
       UNIVERSIDAD COMPLUTENSE DE MADRID    

FACULTAD DE MEDICINA 
 
 
 

 
 
 
 
 
 
 
 
 

THE IMPACT OF LAMIVUDINE-BASED ANTIRETROVIRAL 
THERAPY ON HEPATITIS B VIRUS (HBV) GENETIC 

EVOLUTION AMONG HIV-HBV CO-INFECTED PATIENTS 
 

 MEMORIA PARA OPTAR AL GRADO DE DOCTOR 
PRESENTADA POR 

Antonio Adrián González del Castillo 
 

Bajo la dirección de los doctores 
  

Vicente Soriano 
Anna Maria Geretti 

José Prieto 
 
 
 
 
  

Madrid, 2012 
 
 

© Antonio Adrián González del Castillo, 2012 



UNIVERSIDAD COMPLUTENSE DE MADRID 

FACULTAD DE MEDICINA 

 

 

 

 

 

 

 

 

The impact of lamivudine-based antiretroviral therapy  

on hepatitis B virus (HBV) genetic evolution  

among HIV/HBV co-infected patients 

 

 

 

 

 

 

 

 

 

 
 

TESIS DOCTORAL 
 

ANTONIO ADRIÁN GONZÁLEZ DEL CASTILLO 
Madrid, Curso Académico 2011-2012 

 



 
DIRECTORES: 
 
Doctor Vicente Soriano 
Hospital Carlos III de Madrid 
 
Profesora Anna Maria Geretti 
University of Liverpool 
 
Profesor José Prieto 
Universidad Complutense de Madrid 



HBV genetic variability in HIV co-infected patients  2012

  

 Page 1 

 

 
 

The impact of lamivudine-based antiretroviral therapy on 

hepatitis B virus (HBV) genetic evolution among HIV/HBV  

  co-infected patients 

 

PREFACE ....................................................................................................................... 4 

 

CHAPTER 1. HEPATITIS B VIRUS ................................................................................ 6 

1. Genomic Organization ......................................................................................... 7 

2. Viral Cycle. ........................................................................................................ 10 

3. Genomic Evolution. ............................................................................................ 12 

4. Natural history: Monoinfected vs. Co-infected. ................................................... 15 

5. Treatment: Monoinfected vs. Co-infected........................................................... 16 

6. Antiviral therapy and drug resistance ................................................................. 20 

7. Variability of the HBsAg, vaccine escape mutants (VEM) and clinical implications 

and antiviral drug-associated potential vaccine escape mutants (ADAPVEM). .......... 27 

 

ENDPOINTS ................................................................................................................. 41 

 

CHAPTER 2. GENETIC VARIABILITY OF HBV IN THREE DIFFERENT COHORT 

FROM KUMASI, GHANA .............................................................................................. 42 

1. Introduction ........................................................................................................ 43 

2. Material and methods ........................................................................................ 45 

2.1 Study population .......................................................................................... 45 

2.1.1 HIV/HBV co-infection ............................................................................ 45 

2.1.2 HBV monoinfection ............................................................................... 45 

2.2 Serology ...................................................................................................... 46 



HBV genetic variability in HIV co-infected patients  2012

  

 Page 2 

 

2.3 HBV DNA Quantification .............................................................................. 46 

2.4 HBV Amplification ........................................................................................ 47 

2.5 Purification ................................................................................................... 47 

2.6 Sequencing ................................................................................................. 48 

2.7 Analysis ....................................................................................................... 50 

2.7.1 Genetic characterization of pol/S genes ............................................... 50 

2.7.2 Statistical Analysis ................................................................................ 51 

2.7.3 Shannon Entropy .................................................................................. 51 

3. Results .............................................................................................................. 52 

3.1 Study population .......................................................................................... 52 

3.2 Genetic characterization of pol/S genes from HIV/HBsAg positive (co-

infected) patients .................................................................................................... 55 

3.3 Genetic characterization of pol/S genes from HIV/HBsAg-/anti-HBcAb+ (OBI) 

patients .................................................................................................................. 58 

3.4 Genetic Variability (Shannon entropy) ......................................................... 61 

4. Discussion ......................................................................................................... 71 

 

CHAPTER 3. CLINICAL RESPONSE & GENETIC EVOLUTION OF HBV IN A HIV/HBV 

CO-INFECTED POPULATION FROM MALAWI RECEIVING A 3TC-BASED HAART 76 

1. Introduction ........................................................................................................ 77 

2. Material and methods ........................................................................................ 78 

2.1 Study ........................................................................................................... 78 

2.2 Serology. ..................................................................................................... 79 

2.3 HBV DNA & HIV RNA Quantification ........................................................... 79 

2.4 Amplification & Sequencing ......................................................................... 80 

2.5 Analysis ....................................................................................................... 80 

2.5.1 Clinical response .................................................................................. 80 

2.5.2 Genetic characterization of pol/S genes ............................................... 80 



HBV genetic variability in HIV co-infected patients  2012

  

 Page 3 

 

2.5.3 Statistical .............................................................................................. 81 

3. Results .............................................................................................................. 82 

3.1 Population and serology .............................................................................. 82 

3.2 HBV and HIV viral load results ..................................................................... 85 

3.3 HBeAg serostatus ........................................................................................ 87 

3.4 Genetic characterization of pol/S genes ....................................................... 91 

4. Discussion ......................................................................................................... 95 

 

CONCLUSIONS .......................................................................................................... 100 

 

BIBLIOGRAPHY ......................................................................................................... 102 

 

APPENDIX .................................................................................................................. 118 

Appendix 1: Additional figures and tables of interest. ............................................... 118 

Appendix 2: Publications generated in this thesis .................................................... 128 

 

ABBREVIATIONS....................................................................................................... 129 

SPANISH SUMMARY ................................................................................................. 131 

 

 
 

 

 

 

 

  



HBV genetic variability in HIV co-infected patients  2012

  

 Page 4 

 

 
PREFACE 

 

The Hepatitis B Virus (HBV) affects mainly to the liver, infecting the hepatocytes, 

and it can be either acute or chronic. Globally, it is estimated that 2 billion of people are 

infected with HBV and 350-400 million people suffer chronic infection. Furthermore, 

more than 600.000 HBV carriers die every year from end-stage liver diseases including 

fulminant hepatitis, cirrhosis or hepatocellular carcinoma (HCC) caused by HBV infection 

and hence it represents a major global health problem.  

 

HBV prevalence is higher in low-income countries including Africa, the middle-

east and Asia than in western world, where horizontal transmission of HBV is the most 

common route. Conversely, in western countries, sexual and parenteral (intravenous 

drug used) are the main routes of transmission. Furthermore, as HBV shares the routes 

of infection with Human Immunodeficiency Virus (HIV), co-infection is relatively frequent. 

Among 36 million people living with HIV worldwide and approximately 4 million people 

(~10%) are chronically co-infected with HBV. Similarly, the prevalence of this co-

infection is higher in Africa and Asia (up to 20% in some regions) than in western 

countries (<10%) 1.  

 

HBV is characterized by an extraordinary genetic variability mainly due to its 

reverse transcriptase, which lacks of proof-reading activity producing a high mutation 

rate. The high genetic variability allows HBV the ability to develop drug resistance 

mutations to evade pharmacological pressure. Additionally to Interferon , there are 5 

nucleoside/nucleotide analogues approved for HBV treatment (lamivudine, telvibudine, 

entecavir, adefovir, and tenofovir). Nowadays, tenofovir (TDF) is one of the most widely 
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nucleotide analogue used for the treatment of HBV infection, which is also active against 

HIV and is commonly used in western countries for the treatment of HIV/HBV co-infected 

patients due to its high antiviral efficacy and high genetic barrier for resistance. However, 

in low-income countries, the use of this drug is still restricted because its high cost and 

lamivudine (3TC) is still the most nucleoside analogue used against HBV infection 

included within the HIV antiretroviral therapy because is cheaper and also active against 

HIV. As consequence of this regimen, HBV drug resistance is expected among these 

patients since the long-term exposure to 3TC monotherapies is associated with high 

rates of HBV drug resistance in both HBV monoinfected and HIV/HBV co-infected 

patients.  

 

HIV/HBV co-infected patients show higher HBV DNA levels and lower serum 

alanine aminotransferase (ALT) levels than those infected with HBV alone. Moreover, 

liver fibrosis tends to be more advance and the risk of end-stage liver disease is 

increased 2–4. Nevertheless, there is scarce information regarding how HIV could drive 

the HBV genetic evolution. In this thesis, two HIV/HBV co-infected cohorts under 3TC-

based treatment have been studied from two different endemic countries, Ghana and 

Malawi. The genetic variability within the genes that encodes the polymerase and the 

Hepatitis B Surface Antigen (HBsAg) was assessed. The Ghana cohort was under long-

term treatment and three clinically different cohorts were evaluated at genetic level to 

evaluate how HIV drives HBV evolution (HIV/HBsAg positive, HIV/HBsAg negative and 

HBV monoinfected). In Malawi, the rates and predictors of virological responses in 

HIV/HBV co-infected patients under 3TC-based regimens were evaluated after 48 weeks 

of 3TC-based therapy. Additionally, the genetic evolution of both polymerase and HBsAg 

were also assessed.  
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1. Genomic Organization 

 

HBV is a member of the Hepadnaviridae family which has a strong preference for 

infecting liver cells, although it is also possible to find reservoirs in the kidney, pancreas 

and mononuclear cells 5,6. HBV virions are envelope particles, 40 to 42 nm in diameter, 

surrounded by lipoproteins and three different glycoproteins 7,8. Within the envelope is 

the viral nucleocapside or core, which contains the viral genome and the viral 

polymerase responsible for the synthesis of viral DNA inside the infected liver cells 9–11. 

 

The viral genome is a relaxed-circular, partially duplex DNA of 3.2 kb. It is a 

compact and small structure, organized into four open reading frames (ORF). These 

encode the core/precore (C ORF), polymerase (pol ORF), envelope (S ORF), and X 

ORF. The biggest is the pol ORF which encodes the viral polymerase and its accessory 

functions. The S ORF is totally overlapped within the pol ORF and encodes the different 

envelope proteins. C ORF encodes the e antigen and the core (HBeAg and HBcAg) and 

partially overlapping the pol ORF is the X ORF which encodes the HBxAg. (Figure 1.1) 

12.  

 

Within the preC-C ORF the internal AUG codon produce the HBcAg, which is a 

protein formed by 183-185 amino acids. It is essential for the RNA packaging and 

second DNA strand synthesis, playing an important role in the viral cycle. The HBeAg is 

19 amino acids larger and is modified in the endoplasmic reticulum (ER). Although its 

function is not completely clear, it is related to high level of viral replication. 

Nevertheless, due to particular genomic organization, lacking of this protein is not 

necessarily associated with low level of viremia 13. 
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The pol ORF encodes a 90 kDa protein which is divided into four domains, the N-

Terminal or primase, a linker region, the reverse transcriptase (RT) domain and the C-

Terminal RNAse H. The RT domain contains the most conserved region which can be 

divided into 7 domains A to G. The C domain contains the catalytic pocket which has the 

conserved sequence Tyrosine, Methionine and two Aspartic acids (YMDD).  

 

The S ORF is divided into pre-S1, pre-S2 and S regions by two internal AUG 

start codons, but shares the same termination codon. Translation results in three 

different proteins in size: Large (L-HBsAg); Medium (M-HBsAg); and Small (HBsAg). 

These proteins are the main component of the virus envelope and they play an important 

role in interactions with the host, virion assembly and infection of new hepatocytes.  

 

Finally, the X ORF encodes a small 154 amino acids protein known as HBxAg. It 

is a soluble protein whose function is related with several factors, being crucial in starting 

or maintaining viral replication 14. It is involved in the epigenetic regulation of the covalent 

closed circular DNA (cccDNA) and is suggested to be important for promoter activation 

in the development of HCC 15–18. 



  

 

 

 

 

 

 

Figure 1.1 The HBV genome is a relaxed-circular, partially duplex DNA of 3.2 kb. It is organized in four open 

reading frames (ORF); the core/precore (C ORF), polymerase (pol ORF), envelope (Surface ORF), and X ORF.  

                                                                                    P
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2. Viral Cycle. 

 

 The viral cycle can be divided in several steps; (i) attachment to the hepatocyte, 

(ii) penetration into the cell, (iii) transport into the nucleus, where viral replication and 

transcription occur, (iv) translation, assembly and reverse transcription in the cytosol, (v) 

virion maturation or amplification of the cccDNA pool and (vi) release of viruses (Figure 

1.2) 19,20. The mechanism of viral entry into the hepatocytes is still unknown; however, it 

is known that binding of L-HBsAg to its receptor is required. Once inside the hepatocyte, 

viral core is released and a nuclear localization signal located in the capsid leads the 

core to the nucleus. The relaxed circular HBV DNA (rcDNA) is repaired in the nucleus by 

the host enzymes producing the cccDNA, which serves as a template for transcription 15. 

