description of a base of a topology on 71 (X, z¢) from
the ultrametric:

Given a lower class A € L(A)* and an element («) € 71 (X, zg), we can consider
Ba((@)) ={{B) e 71(X,z0) [ d({a), (B)) < A}.

It is easy to check that the family
{Ba({a)) [ (a) e 71 (X, x0), A e L(A)}

is a base for a topology in 71(X,xg) which is completely regular, Hausdorff and zero-
dimensional. It shall be called the canonical topology induced by the ultrametric d.

However, this topology is not useful in order to obtain information related to the theory
of shape, since it depends on the particular HPol,-expansion used for the construction, and
not on the shape of the involved space. This limitation can be illustrated with the following
example.

Example 1.1.13 Given any pointed topological space (X, xg) and an HPol.-expansion

P={p}: (X,z0) > (X,x0) = {(Xx, ), prx, A}

of (X, z0), consider a new inverse system

(X', %0) = {(X(0) T(Ay))s P(Ay) (Vr7) AxA

where (X(x~),Z(ay) = (XaZ2)s Pay) (V) = Pax and A x A is ordered with the usual
product order. Then,

P = {p(r ) (X, 20) > (X, %0)

is an HPol,-expansion, where pbw) =Di-

Using the previous HPol,-expansion, the canonical topology induced by the metric d (for
this new expansion) is the discrete one (a general proof for shape morphisms can be found in
[25], it shall be done in the following section for the fundamental group of pointed topological
spaces, and we also shall give similar arguments in the context of homology in chapter 2 of
this work). Since the topology of 71 (X, xg) is non-discrete in general for a compact metric
space X, the previous paragraph implies that the topology depends on the chosen expansion.

Previous example motivates an alternative topology also related with the ultrametric d,
but slightly different from the canonical topology.

Let (A, <) be a directed set and (L(A), <) be the corresponding ordered set of lower classes
of A. A particular kind of lower classes are those generated by an element. That is, for A € A,
let us denote by (M) the lower class generated by \ which is the set

() = {N e A|N <A}

We have an assignation
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¢ (A<) — (L£(A)<)
A (A)

which needs not to be injective, but if A < A’ then (A) > (\). In particular, (¢(A),<) is a
partially ordered set, while (A,<) does not need to be. Moreover, (¢(A),<) is downward
directed in L(A).

Let (X, x0) be an arbitrary pointed topological space, and

P ={p\}: (X,20) = (X,%0) = {(Xx,2x),prn, A}

an HPol,-expansion of (X, zg). Given («) € 71(X,x9), we consider only balls of radius a
lower class generated by an element, that is, Ba({«)) with A = ()) for some A € A. Then the
family

{Boy(a)) [{a) e 71 (X, m0), A e A}

is a basis for a topology on 71 (X, xg), and we call it the intrinsic topology. The main reason
to use this topology instead of the canonical one, is the following.

Proposition 1.1.14 The intrinsic topology on 71 (X, z¢) is independent on the fized HPol, -
expansion of (X,xg) and it coincides with the topology given by the ultrametric for compact
metric spaces (X, xq).

Remark 1.1.15 Equivalent arguments are valid for all shape groups 7 (X, z9), k > 1.

We shall detail and expand the arguments for the general case in the following section for
the fundamental group, and also in chapter 2, but in the context of homology.

1.2 Pseudoultrametric on the fundamental group

In this section we give a topology on the fundamental group which is natural in the framework
of the theory of shape. This topology can be expressed in terms of a pseudoultrametric (or a
generalized pseudoultrametric, for an arbitrary X) and reflects shape properties of the space.
Moreover, it is somehow induced from the topology explained for the shape groups in the
previous section, via the relation between homotopy and shape groups.

Compact metric case

Let X be a compact metric space embedded in (@, p). Each path in X can be seen as a path
in () via this embedding. In particular, if a point xg € X is chosen as a base point, every
loop a: (S%,1) - (X, x0) with (1) = 29 can be regarded as a loop in @, that is, each loop
a e Q(X,x0) is a loop of Q(Q, xp).
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Given «, 8 in Q(X,z¢), let us consider

e(a,B) =inf{e >0:a~ 3 in B(X,e)}

Observe that the set {¢ > 0: «a ~ §in B(X,e)} is bounded. The Hilbert cube is con-
tractible, so every pair of loops «, 5 in (X, x¢) are homotopic loops in @, that is a ~ 8 in
Q. Moreover, if € > diam(Q) then B(X,¢e) =@, so it is clear that

0<e(a, B) <diam(Q)

Now, if [a],[8] are in 71 (X, x0), we define
d([a],[B]) = (e, B)

If o, B in Q(X, xg) are such that [a] = [8] in 71 (X, x¢), it is easy to check that d([«a], [5]) =
e(a,3) =0, since a~ B in B(X,e¢) for all € > 0.

