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Solutions to vacuum Einstein field equations with cosmological constants, such as the de Sitter space
and the anti–de Sitter space, are basic in different cosmological and theoretical developments. It is also well
known that complex structures admit metrics of this type. The most famous example is the complex
projective space endowed with the Fubini-Study metric. In this work, we perform a systematic study of
Einstein complex geometries derived from a logarithmic Kähler potential. Depending on the different
contribution to the argument of such logarithmic term, we shall distinguish among direct, inverted and
hybrid coordinates. They are directly related to the signature of the metric and determine the maximum
domain of the complex space where the geometry can be defined.
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I. INTRODUCTION

Complex manifolds have been implemented in modern
theories, mainly within string frameworks. For example, the
bosonic string theory is formulated on a two-dimensional
differentiable manifold which is embedded on the
d-dimensional Minkowskian space. The action of this theory
is the Polyakov action [1], and it is invariant under diffeo-
morphisms and Weyl transformations. When the theory is
quantized via path integral, we must take into account the
overcountingdue to the symmetries, and, for this purpose, it is
possible to fix the gauge by taking the called unit gauge,
which fixes the metric to be the unit one, but there is still a
residual symmetry due to conformal transformations, so we
are dealing with a two-dimensional conformal field theory.
Two-dimensional differentiable manifolds with transition
functions being conformal are isomorphic to complex mani-
folds of dimension one (Riemann surfaces), so the theory can
be formulated on a one-dimensional complex manifold.
It is interesting to implement the concept of complex

manifolds within the structure of space-time. Again, the
better known example of this can be found in superstring
theory where there are six extra dimensions compactified
on Calabi-Yau manifolds [2], which are a specific kind of
Kähler complex manifold.
In this work, we are particularly interested in the imple-

mentation of the concepts of complex differential geometry
on extensible (not compactified) space-time structures.

Within real manifolds, it is well known the existence of
solutions of the vacuum Einstein field equations with
cosmological constant. These types of manifolds are called
Einstein manifolds. All constant sectional curvature mani-
folds are of this kind. Examples of Riemannian manifolds
with constant sectional curvature are the usual Euclidean
space of arbitrary dimensionswith the usual Euclideanmetric
(which is flat), and the unit n-sphere with the round metric
(which has positive curvature). Themost important examples
of pseudo-Riemannian manifolds with constant sectional
curvature are the de Sitter space [3,4] (of positive curvature),
which serves as a simple model of an accelerated expanding
universe, and the anti–de Sitter space (of negative curvature),
which recently acquired relevance in string theory due to the
AdS=CFT correspondence proposed by Maldacena [5].
There are also well-known examples of complex

Einstein manifolds. In the case of positive-definite signa-
tures and constant bisectional curvature, we can distinguish
among the complex projective space with the Fubini-Study
(FS) metric (which has positive curvature), the Euclidean
complex space (flat), and the unit ball (negative curvature).
All this manifolds are Kähler manifolds.
The main objective of this work is to perform a

systematic classification of complex Einstein geometries
derived from a logarithmic Kähler potential. We will
generalize the study to non-positive-definite metrics, i.e.,
we will analyze pseudo-Kähler geometries and analyze
their main curvature properties.

II. REVIEW OF BASIC CONCEPTS

First of all, we will summarize the main basic concepts
of complex differential geometry in order to clarify the
notations and conventions we will use throughout the work.
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A. Complex manifolds

An m dimensional differentiable manifold M is a
topological space which can be covered by a family of
open subsets fUig (M ¼∪i Ui), where each Ui is homeo-
morphic to an open subset U0

i of Rm: there is a map
ψ i∶Ui ⊂ M → U0

i ⊂ Rm which is a homeomorphism. It is
also required differentiability of the maps Ψij ¼ ψ i∘ψ−1

j in
regions whereUi ∩ Uj ≠ ∅. To define a complex manifold
we now require open subsets Ui’s to be homeomorphic to
open subsets U0

i’s of Cm (there is a map ψ i∶Ui ⊂ M →
U0

i ⊂ Cm which is a homeomorphism for each Ui) and
maps Ψij ¼ ψ i∘ψ−1

j in regions Ui ∩ Uj ≠ ∅ to be hol-
omorphic [6]. The dimension m is now understood as the
complex dimension of the manifold. Note that all complex
manifolds are differentiable manifolds because holomor-
phicity of maps automatically implies differentiability, so
an m dimensional complex manifold can also be seen as a
2m dimensional differentiable manifold. It does not happen
the same in reverse order because differentiability does not
necessarily imply holomorphicity, so not all differentiable
manifolds are complex ones.
Since a complex manifold is a differentiable one, all the

machinery developed for differentiable ones (vectors,
forms, tensors, tensor fields, …) can be used in a complex
manifold. Consider a differentiable manifold which admits
a tensor field J of type (1,1) such that, at each point p ∈ M,
it squares to minus the identity J2p ¼ −idTpM; this is called
an almost complex manifold and the associated tensor field
J its almost complex structure [7]. Define the Nijenhuis
tensor field N∶TM × TM → TM as the tensor which
acting on two vector fields v; w ∈ TM gives:

Nðv; wÞ ¼ ½v; w� þ J½Jv; w� þ J½v; Jw� − ½Jv; Jw�: ð1Þ

It was shown by Newlander and Nirenberg [8] that the
necessary and sufficient condition for a manifold to be a
complex one is the vanishing of the Nijenhuis tensor
N ¼ 0; in this case we call J the complex structure of
the manifold.

B. Complexifications

Consider a differentiable manifoldM. The set of smooth
functions FðMÞ is complexified [6] in the following way:
take two functions g; h ∈ FðMÞ and form a new one
f ¼ gþ ih, which is now a complex valued function
f∶M → C; the set of functions constructed in this way
forms what is called the complexification of FðMÞ, denoted
by FðMÞC. Similarly, the tangent space of M at the point
p ∈ M can be complexified: take two vectors v; w ∈ TpM
and form a new one u ¼ vþ iw; the set of vectors
constructed in this way forms the complexified tangent
space TpMC (note that this is a vector space under the well
defined complex addition and complex scalar multiplica-
tion). Vector fields are complexified in a similar way.