 

Transcription is directed by four different promoters (enhancer II/BCP, pre-S1, 

pre-S2/S, enhancer I/X) producing four different sized species of mRNA (3.5, 2.4, 2.1 

and 0.7 kb). The largest one is the pre-genomic RNA (pgRNA) which encodes the 

HBcAg, HBeAg and the HBV polymerase. The smallest mRNA encodes the HBxAg and 

the remaining two encode the surface proteins. The pgRNA also serves as a template 

for reverse transcription which occurs after the genome is packaged into the core 

particle. The new nucleocapsid has two potential fates; it can either be re-imported to the 

nucleus to generate more cccDNA molecules (typical in the initial stage of infection) or it 

can be transfered to the endoplasmic reticulum (ER) where envelope proteins are 

incorporated before release from the cell. Mature virions containing HBsAg proteins are 

secreted along with spherical and filamentous enveloped subviral particles (SVPs), 

which lack a nucleocapsid and are non-infectious 20.  



  

 

 

 

 

 

Figure 1.2 HBV cycle. (Adapted from www.clinicalcareoptions.com). 
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3. Genomic Evolution. 

 

The HBV evolution is characterised by particular features of its DNA genome as 

well as by the viral polymerase required for replication. Genomic diversity results from 

two mechanisms; genotypic variability that is produced in the absence of selective 

pressure and phenotypic variability that results from adaptation to selective pressures 

produce by the host or drugs. 

 

Two forms of the viral genome exist in infected hepatocytes; the rcDNA and the 

cccDNA. HBV RT lacks a proof-reading activity increasing the number of errors 

incorporated into a genome during replication; this increases the genetic diversity of the 

viral population. The rate of substitutions during replication falls in the range of 10-4 to 10-

5 per site per year. Despite being a DNA virus, this rate is similar to many RNA viruses. 

This results in 0.1 to 1.0 substitutions per genome during each replication cycle 

producing many variants in the same patient. Furthermore, HBV has a high viral turnover 

with up to 1011 to 1013 virions produced daily 21–23. These factors result in a high 

genotypic variability and have led to the classification of up to 10 different genotypes (A-

J) based on >8% intergenotype and <4% of intragenotype divergences along the full 

length genome. The genotypes are different not only molecularly but also in their 

localization. Genotype A is prevalent in Africa (A1 and A3), Europe (A2) and USA; 

Genotypes B and C are prevalent in Asia or among Asian immigrants; Genotype D is 

prevalent in Mediterranean countries, Middle East, Central Asia and India; Genotype E is 

prevalent in Western Africa; Genotype F is prevalent in South and Central America; 

Genotype G is prevalent in USA and France; Genotype H is prevalent in Mexico and 
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Latin America; Finally, Genotypes I and J were recently found in Vietnam/Laos and 

Japan, respectively 24–26.  

 

Phenotypic variability results from adaption to selective pressure. It can be 

produced by several factors including the host immune system, antiviral drugs, passive 

immunisation with HB immunoglobulin (HBIg) or active immunisation using the HBV 

vaccine. Moreover, demographic factors (race, age, gender) and host genetic factors 

also play an important role. The factors associated with development of resistance to 

antiviral therapy are determined by the characteristics of the drug, like adherence or 

potency, which establish the concept of the drug genetic barrier 19,27,28. Viral infections 

will modify the host environment and the stage in the natural history of the infection will 

also have an effect (i.e., the immune response differs depending on whether the 

infection is acute or chronic). Furthermore, the viral replicative space, which is the 

number of cells available for viral infection, determines the number of fresh infections 

that can occur. During clonal expansion in the liver, the number of hepatocytes available 

for infection is limited due to the expansion of cells that are resistant to HBV infection or 

by cells which have been previously infected and are resistant to re-infection.  

 

Mutational epistasis is defined as the dependence of phenotypic effects of one 

mutation on a mutation at another site. Therefore, mutations at one site can change the 

direction and intensity of selection at another genomic site. For example, the 

development of secondary mutations or co-evolution of mutations which help the virus 

restores fitness. Moreover, a large population containing a mixture of potentially 

beneficial mutations is maintained in competition by selective pressures such as antiviral 

drug or immunological pressure. This competition for survival between these 

independent members of the quasispecies is known as “clonal interference”. Thus, both 
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epistasis and clonal interference among advantageous mutations coordinate genotypic 

evolution not just among individual strains but at a level of population or quasispecies. 

Therefore, there is cooperation among the different strains helping the population 

evolve. For example, the rtA181T substitution in the HBV polymerase, which is 

associated with drug resistance, generates a stop codon in the overlapping S gene, 

resulting in a defective envelope protein. The deleterious effect of this mutation cannot 

be compensated by another mutation in the same HBV genome (epistasis) but the 

mutation in the pol gene produce an advantage since it results in drug resistance. Then, 

this strain will require the help of the wild-type (wt) strains to provide a functional 

envelope protein establishing a cooperation between the strains that allow the HBV to 

both survive and evolve 29,30.  

 

However, the rate of variability is restricted by two HBV features particular to 

HBV. Firstly, the overlapping nature of the HBV genome limits the viability of mutant 

strains. Secondly, the long half-life of the hepatocytes infected by HBV reduces the 

replicative space reducing the opportunity for mutant viruses to replace the wt strain 28.  
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4. Natural history: Monoinfected vs. Co-infected. 

 

The HBV infection is not cytopathogenic and liver injuries are a consequence of 

host´s immune responses. The natural history of chronic HBV infection can be divided 

into different phases. Firstly, the “immune tolerant phase” is characterized by HBeAg 

seropositive, high serum HBV DNA level, normal serum alanine aminotransferase (ALT) 

and near-normal liver histology. Secondly, the “immune clearance phase” is 

characterized by continuing hepatitis activity or episodic acute flares with ALT over five 

times the upper limit of normal. This could lead to fibrosis progression or cirrhosis in 

HBeAg positive patients. The HBeAg serconversion depends on factors like age, ALT or 

genotypes (A, B > C, D). Thirdly, the “residual inactive phase” is characterized by normal 

ALT, low serum HBV DNA level and no or minimal necro-inflammatory histological 

changes. Finally, the “reactive immune clearance phase” is produce when HBV is 

reactivated with either HBeAg seroreversion or with pre-core (PC) or basal core 

promoter (BCP) mutations 31.  

 

The influence of HIV into the natural history is a consequence of the immune 

deficiency produced. For that reason, the HBV chronicity rate in these patients is higher 

as well as the level of HBV replication. Furthermore, the spontaneous loss of HBeAg 

and/or HBsAg is lower with a high rate of seroreversion after CD4+ cell are depleted. 

These facts can be prevented with Highly Active Antiretroviral Treatment (HAART) using 

dual action antivirals 32.  
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5. Treatment: Monoinfected vs. Co-infected. 

 

There are three major international guidelines of treatment: (i) the Asian Pacific 

Association for the Study of the Liver (APASL), (ii) the American Association for the 

Study of the Liver Diseases (AASLD) and (iii) the European Association for the Study of 

the Liver (EASL) 33–35. In general, these guides are based on the same parameters: ALT 

level, HBV DNA and histology data. However, they are slightly different when it is 

necessary decide when start the treatment.  

 

The major endpoint in the treatment of HBV is achieving the replication levels of 

the virus as lowest as possible and maintains it. The guidelines consider that treatment 

is not indicated for inactive carriers (HBeAg negative, ALT normal, <2000 IU/ml) and 

immune tolerant patients (HBeAg positive, ALT normal or less than 2xN, high HBV 

DNA). Regard to which patients need to be treated is controversial. Although the APASL 

and the AASLD are similar and consider the HBeAg serostatus, the EASL do not 

consider it. Furthermore, there is no consensus in minimum level of HBV DNA to 

consider treatment being 2.000 IU/mL in the EASL and 20.000 IU/mL in the APASL and 

AASLD. 

 

There are seven drugs approved for the treatment of chronic Hepatitis B (CHB). 

Interferon- (IFN) and pegylated interferon- (peg-IFN) together with five 

nucleoside/nucleotide analogues (NAs) which target the viral polymerase. These are 

cytidine or thymidine L-Nucleoside analogues, lamivudine (3TC) and telvibudine (LdT), a 

D-Cyclopentane entecavir (ETV), and two alkyl phosphanates, adefovir (ADV) and 

tenofovir (TDF) (Figure 1.3). The advantages and the inconvenient between using 
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interferons or NAs are summarized in the table 1.1. Both American and European 

guidelines recommend avoiding 3TC, LdT and ADV in naïve patients and using TDF or 

ETV are the suitable drugs. The Asian guidelines were done a year before and 

recommends ETV and LdT.  

 

Regarding the HIV/HBV co-infected populations, the European AIDS Clinical 

Society (EACS) Guidelines recommend starting treatment of these patients when the 

ALT are elevated and HBV DNA is higher than 2.000 IU/mL 36,37. However, in patients 

with significant liver fibrosis, anti-HBV treatment might be considered even when serum 

HBV-DNA is below 2 000 IU/mL and ALT are not elevated. The drugs used for the 

treatment will depend on two factors: i) indication for HIV treatment and ii) 3TC-

experience or naïve. Taking into account the last factor, TDF is indicated in both cases 

adding 3TC or emtricitabine in the case of 3TC-naïve patients. 

  

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

Figure 1.3 Nucleoside/nucleotide analogues structures approved for HBV treatment; L-Nucleosides family includes 

Lamivudine (3TC) and Telvibudine (LdT); Acyclic or Alkyl phosphanates family includes Adefovir (ADV) and Tenofovir 

(TDF); Cyclopentane family includes Entecavir (ETV).  
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Table 1.1 Difference in availability treatments (Interferon vs. Nucleos(t)ide analogues). 
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ADVANTAGES INCONVENIENTS 

INTERFERON 

Short-term treatment Adverse effects 

HBsAg negatively more frequent 
Poor response in high viral load patients or immune tolerant 

No drug resistance 

NUCLEOS(T)IDES ANALOGUES 

Oral administration Long-term treatment 

Better tolerability Low HBsAg negatively 

Good inhibition of replication Drug resistance 
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6. Antiviral therapy and drug resistance 
 

6.1 Drug resistance 

 

The desired endpoint of HBV treatment is achieving complete suppression of HBV 

DNA levels. Failure to control the DNA levels is a major factor associated with the 

development of drug resistance. Other factors include adherence of the patient and the 

ability of the drug to suppress viral replication. Hence, a drug with low antiviral activity 

does not exert substantial selection pressure on the virus and the likelihood of drug 

resistance developing is increased. No drugs can target the cccDNA archive so complete 

eradication of the infection is not possible. Therefore, long term treatment regimens are 

necessary which increase the risk of drug resistance.  

 

The antiviral efficacy of each drug has been assessed in different studies. The 

pathway in which mutations accumulate in order for the virus to develop drug resistance 

varies for each drug and determines the genetic barrier of each compound. The drug with 

the lowest genetic barrier is 3TC, reaching drug resistance in up to 80% of patients after 4 

years of treatment 38. It is followed by LdT which can reach 29% or 11% drug resistance in 

the second year of treatment depending on the patients HBeAg positive or negative status 

39,40. In HBeAg negative ADV-treated patients, 29% develop drug resistance over 5 years. 

If the patient already has 3TC resistance, then up to 20% develop drug resistance within 

the first year 41,42. ETV and TDF are the antivirals with the highest genetic barrier. In the 

case of ETV, the rate of drug resistance development is up to 1.2% after 6 years of 

treatment. However, ETV can reach up to 57% after 6 years in patients that harbours 3TC 

resistance 43. Recent clinical trials about TDF reported no resistance after 96 weeks of 

treatment 44. 
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Furthermore, HIV co-infection is another problem in terms of HBV drug resistance. 

HIV is able to modify the course of HBV which shows higher HBV DNA levels and lower 

serum alanine aminotransferase (ALT) levels than those infected with HBV alone. These 

levels of HBV DNA increase the probability of developing HBV drug resistance. In fact, it 

has been already shown this effect 3,45,46. 

 

 

6.2 Pathways and drug genetic barrier 

 

Antiviral drug resistance is associated with selection of primary drug resistance 

mutations which facilitate viral synthesis in the presence of the drug. Viral fitness is often 

reduced by the primary mutations and secondary mutations are needed to restore viral 

fitness. There are four major different pathways according to the drug structure to generate 

drug resistance explaining the drug genetic barrier (Figure 1.4) 47:  

 

(i) the L-nucleoside pathway: the primary mutation to the L-nucleoside drugs is 

rtM204V/I which is associated to resistance to 3TC and LdT. Using the crystal 

structure of the HIV polymerase, the mechanism of resistance is based on the 

reduce accessible surface area between the polymerase pocket and the drug. 

In other words, it produces a steric hindrance and impairs in the catalytic 

activity of the RT. The secondary mutations related to this pathway are 

rtL180M, rtV173L and rtL80IV 48–52. 
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(ii) the alkyl phosphonate sugar pathway: it is associated with ADV resistance. The 

ADV structure is similar to its natural substrate dATP, which allows ADV a great 

accessibility to the polymerase and a low rate of resistance. The primary 

mutations associated with ADV treatment are rtN236T and rtI233V in the D 

domain and rtA181V in the B domain. However, mutations in 3 different regions 

are necessary for development of drug resistance: (1) mutations involving the D 

and A domains, rtI233V, rtN236T, rtP237H, rtN236T/D, rtV84M, and rtS85A. A 

Hydrogen bond between residues rtN236 and rtS85 can be disrupted by any of 

these mutations; (2) mutations involving the B domain, rtA181V/T, result in an 

allosteric change in the catalytic site; (3) mutations involving inter- C-D domain, 

rtV214A and rtQ215S, cause an allosteric change despite not interacting with 

the catalytic pocket or the DNA template 53,54.  