Remark 1.2.1 d is well-defined.

Proof. Let [a],[a/],[B] and [8'] in m1 (X, zo) such that [a] = [&/] and [B] = [5']. Since a ~
in X, then o ~ o/ in B(X,¢), and the same holds for 3 and ’. Equivalently, d([«],[a']) =
0=d([8],[8']).

Suppose now that a ~ 8 in B(X,¢) for some £ > 0. By the symmetric and transitive
properties of the path-homotopy relation,

o ~ax~ 8=~ B’
in B(X,e). From that, and by definition of d([«],[3]) through e(«, 8), we obtain

d([e],[8]) = e(a, B) =e(a’, B) = d([a"].[8']),

as desired. m]

Theorem 1.2.2 d is a pseudoultrametric in m (X, zg).

Proof.

i) Non-negativity. Given [a],[S] in 71 (X, )

d([a],[8]) =e(a,B) =inf{e >0:a~ 3 in B(X,e)} >0.

Moreover, it is clear that d([«], [a]) =0 for every [«] in m1 (X, z0).
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ii) Symmetry. It is an easy consequence of the symmetric property of the path-homotpy
relation:

d([e],[B]) =e(a, B) =inf{e >0:a~ B in B(X,e)} =
=inf{e >0:f~ain B(X,e)} =c(B8,a) =d([B], [a]).

iii) Strong triangle inequality. Let [«], [B], [v] be in 71 (X, x0) and
e1=e(a,y) =inf{e >0:a~~ in B(X,e)},
ea=¢(y,0)=inf{e>0:7~F in B(X,¢e)}.

Let €9 > max{e1,e2}. Again, by transitivity of the path-homotopy relation, since « =~
and v~ 8 in B(X,¢p) then o~ 8 in B(X,¢eq) hence,

d([a],[B8]) =e(a,B) =inf{e >0:a~f in B(X,e)} <eo

Since this holds for any £y > max{e1,e2}, we have

d([a],[B]) < max{ey,e9} = max{d([a], [7]),d([7], [B])}-

Definition 1.2.3 Given a pointed compact metric space (X, zg), we shall refer as the shape
topology to the topology generated by the pseudoultrametric d, and we denote by th(X , ()
the fundamental group endowed with this topology.

Example 1.2.4 Let us consider again the Hawaiian Farrings space X = HE = Upeny Ch,
from example 1.1.9. Considering X inside the Hilbert cube, it should be clear that

A(lba) L)) =

Alternatively, we can define X as an inverse limit in the following way. Let X, be the
union of the first n circles, i.e.,
n
Xn = U C'm
m=1
and let ppn+1 ¢ Xpy1 — X, be a map such that coincides with 1x, over X, and

Prn+1(Cn+1) = {xo}. Then, we have an inverse sequence {X,,,pnn+1} Whose inverse limit

is Xoo = HE. Now, the assertion
1
d([ln]; [ezp]) = =
n

is obvious.
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Remark 1.2.5 Of course, the pseudometric constructed above only contains useful informa-
tion for compact metric spaces with non-trivial fundamental group. This is not the case, for
example, of the Warsaw circle W (see example 1.1.8). It is well-known that w3 (W, z¢) = {1}
(there is no non-trivial loops lying in this space), so the construction of the pseudoultrametric
is trivial for W.

As we have observed above, if «, 8 in Q(X, z¢) are such that [«] = [8] in m1 (X, z¢), then
d([a],[B]) = 0. However, the converse is not always true (so d is not always a metric), as
shown in the following example.

Example 1.2.6 Let us consider the Griffiths’ space G, constructed as follows: Let Y7 = Y5 =
HE be two copies of the Hawaiian Earrings space, and take two points to construct X7, Xo,
the respective cones over Y7, Ys. Consider G = X1V X5, the wedge product obtained identifying
the tangency points of the base Hawaiian Earrings of both spaces, which will be the base
point xg.

1
?
r
!

LTSI

Figure 1.3: The Griffiths’ space.

Denote by «, the counterclockwise loop along the n-th circle of Y; and 3, the corre-
sponding clockwise loop in Y5. Using the usual concatenation of paths, take ; = (a; * 3;) and
v = *npen7Yi- Observe that v is a loop in G with base point xg since the sequence of radii of the
circles is decreasing to zero.