A linear operator A acting on the vector space TpM is
extended to act on the complexified one as AðuÞ ¼
Aðvþ iwÞ ¼ AðvÞ þ iAðwÞ, where u ¼ vþ iw ∈ TpMC.
All tensors and tensor fields can be analogously com-
plexified. Note that complexified vector spaces have same
dimension as ordinary ones.
Since an m dimensional complex manifold can be seen

as a 2m differentiable one [6], we can consider a local
coordinate basis of the tangent space at p ∈ M given by 2m
vectors f∂=∂x1;…; ∂=∂xm; ∂=∂y1;…; ∂=∂ymg associated
to the real part and the imaginary part of complex
coordinates zμ ¼ xμ þ iyμ. Its dual space is spanned by
fdx1;…; dxm; dy1;…; dymg. In this basis, the complex
structure J acts on vectors as Jpð∂=∂xμÞ ¼ ∂=∂yμ,
Jpð∂=∂yμÞ ¼ −∂=∂xμ. Complexifying the tangent space,
we can define a new basis given by ∂=∂zμ ¼
ð∂=∂xμ − i∂=∂yμÞ=2, ∂=∂z̄μ ¼ ð∂=∂xμ þ i∂=∂yμÞ=2. The
dual basis is given by dzμ ¼ dxμ þ idyμ, dz̄μ ¼ dxμ − idyμ.
In this basis, J acts as Jpð∂=∂zμÞ ¼ i∂=∂zμ, Jpð∂=∂z̄μÞ ¼
−i∂=∂z̄μ.

C. Pseudo-Kähler manifolds

Consider a complex manifold M and a Riemannian
metric g defined onM as a differentiable manifold. Its action
can be generalized to the complexified tangent space
at a point p ∈ M expressed by TpMC [6]. With this, it is
possible to calculate the components of the metric with
respect to the complexified basis gp;μν ¼ gpð∂=∂zμ; ∂=∂zνÞ,
gp;μν̄¼gpð∂=∂zμ∂=∂z̄νÞ, gp;μ̄ν¼gpð∂=∂z̄μ;∂=∂zνÞ, gp;μ̄ ν̄ ¼
gpð∂=∂z̄μ; ∂=∂z̄νÞ. If the metric g satisfies gpðJpv; JpwÞ ¼
gpðv; wÞ at each point p ∈ M, where J is the complex
structure and v; w ∈ TpM, it is said to be a Hermitian metric
[7] and the manifold a Hermitian manifold. For a Hermitian
metric, only components gμν̄; gμ̄ν are not null: gμν ¼ gμ̄ ν̄ ¼ 0.
We define the Kähler form ω of a Hermitian metric g as a
tensor field whose action on vectors of the tangent space at a
point p ∈ M is given by ωpðv; wÞ ¼ gpðJpv; wÞ, where
v; w ∈ TpM; theKähler form is antisymmetric, so it defines a
two-form. We say a metric is a Kähler metric if its Kähler
form is closed: dω ¼ 0. If a metric is Kähler, the manifold,
where it is defined on, is called aKählermanifold. Consider a
complex manifold M and a Hermitian metric g on it; the
necessary and sufficient condition for the metric g to be a
Kähler one is∇lcJ ¼ 0 [7], where J is the complex structure
and ∇lc is the Levi-Civita connection (note that ∇lc is well
defined since a complex manifold is a differentiable one and
uniquely determined by g, which is Riemannian by defi-
nition). A Kähler metric can always be locally expressed as
gμν̄ ¼ ∂μ∂ ν̄Ki [9], where Ki ∈ FðUiÞ is called the Kähler
potential andUi is an open subset ofM, and ∂μ; ∂ ν̄ are partial
derivativeswith respect local coordinates zμ; z̄ν, respectively.
It is required Ki to transform as Kjðw; w̄Þ ¼ Kiðz; z̄Þ þ
ϕijðzÞ þ ψ ijðz̄Þ in regions where Ui ∩ Uj ≠ ∅, with ϕ
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holomorphic and ψ antiholomorphic, and where w are
complex local coordinates of Uj and z are complex local
coordinates of Ui; by this way, the metric g transforms
properly under general coordinate transformations.
Reciprocally, all metrics expressed as the double derivative
∂∂̄ of a Kähler potential are Kähler. Similar definitions and
conclusions are obtained relaxing the positive-definite
condition of the metric and considering now a pseudo-
Riemannian one. In this way, we will talk about pseudo-
Kähler metrics.
Since through this work we deal with metrics which

will be shown to be all Kähler or pseudo-Kähler, we will
often not make distinctions between them and their
associated Kähler or pseudo-Kähler forms. We will use
the same notation for both and we will refer to them
indistinguishably.

D. Curvature of pseudo-Kähler metrics

Consider a Kähler metric g on a Kähler manifold M.
We can define a connection acting on the complexified
tangent space as ∇ch∶TMC × TMC → TMC, and being
compatible with the complex structure ∇chJ ¼ 0 [7]. In
local coordinates, we define the Christoffel symbols of the
connection as:

∇ch;μ
∂
∂zν ¼ Γλ

μν
∂
∂zλ þ Γλ̄

μν
∂
∂z̄λ ; ð2Þ

∇ch;μ
∂
∂z̄ν ¼ Γλ

μν̄
∂
∂zλ þ Γλ̄

μν̄
∂
∂z̄λ : ð3Þ

For the connection to be compatible with the complex
structure ∇chJ ¼ 0, it is required to vanish all Christoffel

symbols except Γλ
μν;Γλ̄

μ̄ ν̄ ¼ Γλ
μν. In addition, by requiring

metric compatibility ∇chg ¼ 0, they result to be totally
determined by the metric:

Γλ
μν ¼ gλρ̄

∂gνρ̄
∂zμ : ð4Þ

This is called the Chern connection [10], and can be defined
similarly on Hermitian manifolds (not necessarily Kähler
manifolds), but, for Kähler manifolds, and only for Kähler
manifolds [11], the Chern connection is the same as the
Levi-Civita one extended to act on TMC × TMC.
The components of the Riemann tensor associated to the

Hermitian connection [12,13], in local complex coordi-
nates, are given by:

Rμν̄ρσ̄ ¼ −
∂2gμν̄
∂zρ∂z̄σ þ gλη̄

∂gλν̄
∂zρ

∂gμη̄
∂z̄σ ; ð5Þ

and, by taking the trace in two first components, we obtain
the expression for the components of a new tensor (known
as Ricci tensor) in local coordinates:

