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SUPERSYMMETRIC GAPS OF A NUMERICAL SEMIGROUP WITH TWO

GENERATORS

PATRICIO ALMIRÓN AND JULIO-JOSÉ MOYANO-FERNÁNDEZ

ABSTRACT. In this paper we introduce the new concepts of supersymmetric and self-symmetric

gaps of a numerical semigroup with two generators. Those concepts are based on certain sym-

metries of the gaps of the semigroup with respect to their Wilf number. Finally, we prove that

the set of supersymmetric and self-symmetric gaps completely determines the semigroup and we

compare this set with the fundamental gaps of the semigroup.

1. INTRODUCTION

A numerical semigroup Γ is an additive sub-semigroup of the monoid (N,+) such that the great-

est common divisor of all its elements is equal to 1. The complement N \Γ is therefore finite

and the elements of that complement are called gaps of Γ. Moreover, Γ is finitely generated and

it is not difficult to find a minimal system of generators of Γ. In 2004, Rosales et al. [11] defined

the concept of fundamental gaps of a numerical semigroup as an alternative way to represent a

numerical semigroup as the set

FG = FG (Γ) := {g ∈ N\Γ : {2g,3g} ⊂ Γ}.

From FG one can define the set D(FG ) := {x ∈ N : x|xi for some xi ∈ FG } and see that

Γ = N \D(FG ) provides an alternative representation of Γ. Moreover, FG is the smallest

subset of N \Γ that H–determines the semigroup Γ: a subset X of N is said to H-determine Γ
if Γ is the maximum (with respect to the set inclusion) numerical semigroup such that X is a

subset of N\Γ (see [11]; also Section 4.2).

In this paper, we are mainly concern about numerical semigroups of the form Γ = 〈α,β 〉.
For those semigroups, we are going to introduce the concept of supersymmetric gap and self-

symmetric gap. Let us denote SG resp. SSG the set of supersymmetric resp. self-symmetric

gaps. We prove that the set SG∪ SSG completely determines the semigroup Γ (see Theorem

4.5). Our construction lies on the application of certain affine linear transformations to the

sets SG,SSG represented in the lattice N2; we call the process of representation of Γ via those

transformations polyomino game. The set SG∪SSG presents advantages over the set FG : it

is not contained in FG and its cardinality is less than or equal to the cardinality of the set of

fundamental gaps whenever α > 2 (and in the case Γ = 〈2,3〉), see Section 4.2.
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Our new concept of supersymmetric and self-symmetric gaps is closely related to a long stand-

ing conjecture proposed by H. Wilf in 1978 that can be formulated as follows [14]:

Conjecture 1.1 (Wilf conjecture). Let Γ be a numerical semigroup minimally generated by

x1, . . . ,xn. Let us denote by c(Γ) the conductor of Γ. Then,

c(Γ)≥
n

n−1
|N\Γ|.

Inspired by this inequality, we consider a Γ–semimodule ∆ minimally generated by ed(∆) ele-

ments and we define the Wilf number of ∆ as

W (∆) = c(∆)− ed(∆) ·δ (∆),

where c(∆) denotes the conductor of ∆ and δ (∆) = {x ∈ ∆ : x < c(∆)}. Observe that for ∆ = Γ
this number was already considered in [3, p. 45] (both numbers coincide up to sign).

In the case Γ = 〈α,β 〉, the second author together with Uliczka [7] proved that every Γ–

semimodule corresponds to a certain lattice path of the lattice N2. The lattice path represen-

tation has already led to a formula for the conductor c(∆) of those Γ–semimodules, see [1]. In

particular, this allows us to explicitly compute the Wilf number associated to a Γ–semimodule.

Moreover, in the case that ∆ is generated by [0,g] for g ∈ N\Γ we see that W (∆) only depends

on g (see Proposition 3.3) so in this case it will be referred to as the Wilf number associated to

g. Finally, we observe that the Wilf number provides a beautiful symmetry on the set of gaps

(see Sect. 4) which motivates our definition of supersymmetric gaps. Moreover, if some of the

generators of Γ is even, then there exist some gaps whose Wilf number vanishes and that are

invariant under several operations; this motivates the name self-symmetric gaps (see Sections 3

and 4).

To conclude, we discuss some issues regarding the possible extensions of the concepts of su-

persymmetric and self-symmetric gaps to the general case where Γ is a numerical semigroup

with an arbitrary number of generators (see Subsection 4.3). More concretely, we propose a

general definition for symmetric gaps (see Definition 4.15) and we ask if this definition allows

us to define the concepts of supersymmetric and self-symmetric gaps for a semigroup with any

number of generators. We hope that—if this extension succeeds—these new concepts could be

helpful to the solution of the Wilf conjecture.

Acknowledgments. The authors would like to thank Alfredo Granell Marqués for the compu-

tation of general examples.

2. LATTICE PATHS AND SEMIMODULES OVER A NUMERICAL SEMIGROUP

Let Γ be a numerical semigroup. The reader is referred to [12] or [9] for specific material about

numerical semigroups. We are interested in subsets of N which have an additive structure over

Γ (in analogy with the structure of module over a ring): a Γ-semimodule is a non-empty subset

∆ of N with ∆+Γ ⊆ ∆. A system of generators of ∆ is a subset E of ∆ with ∆ =
⋃

x∈E (x+Γ);
it is called minimal if no proper subset of E generates ∆. Notice that, since ∆\Γ is finite, every

Γ-semimodule is finitely generated and has a conductor

c(∆) = max(N\∆)+1.
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To a semimodule ∆ we also associate the δ -invariant of ∆, namely

δ (∆) = {x ∈ ∆ : x < c(∆)}.

