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It is shown that neither the Schrodinger equation nor the Kiein-Gordon one with logarithmic nonlinearities have dissipative
solutions. In the case of one-dimensional space, numerical experiments with different Cauchy data, in the nonrelativistic case,

lead always to final states consisting only in oscillating gaussons.

1. Introduction

In 1976 {1] Bialynicky-Birula and Mycielski
(BBM) proposed the study of the Schrodinger equa-
tion with logarithmic nonlinearity

2m

. 1
1*—=<—~—A—blog(lwlza")>w, (1)

where g and b are constants and 7 is the number of
dimensions of the space. BBM showed that (1) 1s
the only equation on which a nonlinear form of
quantum mechanics can be based, without substan-
tial changes in the interpretation of the wavefunc-
tion. It has solitonlike solutions with gaussian shape
(they accordingly called them gaussons) in any
number of dimensions, which describe the propa-
gation of nonspreading wave packets of freely mov-
ing particles. Soon after Oficjalski and Bialynicki-
Birula [2] performed numerical experiments which
showed that the gaussons have real solitonlike be-
haviour upon collision, as two of them give a final
state consisting either of two or three gaussons de-
pending on the relative velocity and phase.

BBM suggested that their equation could be ap-
plied to atomic or molecular physics and Shimony
{3] proposed an experiment with neutron interfer-
ometry to look for the effects associated with the

' Present address: Departamento de Termologia, Universidad
Complutense, 28040 Madrid, Spain.

nonlinearity. However the experiments realized [4,5]
placed very strong limits on the constant b and are
currently interpreted as indicating that there is no
real basis for such a nonlinearity.

In spite of this negative experimental result, Hef-
ter [6] argued recently that it may be suitable to de-
scribe extended objects (and not point particles as
originally suggested by BBM ). Consequently, he ap-
plied it to nuclear physics and showed that it can ac-
count for some of the properties of nuclear matter.

The BBM equation has also attracted the attention
of mathematicicians, who studied such properties as
the Cauchy problem, asymptotic behaviour and sta-
bility of gaussons [7-9].

2. Nonexistence of dissipative solutions

Let y(r, 1) be a solution of (1) and let M(¢) be
its norm L*, that is

M(t)=sup|y(r,1)]. (2)

It is said that the solution w(r, ¢) is dissipative or
that it dissipates if

lim M(t)=0. (3)
{00

If, on the contrary, M(¢) is bounded from below, the

solution is said to be nondissipative. In 1978 Morris
[10] proved in the relativistic case that a class of
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nonlinear Klein-Gordon equations (including one
with a fractional nonlinearity proposed by Werle
[11] do not have dissipative solutions. However, as
he himself states, his proof does not apply to the log-
arithmic Klein—-Gordon one. Neither does it to the
nonrelativistic BBM equation. However, it follows
from Cazenave’s results (proposition 4.3 of ref. (81
that this last one has the same property. We will now
show that this is indeed the case in a simpler, less
formal and more physically oriented way. The proof,
although different, is similar to the one used by
Morris.

The lagrangian and the energy densities, L and H,
of (1) are

. . 1
L= ji[y*d,w— (0, y*)y]— 2, YtV
+blog(y*ya" ) y*y~by*y, (4)

H= 5= Vy*Vy—blog(vya" v y+by*y.  (5)

Unless otherwise stated, by the norm of a solution
we will understand the norm L2, which happens to
be conserved

lwl= J {w|? d3r=constant, (6)
R3

Let us now note that if y(r, 1) is a solution, ay(r,
t) exp(ibtlog|a?|) is another one and, because of
that, we can assure that, if all solutions which have
unit norm are nondissipative, all the rest have the
same property, notwithstanding the value of their
norms. For if ¢’ with norm 2, 8 being a positive real
number, is a dissipative solution, the same can be
said of w=p4""y exp(—2ibtlogB) which evidently
has unit norm. It suffices, therefore, to prove that no
unit norm solution dissipates.