Ricρσ̄ ¼ gμν̄Rμν̄ρσ̄ ¼ −
∂2

∂zρ∂z̄σ ðlog jgjÞ; ð6Þ

where g is the determinant of the metric.
We say that a Kähler manifold M is of constant bisec-

tional curvature [7] if the components in local coordinates
of the Riemann tensor associated to the Hermitian con-
nection can be written in terms of the Kähler metric ones as
Rμν̄ρσ̄ ¼ λcðgμν̄gρσ̄ þ gμσ̄gρν̄Þ, where λc is a real constant.
For λc > 0, the bisectional curvature is said to be positive,
for λc ¼ 0, null, and for λc < 0, negative.
We say that a Kähler metric g is a Kähler-Einstein metric

[7] if the Ricci tensor obtained as the trace of the Riemann
tensor associated to the Hermitian connection is propor-
tional to the metric; in local coordinates Ricμν̄ ¼ λrgμν̄,
where λr is a real constant.
The same concepts summarized in this section are

straightforward generalized to pseudo-Hermitian metrics.

E. Fubini-Study metric

Let us consider the space N given by:

N ¼ fZ ∈ Cnþ1; Z ≠ 0g=∼; ð7Þ

where we identify Z;W ∈ Cnþ1 by Z ∼W if there exist a
complex number c ≠ 0 such thatW ¼ cZ. This is called the
complex projective space and it is an example of a complex
manifold of dimension n. This manifold is isomorphic to
the quotient space given by S2nþ1=Uð1Þ, where S2nþ1 is the
unit 2nþ 1 hypersphere in Cnþ1 and Uð1Þ is the Abelian
unitary group. The unit sphere can be written in terms of
complex coordinates Z as:

S2nþ1 ¼
�
Z ∈ Cnþ1∶

Xnþ1

i¼1

jZij2 ¼ 1

�
; ð8Þ

and the quotient space identified with the manifold N ¼
S2nþ1=Uð1Þ can be completely covered by the union of sets
∪j Uj, where Uj is given by:

UjðZj ≠ 0Þ ¼
�
z ∈ Cn∶

Xnþ1

i¼1
i≠j

jzij2 > 0

�
; ð9Þ

where we have defined new coordinates zi ¼ Zi=Zj.
We can now consider the Hermitian metric g on Cnþ1

given by g ¼Pnþ1
i¼1 jdZij2 and calculate the induced one by

the map π∶MðZÞ → NðzÞ. The result is the FS metric,
which is given by:
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gfs;μν̄ ¼ ∂μ∂ ν̄ log

 
1þ

Xnþ1

i¼1
i≠j

jzij2
!
: ð10Þ

We can write the metric gfs in its matrix form (assuming,
for instance, j ¼ nþ 1):

gfs ¼
1

K2
fs

0
BBBBB@

Kfs − jz1j2 −z̄1z2 � � � −z̄1zn
−z1z̄2 Kfs − jz2j2 � � � −z̄2zn

..

. ..
. . .

. ..
.

−z1z̄n −z2z̄n � � � Kfs − jznj2

1
CCCCCA;

ð11Þ

whereKfs ¼ 1þPnþ1
i¼1
i≠j

jzij2, and, since it is aHermitian and

positive-definite matrix, the metric is Hermitian. This metric
is also a Kähler metric, since it is Hermitian and can be
written as the double derivative ∂∂̄ of the potential logKfs.
We can also calculate its determinant: det gfs ¼ 1=Knþ1

fs .
The determinant allows to compute all the components

of the Ricci tensor by using Eq. (6). The calculation shows
that this metric is a Kähler-Einstein metric with λr ¼ nþ 1
as defined in Sec. II D: Rμν̄ ¼ ðnþ 1Þgfs;μν̄, where n is the
dimension of the complex manifold N.
The group SUðnþ 1Þ generates isometries of the FS

metric gfs and also acts transitively on the complex
projective space N. Taking this fact into account, it is
enough to show the that the bisectional curvature is
constant at the point z ¼ 0, to prove that it is constant at
any point. At z ¼ 0, the calculus of the components of the
Riemann tensor (5) simplifies because all first derivatives
of this metric vanish at this point. In this way, it is easy
to show that Rμν̄ρσ̄jz¼0 ¼ ðgfs;μν̄gfs;ρσ̄ þ gfs;μσ̄gfs;ρν̄Þjz¼0.
Therefore, we have a positive constant bisectional curvature
with λc ¼ 1 as defined in Sec. II D.

F. Unit ball

Consider the space M given by:

MB ¼
�
Z ∈ Cnþ1∶ − jZ0j2 þ

Xn
i¼1

jZij2 ¼ −1
�
: ð12Þ

We note that Z0 ≠ 0 because jZ0j2 ¼ 1þPn
i¼1 jZij2 > 0.

With this, the n dimensional complex manifold given by
NB ¼ MB=Uð1Þ can be identified with the open unit ball in
Cn [14]:

NB ¼
�
z ∈ Cn∶

Xn
i¼1

jzij2 < 1

�
; ð13Þ

where we have defined new coordinates zi ¼ Zi=Z0. The
map πB∶MBðZÞ → NBðzÞ induces, from the Hermitian

metric g ¼ −jdZ0j2 þ
P

n
i¼1 jdZij2, a new metric on NB

given by:

gb;μν̄ ¼ −∂μ∂ ν̄ log

�
1 −

Xn
i¼1

jzij2
�
: ð14Þ

The matrix form of gb is given by:

gb ¼
1

K2
b

0
BBBBB@

Kb þ jz1j2 z̄1z2 � � � z̄1zn
z1z̄2 Kb þ jz2j2 � � � z̄2zn

..

. ..
. . .

. ..
.

z1z̄n z2z̄n � � � Kb þ jznj2

1
CCCCCA;

ð15Þ

where Kb ¼ 1 −
P

n
i¼1 jzij2.

The analysis of this new metric is similar to the FS one,
but we now obtain a negative constant bisectional curvature
with λr ¼ −ðnþ 1Þ, λc ¼ −1, i.e., Rμν̄ ¼ −ðnþ 1Þgb;μν̄,
and Rμν̄ρσ̄ ¼ −ðgb;μν̄gb;ρσ̄ þ gb;μσ̄gb;ρν̄Þ.