Every Γ-semimodule ∆ has a unique minimal system of generators (see e.g. [7, Lemma 2.1]);

its cardinality is said to be the embedding dimension of ∆, written ed(∆). Two Γ-semimodules

∆ and ∆′ are called isomorphic if there is an integer n such that x 7→ x+n is a bijection from ∆
to ∆′; we write then ∆ ∼= ∆′. For every Γ-semimodule ∆ there is a unique semimodule ∆′ ∼= ∆
containing 0; such a semimodule is called normalized. The Γ-semimodule

∆◦ := {x−min∆ : x ∈ ∆}

is called the normalization of ∆; this is the unique Γ-semimodule isomorphic to ∆ and containing

0. Moreover, the minimal system of generators {x0 = 0, . . . ,xn} of a normalized Γ-semimodule

is a Γ-lean set, i.e. it satisfies that

|xi − x j| /∈ Γ for any 0 ≤ i < j ≤ n,

and conversely, every Γ-lean set of N minimally generates a normalized Γ-semimodule; we will

write then [x0 = 0, . . . ,xn]. Hence there is a bijection between the set of isomorphism classes

of Γ-semimodules and the set of Γ-lean sets of N; see Sect. 2 in [7] for the proofs of those

statements.

The dual ∆∗ of a Γ-semimodule ∆ is defined to be

∆∗ := HomΓ(∆,Γ) = {x ∈ N : x+∆ ⊆ Γ},

cf. [8, p. 677]. A Γ-semimodule is said to be selfdual if ∆ = ∆∗. In addition, we define the set

of syzygies of a Γ-semimodule ∆ = ∆I with minimal set of generators I = [g0, . . . ,gn] as

Syz(∆) :=
⋃

i, j∈I,i 6= j

(

(Γ+gi)∩ (Γ+g j)
)

.

In this paper we will consider numerical semigroups with two generators, say Γ = 〈α,β 〉, with

α,β ∈ N and α < β . As mentioned above, the conductor of Γ can be expressed as c = c(Γ) =
(α − 1)(β − 1). The gaps of 〈α,β 〉 are also easy to describe: they admit a representation

αβ − aα − bβ , where a ∈ ]0,β − 1]∩N and b ∈ ]0,α − 1]∩N, see Rosales [10, Lemma 1].

This writing yields a map from the set of gaps of 〈α,β 〉 to N2 given by αβ −aα −bβ 7→ (a,b),
which allows us to identify a gap with a point in the lattice L = N2; since the gaps are positive

numbers, the point lies inside the triangle with vertices (0,0),(0,α),(β ,0). Let us denote by

LG the image of the map αβ − aα − bβ 7→ (a,b), i.e. the points of L inside the triangle of

vertices (0,0),(0,α),(β ,0).

In the following we will use the notation

e = αβ −a(e)α −b(e)β

for a gap e of the semigroup 〈α,β 〉; if the gap is subscripted as ei then we write ai = a(ei) and

bi = b(ei).

Let us denote by ≤ the total ordering in N, if needed we will denote it by ≤N to emphasize that

it is the natural order. We also consider the following partial ordering � on the set of gaps:
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Definition 2.1. Given two gaps e1,e2 of 〈α,β 〉, we define

e1 � e2 :⇐⇒ a1 ≤ a2 ∧ b1 ≥ b2

and

e1 ≺ e2 :⇐⇒ a1 < a2 ∧ b1 > b2.

Let E = {0,e1, . . . ,en} be a subset of N with gaps ei = αβ − aiα − biβ of 〈α,β 〉 for every

i = 1, . . . ,n such that a1 < a2 < · · · < an. Corollary 3.3 in [7] ensures that E is 〈α,β 〉-lean if

and only if b1 > b2 > · · ·> bn. This simple fact leads to an identification (cf. [7, Lemma 3.4])

between an 〈α,β 〉-lean set and a lattice path with steps downwards and to the right from (0,α)
to (β ,0) not crossing the line joining these two points, where the lattice points identified with

the gaps in E mark the turns from the x-direction to the y-direction; these turns will be called

ES-turns for abbreviation. Figure 2.1 shows the lattice path corresponding to the 〈5,7〉-lean set

[0,9,11,8].

23 18 13 8 3

16 11 6 1

9 4

2

FIGURE 2.1. Lattice path for the 〈5,7〉-lean set [0,9,11,8].

Let g0 = 0,g1, . . . ,gn be the minimal system of generators of a 〈α,β 〉-semimodule ∆. From

now on, we will assume that the indexing in the minimal set of generators of ∆ is such that

g0 = 0 � g1 � ·· · � gn. Under this assumption, we can give an explicit formula for the minimal

generators of ∆∗ in terms of those of ∆:

(2.1) ∆∗ = (Γ+a1α)∪
n−1
⋃

k=1

(Γ+ak+1α +bkβ )∪ (Γ+bnβ ).

Moreover, the semimodule Syz(∆) of syzygies of ∆ can be characterized as follows (see [7,

Theorem 4.2]):

Proposition 2.2.