Consider G embedded in the Hilbert cube and e > 0. Then, there exists ng € N such that
an(t) and B, (t) are in B(xg,e) for all t in S and for all n > ng. Thus, it is only necessary to
make the homotopy between ~,, and the constant map for finitely many n, and this clearly
exists through the vertices of the cones. The remaining small loops of the path can be
connected through a homotopy via line segments.

Therefore, v ~ ¢;, in B(G,¢) for all £ >0 and hence d([v],[¢z,]) =0. On the other hand,
it is clear that [v] # [¢g, |-
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In [7], the author proposed a topology on the fundamental group, and he wrongly asserted
that this topology turned the fundamental into a topological group with continuous projection
from the loop space Q(X,xy). We show now that the topology introduced above answers in
a possitive way to the question of the existence of a topology (different, in general, from
the trivial and discrete ones) in 71 (X, zg) that makes it into a topological group. Moreover,
it shows the existence of an invariant of homotopy type. We prove that this topology also
respects the continuity of the usual quotient map ¢ : Q(X,z9) — m (X, x0) and, at the end
of this section, a special case of such pseudometric gives, in fact, a uniform discrete metric.

Theorem 1.2.7 77"(X,x0) is a topological group.

Proof. Consider first the map

th(X,:co) BN Wlsh(X,l‘o)
[a] —  [a]' = [@]

If two loops « and B are homotopic with H(s,t) as an homotopy between a and f,
then @ and (3 are also homotopic using G(s,t) = H(1 - s,t). Hence, if d([a],[5]) = do, then
d([a]™,[B]7) = do. Consequently, r is an isometry.

Therefore, given [«a] € m (X, 2) and € > 0, we have

r(B([a]™,e)) = B([al,¢)

so r is continuous.

Let us now verify that the map

oM (X, mo) x (X, 20) > wP(X,x0)

([, [8]) — [a]+[/]

is also continuous.

In order to do that, let [a],[3] be in 77" (X, z¢) and consider a ball B([a] * [3],¢), for
e > 0. In this case, it is sufficient to verify that the open set V = B([«a],e) x B([f], ¢) satisfies
that m(V') c B([a] * [B],€).-

Again, by the properties of the path-homotopy relation this fact is true: Let [v],[4] be
in 79" (X, 20) such that d([a],[7]) < € and d([3],[6]) <. So @~ and B =~ § in some ball
B(X,n) with n <e. Hence, a* ~y+d in B(X,n) hence d([a] *[B], [v]*[J]) < € and [y]*[J]
is in B([a] * [B],¢).

Since the maps r and m are continuous, 7r13h (X, x0) is a topological group. O

Lemma 1.2.8 Let f: (X,z9) = (Y,y0) be a continuous map between two pointed compact
metric spaces, such that f(xg) = yo. Then, the induced map between fundamental groups
fe (X, 20) = 7"(Y,0) is uniformly continuous.
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Proof. As usual, we consider X,Y as closed subsets of the Hilbert cube @. Since @ is an
absolute extensor for metric spaces, there exists a continuous extension F : (Q,z) = (Q,yo)

of f, i.e., a map such that F|x = f. Hence, for every € > 0 there exists § > 0 such that
F(B(X,9))c B(Y,¢).

On the other hand, the induced map f, is defined by
for mM(X,zo) — w2V 0)
[a] —  [fedq]

Let [a],[8] be in 7"(X,z0) such that d([a],[8]) < §, which means o ~ 8 in B(X,?).
Applying F' (that coincides with f over X) we obtain foa=Foa~Fof3= fofin B(Y,¢),
so d(f«([a]), f+([B])) <&, hence f, is uniformly continuous. ]

Theorem 1.2.9 Let (X,z¢) and (Y,yo) be two compact metric spaces with the same pointed
homotopy type. Then, m5"(X,20) and 7"(Y,y0) are uniformly homeomorphic.

Proof. Let f:(X,z0) » (Y,y0) and ¢ : (Y,y0) = (X, x0) be inverse maps in homotopy.
He'nce, G« 0 [ = lwiSh(X’mO) and f,o0gs = 1ﬂ_1.9h(Y7y0) and, by the previous lemma, f. and g. are
uniformly continuous. O

Corollary 1.2.10 Let X,Y be to compact metric spaces. If there exists an homeomorphism
h:X =Y then m¥"(X,x0) and 77" (Y, h(z0)) are uniformly homeomorphic.

Proof. Immediate from theorem 1.2.9. m|

Remark 1.2.11 Theorem 1.2.9 allows us to ensure that the construction of the pseudoul-
trametric does not depend on the embedding of X in the Hilbert cube Q.