III. ONE NONDIRECT COORDINATE

We begin to study the simplest case in which we
introduce a single nondirect coordinate. Firstly, we will
consider the introduction of an inverted coordinate and,
secondly, the introduction of an hybrid coordinate.

A. One inverted coordinate

As mentioned in Sec. II E, the n dimensional complex
projective space is isomorphic to the quotient space
between the real unit 2nþ 1 hypersphere and the
Abelian unitary group Uð1Þ. This allows us to obtain the
FS metric as the induced metric of the Euclidian Hermitian
metric in Cnþ1 dimensions on the quotient space.
The FS metric is generated by the logarithmic Kähler

potential introduced in Eq. (10). Wewill use the potential in
order to classify the different coordinates. For the FS
metric, all coordinates are direct since the square of their
real and imaginary parts contribute positively to the argu-
ment of the logarithmic potential. We can study the effect of
introducing an inverted coordinate, i.e., a coordinate whose
square of its real and imaginary parts contribute negatively
to the logarithmic Kähler potential:

Gμν̄ ¼ ∂μ∂ ν̄ log

 
1 − jz0j2 þ

Xn
i¼1
i≠j

jzij2
!
: ð16Þ

Firstly, we note that this metric can be obtained as the
induced of a Hermitian one in Cnþ1 dimensions on a
quotient space, similar to the FS case. Let as consider the
space MI given by:
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MI ¼
�
Z ∈ Cnþ1∶ − jZ0j2 þ

Xn
i¼1

jZij2 ¼ 1

�
: ð17Þ

We note that ∃ i ∈ ½1; n�∶Zi ≠ 0 because
P

n
i¼1 jZij2 ¼

1þ jZ0j2 > 0. We now consider the quotient space given
by NI ¼ MI=Uð1Þ; this is an n dimensional complex
manifold. From the observation just made, we conclude
that all N can be covered by the union of sets ∪j Uj, where
Uj is given by:

UjðZj ≠ 0Þ ¼
�
z ∈ Cn∶ − jz0j2 þ

Xn
i¼1
i≠j

jzij2 > −1
�
; ð18Þ

where we have defined new coordinates z0 ¼ Z0=Zj;
zi ¼ Zi=Zj. The map πI∶MIðZÞ → NIðzÞ induces, from
the Hermitian metric g ¼ −jdZ0j2 þ

P
n
i¼1 jdZij2, the met-

ric introduced in Eq. (16).
Writing the metric G in its matrix form (assuming, for

instance, j ¼ n):

G¼ 1

G2

0
BBBBB@

−G− jz0j2 z̄0z1 � � � z̄0zn−1
z0z̄1 G− jz1j2 � � � −z̄1zn−1

..

. ..
. . .

. ..
.

z0z̄n−1 −z1z̄n−1 � � � G− jzn−1j2

1
CCCCCA; ð19Þ

where G ¼ 1 − jz0j2 þ
P

n
i¼1
i≠j
jzij2, we see it is a pseudo-

Hermitian metric since this is a Hermitian matrix and we
have lost the positive-definite condition having introduced
one inverted coordinate. We can also write it as a ∂∂̄
derivative of the potential logG, so it is a closed form
(dG ¼ 0). With this, we have found the metric G to be a
pseudo-Kähler one.
It is easy to compute its determinant: detG ¼ −1=Gnþ1

and the Ricci curvature in a similar way to the FS case. In
fact, the components Rickl̄ are proportional to the metric:
Ric ¼ ðnþ 1ÞG. So we conclude that G is a pseudo-Kähler-
Einstein metric.
Finally, we will discuss the bisectional curvature. We

will find it to be a constant bisectional curvature one. For
this to be shown, we can use similar arguments as in FS
case. The indefinite special unitary group SUð1; nÞ is the
set of matrices acting on Cnþ1 which preserve the
Hermitian form gðW;ZÞ ¼ −W0Z0 þ

P
n
i¼1 WiZi, where

W;Z ∈ Cnþ1, with determinant one. This group acts on N
as an isometry and transitively, so it is enough to show the
relation between Riemann curvature and metric at z ¼ 0.
Calculus is analogous to FS one and we finally obtain the
same relation Rijkl̄jz¼0 ¼ ðGij̄Gkl̄ þ Gil̄Gkj̄Þjz¼0, so this
metric is also of positive constant bisectional curvature
with λc ¼ 1. We note that the pseudo-Kähler-Einstein
condition could have been gotten directly from this last

relation of positive constant bisectional curvature taking a
trace in both sides, but we have used the first method of
calculating the determinant because in the next sections it
will be important to use separate methods while both
conditions are not necessarily satisfied at the same time
(a metric to be Einstein is not implied to be of constant
bisectional curvature).
It is also interesting to note the analogy between the

space NI and the real de Sitter space. This has been
emphasized by naming NI as the n dimensional complex de
Sitter space [15].

B. One hybrid coordinate

In the metric G (16), we introduced an inverted coor-
dinate, so its contribution to the argument of the logarith-
mic potential was −jzj2 ¼ −ReðzÞ2 −ImðzÞ2, where both
parts (real and imaginary) contributed negatively. In this
section, we shall consider a mixed contribution. We only
reverse the sign of one of the parts (the imaginary one,
for example). Therefore, we introduce an hybrid
coordinate whose contribution is given by ðz2 þ z̄2Þ=2 ¼
ReðzÞ2 −ImðzÞ2. The new metric can be written as:

Hμν̄ ¼ ∂μ∂ ν̄ log

�
1þ 1

2
ðz21 þ z̄21Þ þ

Xn
i¼2

jzij2
�
: ð20Þ

The corresponding matrix form is:

H ¼ 1

H2

0
BBBBB@

−jz1j2 −z1z2 � � � −z1zn
−z1z2 H − jz2j2 � � � −z2zn

..

. ..
. . .

. ..
.