 

(i) the D-cyclopentane or treatment-naïve ETV resistance pathway; ETV is a 

potent and selective drug against HBV. It can affect multiple functions on the 

polymerase including priming, reverse transcription and DNA elongation. 

Mutations at rtL180M and rtM204V/I are required for the development of ETV 

resistance and at least one of following: rtT184G, rtS202I and rtM250V. A 

secondary mutation, rtI169T, is also common in this pathway. Interestingly, two 

mutational patterns have been observed: (1) rtM250V + rtI169T + M204V + 

L180M and (2) rt184G + rtS202I + rtM204V + rtL180M. Two molecular 

mechanisms have been proposed to explain these mutational patterns. 

Mutations at positions rtM250V and rtI169T impact on the primer binding while 

mutations at rt184G + rtS202I are responsible for the interaction with the 

hydrophobic core region. In both cases, the resistance level to ETV is 

enhanced by the 3TC-associated mutations 55,56.  
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(ii) the “shared” pathway between the L-nucleosides and alkyl phospanates 

compounds; The mutation rtA181T/V conferring resistance to 3TC and ADV 

and reduced sensitivity to TDF.  

 

The role of rtA194T and its association with TDF resistance remains controversial. 

The rtA194T mutation was identified in addition to rtL180M and rtM204V in two HIV/HBV 

co-infected patients who failed treatment. A role for the rtA194T mutation in the 

development of TDF resistance was confirmed from in vitro studies. However, in 2006, this 

experiment could not be reproduced by Delaney et al. and this finding has subsequently 

been supported by two further studies in 2009 by Amini-Bavil-Olyaee et al. and 2011 by 

Zhu et al. 57–60.  

 

The genetic barrier has also been described in terms of the probability of each 

nucleotide suffer either a transition (A ↔ G, C ↔ T) or transversion (A ↔ T, A ↔ C, G ↔ 

C, G ↔ T) by Svicher et al. 61. Depending on whether a transition or transversion occurred, 

a score of 1 or 2.5 was given respectively. In this way, primary drug resistance were 

associated with a low genetic barrier (score = 1). In this group appeared mutations such as 

rtM204V, rtA181T/V/S and, interestingly, rtA194T. This fact could explain why these 

mutations appeared in naïve patients when minority species are studied by ultra-deep 

sequencing 62,63. They also showed the case of rtM204I. This mutation results in 

sW196Stop in the S gene that produce a truncated HBs protein. As these changes affect 

both replication and HBsAg production, the virus would need a co-infection with a wt strain 

to survive. Therefore, in contrast with the other primary mutations, it showed a higher 

genetic barrier to be selected. 



  

 

 

 

 
 
 

Figure 1.4 Position and combinations of drug resistance mutations in polymerase. Mutations are depicted alongside 

the domain of RT in which they are located. [1] 3TC and LdT belong to the L-Nulceosides group; [2] The shared 

pathway is related to L-Nucleosides and alkyl phosphonate sugar pathways; [3] ADV is an alkyl phosphonate sugar; 

[4] ETV is a D-cyclopentane; rtA194T is related to TDF resistance but data about this mutation is controversial. P
a
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Drug resistance can be classified into low, intermediate or high level as determined 

by in vitro experiments. Sometimes, one mutation can confer resistance to a drug that the 

virus has not been exposed, called cross-resistance, i.e. rtA181V (Table 1.2) 64,65. This is 

more likely when different drugs share the same drug resistance pathway. Multidrug-

resistant (MDR) strains of HBV have been observed in patients exposed to more than two 

antivirals. Both sequential monotherapy, especially in patients treated with similar drugs, 

and/or “add on” regimens due to incomplete viral suppression increase the likelihood of 

developing MDR viruses 66. The generation of secondary mutations plays an important role 

in these strains because viral fitness has to be maintained even though the virus has 

accumulated multiple resistant mutations which are usually detrimental to fitness. 



   

 

 

 

 

 

 

 

 

Table 1.2 Mutations associated to cross-resistance according to the approved antivirals 67.  

3TC LdT ETV ADV TDF

R R I S S

R R I S S

S S S R I

I/R R S R I

R R S R I

R R R S S

R R R S S

rtL180M+rtM204VI ± rtI169T ± rtV173L ± rtM250V

rtL180M+rtM204VI ± rtT184G ± rtS202IG

I, intermediate; R, resistant; S, sensitive

Pol gene mutations

Table 1.2 Cross-resistance for the main drug-resistance mutants  and the approved antivirals

rtM204I

rtL180M+rtM204V

rtN236T

rtA181TV

rtN236T+rtA181T/V
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7. Variability of the HBsAg, vaccine escape mutants (VEM) and clinical 

implications and antiviral drug-associated potential vaccine escape 

mutants (ADAPVEM). 

 

The HBsAg is the major envelope protein and a key biomarker of HBV infection 

and contains the major immunological epitope used for developing the vaccine 68–71. The 

HBsAg protein is a typical membrane protein formed by 226 amino acids. The C-terminal 

hydrophobic 57 amino acid crosses the membrane twice to position to both the ER 

lumen and cytosol dividing the protein into different domains 72,73 (Figure 1.5): (i) the first 

trans-membrane domain (TMD-I) residues 8 to 24; (ii) the first cytosolic domain (CYL-I), 

contains the T-cell epitope (residues 28 to 51); (iii) the second trans-membrane domain 

(TMD-II) between residue 80 - 98; (iv) the double loop, called the antigenic loop (AGL) or 

“a” determinant (101 – 164) is orientated into the lumen. It contains the major 

immunological epitope of the S protein, including the B-cell epitope (124-148); (v) finally, 

a small cytosolic region (CYL-II) is located between two additional trans-membrane 

domains (TMD-III and TMD-IV). It is stabilized by 14 Cysteines (Cys), which are cross-

link to each other forming disulphide bonds (Figure 1.5, green residues) 74,75. Cys 48, 65 

and 69 are strictly conserved among all hepadnaviruses and are essential for HBsAg 

secretion. In contrast Cys 76, 90 and 221 are not conserved and are dispensable for 

viral replication. Cys 90 and 221 are inside the TMD-II and TMD-IV regions so their 

impact on antigenicity and infectivity is limited 74–76. All Cys located inside the AGL are 

indispensable for HBsAg secretion with the exception of Cys 149 75.  
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Biochemical studies have been conducted to characterize the different domains, 

summarized in the table 1.3. Most of the amino acids inside the CYL-I (25-79) were able 

to tolerate deletions without impaired folding or secretion. In general, there were no 

essential residues between amino acid 39 to 58, with the exception of the cysteine sC48 

and between amino acids 49 to 53. Deletion between amino acids 59 to 80 was not 

tolerated since sHis60 and a cluster of positively charged residues containing amino acid 

73, 78 and 79 were essential 74,77,78. Blanchet and Sureau used Alanine scanning of the 

cytosolic domains of HBs to determine the important positions for subviral particle (SVP) 

secretion. By quantifying the amount of HBsAg detected on the cell surface or in the 

cytoplasm by western blotting, they identified amino acids sD33, sC48, sH60, sC65, 

sP66, sY72, sR73 and sC76 as being essential for secretion (Figure 1.5, red or black 

residues) 77. Three areas inside the putative TMD-III and IV (amino acid 184 to 188, 209 

to 213 and 219 to 223) cause the complete failure in HBsAg secretion but were still 

detected in the cell lysates. This indicates correct folding of the AGL and supports the 

putative trans-membrane position. The deletion between 194 to 198 were not found 

either in the cells lysate or supernatant, indicating that its production was completely 

blocked 79. Similar studies have shown that amino acids 104-108 and 139-163 inside 

AGL are also essential for the secretion, whereas 109 to 133 had no affect (not shown in 

the figure 1.5). 

 

The infection capacity depends on the N-terminal preS1 domain and the AGL, 

where the Cys network plays an essential role 80. The region between 119 and 128 is 

critical for the infectivity of the virus (Figure 1.5, yellow residues). Salisse and Sureau 

published a detailed study of the non-cysteine residues in the AGL involved in infectivity. 

Apart from the cysteines from 121 to 149 which had previously been implicated, they 
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showed a role for; prolines 105, 108, 120, 142 and 153; positively charged residues 

sR122 and sK141; hydrophobic residues at sV106, sI110, sM133, sI150 and sW156; 

and finally uncharged polar residues sN146, sT118, sT123 and sT148; and sG119 81,82. 

 

Van Hemert et al. proposed a 3D-structural model of HBsAg protein 83. This study 

was focused on the influence of overlapping both pol and S genes. The 1st nucleotide 

position of the pol codon corresponds to the 3rd nucleotide position of the S codon 

(p1s3), the 2nd nucleotide of the pol codon is the 1st in the S codon (p2s1) and the 3rd 

nucleotide of the pol codon is the 2nd of the S codon (p3s2). The model showed that 

variation in one frame of the gene is accompanied by conservation in the other gene. 

Recently, Svicher et al. showed that pol gene is more conserved than the S gene, which 

was different according to the genotype and could lead a different immune host 

response, vaccine efficiency and/or even different diagnostics results. In detail, the 

probability of nucleotide transitions or transversions was restricted by the sequence of 

the overlapping ORF. Then, the likelihood of producing a VEM was determined by the 

sequence of the S gene, which is genotype specific. For example, they showed that the 

codon used for encoding residue sG130, which was different in two genotypes, A and G, 

and had a lower genetic barrier for the development of immune escape sG130N. 

Furthermore, the immune escape sT131N was constitutive in these genotypes. Similar 

situation amongst different genotypes occurred for residues s114, s127 and s161. 

Therefore, the genotype of the virus can also determine the ease of developing specific 

escape mutations 61  



   

 

 

  

Figure 1.5 The HBsAg structure is initiated by two translocation signals (blue circles). There are four trans-

membrane domains (TMD), two Cytosolic loops (CYL) and two lops toward the lumen which harbour the Antigenic loop 

(AGL). The structure is stabilized by the Cysteine network (green circles). Inside the AGL, there are some residues that 

give raise the infectivity determinant (yellow circles). Furthermore, there are plenty residues along the structure that are 

conserved and are essential for maintain it (red and black circles). 

Amino acids Domain

1  3 N-terminal

  4  24 TMD - I

28  51 T-cell epitope

25  79 CYL - I

  80  100 TMD - II

101  172 AGL

124  148 B-Cell epitope

173  193 TMD - III

194  201 CYL - II

202  222 TMD - IV

223  226 C-terminal
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Table 1.3) Functional in vitro studies on the HBsAg were carried out to study the 

crucial amino acids in the secretion of the protein by deleting/substitution 

different regions 79,84,85. The left column shows the regions which were 

dispensable to HBsAg production. The right column depicts those regions which 

were essential for HBsAg secretion. 

 

 

 

Dispensable Reduced or crucial

D24-28KL D29-33KL

D39-43KL D34-38KL

D44-47KL D49-53KL

D54-58KL D59-64KL

D174-178KL D70-75KL

D179-183KL D76-80KL

D184-188GA D164-168KL

D189-193KL D164-168GA

D194-198GA D169-173KL

D195-197AAA D169-173GA

D199-203KL D184-188KL

D204-208KL D194-198KL

D209-213GA D209-213KL

D214-218KL D219-223GA

D219-223KL

D223-226

Amino Acids and Secretion
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The AGL of the HBsAg was taken for developing the HBV vaccine in the early 

80´s. The HBV vaccine has been able to induce protection in up to 95% of immune-

competent recipients. Since vaccination programs were introduced, the prevalence of 

chronic hepatitis B has drastically decreased in the western world. However, evidence of 

breakthrough infection quickly became apparent giving raise the concept of vaccine 

escape mutant (VEM). The first description was made in a child vertically infected with 

HBV despite vaccination and passive immunization with HBV immunoglobulin (HBIg) 86. 

A substitution at position 145 of HBsAg (G145R) was found which led to alterations in 

the “a determinant” loop (amino acid139-147) which resulting in neutralizing antibody 

escape 87. Since then, different studies have been carried out in populations where HBV 

is endemic and primary infection occurs during infancy or early childhood. After the 

launch of the universal vaccination programme in Taiwan the proportion of children 

carrying virus with “a determinant” mutations rose to 19.6%, 28.1% and 23.1% among 

children chronically infected for 5, 10 and 15 years respectively 88,89. Therefore, despite 

HBV vaccine, horizontal or vertical transmission has been observed in vaccinated 

individuals due to immune escape 90–103. 

 

One of the main characteristics of HBV, the overlapping reading frames, can lead 

to affect the virus in different situations. In this sense, variations in the S gene can 

modify the antigenicity, the infectivity and the secretion of the protein, reducing the 

number of virions but can also affect the pol gene decreasing viral fitness. Additionally, 

VEM´s not only affect vaccine response but also potentially affect diagnostic detection. 