Syz(∆) =
⋃

0≤k< j≤n

(

(Γ+gk)∩ (Γ+g j)
)

=
n
⋃

k=0

(Γ+hk),

where h1, . . . ,hn−1 are gaps of Γ, h0,hn ≤ αβ , and

hk ≡ gk mod α, hk > gk for k = 0, . . . ,n

hk ≡ gk+1 mod β , hk > gk+1 for k = 0, . . . ,n−1

hn ≡ 0 mod β , and hn ≥ 0
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In particular, J = [h0, . . . ,hn] is a minimal system of generators of the semimodule ∆J = Syz(∆),
hence h0 � h1 � ·· · � hn. Therefore it is easily seen that the SE-turns of the lattice path asso-

ciated to ∆ can be identified with the minimal set of generators of the syzygy module (we call

SE-turns to the turns from the y–direction to the x–direction). After that, we can associate to

any Γ-semimodule ∆ a lean couple (I,J) where I is a minimal set of generators of ∆ and J a

minimal set of generators of Syz(∆); or equivalently a lattice path. The syzygies allowed us to

give a formula for the conductor c(∆) of ∆:

Theorem 2.3. [1, Theorem 1] Let ∆ be a Γ-semimodule with Γ-lean couple (I,J), and let M :=
max≤N{h ∈ J} denote the biggest, with respect to the order of the natural numbers, minimal

generator of the syzygy module. Then

c(∆) = M−α −β +1.

In particular, if we denote by (m1,m2) the point in the lattice L representing M, then we have

c(∆) = c(Γ)−m1α −m2β .

The syzygies lead also to the concept of fixed point for a semimodule:

Definition 2.4. An 〈α,β 〉-semimodule ∆I with associated Γ-lean couple (I,J) is said to be a

〈α,β 〉-fixed point (or simply a fixed point if the semigroup is clear from the context) if the

semimodule (∆J)
◦ admits I again as a minimal system of generators.

The chosen name fixed point has a reason: it refers to the orbits of period 1 of the Picard

sequence associated to the map f = h◦Syz, where Syz is the map ∆I 7→ ∆J and h is the normal-

ization map for ∆J = Syz(∆I); this is further explained in [7, Sect. 5].

3. WILF NUMBER OF A GAP OF A NUMERICAL SEMIGROUP

In this section, we are going to make use of the conductor formula of a Γ–semimodule (Theorem

2.3) to associate to a gap a number which will be invariant under certain symmetries of the

lattice. This number is motivated by Wilf’s conjecture. First, we introduce the Wilf number of

a Γ-semimodule:

Definition 3.1. Let ∆ be a Γ-semimodule, then the Wilf number of ∆ is defined to be

W (∆) := c(∆)− ed(∆) ·δ (∆).

In addition, we define the Wilf number of a gap g ∈ N\Γ by assigning the Wilf number of the

Γ-semimodule ∆ = ∆I minimally generated by I = [0,g]:

W (g) :=W (∆I) = c(∆I)−2δ (∆I).

If g = αβ −aα −bβ then we will also denote by W (a,b) :=W (g) its Wilf number.

Observe that for ∆ = Γ, Wilf’s conjecture claims that W (Γ)≤ 0, see [14].

Now, we restrict our attention to the case Γ = 〈α,β 〉. Here W (g) only depends on the gap g as

a consequence of the formula for the conductor of a Γ–semimodule given in Theorem 2.3.
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Proposition 3.2. Let I = [g0 = 0,g1, . . . ,gn] be the minimal system of generators of a Γ-semimodule

∆ ordered as 0 ≺ g1 ≺ . . . ≺ gn; recall the writing gi = αβ −aiα −biβ , and set a0 = b0 = 0.

Then

δ (∆) =c(∆)−δ (Γ)+
n

∑
i=0

(ai+1−ai)bi+1

=c(∆)−δ (Γ)+
n

∑
i=0

(bi −bi+1)ai+1.

Furthermore, for any I = [0,gi] with i = 1, . . . ,n, we have

δ (∆I) = c(∆I)−δ (Γ)+aibi.

Proof. Since δ (Γ) = |N\Γ|, it is easily deduced from the lattice path representation of ∆I that

|N\∆I|= δ (Γ)−
n

∑
i=0

(ai+1−ai)bi+1 =
n

∑
i=0

(bi −bi+1)ai+1.

By the definition of δ (∆I) we have the claim. �

Therefore, we can compute explicitly the Wilf number of a gap of 〈α,β 〉:

Proposition 3.3. Let g = αβ − aα − bβ be a gap of Γ. Let us denote by [h0,h1] the minimal

system of generators of the Γ-semimodule Syz(∆[0,g]). Then

W (g) =
{

aα −2ab if min{h0,h1}= αβ −bβ ,
bβ −2ab if min{h0,h1}= αβ −aα.

Proof. Consider the Γ–semimodule ∆I generated by I = [0,g]. From the representation of the

lattice path we know that h0 = αβ −bβ and h1 = αβ −aα . Let us first assume min{h0,h1}=
h0, thus max{h0,h1}= h1 = αβ −aα . Therefore, by Theorem 2.3 we have

c(∆I) = αβ −aα −α −β +1.

Lemma 3.2 yields

c(∆I)−2δ (∆I) =−c(∆I)+2δ (Γ)−2ab = c(Γ)− c(∆I)−2ab = aα −2ab.

The same reasoning applies after exchanging the roles of a and b to obtain the second case of

the formula. �

We are interested in the case in which the Wilf number of a gap is zero:

Theorem 3.4. Let Γ = 〈α,β 〉 and let g = αβ − aα − bβ be a gap of Γ. Consider the Γ-

semimodule ∆ = ∆I minimally generated by I = [0,g]. The following statements are equivalent:

(1) W (g) = 0;

(2) either α = 2b or β = 2a;

(3) ∆ is a fixed point;

(4) ∆ is selfdual;

(5) ∆ is symmetric, i.e. for every x ∈ ∆ we have that c(∆)−1− x /∈ ∆ if and only if x ∈ ∆.