−z1zn −z2zn � � � H − jznj2

1
CCCCCA; ð21Þ

where H ¼ 1þ 1
2
ðz21 þ z̄21Þ þ

P
n
i¼2 jzij2. Again, we can

see that H is a pseudo-Kähler metric. It is pseudo-
Hermitian since its matrix form is Hermitian but the
positive-definite condition is not verified by the introduc-
tion of the hybrid coordinate. It is a closed form (dH ¼ 0)
because we can write it as the ∂∂̄ derivative of the
potential logH.
The determinant of this metric is also straightforward:

detH ¼ −jz1j2=Hnþ1. And it can be used to compute the
Ricci tensor by taking into account Eq. (6). We conclude
that the Ricci form is proportional to the metric:
λr ¼ nþ 1: Ric ¼ ðnþ 1ÞH, so this metric is also
pseudo-Kähler-Einstein type. However, this metric does
not have associated a constant bisectional curvature. In
order to prove it, it is enough to compute the Riemann
tensor in one given subspace where the constant bisectional
curvature condition is not verified. This is particularly
simple in the subspace given by zi ¼ 0∀ i ∈ ½2; n�, for the
components with μ ∈ ½2; n�.
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IV. GENERALIZATION TO AN ARBITRARY
NUMBER OF NONDIRECT COORDINATES

In this section we shall study the most general geom-
etries that can be built from a Käler logarithmic potential F
with an arbitrary number of direct, inverted and hybrid
coordinates.

A. Hybrid coordinates condition

Let us consider a form given by F μν̄ ¼ ∂μ∂ ν̄ logF,
where:

F¼ 1þ
Xl
u¼1

1

2
ðz2uþ z̄2uÞþ

Xlþm

v¼lþ1

jzvj2−
Xlþmþp

w¼lþmþ1

jzwj2; ð22Þ

and l, m, p sum up to n general dimensions:
lþmþ p ¼ n. From now on, we will use letters u, v,
w for complex coordinates zu, zv, zw, respectively. So we
can replace subindices v ¼ lþ i; w ¼ lþmþ j with i, j,
respectively, for i ∈ ½1; m�; j ∈ ½1; p�, simplifying the nota-
tion. In the most general matrix form will appear nine
distinguishable blocks. Let us call them 1; 2;…; 9:

F ¼ 1

F2

0
B@

1 2 3

4 5 6

7 8 9

1
CA: ð23Þ

The main diagonal blocks 1; 5; 9 are the nonmixing terms,
in the sense that they are obtained acting on the potential
with derivatives which do not mix different types (u, v, w)
of complex coordinates. Therefore, they are three different
square blocks: operators ∂u∂ ū, ∂v∂ v̄, ∂w∂w̄ generate blocks
1; 5; 9, respectively. Explicitly, they are given by:

1 ¼

0
BBBBB@

−ju1j2 −u1ū2 � � � −u1ūl
−ū1u2 −ju2j2 � � � −u2ūl

..

. ..
. . .

. ..
.

−ū1ul −ū2ul � � � −julj2

1
CCCCCA; ð24Þ

5 ¼

0
BBBBB@

F − jv1j2 −v̄1v2 � � � −v̄1vm
−v1v̄2 F − jv2j2 � � � −v̄2vm

..

. ..
. . .

. ..
.

−v1v̄m −v2v̄m � � � F − jvmj2

1
CCCCCA; ð25Þ

9¼

0
BBBBB@

−F− jw1j2 −w̄1w2 � � � −w̄1wp

−w1w̄2 −F− jw2j2 � � � −w̄2wp

..

. ..
. . .

. ..
.

−w1w̄p −w2w̄p � � � −F− jwpj2

1
CCCCCA: ð26Þ

All other blocks mix different types of complex coordi-
nates, so they are not generally square. Blocks 2; 4 are
generated by ∂u∂ v̄; ∂v∂ ū, respectively, and are given by:

2 ¼

0
BBBBB@

−u1v1 −u1v2 � � � −u1vm
−u2v1 −u2v2 � � � −u2vm

..

. ..
. . .

. ..
.

−ulv1 −ulv2 � � � −ulvm

1
CCCCCA; ð27Þ

4 ¼

0
BBBBB@

−u1v1 −u2v1 � � � −ulv1
−u1v2 −u2v2 � � � −ulv2

..

. ..
. . .

. ..
.

−u1vm −u2vm � � � −ulvm

1
CCCCCA: ð28Þ

Block 2 has l ×m dimensions and block 4 has m × l.
Blocks 3; 7 are generated by ∂u∂w; ∂w∂ ū, respectively, and
are given by:

3 ¼

0
BBBBB@

u1w1 u1w2 � � � u1wp

u2w1 u2w2 � � � u2wp

..

. ..
. . .

. ..
.

ulw1 ulw2 � � � ulwp

1
CCCCCA; ð29Þ

7 ¼

0
BBBBB@

u1w1 u2w1 � � � ulw1

u1w2 u2w2 � � � ulw2

..

. ..
. . .

. ..
.

u1wp u2wp � � � ulwp

1
CCCCCA: ð30Þ

Block 3 has l × p dimensions and block 7 has p × l.
Finally, blocks 6, 8 are generated by ∂v∂w; ∂w∂ v̄, respec-
tively, and are given by:

6 ¼

0
BBBBB@

v̄1w1 v̄1w2 � � � v̄1wp

v̄2w1 v̄2w2 � � � v̄2wp

..

. ..
. . .

. ..
.

v̄mw1 v̄mw2 � � � v̄mwp

1
CCCCCA; ð31Þ

8 ¼

0
BBBBB@

v1w̄1 v2w̄1 � � � vmw̄1

v1w̄2 v2w̄2 � � � vmw̄2

..

. ..
. . .

. ..
.

v1w̄p v2w̄p � � � vmw̄p

1
CCCCCA: ð32Þ

Block 6 hasm × p dimensions and block 8 has p ×m. Note
that whenwe paste all blocks together, we obtain aHermitian
matrix, so the form F is generally pseudo-Hermitian
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(or Hermitian if it fulfills the positive-definite condition if
there are not hybrid or inverted coordinates).
By definition, a metric is a nondegenerate form, so the

determinant of its matrix must not vanish. Let us see that
this is satisfied for this general form F only if a very
restrictive condition is satisfied for the number of hybrid
coordinates: there must not be more than one coordinate of
this kind (l ⩽ 1). The determinant of a matrix can be
calculated decomposing it in minors; if we consider more
than one hybrid coordinate (l > 1), we can always reduce
the original matrix determinant to sufficiently small minors
which cancel all of them. This happens because only
minors which include F terms (those ones which appear
in the main diagonal of blocks 5; 9) contribute, any other
minors are null, and if we have l > 1we can always reduce
the determinant to minors with no F terms (we are not
considering the F−2 common factor). This is a very
restrictive result and forces us to consider only two cases:
l ¼ 0 or l ¼ 1.
Before studying two cases separately, we can give a

general expression for the determinant of F when
l ≤ 1:

detF ¼ ð−1Þlþpju1j2 þ ð−1Þlþpδl0ð1 − ju1j2Þ
Fnþ1

; ð33Þ

i.e., for the case without hybrid coordinates: detF l¼
0 ¼ ð−1Þp=Fnþ1, whereas for one hybrid coordinate:
detF l¼1 ¼ ð−1Þpþ1ju1j2=Fnþ1.