Therefore, it is usually correlated clinical situations to variations in the HBsAg, i.e., the 

occult HBV infection (OBI). In this sense, mutations in the S gene could affect to 
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diagnostic, either by defect in HBsAg production or by the high variability in the AGL that 

leads to the disruption in the conformation preventing the immune detection. However, 

the last hypothesis has been called as a “false” OBI 104. The defect of HBsAg can be 

also explained due to the low viral fitness or by generation of stop codon mutations, then 

producing fewer HBsAg proteins. 

 

Furthermore, VEM´s were found in different strains from patients receiving a 

transplantation which are, previously or not, passive and/or active immunized 5,105–111. 

These mutations could become more aggressive producing a worse progression; it has 

been observed in patients who presented a fulminant hepatitis where it was found 

sG145R, alone or in combination, with an insertion between amino acids s122 and s123 

or sT126A. The HBsAg retention together with the enhanced viral replication could be 

the cause of this clinical course of infection 94,112,113. Moreover, there are also mutations 

that have been associated with the HCC development 114,115. This is related with 

mutations that are able to induce a truncated protein and include sL21Stop, sW156Stop, 

sW172Stop, sW182Stop 116–118. 

 

Unfortunately, there is no a crystallographic structure either of HBV polymerase 

or HBsAg proteins and in vitro studies are the main tool for studying the effect of 

mutations on the viral replication, the secretion, the infectivity and/or the antigenicity 

capacity. In vitro assays showed that sG145R modifies the loop conformation causing a 

negative effect in the antigenicity and 30% reduction in HBsAg secretion 113,119–121. 

Although sG145R results in rtW153Q in the pol gene, HBV replication is not affected 122. 

It was also analysed in combination with 3TC-associated resistance mutations 

(rtL180M/M204V and rtM204I). sG145R showed its capacity to restore viral fitness in the 

presence of this 3TC-pattern resistance by in vitro assays 113,123–125. The mutation 
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sP120T produces the change rtT128N in the pol gene, which affects viral replication in 

the presence of 3TC-resistant mutations. However, contradictory effects of this mutation 

in combination with rtL180M/M204V have been described 124,125. Torresi et al. showed 

that sP120T restored replication fitness in 3TC resistant viruses whereas Amini-Bavil-

Olyaee et al. did not find the same effect 123,125.  

 

Other potential VEM´s have been assessed by in vitro studies (table 1.4). These 

mutations were sT123N (rtQ130P), sM133L (rtY141S), sK141E (rtK149R), sK160N, 

sW172Stop (rtA181T), sW196L/S/Stop (rtM204I) and sW199Stop (rtM204I) 65,122,124,126–

128. The mutation sT123N was able to restore the viral fitness in 3TC-resistant strains. A 

new N-Glycosilation site is introduced and the mutant shows reduced levels of secretion 

and antigenicity. Similar effects were observed with sK160N, but were less pronounced. 

The mutations sM133L and sK141E impaired viral replication and were less antigenic. 

The variant sW199Stop impairs the virus replication capacity since it is overlapped with 

the 3TC-resitant mutation rtM204I. This mutation also results in a truncated HBsAg 

which affects the level of secretion. Then, it is a good example of cooperation among 

different strains as this strain will need the help of another wt strain to survive. Similar 

situation appears with the mutations sW196L/S/Stop (rtM204I) and sW172Stop 

(rtA181T). Furthermore, sW172Stop can cause viral rebound later than expected and 

inhibition of wt virion expression, potentially causing a late diagnosis of drug resistance 

65. 

 

Other mutations that have been analysed for secretion by in vitro assays are 

sY100C, sI110M, sG119E, sK122I, sM133T, sA159G and sR169P 128,129. The mutation 

sY100C, which has been related with occult HBV, was was found that neither secretion 

nor production was affected by this mutation. In contrast, the mutation sI110M and 
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sR169P blocked secretion completely whereas, sG119E, sK122I and sG159G reduced 

secretion of HBsAg. When sG159G appears in combination with sK160N, secretion of 

HBsAg was partially restored. It is of interest to note that sM133T also produced a new 

N-Glycosylation that restored HBsAg secretion. Furthermore, this mutation was able to 

rescue the secretion of strains harbouring either sG145R or sI110M without altering its 

immune escape phenotype. 

 

Finally, there are certain mutations that have been assessed solely for their 

antigenicity. These are sW74Stop, sY100S, sT116N, sK122P, sT125N, sT131I, sE164D, 

sI195M and sM198I 122,127,130–132. The mutations sW74Stop and sT125N have been 

identified in two patients experiencing seroconversion after peg-IFN therapy 132. 

Antigenicity of these mutants was tested against monoclonal and polyclonal antibodies. 

The mutant harbouring sT125N was not recognized by one monoclonal and one 

polyclonal antibodies whereas the sW74Stop was not recognized at all. The mutation 

sY100S was not detected in cell-culture using the ABBOTT Architect HBsAg assay. 

When sS143L was introduce in combination with sY100C, the strain remained 

undetected. Similar effect was shown sT116N and the combination sT116N plus sS143L 

as well as in sK122P, SK122P plus sQ101R and in sK122P plus s167L strains (table 

1.5). sT131I altered the AGL folding, impairing the antigenicity. The immune detection 

also failed when the mutations sE164D, sI195M and sM198I were tested. 

 

Similar tests have been performed using combinations of more than one mutation in 

the same strain (table 1.5). The double mutation sD144E plus sG145R was able to 

restore the replication capacity in 3TC-resistant strains. This strain will be potentially 

transmissible because it will produce a higher level of replication that is not only 

conferring antiviral resistance but is also able to avoid both the immune response and 
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vaccine induced immunity. Similarly, the double mutation sE164D and sI195M, which is 

generated by the triple mutation rtV173L, rtL180M, rtM204 is able to avoid the 

immunologic response to a similar degree as sG145R 
127,133

. 

.  

There are variants containing multiple mutations do not normally appear de novo 

but are usually produced by interactions among several strains. Villet et al. studied a 

patient firstly treated with 3TC after suffering viral breakthrough ADV was added to the 

regimen 134,135. This patient did not respond to combination 3TC and ADV and 

subsequently underwent an orthotropic liver transplantation (OLT) receiving 

intramuscular HBIg in combination with 3TC and ADV. Post-transplant viral 

breakthrough forced the change from ADV to TDF while maintaining 3TC. The viral 

quasispecies contained many variants, which were studied for their viral fitness, 

antigenicity and infectivity. One of the variants harboured a deletion between the amino 

acids 102 to 111 (sF20S, D102-111, sP120S, sE164D, sL173F) and was not detected by 

polyclonal antibodies. Another variant showed a mutation in sR79H (sR79H, sP120S, 

sE164D, sL173F, sI195M, sY206F) causing a defect in secretion and reduced viral 

fitness. However, the strain remained able to replicate. The dominant variant (sF20S, 

sP120S, sE164D, sL173F) presented a reduced viral fitness in comparison with the wt 

strain: however it presented a strong antiviral resistance profile becoming the dominant 

variant. Furthermore, it showed fewer defects in secretion and higher infectivity capacity 

than the others variants. Another example of dominant virus population was shown in a 

patient who developed fulminant Hepatitis B after an OLT. The analysis showed a higher 

replication capacity of the virus but a defect in the HBsAg secretion 113. They found the 

mutation sG145R, which impairs secretion, together with sT45K, sL49I, sS204R and 

sL205V which had the additive effect of restoring folding and secretion.



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.4 Effects produce by alone major “single” mutations in both Surface and polymerase genes in vitro. These are 

mutations that have been shown in different clinical situations, including vaccine failure and drug-related mutations among 

others.  

Surface gene pol gene Effect Reference 

    
sY100C  Secretion is not altered 

130
 

sY100S  Not detected 
131

 

sI110M  Blocked secretion 
129

 

sT116N  Strong decrease in detection 
131

 

sG119E  Impaired secretion 
129

 

sP120T rtT128N Contradictory effects in terms of viral fitness 
123,127,136

 

sK122P  Strong decrease in detection 
131

 

sK122I  Impaired secretion/Altered antigenicity 
128

 

sT123N rtQ130P 
Restore viral fitness. Antigenicity impaired. 

N-Glycosylation site, secretion reduced 
124,128

 

sT125N  Altered antigenicity 
137

 

sT131I  Altered antigenicity 
122

 

sM133L rtY141S Viral fitness impaired. Altered antigenicity 
124

 

sM133T  It restores secretion via introduces a new N-Glycosylation site. 
129

 

sK141E rtK149R Viral fitness impaired. Altered antigenicity 
122

 

sG145R rtG153E Antigenicity and secretion impaired 
113,136

 

sA159G  Decreased secretion/reduced antigenicity 
128

 
sK160N  

Viral fitness normal. Antigenicity reduced. 
N-Glycosylation site, secretion slightly reduced 

sE164D  Altered antigenicity 
127

 

sR169P  Blocked secretion 
129

 

sW172* rtA181T It produces a truncated protein 
65

 

sI195M  Altered antigenicity 
127

 sW196/L/S/* rtM204I It produces a truncated protein 

sM198I  Altered antigenicity 

sW199* rtM204I It produces a truncated protein 
126
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Diagnostic tests have been improved over the last few years and are able to detect 

the most common HBsAg variations found in the literature. They require both high 

levels of sensitivity for detection of different variants and high specificity to avoid the 

risk false positive results. Detection levels of recombinant HBsAg proteins differ from 

patient samples, which contains a quasispecies of variants 138. For this reason, most 

kits include some polyclonal antibodies in combination with monoclonal ones to allow 

detection of most of the variants 139–143. The most typical variants, which pose a 

problem for detection, are usually located between amino acid 120 to 150, which 

correlates with the region mutated due to immunological pressure. At this moment, it is 

a matter of discussion as to which factor has the higher influence in the detection of 

HBsAg variants including: (i) the position of the amino acid variant, the nature of this 

variant, (ii) the number of the variants inside the sample, (iii) the variants affect on 

secretion and (v) folding or even the effect that the HBV genotype can produce 

61,130,144–146.  

 

 The tight relationship between the genes that encode the polymerase and the 

HBsAg mean they have to be considered together when a genotypic study is 

conducted in a patient. The long-term regimens commonly used for HBV treatment 

produce a high risk of developing drug resistance. The clinical effect observed 

including resistance to the different drugs used, even to drugs that have never been 

exposed, and variations that are able to avoid the immune response, both the host and 

the active/passive immunization (VEM´s and ADAPVEM´s). Additionally, different 

studies have shown that drug naïve viruses are able to spontaneously develop 

minority species associated with drug resistance or vaccine escape or both effects 

62,63. Clements et al. characterised the criteria required to be an ADAPVEM, to be a 
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stable mutant, to have undergone sufficient changes in antigenicity for not being 

neutralized by the anti-HBs generated by the vaccine, to be transmissible and cause 

infection in immunized individuals, and finally to cause disease in infected individuals 

133. These ADAPVEM´s could jeopardize the vaccine programmes because the 

transmission risk of these strains. It has been shown HBV strains harbouring the triple 

3TC-resistant pattern (rtV173L, rtL180M, rtM204V) produce a double mutation in the 

envelope (sE164D, sI195M) that were able to infect and replicate in vaccinated 

chimpanzees 147. This pattern has been found in newly diagnosed patients showing 

that the risk of transmission is not a lucubration but it is fact 148,149. 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.5 Virological and diagnostic impact produce by mutations in combination in both Surface and polymerase genes in 

vitro. These are mutations that have been shown in different clinical situations, including vaccine failure and drug-related 

mutations among others.  

Surface gene polymerase gene Effect Reference 

    

sD144E, sG145R rtG153E 
Restore viral fitness, altered 

antigenicity 127
 

sE164D, sI195M rtV173L, rtL180M, rtM204V Altered antigenicity 

sF20S, sP120S, sE164D, sL173F 
rtT128I, rtV173L, rtL180M, 

rtA181V, rtN236T 
Dominant variant. Secretion impaired 

but high infectivity capacity 

135
 

sF20S, D102-111, sP120S, sE164D, 
sL173F 

D111-120, rtT128I, rtV173L, 
rtL180M, rtA181V 

Deletion blocked secretion 

sR79H, sP120S, sE164D, sL173F, 
sI195M, sY206F 

rtT128I, rtV173L, rtL180M, 
rtA181V, rtM204V 

Secretion and fitness impaired but 
infectious 

sT45K, sL49I, sG145R, sS204R, 
sL205V 

 
Defect in secretion but high viral 

fitness 
113

 

sY100S, sS143L  Not detected 

131
 

sT116N, sS143L  Strong decrease in detection 

sR122P, sQ101R  Strong decrease in detection 

sR122P, sS167L  Strong decrease in detection 

sA159G, sK160N  
Restored secretion. Altered 

antigenicity 
128

 

                                                                             P
a

g
e

 4
0 



HBV genetic variability in HIV co-infected patients  2012

   

 Page 41 

 

 

ENDPOINTS 
 

 

1. Assess the prevalence of HBsAg into a HIV positive population from Ghana and 

the impact of long-term exposure to a lamivudine-based Highly Active 

Antiretroviral Treatment (HAART) on the polymerase and Surface genes of the 

HBV.  