The energy of a unit norm solution can be written
as

- ﬁj|Vu/|2d3r+ J.U(w*y/) 4
+b(1~loga™),
where the function U has the following properties:

(a) U(p)=—bplogp; U (p)=—blogp—b;, U" (p)
=-b/p;
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(b) Uis concave in (0, o) and lim U’ (p) = + oo,
if p-0 and

(c) U(p)2pU’ (p).
Let us define a(¢) as

a(t)= f U(y*y) d3r.

It is clear that

E*=E—b(1-loga™)za(t)

(if the energy is finite, the sign > always holds). As
lw(r, )| <M?*(1)

and, because U’ (p) is a decreasing function, it turns
out that

U(lyl>)2U (M?),

after which, it follows from (c) that
Ul 2U (wl?) ly?2 U (M?) | y|?
and, integrating in all the space

E*s f Ulw*w) d¥> U (M?) .
R3

If we assume the solution to be dissipative, M(¢) —0,
if 1— o0, the right-hand side tending to co, which is
impossible since E* is conserved. The consequence:
the modulus of w(r, t) is necessarily bounded from
below.

In the relativistic case, it can be shown that all fi-
nite energy solutions verifying 0< | Q| <co are non-
dissipative. Let the lagrangian density and wave
equation be

L= (ay¢*)a“¢— W(¢*¢) 3’

W(p)=—bplogp+m?3p, (7)
0,09+ W' (¢*9)p=0. (8)
The corresponding energy and charge are then

E= [+ 101+ W(lpi))] d°r, (9
0=i [(p*,~p10) 0%, (10)

\
W having the same pfoperties (b), (c¢) as in the non-
relativistic case. Let ¢ be a,solution of (7) with finite
energy and non-null finite charge. From (10) it fol-
lows that
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tatin aussons”. In order to test this conjecture in

lleszQldJ’ (11) g8) 8 . . j
\ the case of one space dimension we performed sev-

and, after application of the Schwarz inequality,

i0<( Jorav)( [1o17av). (12)

Making use now of property (c¢) of U and of the fact
that U’ is strictly decreasing

E>[1g2 a%r+ (W (1912) 1012 3

> [loarewan) [1orar,  (13)
where M(1) is defined by (2). If the solution is
dissipative
IimM(1)=0

=3t /Vi>t,, W (M?*)>6>0 forsomed,
from which, because of (13)
E> [16.2a% (14)
and from (12)
Jl¢'lzd3r>Q2/4E. (15)
On the other hand, the definition of E and the prop-
erties of W(p) imply
E> [ w(o) dairs jwum gl

> 10

>w () [1p12ar>0

and, from (15)
4E?/Q?> W' (M?*)>0. (16)

If lim M (¢) =0 when t—co, then lim W’ (M(t) ) = oo,
in clear contradiction of (16). The conclusion: ¢
must be nondissipative.

3. Numerical experiments

The previous result agrees with the conjecture
stated by Oficjalski and Bialynicki-Birula [2] in the
nonrelativistic case, according to which “every non-
linear wave described by the logarithmic equation
eventually decays into (possibly oscillating and ro-

362

eral numerical experiments on the logarithmic
Schrodinger equation with several classes of Cauchy
data. First of all, we used the same method as in ref.
[2] (taken from ref. [12]), reproducing the same
results. However, as this scheme does not conserve
the energy, one has to be very careful. For instance,
let us consider the evolution of oscillating gaussons
(henceforth to be called pulsons) of the form

#(x,t)=A(1) exp[ip(7)]

xexp{—4[B(1)+iC(1)]x%}, (17)
which are solutions of (1) if
£1-B-4BC gC—Z(bB—BZ+C2)
de™ ™ Code T ’
d d
a—tA =AC, d_t¢=2bmA—B' (18)

With the said numerical method, we found a tend-
ency to dissipate the energy and tend towards a sta-
tionary gausson (B(t)=»>). Consequently we used
another more accurate one, based on the scheme

I ( Wi =207 A2y —2w7+wf-n)
T 2m 2(Ax)? 2(Ax)?