SUPERSYMMETRIC GAPS 7

Proof. (1)⇐⇒ (2) is obvious by Proposition 3.3.

(2) ⇐⇒ (3): If α = 2b, then g = αβ − aα − bβ = bβ − aα = h1 − h0, and this is positive

since g is a gap, hence Syz(∆[0,g]) = ∆[h0,h1] = ∆[0,h1−h0] = ∆[0,g]. Mutatis mutandis, if β = 2a,

then ∆ is a fixed point. Conversely, assume without loss of generality that h0 < h1; since

αβ −aα −bβ = g = h1 −h0 = bβ −aα , it is easily seen that α = 2b.

(3)⇐⇒ (4): First we observe that the number of semimodules ∆I with I = [0,g] which are fixed

points coincide with the number of selfdual modules of that form, as a direct application of

Theorem 5.5 in [7, Theorem 5.5], as well as Proposition 4.1 and Theorem 4.4 in [8]. Moreover,

every selfdual semimodule is a fixed point: For ∆ = ∆I with I = [0,g], eq. (2.1) implies that ∆∗

is minimally generated by [a1α,b1β ]; the selfduality implies that a1 = 0 and b1β = αβ −b1β ,

hence I = [0,αβ − b1β ]. On the other hand, Syz(∆I) is minimally generated by [a1α,b1β ] =
[0,αβ −b1β ], that equals its own normalization. Therefore ∆I coincides with the normalization

of Syz(∆I) and ∆I is a fixed point.

(4) ⇐⇒ (5): this is a consequence of Proposition 4 in [13], and Theorem 2.11 together with

Proposition 3.8 in [6]. �

For 〈α,β 〉-semimodules ∆ with ed(∆) > 2, Theorem 3.4 is no longer true: for instance the

〈5,8〉-semimodule minimally generated by the lean set I = [0,4,6,7] has Wilf number W (∆I) =
c(∆I)−4δ (∆I) = 4−4 ·1 = 0 and it is not a fixed point. Moreover, let us consider the numer-

ical semigroup Γ = 〈10,14,27〉. This semigroup is both symmetric and complete intersection,

however if we consider the Γ–semimodule generated by I = [0,9] then W (∆I) = 0 and I = [0,9]
is neither a fixed point nor symmetric. On the other hand, if we consider Γ = 〈10,14,29〉 every

Γ–semimodule with Wilf number equal to zero is a fixed point.

Therefore, we cannot expect a generalization of Theorem 3.4 for numerical semigroup Γ with

more than two minimal generators just by imposing the condition of symmetric or complete

intersection. This encourages us to propose the following question.

Question 3.5. Given a numerical semigroup Γ with ed(Γ) > 2, does there exist a family of

numerical semigroups for which any of the equivalences of Theorem 3.4 remain true?

4. SUPERSYMMETRY OF THE GAP SET WITH RESPECT TO THE WILF NUMBER

This section is devoted to introduce and to develop the concept of supersymmetric gaps. This

notion is based on certain symmetries encoded in the Wilf number of a gap. Before introducing

those concepts, let us see some properties of the image LG of the map αβ −aα −bβ 7→ (a,b),
cf. Sect. 2.

4.1. Determinacy of the semigroup. A first observation is that a Γ–semimodule generated

by [0,g] has its syzygy module with two minimal generators. Moreover, by the formulas for

the minimal set of generators of the syzygy module the following lemma is a straightforward

computation.

Lemma 4.1. Let g = αβ −aα −bβ be a gap of Γ = 〈α,β 〉. Let [h0,h1] be the minimal set of

generators of Syz(∆[0,g]). Then,

(1) If b > ⌊α
2
⌋ and a ≤ ⌊β

2
⌋ then min{h0,h1}= αβ −bβ .

(2) If b ≤ ⌊α
2
⌋ and a > ⌊β

2
⌋ then min{h0,h1}= αβ −aα.
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This lemma allows us to describe the behavior of the set of gaps with respect to the Wilf number.

First, observe that any integral point inside the triangle delimited by the y–axis, the line y = ⌊α
2
⌋

and the diagonal αβ = xα +yβ represents a gap g of Γ with expression g = αβ −aα −bβ and

b> ⌊α
2
⌋. Hence this gap has Wilf number W (g)= aα−2ab. Now, let us consider the symmetric

point to g with respect to the reflection along the line y = ⌊α
2
⌋. This reflection is given by the

map (a,b) 7→ (a,α −b). Therefore, we have

Lemma 4.2. If (a,b) is an integral point inside the triangle delimited by the y–axis, the line

y = ⌊α
2
⌋ and the diagonal αβ = xα + yβ then

W (a,b) =−W (a,α −b).

Proof. By Lemma 4.1 and Proposition 3.3 we have that W (a,b) = aα−2ab. Now, let us denote

gsym =αβ −aα−(α −b)β the symmetric gap with respect to the reflection (a,b) 7→ (a,α−b).
Let us consider the minimal set of generators [h′0,h

′
1] of Syz(∆[0,gsym]). It is thus clear that

min{h′0,h
′
1}= αβ −bβ , since

h′1 −h′0 = αβ −aα −αβ +(α −b)β = αβ −aα −bβ = g > 0,

and the proof follows. �

An analogous situation occurs when considering the triangle delimited by the x–axis, the line

x = ⌊β
2
⌋ and the diagonal αβ = xα + yβ . In this case, the map (a,b) 7→ (β − a,b) yields the

following result:

Lemma 4.3. If (a,b) is an integral point inside the triangle delimited by the x–axis, the line

x = ⌊β
2
⌋ and the diagonal αβ = xα + yβ , then

W (a,b) =−W (β −a,b).