 

 

2. Study the effect of HIV co-infection on the development of HBV drug resistance 

and the genetic evolution in both polymerase and Surface genes.  

 

 

3. Assess the efficacy of lamivudine-based HAART during 48 weeks within a 

HIV/HBV co-infected population from Malawi. 

 

4. Study the genomic evolution within the polymerase and Surface genes after 48 

weeks of lamivudine-based HAART among the Malawian population. 
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CHAPTER 2 

 

 

Genetic variability of HBV in three different cohort from 

Kumasi, Ghana 
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1. Introduction 
 

Ghana is a country located in West Africa which had an HIV prevalence of 3.6% 

in 2003 150. The HAART became available in 2004, consisting of a first-line therapy 

combination of 3TC with either zidovudine or stavudine and nevirapine or efavirenz. 

Although TDF is also available, it is usually reserved for using after failure of the initial 

regimen. HBV is also highly endemic, with 15% of population being chronically infected 

and usually occurs vertically/horizontally before the age of 10 years old 151. The HIV/HBV 

co-infection is common in Africa, reaching a prevalence of up to 20% in some areas; 

however, these data have not been established in Ghana because HBV is not routinely 

screening. As a consequence, it is predicted that up to 50% of HIV/HBV co-infected 

patients have started antiviral treatment, including 3TC as a single anti-HBV agent. 

Using 3TC as a sole anti-HBV agent increases both the development of HBV drug 

resistance and progression of liver disease. Drug resistance development can reach up 

to 70% of population after 4 years of treatment of chronic HBV patients, however the 

percentage of resistance development can increase up to 90% after 4 years of treatment 

in HIV co-infected patients 3,38,45,46,152,153. 

 

In general, in low-income countries, HBV transmission usually occurs during the 

childhood, by vertical or horizontal via. In Ghana, systematic HBV vaccination of new-

borns started in 2003, and only a minority of adults has been immunized. Similarly to the 

drug resistance mutations into the pol gene, due to the overlapped genes, mutations can 

also be produced into the S gene, which could lead to a vaccine failure as it has already 

seen in Taiwan or China 88,89,154. These mutations not only can affect to the vaccine since 

it could have more consequences as failure detection by commercial assays, change of 
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its infectivity capacity or modify the morphogenesis of the protein and, hence, its 

secretion 81,82,155. One of these consequences could be associated to the OBI concept, 

which is defined as detectable HBV DNA in serum with undetectable HBsAg. The 

prevalence of OBI ranges from 0% to 89% in different HIV infected cohorts 104.  

 

In this study we have established the prevalence of HBV from an HIV cohort in 

Ghana where most of the patients were under 3TC-based HAART. Furthermore, 

samples tested negative for HBsAg were also studied to establish the prevalence of OBI 

in this region. All samples with detectable HBV DNA were characterized in order to 

evaluate the development of drug resistance and the potential vaccine escape mutants. 

Finally, using a CHB cohort from the same region, the genetic evolution of HBV was 

studied to evaluate the potential effect of HIV on HBV.  
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2. Material and methods 

 

2.1 Study population  

Two different cohorts were evaluated from Ghana: HIV/HBV co-infected and 

chronic HBV monoinfected cohorts. The study was approved by the ethics committee of 

the Kwame Nkrumah University of Science & Technology, Kumasi, Ghana. 

2.1.1 HIV/HBV co-infection 
 

The study population comprised a cohort of 2138 HIV infected patients attending 

routine HIV care at the Komfo Anokye Teaching Hospital (KATH) in Kumasi, Ghana 

during 2007. Approximately, 50% of the patients were receiving 3TC-based HAART. 

Paired serum and plasma samples were collected from 838/2138 (39%) unselected HIV-

infected patients and they were stored at -20ºC prior to shipping on dry ice to the Royal 

Free Hospital in London where they were kept at -70ºC before testing. Stored samples 

from a further 1300/2138 (61%) HIV-infected patients were tested for HBsAg using the 

rapid Determine assay. Of these, 178 samples tested HBsAg positive and were retrieved 

for repeat testing in London.  

2.1.2 HBV monoinfection 
 

Pregnant women and blood donors attending the KATH hospital in Kumasi, 

Ghana were screened for HBV by rapid test (Determine HBsAg/AgHBs; Abbott 

Laboratories). HBV positive samples were amplified and sequenced by Jean-Pierre 

Allain´s group from the Department of Haematology, University of Cambridge, 

Cambridge, UK. These cohorts had been fully studied previously 151,156,157.  
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2.2 Serology 
 

Serum samples were tested for the presence of HBsAg using five different 

assays including three gold-standard assays and two rapid immunocromatography 

(lateral flow) assays. The gold-standard comprised the automated chemilumiscent 

immunoassays Architect HBsAg (Abbott Diagnostics, Maidenhead, UK) and Liason 

HBsAg Ultra (Diasorin, Bracknell, UK), and the manual Murex version 3 plate enzyme-

immunoassay (Abbott Diagnostics). The rapid immunocromatography assays included 

Determine HBsAg assay (Inverness Medical, Storckport, UK) and the Vikia HBsAg assay 

(bioMerieux, Basingstoke, UK. All assays were performed according to the 

manufacturers’ instructions. The HBV e antigen and anti-e antibody (HBeAg, anti-

HBeAb), anti-HBcAb, and anti-HBsAb were measured by the Architect assay (Abbott 

Diagnostics) 158. 

2.3 HBV DNA Quantification 
 

The HBV DNA was quantified for both HIV/HBsAg+ (co-infected) and 

HIV/HBsAg-/anti-HBcAb+ (OBI) cohorts. Samples underwent nucleic acid extraction by 

the m2000sp automated system (Abbott Laboratories), followed by quantitative real time 

PCR with an in-house assay with a lower limit of quantification of 14 IU/mL. The assay 

was calibrated against the 2nd World Health Organization International standard for HBV 

DNA 159.  
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2.4 HBV Amplification  

 

Samples with a detectable HBV DNA underwent population sequencing of the pol 

gene reverse transcriptase domain (amino acids 1-344) and the S gene (amino acids 1-

226). Plasma DNA was extracted using the NucliSens EasyMag platmform (NucliSens, 

Biomereux, Netherlands). Both pol and S gene were amplified by two consecutive PCR 

using the primers HEPB1, HEPB2 and HEPBN (table 2.1). The first round amplification 

was performed in a volume of 50 l, containing 1x AmpliTaq Gold buffer, 3 mM Mgcl2, 

0.6 mM dNTPs, 0.2 M each primer, 2.5 U AmpliTaq Gold and 5 l DNA. The nested 

PCR was carried out with the suitable primers and 5 l of the first round PCR product. 

The thermocycling conditions were set as follows: 94ºC for 3 minutes, 40 cycles of 94ºC 

1 minute, 55ºC 1 minute and 72ºC 1 minute and a half, followed by a final extension of 

72ºC for 7 minutes. A nested PCR was carried out in the same conditions as before but 

with 25 cycles. 

 

2.5 Purification 

 

Samples were purified prior to sequencing on the Amicon 2ml ultra centrifugal 

filters (millipore). 300 l of sterile nuclease-free water were placed into each filter unit. 

The 50 l PCR product was placed onto the top of the water in the spin column and 

centrifuged at 500xg for 15 minutes at room temperature. Thereafter, 35 l of sterile 

nuclease-free water was added to each filter unit. The filter unit was inverted into a clean 

labelled 1.5 ml centrifuge tube and centrifuged at 500xg for 5 minutes at room 

temperature. Finally, the spin filter was removed and discarded. 
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2.6 Sequencing 

 

The amplified products were separated by electrophoresis on 1.0% agarose gel 

and detected by SYBR® Safe DNA Gel Stain (Invitrogen) using an UV transluminator. 

Those samples that gave the expected size band were sequenced with four overlapping 

primers (HEPB2, HEPBSQ, HEPBN and HEPB1731 (table 2.1). The round amplification 

was performed in 4 different tubes in a volume of 20 l, containing 9 l water RNAase 

free, 2 l Big Dye, 1 l primer and 8 l PCR product. The thermocycling conditions were 

set as follows: 25 cycles, first of all 96ºC for 10 minutes followed by 5 minutes at 50ºC 

and 4 minutes at 60ºC. The sequencing was carrying out according to the 

manufacturer’s instructions and using an ABI Prism 3730 sequencer (Applied 

Biosystems). Sequences obtained were aligned with the distinct HBV genotypes 

obtained from GeneBank and using the SeqScape v2.6 software (Applied Biosystems).  

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Primers used to amplify and sequence the HBV pol and S genes. HepB1, HepB2 and HepBN were used to 

amplify the DNA and all of them, except HepB1, were used for sequencing the samples.  

Primers Sequence (5’-3’) 

HEPB1 GCC TCA TTT TGT GGG TCA CCA TA 

HEPB2 TCT CTG ACA TAC TTT CCA AT 

HEPBN TTG GGG AGC CCT CAG GCT 

HEPBSQ TTG GCC AAA ATT CGC AGT C 

HEPB1731 CTC CTG CCT CCA CCA ATC 

                                                                             P
a

g
e

 4
9 
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2.7 Analysis 
 

2.7.1 Genetic characterization of pol/S genes  

 

HBV drug resistance to NAs is defined as selection of HBV strains with amino 

acid variations known to confer reduced susceptibility to the administered NAs. Cross-

resistance was considered when variants selected affect the susceptibility of drugs to 

which patients have never been exposed. Mutations scored included both pol and S 

genes and were taking into consideration according with geno2pheno database and 

bibliography 47,67,160,161. Mutations in the pol gene were associated to: (i) LdT and 3TC-

resistance: rtL80I/V, rtV173L, rtL180M/C, rtA181T, rtM204I/V/S 48–51; (ii) ETV-resistance: 

combination of rtI169T or rtT184A/G/I/S or rtS202G/I or rtM250V plus rtL180M/C and 

rtM204I/V. It was also associated with rtI169T, rtT184A/G/I/S, rtS202G/I, rtM250V 55,56; 

ADV-resistance: rtA181T/V, rtQ215H, rtI233V, rtN238T and rtN236T 53,54; (iv) TDF-

resistance: rtA194T but it is not completely clear 57–60. Mutations in the S gene 

associated with immunologic or vaccine escape were associated with sY100C, 

sQ101KH, sI110L, sT118MRK, sP120AST, sT126NS, sA128V, sQ129HR, sG130DNS, 

sN131IKT, sM133I, sF134L, sP142LS, sT143M, sD144EA, sG145R 61,87,122–125,127,130,162. 

The combination sE164D + sI195M is associated to triple 3TC-resistance mutation and 

has been shown that produce an immunologic escape similar to sG145R 124. In general, 

any variation inside the AGL of the HBsAg was considered as potential immune escape 

although it has not been shown its effect in vitro yet.  
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2.7.2 Statistical Analysis 

 

The Fisher’s exact test was used to compare the number of samples that 

developed drug resistance and the immune escape mutants among co-infected, OBI and 

monoinfected populations.  

 

2.7.3 Shannon Entropy 

 

Total Shannon entropy was assessed using BioEdit version 7.0.9.0 (URL: 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html) and comparative analyses between 

alignments were conducted using the Los Alamos website (URL: 

http://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy.html).  

 

The population selected for this study comprised 138 co-infected patients 

including 40/138 (29%) naïve patients; 39 OBI patients, including 2/39 (5%) naïve 

patients and 30 HBV monoinfected patients. T-Student test was used for determining the 

cumulative entropy among each codon at each population. Site by site comparisons of 

codon selective pressure were performed following removal of duplicate sequences 

using FEL in CompareSelectivePressure.bf in the HyPhy package.  

 

 

 

 

 

 

http://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy.html
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3. Results 

 

3.1 Study population 

 

1016 out of 2138 HIV patients from routine HIV care at the KATH hospital in 

Kumasi (Ghana) were selected for HBsAg screening. 318 (31%) patients were positive 

for HBsAg whereas 84 (26%) of them were also HBeAg positive (table 2.2 & 2.3). HBV 

DNA was detected in 212 (67%) among co-infected cohort with a median [range] 19073 

[23 – 10.0x1013 IU/mL]. 202 (97%) were successfully sequenced being genotype E 

predominant (98%) over the genotype A (2%). Among the remaining 698 (85%) 

HIV/HBsAg negative patients, 555 (80%) were anti-HBcAb positive and 111 samples 

had detectable DNA which gave a prevalence of OBI of 20%, similar to previous studies 

in Africa 163–166. The HBV DNA median [range] was 68 [15 – 56.0x103] IU/mL in this 

group, which was lower than in the co-infected cohort. As the HBV DNA was low, only 39 

of the 111 (35%) could be sequenced. All 39 of the OBI samples were genotype E. The 

lowest HBV DNA level that yielded a sequence was 34 IU/mL. 
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Table 2.2 Study population from Kumasi, Ghana.  



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3. Characteristics of the study cohorts. Serological and molecular characteristics according to HBsAg status in 

HIV patients. 