Finally, we prove that the pseudoultrametric on 71 (X, xg) answers affirmatively the ques-
tion of the existence of a group topology making the quotient map continuous.

Theorem 1.2.12 Let X be a compact metric space and let xg be a point in X. The map

q: QUX,xg) — Wlsh(X,xg)

a — [a]

s uniformly continuous.



26

Proof. Since X is metric (with g as its metric) and S! is compact, let us consider in the
space of loops Q(X,zg) the metric n(a, 3) = max{u(a(t),5(t)) :t e S}

Given ¢ > 0, there exists a polyhedron P such that X ¢ P ¢ B(X,e) and P is a neigh-
bourhood of X. Since P is an ANR, we can apply the result 0.0.5 in order to obtain § > 0
such that for every pair of maps f,g: S — P, and any d-homotopy between f|4,g|a where
A is a closed subset of S! there exists an e-homotopy between f and g which is an extension
of the J-homotopy.

In particular, let «, 8 be two loops such that u(«, 3) < 0 and consider « and 3 as loops in
the polyhedron P via the inclusion (X, z0) < (P,z¢). Take A = {1} as a closed subset of S*
and the obvious homotopy between a|4 and S|4, J: {1} x[0,1] = P such that J(1,t) = ¢ for
every t in [0,1]. Then there exists a homotopy H : S' x [0,1] — P such that H(s,0) = a(s)
and H(s,1) = B(s). In addition, H(1,t) = zo for every ¢ in [0,1].

Since P c B(X,e¢), the homotopy H in P can be viewed also as a homotopy in B(X,¢),
hence d([«a],[5]) < € and ¢ is uniformly continuous. o

We have already remarked that th(X ,xo) is a pseudometric space that, in general, is
not a metric space. We show a relevant case in which th(X ,xo) is a metric space.

Theorem 1.2.13 Let X be an ANR space. Then th(X, xo) 1s a uniform discrete metric
space. That is, there exists €g >0 such that if d([«], [B]) < €0 then [a] = [5].

Proof. Since X c @ is an ANR space, there exists an open neighborhood U such that
X c U c @ and there exists a retraction map r: U — X.

Let us consider &g > 0 such that B(X,e0) c U and let [a],[3] be in 77"(X,z0) such that
d([a],[B]) < eo. We shall check that [a] = [S].

Since d([a],[B]) < €0, there exists a homotopy H : S' x [0,1] - B(X,eq) <= U such that
H(s,0) = a(s), H(s,1) = B(s) and H(1,t) = x for all ¢ in [0,1]. Composing the homotopy
with the retraction, we obtain G'=70 H : ! x [0,1] - X such that G(s,0) = r(a(s)) = a(s),
G(s,1) = r(B(s)) = B(s) and G(1,t) = r(xp) = zo for all ¢ in [0,1]. Hence, G is a loop-
homotopy in X between o and 8 so [a] = [5].

In particular, if d([a],[8]) = 0 then [a] = [8] so 77"(X, o) is a metric space. o

The pseudoultrametric is trivially an ultrametric when the topology is discrete, such as
in the case of ANR’s (as shown above). A less trivial case in which it is an ultrametric is in
the following class of spaces.

Definition 1.2.14 A compact metric pointed space (X, xg) is said to be shape-injective if
the canonical homomorphism ¢ : 71 (X, zg) - 71 (X, xg) is a monomorphism.

Proposition 1.2.15 If (X, xzq) is shape-injective, then d is an ultrametric.
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Proof. We only need to verify that if d([«],[8]) =0, then [a] = [B].

If d([ee],[B]) = 0, then o ~ 8 in B(X,¢) for every £ > 0. That is, (a)
©([B])- Using the shape-injectivity, then [«] = [5].

(B), so p([a])

O

Corollary 1.2.16 Let (X,zq) be a pointed compact of R?. Then d is an ultrametric on
7"-1(‘)(7 1'0)'

Proof. As a consequence of the main result of [35], X is shape-injective. Thus, the result is
obtained by applying Proposition 1.2.15 above. a

Generalization to arbitrary topological spaces X
If we pretend to generalize methods (and to obtain analogous results) as above for spaces X

not necessarily compact metric, we need to use the notion of generalized pseudoultrametric.

Let
P ={Pafaer 1 (X, 20) — (X, x0) = {(Xn,22), Pans A}

be an HPol,.-expansion of (X, zp). Given a loop a € Q(X,xg), for each A € A we shall denote
a)y = p) o « the correspondent loop in the polyhedron X with base point z. Let us consider
the usual relation of homotopy of loops in each Q(X),xy).