In particular, the set of fixed points of each of the previous symmetries is exactly the set of

points with W (a,b) = 0. As we have seen in Theorem 3.4 those are exactly fixed points of the

orbits of the associated lattice path, i.e. of the associated semimodule.

The previous discussion leads to the following definition:

Definition 4.4. Let Γ = 〈α,β 〉 be a numerical semigroup. Let us denote by Tr the set of points

of L inside the triangle delimited by the x–axis, the line x= ⌊β
2
⌋ and the diagonal αβ = xα+yβ

and Tu the set of points of L inside the triangle delimited by the y–axis, the line y = ⌊α
2
⌋ and

the diagonal αβ = xα + yβ . The set of supersymmetric gaps is defined to be

SG :=
{

Tu if |Tu|< |Tr|
Tr if |Tr|< |Tu|.

We also define the set of self-symmetric gaps

SSG := {g ∈ N\Γ : W (g) = 0}.

At this point, we are able to prove the main result of the paper.

Theorem 4.5. Let Γ = 〈α,β 〉 be a numerical semigroup. Then the set SG∪SSG of supersym-

metric and self-symmetric gaps completely determines the set of gaps of Γ. In particular, it

determines Γ itself.
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Proof. With the notation of Definition 4.4, consider the symmetry sα : Tu → LG along the line

y = ⌊α
2
⌋ defined by (a,b) 7→ (a,α − b), as well as the symmetry sβ : Tr → LG along the line

x = ⌊β
2
⌋ defined by (a,b) 7→ (β −a,b). First we are going to show that sα(Tu)∩ sβ (Tr) = /0.

Consider (a,b) ∈ Tu then

(a,b) 7→ (a,α −b) 7→ (β −a,α −b),

where αβ − (β −a)α − (α −b)β = aα +bβ −αβ < 0, since αβ −aα −bβ is the representa-

tion of a gap. Therefore, s−1
β

(sα(Tu)) = /0. Analogously, it can be shown that s−1
α (sβ (Tu)) = /0.

Now, let B(Tu) resp. B(Tr) the border points of sets Tu resp. Tr, i.e. those points such that

(a,b)∈Tu resp. Tr and (a+1,b) /∈ LG or (a,b+1) /∈ LG. Moreover, let RB(Tu) resp. RB(Tr)
denote the set of border points of the type (a+1,b) /∈ LG. Observe that those points determine

ES–turns, hence the borders B(Tu) and B(Tr) are determined by RB(Tu) and RB(Tr).

Let us denote by τ : L → L the translation defined by (a,b) 7→ (a+1,b). We claim that

s−1
β

(τ(sα(RB(Tu)))) = RB(Tr).

Indeed, consider the point (a,b) ∈ Tu, then s−1
β
(τ(sα((a,b)))) = (β −a−1,α −a) ∈ RB(Tr)

due to the fact that αβ − (β − a− 1)α − bβ > 0 and αβ − (β − a)α − bβ < 0. A similar

reasoning allows us to prove

s−1
α (τ−1(sβ (RB(Tr)))) = RB(Tu).

The proof will finish by distinguishing three cases concerning the parity of α and β . Let us

start with easiest one and assume that α,β are both odd. By Theorem 3.4 there are no gaps with

W (g) = 0. Thus, we have a configuration as in Figure 4.1.

FIGURE 4.1. The sets Tu ∪ sα(Tu) (starred) and Tr ∪ sβ (Tr) (shaded).

In fact, it is easily checked that

B(Tu)∪B(Tr)∪ sβ (B(Tr))⊇ B(LG),

and the sets fit as shown in Figure 4.1.

Next we assume that α is even (the case β even follows analogously). By Theorem 3.4 the set

SSG consists of exactly those gaps given by the lattice points (a,α/2) with 1 ≤ a ≤ ⌊β/2⌋. Let

B(SSG) denote the set of border points in SSG, then we have a configuration as in Figure 4.2.
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FIGURE 4.2. Sets Tu ∪ sα(Tu) (shaded), SSG (starred), and Tr ∪ sβ (Tr) (dot-

ted).

So it is easily seen that

B(Tu)∪B(SSG)∪B(Tr)∪ sβ (B(Tr))⊇ B(LG).

All this together shows that the union of the triangles Tu,Tr, their images and the set of self-

symmetric gaps build a partition of the set of gaps into disjoint sets

N\Γ = Tu

⊔

sα(Tu)
⊔

SSG
⊔

Tr

⊔

sβ (Tr).

We are finished as soon as the procedure to recover N \Γ —hence Γ— from the set SG∪SSG

will be given.

Let us assume that SG= Tu (similarly for Tr). Thus, we have

sβ (B(Tr)) = τ(sα(B(SG))).

We distinguish two cases:

(1) If α,β are both odd, then we can recover sβ (Tr) as the polyomino corresponding to the

complement of sα(SG) in the lattice square with vertices (0,0),(⌊β
2
⌋,0),(⌊β

2
⌋,⌊α

2
⌋),

and (0,⌊α
2
⌋).