 
 

HIV/HBsAg+  
(co-infected)  

HIV/HBsAg-/anti-HBcAb+ 
(OBI) 

Samples 318 555 

HBeAg positive 84 (26%) NA 

HBV DNA >14 IU/mL 212 (67%) 111 (20%) 

HBV DNA load median 19073 IU/mL 68 IU/mL 

(range) (23 - 10.0E+13) IU/mL (15 - 56.0E+3) IU/mL 

Samples sequenced 206/212 (97%) 39/111 (35%) 

HBV genotype E (98%), A (2%) E (100%) 

                                                                             P
a

g
e

 5
4 
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3.2 Genetic characterization of pol/S genes from HIV/HBsAg positive (co-
infected) patients  

 

206 out of 212 HBsAg positive samples with detectable DNA were sequenced to 

study the genetic evolution after long-term treatment based on 3TC. Pol drug-resistance 

mutations were detected in 18/206 (9%) patients, 13 (72%) receiving 3TC based HAART 

and 5 (28%) naïve patients (table 2.4). The mutational pattern reflected predominantly 

3TC exposure, and comprised rtM204V/I either alone (n = 1, 8%) or with rtL180M (n = 4, 

30%), rtV173L+ rtL180M (n = 7, 54%) or rtL80I (n = 1, 8%). One naïve patient showed 

3TC resistance (20%), rtV173L+ rtL180M + rtM204V. Moreover, there was a drug-naïve 

patient with the associated resistance to TDF, rtA194T plus rtV173L. Two patients 

harboured rtQ215H and another one presented rtN238T previously implicated in ADV 

failure but with uncertain effects on drug susceptibility. With regard to the variability of 

the S gene in these patients, major immune escape mutations that have previously been 

described were found, included well-recognized mutants such as sD144AE (n = 1, 8%), 

sI195M (n = 1, 8%), and sE164DG + sI195M (n = 2, 16%) and other less recognized as 

sG159A + sW196L (n = 1, 8%), sL127V + sW196L (n = 1, 8%), sW196L + sI195M (n = 

1, 8%) and sD144E + sE164DG + sI195M (n = 1, 8%) in the 3TC based HAART patients 

(table 2.4).  

 

Immune escape mutations were also detected in the subset of 188 HBsAg 

positive patients who were not developed drug resistance mutations in pol (table 2.5). 

These include sI110L (n = 4, 2%), sP120AT (n = 3, 2%), sT123A (n = 2, 1%), sQ129H (n 

= 1, 1%), sM133IT (n = 2, 1%), sS143L (n = 3, 2%), sD144AE (n = 5, 3%), sG145R (n = 

3, 2%). It also appeared combinations as sP120T + sT126I (n = 2, 1%) or sE164D + 

sI195M (n = 4, 2%). 
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Patient HAART HBV DNA (IU/mL) polymerase Gene Surface Gene 

1 3TC 6.60E+04 rtM204I sG159A sW196L 

2 3TC 3.90E+02 rtL180M rtM204V sD144E 

3 3TC 1.3E+04 rtL180M rtM204V - 

4 3TC 1.8E+06 rtL180M rtM204V - 

5 3TC 4.40E+07 rtL180M rtM204V sI195M 

6 3TC 1.40E+02 rtL80I rtM204I sL127V sW196L 

7 3TC 2.6E+04 rtV173L rtL180M rtM204V sW196L sI195M 

8 3TC 2.1E+07 rtV173L rtL180M rtM204V  

9 3TC 1.2E+03 rtV173L rtL180M rtM204V sE164G sI195M 

10 3TC 2.0E+04 rtV173L rtL180M rtM204V sE164G sI195M 

11 3TC 9.50E+03 rtV173L rtL180M rtM204V sD144E sE164V sI195M 

12 3TC 4.80E+02 rtV173L rtL180M rtM204V - 

13 3TC 3.30E+06 rtV173L rtL180M rtM204V sS132F 

14 Naïve 4.70E+05 rtV173L rtL180M rtM204V sE164D sI195M 

15 Naïve 4.50E+03 rtV173L rtA194T - 

16 Naïve 1.10E+07 rtQ215H sT126I 

17 Naïve 1.80E+06 rtQ215H sT126I 

18 Naïve 2.60E+05 rtN238T sT125M 

 

 

Table 2.4 Mutations within the pol and S genes related to antiviral resistance and 

immune escape in the co-infected cohort. The treatment and HBV-DNA levels from 

each patient are also indicated.  
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Table 2.5 Prevalence of mutations associated to immune escape within the S gene 

in the co-infected cohort. Include major immune-escape (bold) and other MHR 

mutations.  

 

 

 

Mutation 

HBsAg+ 
 

Mutation 
HBsAg+ 

n  %  n  %  

sQ101H 1 1 sN146D 1 1 

sM103I/K 2 1 sE164G  2 1 

sP105R 1 1 sI195M 2 1 

sV106F 1 1 sM103K sL104M 2 1 

sL109V/P/Q 5 2 sL109P sT115N  1 1 

sI110L 4 2 sL110I sE164G  1 1 

sP120A/T 3 2 sT116N sS117I 1 1 

sK122R 1 1 sP120T sT126I 2 1 

sT123A 2 1 sL127R sS143L  1 1 

sT125M 2 1 sL127V sW196L 1 1 

sT126I 5 2 sT131S sG145R  1 1 

sT126N 1 1 sG159A sW196L  1 1 

sQ129H 1 1 sK160N sE164V  1 1 

sT131N 2 1 sE164G sI195M  2 1 

sS132F 1 1 sE164D sI195M  2 1 

sM133I/T 2 1 sI195M sW196L  1 1 

sT140S 2 1 sQ101H sT126N sI128V 1 1 

sS143L 3 2 sQ129P sP142L sG145K 2 1 

sD144A 3 2 sD144E sE164V sI195M  1 1 

sD144E 2 1 sI150T sK160R sF161Y sE164G  3 2 

sG145R 3 2    
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3.3 Genetic characterization of pol/S genes from HIV/HBsAg-/anti-HBcAb+ 
(OBI) patients 

 

Despite the high number of OBI samples (111), it was possible to sequence just 

39 samples due to the low viral load of the samples. 31% of this population contained 

mutations in the pol gene, 17% of which were primary drug resistance mutations and the 

remaining were drug-associated resistance mutations. Most of the patients harboured 

more than 2 mutations inside the AGL of S gene which could explain the seronegativity 

of the HBsAg (n = 19, 49%) (Appendix 2.1). Two patients showed primary 3TC-

resistance mutations, yielding a prevalence of 5.1% (table 2.6). Seven patients (18%) 

showed polymorphisms associated to ADV-resistance (Q215H in 5 and N236I and 

N238H in the others 2), while two other patients (5%) showed I169L. The S gene 

showed some different patterns or combinations of mutations, i.e., sI110L + sT125M + 

sT126I + sD144E, sE164G + sI195M, sT126I + sE164G, sS143L + sE164D + sI195M or 

sS143L + sD144E. 

 

In the other 30 samples sequenced, no drug resistance mutations were found but 

other variations/polymorphisms were detected. Overall, there was more than one 

variation in both pol and S genes that could also help explain the failure to detect HBsAg 

(Appendix 2.1). Mutations were accumulated along the whole length of the S gene, even 

outside the AGL. These samples included strains harbouring the following mutations: 

sI110L (n = 2, 4%), sC139S (n = 1, 2%), sG145A (n = 1, 2%), sS143L/sD144E (n = 1, 

2%) or sD144E/sG145R (n = 1, 2%) among others. Other samples contained a greater 

number of mutations within the AGL, including strains harbouring sQ101H + sS143L + 

sD144E (n = 1, 2%), sQ129H + sM133I + sF134L + sE164A (n = 1, 2%) or I110L + 

sP120S + sM133L + sF134I + sD144A (n = 1, 2%). 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.6 Mutations in both pol and S genes corresponding to antiviral resistance and immune escape in the OBI cohort. 

HBV-DNA level from each patient is also indicated. 

Patient HBV DNA (IU/mL) polymerase Gene Surface Gene 

1 593 rtV173L rtQ215H 
sQ101K, sT125M, sL127P, sS140L, 

sD144E, sE164V, 

2 393 rtN236I sQ101H, sT125M, sL127P, sE164A 

3 325 rtV173M sI110L 

4 263 rtQ215H sF134L 

5 230 rtI169L 
sY100C, sQ101H, sI110L, sT116N, 
sT125M, sT126I,s L127P, sT131A, 

sD144E 

6 170 rtL80I rtL180M rtM204V sE164G, sI195M 

7 166 rtQ215H sQ101H, sT126I, sE164G 

8 155 rtV173L rtL180M rtM204V sL127P, S143L, E164D, I195M  

9 152 rtQ215H s L127P, sS143L, sD144E 

10 139 rtQ215H sE164V 

11 99 rtN238H Y200Stop 

12 77 rtI169L sQ101H, sI110L, sS117I 

                                                                             P
a

g
e

 5
9 
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Table 2.7 Prevalence of main mutations associated to immune escape in the AGL 

in the OBI cohort. It includes the major immune-escape (bold) and other mutations 

inside AGL. 

 

 

Mutation 
HBsAg-  

Mutation 
HBsAg-  

n  %  n  %  

sI110L 2 4 sR122P sT126I sQ129H  1 2 

sC139S 1 2 sS143L sE164G sS167L  1 2 

sG145A 1 2 sS143L sE164D sI195M  1 2 

sS154A/V 1 2 sS154L sE164G sI195M  1 2 

sM103I sE164V 1 2 sQ101H sT126I sI150T sE164G  1 2 

sL109R sS114A 1 2 sQ101R sT125M sK160R sE164G 1 2 

sS113T sE164V 1 2  sK122R sE164V sS167L sV168A  1 2 

sT126I sQ129H 1 2 sQ129Hs M133I sF134L sE164A  1 2 

sS143L sD144E 1 2 sQ101H sI110L sS117I sK160N sW165L  1 2 

sD144E sG145R 1 2 sM103I sF134L sS136L sS154P sE164G  1 2 

sQ101R sR122K 
sT123A 

1 2 sI110L sP120S sM133L sF134I sD144A  1 2 

sQ101R sT125M 
sE164A 

1 2 
sQ101H sQ129R sF134S sS154L sK160R 

sE164G  
1 2 

sQ101R sS136L sS154L 1 2 
sL109I sQ129H sD144E sS154L sG159V 

sS167L  
1 2 

sQ101H sS143L 
sD144E 

1 2 
sQ101H sI110L sT116N sT125M sT126I 

sT131A sT148I sD144E sN146S sK160N/S 
sE164G sW165L sS167L sR169H  

1 2 

sG112R sT126I sS154P 1 2    
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3.4 Genetic Variability (Shannon entropy) 
 

The entropy method is based on the nucleotide diversity along the genome. As 

entropy can be used to study variation at individual nucleotide positions, the entropy was 

divided into the p1s3, p2s1 or p3s2 positions to give an indication as to whether variation 

is being directed at pol, S or both genes. Comparison of sequence entropy between 

populations identified sites with significantly different entropies. The proportion of p3s2 

sites with differential entropies was greater when HBV monoinfected and co-infected 

cohorts were compared suggesting positive selection on the S reading frame, then a 

substitution at p3s2 is more likely to be non-synonymous. Similarly, substitutions at p1s3 

are more likely to cause a non-synonymous change in pol (Figure 2.1 and Appendix 

2.4). 

 

The median viral load in each group was: 4.5x106 [14 – 3.6x108] IU/mL for (HIV-

/HBsAg+) HBV monoinfected cohort; 1.5x104 [74 – 1.0x104] IU/mL for (HIV+/HBsAg+) 

co-infected cohort and 148 [29 – 7.2x104] IU/mL for (HIV+/HBsAg-/anti-HBc+) OBI 

cohort (Table 2.7). The number of samples with drug resistance-associated mutations 

was: 1/30 (3.3%) for HBV monoinfected; 13/138 (9.4%) for co-infected cohort; 6/39 

(15.4%) for OBI cohort. The immune escape-associated mutations were: 3/30 (10%) for 

HBV monoinfected cohort; 31/138 (22.4%) for co-infected cohort; 17/39 for OBI cohort 

(43.6%). Interestingly, the rate of mutations associated to VEM form the OBI cohort was 

significantly higher than the other two cohorts (p = 0.0029 compared to HBV 

monoinfected cohort and p < 0.001 compared to co-infected cohort) (Table 2.8). 
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Figure 2.1 Distribution of codon positions within pol and S genes according with 

their ORFs. The first nucleotide in pol gene coincide with the 3 nucleotide in the S 

gene (p1s3, pink), the second one with the first of the S gene (p2s1, green) and the 

last one coincide with the second in the S gene (p3s2, blue). 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.7 HBV DNA level and range, drug resistance and immune escape mutations observed among the three different 

cohorts; HBV monoinfected, co-infected and OBI cohorts. 