B. No hybrid coordinates (l = 0)

When we studied the introduction of one inverted
coordinate in Sec. III A, we dealt with a logarithmic
argument F given by Eq. (22) with l ¼ 0; m ¼ n − 1;
p ¼ 1. We discussed that it was possible to obtain the
metric as the induced of an Euclidean one in Cnþ1. For this
general case, we can proceed in an analogous way. Let us
define the space MðþÞ as:

MðþÞ ¼
�
Z ∈ Cnþ1∶

Xmþ1

i¼1

jVij2 −
Xp
j¼1

jWjj2 ¼ 1

�
; ð34Þ

where we have written Z ∈ Cnþ1 as Z ¼ ðV;WÞ, with
V ∈ Cmþ1, W ∈ Cp. We note that ∃ k ∈ ½1; mþ 1�∶Zk ¼
Vk ≠ 0 because

Pmþ1
i¼1 jVij2 ¼ 1þPp

j¼1 jWjj2 > 0. We
can now consider the n dimensional complex manifold
N given by the quotient space NðþÞ ¼ MðþÞ=Uð1Þ. This
manifold can be covered by the union of sets ∪k Uk, where
Uk is given by:

UkðVk ≠ 0Þ¼
�
z∈Cn∶

Xmþ1

i¼1
i≠k

jvij2−
Xp
j¼1

jwjj2>−1
�
; ð35Þ

where we have introduced new coordinates vi ¼
Vi=Vk; wj ¼ Wj=Vk. The map πðþÞ∶MðþÞðV; WÞ →
NðþÞðv; wÞ induces, from the Euclidean metric f¼Pmþ1

i¼1 jdVij2−
Pp

j¼1 jdWjj2, the metric we are interested in.
It is easy to conclude the Einstein character of the

metric by taking into account Eq. (6). We have again a
pseudo-Kähler-Einstein metric with λr ¼ nþ 1: Ric ¼
ðnþ 1ÞF l¼0. To show that it has also associated a constant
bisectional curvature, we can use the same argument as in
simpler cases: if the isometry group acts transitively on the
manifold NðþÞ, it suffices to show the relation at the point
ðv; wÞ ¼ 0. The proof of the relation in ðv; wÞ ¼ 0 is
similar to previous cases and the condition Rij̄kl̄jðv;wÞ¼0 ¼
ðF ij̄F kl̄ þ F il̄F kj̄Þjðv;wÞ¼0;l¼0 is satisfied. We only need to
find the group which allows to generalize the result.
Consider the set of matrices which act on Cnþ1 and
preserve the Euclidean form fðZ1; Z2Þ ¼

Pmþ1
i¼1 V1iV2i −Pp

j¼1W1jW2j, where we have used the separation
Z ¼ ðV;WÞ. This set forms the group called the indefinite
special unitary group SUðp;mþ 1Þ. This group acts on
NðþÞ as an isometry and transitively, so the proof is
completed. F has positive constant bisectional curvature:
Rij̄kl̄ ¼ ðF ij̄F kl̄ þ F il̄F kj̄Þjl¼0 (λc ¼ 1).

C. One hybrid coordinate (l = 1)

We have previously studied a metric obtained from a
form F with l ¼ 1; m ¼ n − 1; p ¼ 0 in Sec. III B. In this
case, we shall discuss a generalize form F which also
contains inverted coordinates: l ¼ 1; mþ p ¼ n − 1.
When studying the simpler case p ¼ 0, the metric only

contained terms as the ones contained in blocks 1, 5, 2, 4.
In the general case, there are terms related to every block.
However, l ¼ 1, so block 1 reduces to one term 1 ¼ −ju1j2,
blocks 4 and 7 reduce to vectors, and blocks 2 and 3 to their
conjugate transposed ones. In any case, by using Eq. (6) is
easy to obtain: Ric ¼ ðnþ 1ÞF l¼1. So, in it is also a
pseudo-Kähler-Einstein metric in this general case.
However, it does not have associated a constant bisec-

tional curvature. We can consider again the subspace given
by vi ¼ wj ¼ 0∀ i ∈ ½1; m�; ∀ j ∈ ½1; p�. It is enough to
show that the constant bisectional curvature relation does
not hold in this subspace to complete the proof. For this
general case mþ p ¼ n − 1, the same product of metrics
relation as in the simpler case p ¼ 0 is satisfied: ðF ij̄F kl̄ þ
F il̄F kj̄Þjvi¼wj¼0;l¼1 ¼ ðδijδkl þ δilδkjÞ=F2

l¼1ðvi ¼ wj ¼ 0Þ,
where all indices are associated with direct coordinates
i; j; k; l ∈ ½1; m�. It also holds if all indices are associated
with inverted coordinates i; j; k; l ∈ ½1; p�. However, when
calculating the components of the Riemann tensor, the
hybrid coordinate appears explicitly in calculations through
the contraction between the metric and its first derivatives.
Therefore, if we calculate components Rij̄kl̄ with all indices
associated to direct coordinates i; j; k; l ∈ ½1; m�, an extra
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term not given by the double derivative of the metric
contributes. The double derivative gives a contribution
equal to the product of metrics, but the contraction between
the metric and its first derivatives adds a negative term of
the form −δilδkj=F2

l¼1ðvi ¼ wj ¼ 0Þ. With this, the com-
ponents of the Riemann tensor in this subspace are given by
Rij̄kl̄jvi¼wj¼0 ¼ δijδkl=F2

l¼1ðvi ¼ wj ¼ 0Þ and do not sat-
isfy the constant bisectional curvature relation. For terms of
the Riemann tensor associated to inverted coordinates
i; j; k; l ∈ ½1; p� we obtain the same expression and, there-
fore, we can conclude that this type of metric does not have
a constant bisectional curvature.