(2) If α or β is even, then consider the polyomino SSG∪ sα(SG). Thus, we can recover

sβ (Tr) as the polyomino corresponding to the complement of sα(SG)∪SSG in the lat-

tice square with vertices (0,0),(⌊β
2
⌋,0),(⌊β

2
⌋,⌊α

2
⌋),and(0,⌊α

2
⌋).

Observe that, if SG= Tr, then the roles of α,β in (2) and (3) need to be exchange.

In short, we have checked that in all cases we can obtain sβ (Tr) resp. sα(Tu), hence Tr resp. Tu

from certain linear transformations of the set SG∪SSG in the lattice. Therefore, by the previous

partition of the set of gaps we can reconstruct completely the set of gaps from the set SG∪
SSG. �

The proof of Theorem 4.5 shows in particular that SG and SSG are polyominoes, and that we

can obtain the whole set LG making operations with them. These necessary operations which

allow us to obtain the set LG from SG and SSG will be called polyomino game. We illustrate

both the polyomino game and the proof of Theorem 4.5 with an example.
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Example 4.6. Let Γ = 〈7,8〉. We start with SG which in this case is Tr. Then the set of gaps

represented in Tr is {5,6,13} (see Figure 4.3). Now, we consider the polyomino sβ (SG)∪SSG

which represents {4,12,19,20,27,34} inside the square of vertices (0,0),(4,0),(4,3),(0,3)
(see Figure 4.4).

After that, we consider the complement of the polyomino sβ (SG)∪SSG which represents the

set of gaps {41,33,26,25,18,11} and we apply the map sα as we can see in Figure 4.5. Finally,

we put all polyominoes together to give rise N\Γ as shown in Figure 4.6.

13 6

5

FIGURE 4.3. The set SG

(shaded).

34 27 20

19 12

4

FIGURE 4.4. The sets sβ (SG)
(shaded) and SSG (striped).

41

33

25

17

9

1

26

18

10

2

11

3

FIGURE 4.5. The set Tr ∪
sα(Tr).

41

33

25

17

9

1

26

18

10

2

11

3

13 6

5

34 27 20

19 12

4

FIGURE 4.6. Lattice represen-

tation of the gap set N\Γ.

Let us present formulas for the cardinal of the sets of supersymmetric and self-symmetric gaps.

Proposition 4.7. Let Γ = 〈α,β 〉 be a numerical semigroup. Then

|SSG|=

{

0 if α,β are odd

(β −1)/2 if α even

(α −1)/2 if β even
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Moreover, if α is even,

|SG|=































⌊α
2 ⌋−1

∑
j=1

⌊ jβ

α

⌋

if SG= Tu

α−1

∑
j=h

(⌊ jβ

α

⌋

−
⌊β

2

⌋)

if SG= Tr

where h =
⌊α

2

⌋

+1 if α is even, and h =
⌊α

2

⌋

if α is odd.

Proof. The formula for |SSG| is a direct consequence of Theorem 3.4. So let us prove the

formula for |SG|. We start by showing that (a,b) ∈ RB(Tu) resp. (a,b) ∈ RB(Tr) if it is of

the form (⌊ jβ/α⌋,α − j) with j = 1, . . . ,⌊α/2⌋− 1, resp. j = h, . . . ,α − 1, where where h =
⌊α/2⌋+1 if α is even, and h = ⌊α/2⌋ if α is odd. Obviously, (⌊ jβ/α⌋,α − j) lies always on

the right-hand sided border, since

αβ −⌊ jβ/α⌋α − (α − j)β ≥ 0 and αβ − (⌊ jβ/α⌋+1)α − (α − j)β ≤ 0.

Now, observe that by definition the points on RB(Tu) have second coordinate varying from

α − 1 to α −⌊α/2⌋+ 1. For the points in RB(Tr) we need to distinguish two cases: if α is

even, then the points with second coordinate α −α/2 are self-symmetric gaps so they do not

belong to Tr and we need to start the summation running from ⌊α/2⌋+1 on. If α is odd, then

there are no self-symmetric gaps of the previous form. The unique self-symmetric gaps may be

those with coordinates (β/2,⌊α/2⌋), but if one of them is actually a border point, then it adds

zero in the summation. �

4.2. Fundamental gaps vs supersymmetric gaps and self-symmetric gaps. The fundamen-

tal gaps for semigroups of the form Γ = 〈α,β 〉 are explicitly described by Rosales in [10,

Theorem 9]. As part of the proof, he characterized the elements x ∈ N \Γ such that 2x ∈ Γ.

From this characterization we are able to prove the following.

Proposition 4.8. Let Γ = 〈α,β 〉, and let x ∈ N \ Γ be a gap of Γ. Then the following are

equivalent:

(1) 2x ∈ Γ;

(2) x = αβ −aα −bβ with 1 ≤ a ≤ β/2 and 1 ≤ b ≤ α/2;

(3) W (x)≥ 0.

Proof. The equivalence (1) ⇔ (2) is [10, Proposition 4], and (2) ⇔ (3) is a straightforward

computation from the formula given in Proposition 3.3. �

In particular, nonnegative Wilf number is a necessary condition for a gap to be a fundamental

gap.

Corollary 4.9. Let Γ = 〈α,β 〉, and let x ∈ N\Γ be a gap of Γ. If x ∈ FG (Γ), then W (x)≥ 0.

Notice that the converse is not true: consider the semigroup Γ = 〈8,13〉 and take the gap 25,

then W (25) = 9 > 0 but 25 /∈ FG (Γ).