If a, 8 € Q(X,z0), let
d(a, ) ={AeA:ay =~y in Xy}

Remark 1.2.17 It is obvious that d(a, ) € P(A). But we also have the relation that if
ay ~ By in X for some A € A, then ay ~ By in Xy for every A\’ € A such that \' < \.

We have
proa=ay=fBy=pyof

and since py y o py = py for X <A,

ay =pyoa=pyyoproax=pyyopyof=pyof=Ly
This remark justifies the use of lower classes to define a topology on (X, ).

Theorem 1.2.18 Let (X, xg) be a pointed topological space, and
p={Prahren : (X, 20) — (X, X0) = {(Xx, ), pax, A}
be an HPol,-expansion of (X,xo). For each [«],[B] € m1(X, x0), the map

d:m (X, zo) xm (X, 20) — (L(A),<)
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given by the formula
d(a,B)={AeA:ay~pb) in X)}

defines a generalized pseudoultrametric on X.

Proof. First of all, let us show that the formula is well-defined. Let o/, 3" € Q(X, () such
that o/ € [a] and 8" € [3]. Since a ~ o’ and 8~ 3’ in X, it follows that

aj\=proa’=pyoa=ay

and
By=prof =prof =P
for all A € A. Using the transitive property of the homotopy relation we obtain d(a, ) =
d(a’, B").
Using again the properties of the homotopy relation, it is very easy to check the properties
of the pseudoultrametric required in definition 0.0.3. a

Theorem 1.2.19 Given a pointed topological space (X,xo) and an HPol,-expansion

P = {Pahren : (X, 20) — (X;x0) = {(Xn,22),pA N, AL,

of (X, xp), there is a topology Ty in w1 (X, x0) such that (m1(X,x0),Ty) is a topological group.
Specifically, this Ty is the topology induced by the pseudoultrametric d, and has as basis the
family

B={Ba([a]):[a] em (X, zo),Aec L(A)"}

where Ba([a]) ={[8] e m1 (X, z0) : d(a, B) < A}.

Proof. Let us check that the family B is a base of a topology in 71 (X, z¢). It is obvious that
every [a] € m (X, x0) is in some element of B. Take Ba, ([a]), Ba,([3]) € B with nonempty
intersection. Then there exists some [v] € m (X, 2) such that d(a,~v) < Ay and d(5,7) < As.
Since L£L(A)* is downward directed, there exists Ag # A such that Az < A1, Ag. Let us show

that Ba,([7]) € Ba, ([a]) n Ba,([8])-

Take [0] € Ba,([v]). Then, d(6,7) < Az < Aj. Since d(a,vy) < Ay and d is a pseu-
doultrametric (property 3) we obtain that d(d,«) < Ay, so [0] € Ba,([«]). Analogously,
[6] € Ba, ([B])-

We denote by T, the topology induced by the base B. Let us show that (1 (X, xg),Ty) is
a topological group. Recall that in order to do that, we should prove that the inversion and
the multiplication maps are continuous.

Let us start by showing that the inversion map

T 7T1(X,$0) —> 7T1(X,ZL‘0)
[e]  — [a]=[a]
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is continuous. Take any [«a] € (X, z9). We show that
r(Ba([a])) € Ba([a]™).

Take [8] € Ba([a]), that is d(c, B) < A. We assert that d(a, §) = d(a, 3), hence d(a, 3) <
A and [B]™ € Ba([a] ™).

To prove the assertion, first observe that

ax(t) =pa(@(t)) =pa(a(1-1)) = (proa)(t)
for any A € d(a, ). Thus, we have
ay=proa=pyof=Lyin Xy
S0 L o
Qy=proa=pyoa=pyoff=pyof=[,in X,.
It follows immediately that d(«, 3) = d(@, ), as we wanted to show.

For the continuity of the multiplication map

m: 7T1(X,$0)><7T1(X,x0) — 7['1(X,$0)
([e], [8]) — [a] *[5]

take [a], [8] € m1 (X, xzp). Let us show that
m(Ba([a]) x Ba([8])) € Ba(la] * [8]).

Take ([7],[d]) € Ba([a]) x Ba([3]), let us check that [v] * [0] € Ba([«] * [8]). For each
A e A, since d(a,v) <A and d(8,6) < A we have that

proa=pyoyand pyof~pyodin Xy
It follows that, in X,

pro(axf)=(proa)x*(prof)=(pro7)*(prod) =pro(yxd)
so Aed(a* 3,7 *0) and therefore d(a * 8,7 *0) < A.

Because of the definition of the concatenation of loops, is not difficult to check the fact
we used before that py o (a* 3) = (px o) * (py o