_GUy ) =GUy 1) vt Yy

/' PP= w2 2
an+l_y/j
At ’
with
G(p)=—bp(1-Inp). (19)

This scheme conserves the norm and the energy but
is nonlinear. In fig. 1 the results of the two schemes,
as applied to the evolution of a pulson (17), are
compared. In fig. 1a we can see the phase space (B,
C). B and C are periodic functions of time and, as
a consequence of (18), A4 is also periodic. In figs. 1b
and Ic the evolution of B(?), as calculated with the
schemes of ref. [2] and (19), respectively, and with
the same lattice in both of them is shown. As we see
this second one gives a much better resulit.

We have used several classes of Cauchy data and
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Fig. 1. Comparison of the results of the two methods as applied to a pulson. (a) Phase space of the pulson; (b) scheme of ref. [2]; (¢)

scheme (19).

found always the same kind of behaviour. The fol-
lowing two examples are representative of the rest:
(1) Collisions of two gaussons. We have observed,
as in ref. [2], that there is a resonance energy in-
terval in which the final state consists of three pulses.
Outside of it, there are only two. But we have also
been able to determine clearly that the pulses are not
gaussons but pulsons and to calculate its parameters.
In fig. 2 we can see the charge density |y(x, t) |2 ver-
sus x for eight values of 7. In order to ascertain the
nature of the bumps, we fitted them to a pulson of
the form (17) and determined the values of the pa-
rameters 4 and B which give the minimum quadratic
error. The result for the central pulse can be seen in
fig. 3. In fig. 3c the relative error of the fit is shown,
" as measured by the quadratic norm of the difference
" divided by that of w(r, t). Its low value indicates that

the pulse is indeed either a pulson or is very close to
one.

(ii) Decay of an initial wavépacket. We have stud-
ied the evolution from several localized states, the
results being similar in all the cases. In fig. 4 we show
the case of the sine wave

sin 2nx, xe|-14,11,

0’ x¢|_}’il)

which decays into three pulses. In fig. 5 the result of
a fit to a pulson, similar to that of fig. 3 can be seen.
Again, the central packet is a pulson.

In agreement with the lack of radiation, the sum
of the charges of the final pulsons is in all the cases
equal to the initial charge and the same thing hap-
pens with the energy, the differences being smaller
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Fig. 2. Collision of two gaussons. (1) Initial data; (2) pulsons after the collision: (3)-(8) evolution of the central pulson cfter elimina-
tion of the two lateral ones.
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Fig. 3. Fit to a pulson of the central bump of fig. 2. The error is partly due to the effect of the elimination of the lateral bumps.

364



Volume 128, number 6,7 PHYSICS LETTERS A It April 1988

() ) A IS (4) /\

N NAA JAVEVAN

1=0 T=200 1=300 T=400

(S (5) /\ (7) (8)
‘ /\

H
\/\ AWAWAN N AN TN

=500 1=600 1=700 1=800

Fig. 4. Decay of a sine wave into three bumps.
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Fig. 5. Fit to a pulson of the central bump of fig. 4.
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than 1% and compatible with zero, taking into ac-
count the numerical errors.

4. Conclusions

(1) The logarithmic Schrodinger equation pro-
posed by Bialynicki-Birula and Mycielski has no dis-
sipative solutions. In the relativistic case, the
logarithmic Klein-Gordon equation has no dissi-
pative solutions with nonzero charge.

(2) Our numerical results are compatible with the
conjecture that any final state consists always of
nothing more than oscillating gaussons. Moreover,
we have determined the parameters of the pulsons
which appear after the collision of gaussons or the
decays of some initial data.

To sum up, we interpret the previous resulis as
strongly supporting the idea that the wave equation
with logarithmic nonlinearity deserves further study
and consideration.
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