We recall that a subset X of the set of nonnegative integers H–determines a numerical semigroup

Γ if Γ is the maximal numerical semigroup with respect to set inclusion such that X ⊂ N \Γ.
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Under this description of Γ, the set of fundamental gaps is the smallest subset H–determining

Γ. Moreover, Rosales et al. [11] proved the following important result about minimality of the

fundamental gaps with respect the H–determinacy.

Proposition 4.10. [11, Corollary 7] Let Γ be a numerical semigroup and let be X ⊂ N\Γ. The

set X H–determines Γ if and only if FG (Γ)⊂ X.

On the other hand, we have proven in Theorem 4.5 that SG∪ SSG completely determines Γ.

In this way, it is natural to compare SG∪SSG with FG (Γ). However, this comparison is not

set-theoretically possible since we do not have inclusion relations, i.e. SG∩FG (Γ) = /0 and

SSG⊂ {x ∈N\Γ : 2x ∈ Γ} but in general SSG"FG (Γ) as Example 4.13 shows; this example

also shows that if SG= Tu resp. Tr then sα(SG) resp. sβ (SG) does not need to be contained in

FG (Γ).
This means that, in general, the set SG∪ SSG does not H–determines Γ, but it determines Γ
in the sense that Γ can be recovered from SG∪ SSG. Moreover, the polyomino game cannot

be recovered from the set of fundamental gaps. Then, the most we can do is to compare the

cardinality of both sets:

Proposition 4.11. Let Γ = 〈α,β 〉 be a numerical semigroup with α > 2, then

|SG∪SSG| ≤ |FG (Γ)|.

Proof. We will distinguish three cases depending on the parity of the semigroup generators.

Case (A): If α and β are both of them odd numbers, then SSG= /0 and

(4.1) min{|τu|, |τr|} ≤
1

8
(α −1)(β −1).

In order to prove Equation (4.1) we observe that

|N\Γ|=
α−1

∑
j=1

⌊ jβ

α

⌋

=
1

2
(α −1)(β −1) = 2

⌊α

2

⌋⌊β

2

⌋

= 2 · |{x ∈ N\Γ : 2x ∈ Γ}|.

Therefore, |τu|+ |τr|= |N\Γ|− 1
4
(α −1)(β −1) = 1

4
(α −1)(β −1), cf. Proposition 4.7. This

give us directly Equation (4.1). Now, in view of [10, Corollary 11] it is enough to show that

1

4
(α −1)(β −1)−

⌈α −3

6

⌉⌈β −3

6

⌉

≥
1

8
(α −1)(β −1),

which is equivalent to the inequality

1

8
(α −1)(β −1)≥

⌈α −3

6

⌉⌈β −3

6

⌉

.

This is true: since
⌈α −3

6

⌉⌈β −3

6

⌉

=
(⌊α −3

6

⌋

+1
)(⌊β −3

6

⌋

+1
)

≤
1

36
(αβ +3α +3β +9),

we just need to realize that

1

36
(αβ +3α +3β +9)≤

1

8
(αβ −α −β +1),

which leads to the inequality

7αβ −15α −15β −9 ≥ 0.
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7 4 1

2

Γ = 〈3,5〉

11 8 5 2

4 1

Γ = 〈3,7〉

FIGURE 4.7. Special cases in (A) of Proposition 4.11.

This holds for α = 3 and β ≥ 11 odd as well as for any α ≥ 5 odd and β > α odd. The cases

α = 3,β = 5 and α = 3,β = 7 must be treated separately, see Figure 4.7. In the first case, an

easy computation shows that |FG (Γ)|= 2 and |τu|= 1, |τr| = 1, and the result follows; in the

second case, we have that |FG (Γ)|= 3, and |τu|= 2, |τr|= 1, so the result remains also true.

Case (B): If α > 2 is even and β > α is odd, then |SSG|=
⌊

β
2

⌋

and also

|τu|+ |τr|=
1

4
(α −1)(β −1).

By reasoning as in Case (A), it suffices to prove that

1

4
α(β −1)−

⌈α −3

6

⌉⌈β −3

6

⌉

≥
1

8
(α −1)(β −1)+

1

2

⌊β

2

⌋

,

again by Proposition 4.7 and [10, Corollary 11]. But this leads us to Case (A) since

1

4
α(β −1)−

1

8
(α −1)(β −1) =

1

8
(α −1)(β −1)+

β −1

4
and

β −1

4
=

1

2

⌊β

2

⌋

.

Case (C): If α ≥ 3 is odd and β > α is even, we may repeat mutatis mutandis the argument in

Case (B), and the result follows.

�

Remark 4.12. Observe that for α = 2,β = 3 the statement of Proposition 4.11 holds; but this is

no longer true for α = 2 and any β ≥ 3 odd, since in that case |τu| = |τr| = 0 and |FG (Γ)|=
β−1

2
−
⌈β−3

6

⌉

> 0.

Finally, let us show in an example how all the important sets presented in this paper look like.

Example 4.13. Consider the numerical semigroup Γ = 〈8,13〉. In this case SG= Tu as we can

see in Figure 4.8. This figure is labelled in the following manner: as usual, every lattice cell

represents the gap of Γ given by (a,b), where these are the coordinates of the upper-right corner

of the cell. Every cell is endowed with two numbers: the one lying on the bottom of the cell is

just the corresponding gap, while the number on the top of the cell is the Wilf number of the

gap.