                                                                             P
a

g
e

 6
3 

Cohort Median (IU/mL) Range (IU/mL) 
Drug-resistance mutation in 

pol gene 

Immune escape 

mutations in S gene 

HBV monoinfected 4.5 x 106 14 – 3.6 x108 1/30 (3.3%) 3/30 (10%) 

Co-infected 1.5 x 104 74 – 1.0 x 1014 13/138 (9.4%) 31/138 (22.4%) 

OBI 148 29 – 7.2 x 104 6/39 (15.4%) 17/39 (43.6%) 



   

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.8 Development of drug resistance and inmune escape mutations in each group; HBV monoinfected, co-infected 

and OBI cohorts. There is statistic difference in the variability of the S gene when OBI cohort was compared with the 

other two (p < 0.05).  

                                                                             P
a

g
e

 6
4 

  HBV monoinfected co-infected p-value 

Drug resistance 1/30, (3.3%) 13/138 (9.4%) 0,4686 

VEM´s 3/30 (10%) 31/138 (22.4%) 0,1410 

      

  HBV monoinfected  OBI p-value 

Drug resistance 1/30, (3.3%) 6/39 (15.4%) 0,1283 

VEM´s 3/30 (10%) 17/39 (43.6%) 0,0029 

      

  co-infected OBI p-value 

Drug resistance 13/138 (9.4%) 6/39 (15.4%) 0,3773 

VEM´s 31/138 (22.4%) 17/39 (43.6%) <0,001 
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The total entropy was measured for each nucleotide (p1s3, p3s2, p2s1) respect 

to the S gene, in total 226 codons or amino acids (Appendix 2.2). The HBV 

monoinfected cohort showed less variability than the other two populations finding the 

highest entropy in this group located around codons 25 to 80, which corresponds to the 

first cytosolic loop (CYL-I), including the T-cell domain. In the co-infected cohort, the total 

entropy showed higher entropy in the codons 100 to 150 which indicates a higher 

variability in the AGL, including the B-cell epitope. The OBI cohort showed more 

variability than the co-infected patients inside the AGL, with the affected area stretching 

to codon 190, affecting the whole region of the HBsAg that is exposed to the cytoplasm. 

In all cases, the variability stems mainly from the codon p3s2.  

 

By comparing the total mean entropy at each codon position in the different 

cohort we found the greatest entropy in the p3s2 codon (blue bar in the Figure 2.2 and 

Appendix 2.3). Comparison of the different entropies (p2s1, p3s2, p1s3 and total) 

showed significant differences between HBV monoinfected cohort versus both co-

infected and OBI groups (p < 0.0001). However, when the co-infected and OBI cohorts 

were compared, it was significance just the total entropy (p < 0.001). Furthermore, when 

HBV monoinfected and co-infected naïve cohorts were evaluated, it was found a 

difference in all entropies expect the codon entropy p1s3.  
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Figure 2.2 Representation of the total mean entropy at each codon position (green, 

blue and pink bars) and total entropy (red bars). Total entropy significantly 

increased when comparing the different populations. * Higher entropy respect to 

the monoinfected group; ŧ Higher entropy respect to the co-infected treated group 

(*ŧ p value < 0.05). 
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Next, we conducted a pairwise comparison of the three populations at specific 

nucleotide positions to determine sites where a significant difference in entropy occurred.  

The most variable nucleotide position was p3s2 (n = 14) followed by p1s3 (n = 7) and 

p2s1 (n = 3) (Appendix 2.5). The number of nucleotides with significantly different 

entropies in the p3s2 position, compared to p1s3 and p2s1, was greater when the OBI 

cohort was compared to the co-infected one. As mutations in p3s2 were more likely to 

cause non-synonymous substitutions in the S gene, it suggested that was under 

diversifying selective pressure or was more tolerant of non-synonymous substitutions in 

the OBI cohort. Figure 2.3 depicts some of the nucleotide sites with significantly different 

entropies with the corresponding codon in pol and S. When HBV monoinfected cohort 

was compared either to co-infection or OBI cohorts, there were three positions in 

common, all p3s2 positions within S codons: 64, 127 and 164. An additional p3s2 

position in S codon 56 has differential entropy when HBV monoinfected and co-infected 

cohorts were compared. Comparison of the OBI cohort against HBV monoinfected ones 

showed four additional p3s2 sites in the S codon position 10, 59, 71 and 181. On the 

other hand, the number of affected nucleotide positions was higher when the co-infected 

and OBI cohorts were compared. Nucleotides with significantly different entropies were 

located in codon 10, 56, 101, 127, 134, 143, 154, 164, 174, 177, 203, 207 and 220 of S. 

It was also noticeable that positions 10, 101, and 154 had differential entropies at 2 out 

of the 3 possible positions within its codon. 
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Figure 2.3 Sites with significant differential entropy. A selection of all the sites 

with differential entropies, appendix 2.2 has the full list. Green, blue and pink 

represent p2s1, p3s2 and p1s3 respectively; i) co-infected vs. OBI, ii) HBV 

monoinfected vs. co-infected and iii) HBV monoinfected vs. OBI.  
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We also analysed the site by site selection of codons in both pol and S genes 

between the different cohorts (Table 2.10). In the HBV monoinfected cohort we found 

that amino acids rtE1, rtR110 and sS64 were positively selected (non-synonymous 

substitutions) with respect to the co-infected cohort and rtR110 was positively selected 

when compared to the OBI cohort. In contrast, rtQ215 and sQ101 were non-synonymous 

substitutions in the co-infected and OBI cohorts, whereas sG185 was only a non-

synonymous substitution in the co-infected cohort, in comparison to HBV monoinfected 

one. When co-infected and OBI cohorts were compared, the amino acids rtL66, rtL80, 

rtS117 and sS154 were statistically more variable in the last group. Finally, when the 

non-synonymous were compared in the co-infected naïve cohort with the co-infected 

cohort on treatment and the HBV monoinfected ones, in the co-infected cohort treated, 

the amino acids rtV112, sI4, sS117 appeared as non-synonymous whereas the sQ101 

appeared as non-synonymous substitution in the HBV monoinfected cohort. 



   

 

 

 

 

 

 

Table 2.10 Mutations selected at the pol and S genes when the selective pressure at the codon level was compared for 

the HBV monoinfeced, co-infected and OBI cohorts.  

sS117

Co infected naive

* Non Synonymous substitutions in HBV monoinfected samples

Co infected on treatment Co infected on treatmentHIV-/HBsAg+ HIV-/HBsAg+

rtV112 sI4 sQ101

sS154

rtS117

HIV+/HBsAg+

HIV-/HBsAg+
sS64*

sQ101

sG185

sQ101

HIV+/HBsAg-

rtL66

rtL80

HIV+/HBsAg-

rtE1*

rtR110*

rtQ215

rtR110*

rtQ215

HIV+/HBsAg+ HIV+/HBsAg- HIV+/HBsAg+ HIV+/HBsAg-

Surface GenePolymerase Gene
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4. Discussion 

This study evaluates HBV prevalence within a HIV population from Kumasi 

(Ghana) and the impact of long-term exposure to a lamivudine-based therapy on the 

HBV polymerase and surfaces genes. We established an overall prevalence of HBV 

infection over a population of 6000 HIV-infected patients of 15% (n=318). The 

phenomenon of occult HBV infection (OBI cohort), which is characterized by HBsAg 

serum negative and low HBV DNA was observed in 20% (n=111) of HIV infected 

patients. In both cases, the prevalence is higher than previous data from Sub-Saharan 

Africa 163,164. The HBV genotype E was the most prevalent in both cohorts, as previous 

reported and only 2% of co-infected patients were genotype A 157,167. A high prevalence 

of HBV drug resistance to NAs was observed at the HBV polymerase in both co-infected 

and OBI populations (9% vs. 31%, respectively). Similarly, high rate of mutations at the 

HBsAg was observed in both cohorts of patients (20% vs. 43.5%, respectively). Finally, 

the analyses of the genetic variability within pol and S genes demonstrated a higher 

variability within HIV/HBV co-infected compared with HBV monoinfected patients. 

Interestingly, the genetic variability was even higher in the OBI population which might 

explain the lack of HBsAg detection by diagnostic assays.  

 

The prevalence of chronic Hepatitis B in Ghana has been previously estimated in 

15% and it usually occurs vertically/horizontally during the childhood, similarly to other 

countries in Africa 151. Furthermore, HIV infection is also common in Ghana (3.6% in 

2003) 150. However, no data has been shown about prevalence of HIV/HBV co-infection 

due to the lack of routine test for HBV in this area and, in general, in Africa. 

Nevertheless, due to the high prevalence of HIV/HBV co-infection found in other African 

countries (up to 20%), a high prevalence could be also expected for the Ghana 
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population. From a total of 6000 HIV positive patients under clinical follow-up in Kumasi, 

we have established for first time an overall prevalence of HIV/HBV co-infection of 15%. 

Additionally, we found a prevalence of HBV occult infection of 20%, which pose the risk 

of severe HBV reactivation as it has been previously documented 32,104,165.  

 

The lack of routine HBV testing among the HIV population is the main cause of 

the large number of patients receiving long-term treatment including 3TC as the only 

active drug against HBV infection. The use of 3TC monotherapies against HBV has 

been shown to be inadvisable in HIV/HBV co-infection because favoured the faster 

development of HBV drug resistance 153. Indeed, several studies have reported that HBV 

drug resistance emerged faster in HIV/HBV co-infected (90%) compared with HBV 

monoinfected (67%) after 4 years of 3TC-monotherapy treatment 3,38,45,152,153. The 

selection of mutations at both pol and S genes is generally associated with poor clinical 

outcomes due to flares on liver enzyme, cross-resistance, transmission of drug-resistant 

strains, development of occult forms of chronic hepatitis B and evasion of vaccine 

protection 168. Therefore, it is important the early detection of virological failure and the 

detection of resistance mutations in HIV/HBV co-infected patients under 3TC-based 

therapies. This issue is of especial interest in countries such as Ghana with limited 

treatment options. Overall, the prevalence of resistance mutations within the pol gene 

was high for both co-infected and OBI cohorts (9% vs. 31%). In the co-infected cohort, 

all mutations were related to 3TC (rtL80I, rtV173L, rtL180M or rtm204IV) and in the OBI 

cohort was also found mutations associated with resistance to other NAs (rtI169L, 

rtQ215H, rtN236I, rtN238H). It was also found the mutation rtA194V in combination with 

rtV173L. This mutation has been previously identified in two HIV/HBV co-infected 

patients failing TDF in combination with rtL180M and rtM204V. However, subsequent in 
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vitro assays could not confirm its association with TDF resistance. Currently, this is still 

matter of discussion among scientists 57–60.  

 

Regarding the S gene, a high prevalence of major immune escape mutants was 

observed in the OBI than in the co-infected cohort (20 vs. 43.5%, respectively). These 

included the most common vaccine escape mutants, sD144E/A or sG145R/A and other 

as sQ101HR, sQ129H and sF134Y. While mutations sQ101H and sQ129H were 

associated with vaccine breakthrough, mutations sF134Y in combination with sI110L 

and sT126I was identified previously in OBI patients 169,170. Overall, we found multiple 

amino acids substitutions inside the AGL region. These results are agree with those 

obtained in previous studies that found an average of 4.29 residues substitutions within 

the AGL that was also associated with OBI 170,171. However, in another study performed 

in Ghana population among HBV genotype E patients, the AGL was mainly wild type 157. 

Therefore, the high number of mutations within the S gene found might explain the lack 

of HBsAg detection among the OBI cohort either due to impair viral fitness or by an 

impaired HBsAg secretion/antigenicity. 

 

The HBV overlapped genome produce restriction in the HBV variability since the 

selection of specific mutations within HBV polymerase or S genes must generate 

infectious HBV particles. In this context, mutations selected at the polymerase could 

enhance the HBV viral fitness and produce at the same time a different folding in the 

HBsAg leading to escape from the immune response. These mutations would provide an 

advantage over the wt and would be dominant after a while. Interestingly, we found a 

naive patient harbouring the triple mutant rtV173L, rtL180M, rtM204V which leads to a 

double mutant sE164D and sI195M. This mutation pattern is associated with resistance 

to 3TC and FTC and the mutations within the S gene confer an immunological evasion 
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similar to sG145R, which is one of the most common vaccine escape mutant described 

so far 127. This finding suggest the transmission of HBV primary resistance as previously 

has been described in newly diagnosed HIV patients 148,149. Therefore, there is a 

potential risk of transmission of 3TC-resistance strains mainly in areas where HBV and 

HIV are highly prevalent. Furthermore, the long-term exposure to a 3TC-based might 

enhance this problem taking into account the high rate of resistance to 3TC found in this 

population.  

 

The HBV genetic evolution varied depending on whether infection is acute or 

chronic due to the different immune pressure. This should be more critical in HIV/HBV 

co-infected patients since HIV infection does alter the course of HBV infection and 

HIV/HBV co-infection is associated with higher rates of HIV replication. However, little is 

known about the role of HIV on the HBV genetic evolution. We evaluated the HBV 

genetic variability into pol and S genes in both HIV/HBV co-infected and a HBV 

monoinfected cohort in Ghana. The Shannon entropy method was used for this purpose, 

which is a measure of the ability to guess what nucleotide or amino acid would be in the 

next sequence you took from the population. The entropy was found significantly 

different when HIV was present; this influence of HIV in the HBV variability was mainly in 

the codon p3s2, within both pol and S genes. The variability observed in p3s2 suggests 

that S gene is able to produce more non-synonymous substitutions, which could explain 

the high rate of OBI in our cohort. Furthermore, HBV genetic variability is also influenced 

by several factors including the lack of a proofreading function in the RT, overlapping 

ORF aforementioned and external factors which can vary from the race of the patient to 

the drug’s characteristics (potency, adherence, long-term treatments, etc.) 19,30,67. 