V. SIGNATURES OF INVERTED
AND HYBRID COORDINATES

Wehave discussed how the introduction of new nondirect
coordinates to the logarithmic Käler potential (22) allows us
to define new pseudo-Kähler-Einstein metrics non-positive-
definite. In this section we would like to clarify that these
new coordinates (inverted and hybrid) have associated
opposite signatures to the direct coordinates.
First of all, since we are dealing with metrics which are

all Hermitian or pseudo-Hermitian, they can be locally
diagonalized by an unitary matrix and their eigenvalues are
all real [16]. This is particularly useful because the
signature of the metrics is completely determined by the
sign of their eigenvalues.

A. One hybrid and arbitrary number of direct
coordinates (l = 1, p= 0)

Consider the metric Hμν̄ (20) introduced in Sec. III B or,
analogously, the metric corresponding to the form (22) with
l ¼ 1, p ¼ 0. The eigenvalues λ are solutions of the
equation detðH − λ1Þ ¼ 0, where H is the matrix (21).
By subtracting the H−2 factor, all eigenvalues must satisfy:

ðλ−HÞn−2
�
λ2−

�
1þ1

2
ðz1− z̄1Þ2

�
λ− jz1j2H

�
¼ 0; ð36Þ

where H and the hybrid coordinate z1 were introduced in
Sec. III B. This equation has n real roots. n − 2 of them are
H and the other two are the solutions to the second degree
equation between square brackets:

λ� ¼ BA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BA

2 þ 4jz1j2H
p

2
: ð37Þ

Here BA ¼ 1þ ðz1 − z̄1Þ2=2. We find a positive root λþ
and a negative one λ− which, together with the other ones,
complete the n eigenvalues. Note that H must be positive
for logH to be well defined. Therefore, the signature of the
metric Hμν̄ (20) is ð−;þ;þ;…þÞ. The minus signature
corresponds to the introduction of the hybrid coordinate,

whereas the positive signatures are provided by the
presence of the direct ones.
On the other hand, the computation of the eigenvalues

allow us to check the value of the determinant of the metric.
Taking now into account the H−2 factor into the multipli-
cation of the n eigenvalues, we find:

detH ¼ Hn−2λþλ−
H2n ¼ −

jz1j2
Hnþ1

; ð38Þ

which agrees with the result presented in Sec. III B.

B. One hybrid and arbitrary number of inverted
coordinates (l = 1, m= 0)

We now consider the metric (23) corresponding to the
logarithmic argument (22) when l ¼ 1, m ¼ 0. Again, to
find the eigenvalues λ, we need to solve the equation
detðF − λ1Þ ¼ 0, where F is the matrix (23) (we again do
not take into account the multiplicative factor F−2 of matrix
F when calculating the eigenvalues). The eigenvalues
equation reads:

ðλþFÞn−2
�
λ2þ

�
1þ1

2
ðu1þ ū1Þ2

�
λþju1j2F

�
¼ 0; ð39Þ

where F and the hybrid coordinate u1 were introduced in
Sec. IVA. Therefore, n − 2 eigenvalues are −F and the
other two correspond also to the roots of a second degree
equation, which in this case reads:

λð1;2Þ− ¼ −BB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BB

2 − 4ju1j2F
p

2
; ð40Þ

where BB ¼ 1þ ðu1 þ ū1Þ2=2. In this case, it is easy to
conclude that the last two eigenvalues, λð1Þ− , and λð2Þ− , are
also negative. Note that the manifold under study is limited
by the domain where F is positive. Therefore, the signature
of this metric with l ¼ 1, m ¼ 0 is negative-definite:
(−;−;−; ....−). So, by changing the sign of the entire
metric, we can define a positive-definite Kähler-Einstein
geometry. We shall discuss this question in the next section.
We can again calculate the determinant as the product of

the eigenvalues. Taking into account the multiplicative F−2

factor of matrix F , we find:

detF ¼ ð−1Þn−2Fn−2λð1Þ− λð2Þ−

F2n ¼ ð−1Þn ju1j
2

Fnþ1
; ð41Þ

which agrees with the result presented in Eq. (33) in
Sec. IVA with l ¼ 1, m ¼ 0.

C. One hybrid, one direct and one inverted
coordinate (l = 1, m= 1, p= 1)

For a general case, the computation of the eigenvalues is
not so simple. We can illustrate the general situation by
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considering the metric corresponding to the argument (22)
with l ¼ 1, m ¼ 1, and p ¼ 1. Proceeding in the same way
than in previous Secs. VA and V B, the eigenvalues λ are
determined by the equation detðF − λ1Þ ¼ 0, where F is
the matrix (23). We again omit the F−2 factor of matrix F
when calculating the eigenvalues. Such equation reads:

λ3 þ Aλ2 − CFλ − ju1j2F2 ¼ 0; ð42Þ

where A ¼ ju1j2 þ jv1j2 þ jw1j2, C ¼ 1þ ðu21 þ ū21Þ=2,
and F and coordinates u1, v1, w1 were introduced in
Sec. IVA. The solutions of this equation are not as trivial as
the ones discussed above, but we can analyze the sign of the
roots using the Descartes rule. Let us note that A and F are
positive, whereas the sign of C is not completely deter-
mined. There are regions where it is positive and regions
where it is negative. In spite of this, the number of sign
changes in the coefficients of the equation is always one.
It ensures the existence of only one real positive root. The
other two roots could be two different real negative ones,
one real negative root of multiplicity two or two complex
roots (one complex and its conjugate). However, this last
possibility is discarded because of the Hermitian character
of the metric, which ensures the presence of real roots, as
we noted at the beginning of Sec. V. Therefore, we can
conclude that the signature of the metric is ð−;þ;−Þ. As in
previous Cases Secs. VA and V B, the introduction of the
hybrid coordinate u1 is associated to a negative signature.
In the same way, the inverted coordinate provides a
negative signature, in opposition to the direct one.
On the other hand, the Vieta formulas allow us to

calculate again the determinant as the product of the
eigenvalues. Taking into account the multiplicative F−2

factor of matrix F , we find:

detF ¼ λ1λ2λ3
F6

¼ ju1j2
F4

; ð43Þ

where λ1, λ2, λ3 are the solutions to the eigenvalue Eq. (42).
This result agrees with the general result presented in
Eq. (33) with l ¼ 1, m ¼ 1, p ¼ 1. It agrees also with the
general statement claimed at the beginning of this section.
Hybrid and inverted coordinates are associated with neg-
ative signatures, whereas direct coordinates provide pos-
itive signatures.