The figure also presents a filling code: we have shadowed the set of fundamental gaps and

dotted the set of self-symmetric gaps. This makes it clear that self-symmetric gaps are not fully

contained in the set of fundamental gaps neither the images by sα ,sβ of the triangles Tu,Tr.
The red rectangle contains the gaps x such that 2x ∈ Γ, cf. Proposition 4.8. The polyominoes

corresponding to Tr ∪ sα(Tr) and Tu ∪ sβ (Tu) are also distinguishable.
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FIGURE 4.8. Polyomino game for the semigroup 〈8,13〉.

4.3. Remarks on the concepts of supersymmetric and self-symmetric gaps. We would like

to finish the paper with a brief discussion about the possible extension of the concepts of su-

persymmetric and self-symmetric gaps to the case of a numerical semigroup Γ with arbitrary

embedding dimension.

We remark first that our definition of supersymmetry does not coincide with the one given by

Fröberg, Gottlieb and Häggkvist in [4]. Their notion lies on a lattice representation of each of

the Apéry sets with respect to all minimal generators of the semigroup in such a way that su-

persymmetry in the sense of [4, Lemma 15] means symmetry plus uniqueness of the concerned

lattice representation; recall that the Apéry set of Γ with respect to a nonzero element s ∈ Γ is

defined to be {w ∈ Γ : w− s /∈ Γ}. On the other hand, our notion is defined from the lattice

representation of the set of gaps of the semigroup together with its properties with respect to the

Wilf numbers.

The extension of the notions of self-symmetric and supersymmetric gaps to higher embedding

dimensions is trickier. The above mentioned example Γ = 〈4,6,13〉 shows us that we cannot

expect a definition through the sign of the Wilf number of the concerned gap, since for this

example all gaps have positive Wilf number; this means, the sign here is not the important

issue. In addition, the example Γ = 〈10,14,27〉 after Theorem 3.4 shows that if we want to

extend the concept of self-symmetric gap we cannot only focus on Wilf number zero; it seems

that the notion of supersymmetry is deeper.

Moreover, observe that the symmetries under consideration imply the following property:

Proposition 4.14. Let Γ = 〈α,β 〉 be a numerical semigroup. With the previous notation,
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(1) If αβ −aα −bβ = g ∈ Tu, then c(∆[0,g]) = c(∆[0,sα (g)]) = c(Γ)−aα .

(2) If αβ −aα −bβ = g ∈ Tr, then c(∆[0,g]) = c(∆[0,sβ (g)]
) = c(Γ)−bβ .

Proof. We will prove only (1), and (2) follows mutatis mutandis.

Consider the gap αβ − aα − bβ = g ∈ Tu. Let [h0,h1] be the minimal set of generators of

Syz(∆[0,g]). Then by Lemma 4.1

min{h0,h1}= αβ −bβ ,

and Theorem 2.3 implies that c(∆[0,g]) = c(Γ)−aα .

Consider now sα(g) = αβ −aα − (α −b)β , and denote by

[h′0 = αβ −aα,h′1 = αβ − (α −b)β ]

the minimal set of generators of Syz(∆[0,sα(g)]). In order to finish it would be enough to prove

that min{h′0,h
′
1}= h′1; but this is immediate, as

h′0 −h′1 = αβ −aα −αβ +(α −b)β = αβ −aα −bβ = g > 0.

�

Proposition 4.14 the following definition for a numerical semigroup of arbitrary embedding

dimension.

Definition 4.15. Let Γ= 〈x1, . . . ,xn〉 be a numerical semigroup minimally generated by x1, . . . ,xn.

We define on the set of gaps G := N\Γ the relation

g1 ∼c g2 ⇐⇒ c(g1) = c(g2) for any g1,g2 ∈ G.

This is in fact an equivalence relation which thus provides a partition of the set gaps into equiv-

alence classes. This partition will be called the gap conductor partition of G. We say that two

gaps g1,g2 are candidates to be symmetric if g1 ∼c g2. In addition, we say that two gaps g1,g2

are symmetric if g1 ∼c g2 and |W (g1)|= |W (g2)|.

Remark 4.16. Observe that we are giving a definition of two gaps to be symmetric. This defini-

tion has no relation and has not to be mixed with the symmetry properties of the semigroup.

In the special case Γ = 〈α,β 〉, two gaps g1,g2 are symmetric if and only if sα(g1) = g2 or

sβ (g1) = g2. Moreover, there is no three different symmetric gaps; i.e. either g1 is symmetric

to a unique g2 6= g1 or g1 is self-symmetric and then it is its own symmetric point. Therefore,

Definition 4.15 allows us to extent the properties of the lattice symmetries to purely algebraic

properties of the gaps. This discussion leads to pose the following closing questions:

Question 4.17. Given a symmetric numerical semigroup Γ = 〈x1, . . . ,xn〉, we ask:

(1) For n = 2, can supersymmetric and self-symmetric gaps be characterized from Defini-

tion 4.15 without the use of the lattice representation?

(2) For n > 2, does there exist an extension of the self-symmetric and supersymmetric gaps

i.e. does there exist a subset of the set of gaps such that the symmetry property defined

in Definition 4.15 allows to recover the whole semigroup from this set?
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(3) If an extension of the concepts of self-symmetric and supersymmetric gaps to embed-

ding dimension greater than 2 is possible, does there exist a lattice representation in Zn

of the set of gaps such that —in analogy with the case n = 2— it can be made up from

the sets of self-symmetric and supersymmetric gaps together with some affine transfor-

mation of them?
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