VI. NEGATIVE CURVATURES

In the previous sections (except for Sec. II F), we have
worked only with pseudo-Kälher-Einstein geometries with
positive curvatures. This is due to our convention for
defining the metric: F μν̄ ¼ ∂μ∂ ν̄ logF, in terms of the
argument F given by Eq. (22). It is easy to conclude that the

definition F ð−Þ
μν̄ ¼ −∂μ∂ ν̄ logð2 − FÞ provides a pseudo-

Kälher-Einstein metric with negative curvature. Written

in that way, direct and hybrid coordinates are associated
with positive signatures, whereas inverted coordinates are
related to negative signatures.

A. Negative bisectional curvatures

We can illustrate this fact by analyzing cases with
constant bisectional curvatures. When discussing general
metrics with no hybrid coordinates in Secs. III A and IV B,
we only found metrics with constant positive bisectional
curvature despite of the appearance of inverted coordinates.
We now discuss how to construct metrics with constant
negative bisectional curvatures. Consider the space Mð−Þ
given by:

Mð−Þ ¼
�
Z ∈ Cnþ1∶

Xm
i¼1

jVij2 −
Xpþ1

j¼1

jWjj2 ¼ −1
�
; ð44Þ

where we have written Z ∈ Cnþ1 as Z ¼ ðV;WÞ, with
V ∈ Cm, W ∈ Cpþ1, and mþ p ¼ n. We have only
reversed the sign of one side of the equality with respect
to the definition of the space MðþÞ given by Eq. (34) in the
previous case with positive curvature. We also note that
∃ j ∈ ½1; pþ 1�∶Zj ¼ Wj ≠ 0 because

Ppþ1
j¼1 jWjj2 ¼

1þPm
i¼1 jVij2 > 0. We can now consider the n dimen-

sional complex manifold Nð−Þ given by the quotient space
Nð−Þ ¼ Mð−Þ=Uð1Þ. This manifold can be covered by the
union of sets ∪k Uk, where Uk is given by:

UkðWk ≠ 0Þ¼
�
z∈Cn∶

Xm
i¼1

jvij2−
Xp
j¼1
j≠k

jwjj2< 1

�
; ð45Þ

where we have introduced new coordinates vi ¼ Vi=Wk;
wj ¼ Wj=Wk. The map πð−Þ∶Mð−ÞðV;WÞ → Nð−Þðv; wÞ
induces, from the Euclidean metric f ¼Pm

i¼1 jdVij2 −Ppþ1
j¼1 jdWjj2, a metric on Nð−Þ given by:

F ð−Þ
μν̄ ¼ −∂μ∂ ν̄ log

�
1 −

Xm
i¼1

jvij2 þ
Xpþ1

j¼1
j≠k

jwjj2
�
: ð46Þ

The analysis of this metric is similar to the analysis of the
induced metric made in the previous case for the space
MðþÞ, defined by Eq. (34). However, in this case, the
metric has a negative constant bisectional curvature with
λr ¼ −ðnþ 1Þ, and λc ¼ −1: Ric ¼ −ðnþ 1ÞF ð−Þ, and

Rij̄kl̄ ¼ −ðF ð−Þ
ij̄ F ð−Þ

kl̄
þ F ð−Þ

il̄
F ð−Þ

kj̄ Þ. Note that we have only

changed the definition of the spaceMð−Þ with respect to the
space MðþÞ, by reversing the sign of one side of the
equality, that defines it in Eq. (34); the metric f from which
we induce the new one F ð−Þ has not been modified.
However, written as in Eq. (46), the vi (direct) coordinates
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have associated positive signatures, whereas the wj

(inverted) coordinates provide negative signatures.
For instance, the particular case p ¼ 0 corresponds to the

unit ball geometry introduced in Sec. II F. On the other
hand, for the case p ¼ 1, the space Nð−Þ may be identified
as the n dimensional complex anti–de Sitter space [15].

VII. CONCLUSIONS

Metrics that are solutions of vacuum Einstein field
equations with cosmological constants are known as
Einstein geometries. In real structures, they have played a
fundamental role not only in theoretical developments but
also in cosmological applications. In this work we have
analyzed Einstein metrics in complex manifolds by perform-
ing a systematic study of quadratic contributions to the
logarithmic Kähler potential. After reviewing well-known
examples as the Fubini-Study metric or the Unit ball
geometry, we have found new Kähler-Einstein and
pseudo-Kähler-Einstein metrics by the introduction not only
of direct coordinates, but also inverted and hybrid
coordinates.
The square modulus of direct coordinates contributes

positively to the argument function F of the logarithmic
Kähler potential. The square modulus of inverted coordi-
nates contributes negatively to the same argument F. On the
contrary, a hybrid coordinate is characterized by an opposite
contribution of the square of its real part with respect to
the contribution of the square of its imaginary part.
The signature of direct coordinates is positive, whereas
the signature of inverted coordinates is negative. In contrast,
the signature of hybrid coordinates depends on the curvature
of the metric. For positive curvatures, their signature is
negative, whereas it is positive for negative curvatures.
We have found a very restrictive condition for a pseudo-

Kähler-Einstein metric to be nondegenerate: It must have
associated no more than one hybrid coordinate. This has
allowed us to separate the most general cases into two

different classes: Metrics with one hybrid coordinate and an
arbitrary number of direct and inverted coordinates; and
metrics with no hybrid coordinates and also an arbitrary
number of direct and inverted coordinates. There are
important differences between these two types of geom-
etries. The latter one not only corresponds to Kähler-
Einstein or pseudo-Kähler-Einstein metrics, but also these
geometries are characterized by a constant bisectional
curvature. This is not the case of the former one, whose
geometries own less isometries. In any case, we have built
explicit examples of both types, where it is easy to check
our general results associated with different geometrical
features, such as determinants or curvatures.
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(Commissariat à l'énergie atomique), IPhT (Institute of
Theoretical Physics), APPEC (Astroparticle physics
Consortium), the IN2P3 (Institut national de physique
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