 

 



HBV genetic variability in HIV co-infected patients  2012

   

 Page 75 

 

 

In summary, we have shown the problem of using 3TC as monotherapy against 

HBV infection in Ghana, due to the high level of HIV/HBV co-infection (15%) and occult 

HBV infection (20%). The lack of HBV screening in the routine diagnostic tests leads the 

widely use of a 3TC-based HAART among HIV/HBV co-infected patients favouring the 

selection of HBV drug resistance. Moreover, we found a high HBV genetic variability in 

HIV/HBV co-infected population compared with HBV monoinfected subjects. Thus, it 

would be recommend the implementation of HBV testing in the routine diagnostic tests 

and promote the use of alternatives therapies to 3TC to favor the virological success and 

to avoid the selection of resistance mutations.  
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CHAPTER 3 

Clinical response & genetic evolution of HBV in a 

HIV/HBV co-infected population from Malawi receiving a 

3TC-based HAART 
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1. Introduction 

 

The Republic of Malawi is a small country located in southeast Africa bordered by 

Zambia, Tanzania and Mozambique. It is an endemic region for HIV where, in some 

areas, can reach up to 76% prevalence. Viral hepatitis is common in HIV individuals in 

Malawi and prevalence rates of HIV/HBV co-infection in Malawi have reached up to 

16.9% in certain areas 172–174. The natural history of HBV infection in HIV infected 

patients is characterized by high levels of HBV viremia, increased rates of chronic active 

infection, reactivation episodes and fibrosis progression. In addition, side effects caused 

by antiretroviral drugs such as hepatotoxicity are also increased 175,176. Since HAART 

was established, hepatitis-associated liver disease has become one of the leading non-

AIDS causes of mortality in HIV patients in both Europe and North America 177. 

 

A HIV/HBV co-infected population was studied from the largest city in the 

country, Blantyre, located in the south of Malawi. The national Antiretroviral Therapy 

program for the treatment of HIV/HBV co-infection includes nevirapine, stavudine and 

3TC as the standard first-line regimen. Nevirapine is known to cause hepatotoxicity, 

which is increased by viral hepatitis co-infection 178,179. In the same way, Stavudine is 

related with hepatic steatosis that may compound liver toxicities 180. 3TC is an antiviral 

drug active to both HIV and HBV; however, when it is used as sole agent against HBV, 

in both mono and co-infection, is able to produce a high rate drug resistance 3,38,45,153. 

Previously, HAART toxicity, morbidity and mortality was studied in patients accessing 

this program for a year 181. They showed that HIV virological failure was similar in HIV 

mono-infected and co-infected patients and reported hepatotoxicity as uncommon event 

using this regimen. 
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We have investigated the effect of 3TC used as sole antiviral drug against HBV 

infection under HIV infection. We quantified both HBV DNA and HIV RNA in the serum of 

patients at three different time points of the following up (week 0/untreated, 24 weeks 

and 48 weeks during treatment). We also evaluated the efficacy of treatment according 

to the HBeAg serostatus and finally we carried out the amplification and sequencing of 

pol gene of patients with detectable viral load in order to detect drug resistance 

mutations. Furthermore, we also analysed the Surface gene to characterize potential 

VEM´s.  

 

2. Material and methods 

 

2.1 Study 

 

A longitudinal study was performed in a cohort recruited at the outpatient ART 

clinic of Queen Elizabeth Central Hospital (QECH) in Blantyre, in the southern region of 

Malawi, who started the standard first-line antiretroviral regimen 

(stavudine/lamivudine/nevirapine) in 2007-8. Three different time points (week 0, week 

24 and week 48) were studied. Parameters analysed at each time point included HBsAg, 

and HBeAg serostatus, HBV virological failure, HBV suppression, HIV virological 

outcome and emergence of HBV drug resistance. In addition, Hepatitis Delta Virus 

(HDV) infection was tested within this cohort. The HIV/HBV co-infected patients were 

subsequently stratified as HBeAg positive or negative in order to evaluate the difference 

in treatment efficacy as well as rate of development of drug resistance in both 

subgroups.   
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2.2 Serology. 

 

1117 serum samples from HIV patients from Blantyre were tested in the Royal 

Liverpool University Hospital in Liverpool, UK, for the presence of HBsAg using a 

sensitive EIA (Biokit, Barcelona, Spain). HBsAg positive patients (n = 133, 12%) 

underwent further testing at the Department of Virology at Royal Free Hospital in 

London. At this hospital, samples were tested for HBeAg and antibodies (anti-HBe) by 

the Architect assay (Abbott Diagnostics).and Hepatitis Delta Virus (HDV) by ETI-AB-

DELTAK-2 (Diasorin). 

 

2.3 HBV DNA & HIV RNA Quantification 

 

HBV DNA was extracted from plasma samples by QIAsymphony Virus/Bacteria 

Midi Kit Kits (QIAGEN, Crawley, UK) and quantified by an in-house TaqMan real-time 

PCR assay. The in-house assay has been previously calibrated against the 2nd World 

Health Organisation (WHO) International Standard for HBV DNA and showed a lower 

limit of detection of 14 IU/ml 159.  

 

HIV RNA was extracted from plasma by High Pure Viral RNA Kit (Roche 

Diagnostics Systems, Basel, Switzerland) and quantified by the Abbott Real Time HIV-1 

assay with a limit of quantification of 40 copies/mL. However, some samples were 

diluted 1:5 previous HIV viral load testing as volume was insufficient otherwise. 

Therefore, the limit of quantification for such samples was increased to 200 copies/mL. 
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2.4 Amplification & Sequencing 

 

Samples with detectable HBV DNA underwent population sequencing of the 

polymerase gene reverse transcriptase (RT) domain (amino acids 1 to 344) and the S 

gene (amino acids 1 to 226) as previously described (Chapter 2, page 46-48). 

 

2.5 Analysis 

 

2.5.1 Clinical response 

 

Outcome associated parameters were defined as current guidelines, these are 

the EASL the AASLD 34,182. HBV Virological response was defined as undetectable HBV 

DNA by real-time PCR assay within 48 weeks of therapy. HBV partial virological 

response was defined as a decrease in HBV DNA of more than 1 log10 IU/ml but 

detectable HBV DNA by real-time PCR assay at week 24 or 48. HBV virological failure 

was defined as a confirmed increase in HBV DNA level of more than 1 log10 IU/ml 

compared to the nadir HBV DNA level on therapy. Finally, HIV virological failure was 

defined as HIV RNA > 50 copies/mL at week 24 or 48. 

 

2.5.2 Genetic characterization of pol/S genes 

Analysis of drug resistance and VEM´s was done following the literature and 

databases as shown in the previous chapter (page 50). 
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2.5.3 Statistical 

 

The HBV DNA and HIV RNA, measured as a continue variables, were compared 

using the Mann-Whitney U test. The Fisher’s exact test was used to compare the other 

parameters of the study according to HIV or HBV data, including the number of patients 

who had viral load undetectable, had a partial response to the treatment, failed to the 

treatment or were HBeAg positive or negative. Multivariate analysis was carried out to 

establish the predictor of HBV treatment response. Differences were considered 

significant when P values were < 0.05. Statistical Analysis was performed using SAS 

Institute Inc., SAS 9.1 Cary, NC: SAS Institute Inc., 2008 (v 9.1, SAS Inst. Inc, PROC 

REG and AUTOREG). 
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3. Results 

 

3.1 Population and serology 

 

133 HIV patients were HBsAg positive out of 1117 from Blantyre, Malawi, 

establishing the prevalence of 12% in our cohort. Three time points were available for 

33/133 (25%) patients, 53/133 (40%) patients had at least two time points and 47/133 

(35%) patient had just one of the time points. Overall, we had 111/133 (83%) samples at 

week 0, 91/133 (68%) at week 24 and 50/133 (38%) samples at week 48 (Figure 3.1). 

The serology for HBeAg markers were carried out successfully in 125 patients (94%). 

The HBeAg distribution was as follow: 62/125 (49.6%) patients were HBeAg+/anti-HBe- 

and 39/125 (31.2%) were HBeAg-/anti-HBe+. Additionally, 2/125 (1.6%) patients were 

positive for both markers and 22/125 (17.6%) were negative for both. The serology for 

presence of HDV antibodies resulted in one positive patient out of 128 (0,8%). The 

genotypes distribution showed that most of the patients were found to be infected by 

genotype A1 96/97 (99%) and only 1/97 (1%) by genotype E (Table 3.1). 
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Figure 3.1 Patients and samples received from Blantyre, Malawi, via 

University of Liverpool, UK.  
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Table 3.1 Serological characteristics for the entire HIV/HBsAg positive population. 

HBeAg serostatus, HDV co-infection and genotype characterization are shown.  

 

 

 

 

 

 

 

 

 

 

 
  

Sample size %

133

125 62 49,6

125 2 1,6

125 39 31,2

125 22 17,6

128 1 0,8

97 96 99

97 1 1

Table 4.1 Population characteristics

HBsAg positive patients

HBeAg+/anti-HBe-

HBeAg+/anti-HBe+

HBeAg-/anti-HBe+

Table 1. Serological characteristics for the entire HIV/HBsAg positive 

population.

Genotype A1

HBeAg-/anti-HBe-

HDV Ab

Genotype E
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3.2 HBV and HIV viral load results 

 

HBV DNA was detected in 104/111 (94%) patients at week 0, with a median 

[range] of 21.3x106 [22.7x101 - 63.5x107] IU/mL; in 53/91 (58%) patients at week 24, with 

a median [range] of 43.4[14.0 - 67.4x104] IU/mL; and in 20/50 (40%) patients at week 48, 

with a median [range] of 14.0 [14.0 - 38.5x107] IU/mL. HIV RNA was detected in all 

patients tested (76/111, 68%) at week 0, 10/91 patients (11%) at week 24 and 4/48 (8%) 

patients at week 48. Evaluation of HBV DNA after 48 weeks showed that 60% of 

patients were responders to 3TC-based HAART (Figure 3.2). Moreover, the median HBV 

DNA quantified showed a statistically significant decrease from week 24 to week 48 (p = 

0.0001). Despite these results, 32% of patients showed HBV virological failure at week 

48.  

 

The median [range] HIV viral load at each week was; 4.02 [2.75 - 2.07] log10 

copies/mL at week 0, 2.3 [2.3 - 2.3] log10 copies/mL at week 24 and 2.3 [2.3 - 3.58] log10 

copies/mL at week 48, respectively (Table 3.2). The evaluation of HIV RNA showed 

treatment response close to 90% at week 24 and up to 96% at week 48. Therefore, 

there was no difference between values of HIV viral load from week 24 to week 48 (p = 

0.3821). 

 

 

 

 



   

 

 
 
 
 

 

 

 

 

Table 3.2 Clinical response to both HBV and HIV on the overall study population during 48 weeks. 

          n Week 0 n Week 24 n Week 48 p-value 

HBV DNA , IU/ml, median (range) 104 
21.3x106  

[22.7x101 - 63.5x107] 
53 

43.4  
[14.0 - 67.4x105] 

20 
14.0 

 [14.0 - 38.5x107] 
0,0001 

Patients with HBV DNA < 14 IU/ml, 
number (%) 

111 7 (6.3) 91 38 (42) 50 30 (60) 0,0523 

HBV partial virological response, 
number (%) 

- - 91 44 (48) 50 4 (8) -  

HBV virological failure, number (%) - - 91 - 50 16 (32) -  

HIV RNA , Log copies/mL,      median 
(range) 

76 
4.02  

[2.75 - 2.07] 
91 

2.3  
[2.3 - 2.3] 

48 
2.3  

[2.3 - 3.58] 
0,3821 

Patients with HIV RNA < 2.3 Log cp/mL, 
number (%) 

- - 91 81 (89) 48 44 (91.7) 0,7709 

HIV virological failure, number (%) - - 91 - 48 4 (6.3) -  

                                                                            P
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3.3 HBeAg serostatus 

 

We stratified the data according to the HBeAg serostatus in order to study in 

detail the response to HAART and the potential development of drug resistance (Table 

3.3).  

 

At week 0, patients who were HBeAg positive had higher median HBV DNA viral 

load (p<0.0001) than those that were HBeAg negative. In accordance to this result, the 

number of patient who had not HBV DNA detectable was higher in the HBeAg negative 

group (2% vs. 14%, p = 0.0185) (Figure 3.2). Regarding HIV status, all samples tested in 

both group had HIV RNA detectable with a similar viral load.  

 

At week 24, the median HBV DNA viral load was still significantly lower in the 

HBeAg negative group (p < 0.0001) as well as the number of patients that had HBV DNA 

under the limit of detection, reaching 70% (9% vs. 70%, p < 0.0001). In this sense, the 

number of patients with partial virological response was higher in the HBeAg positive 

group because the higher viral load than HBeAg negative group (84% vs. 15%, p < 

0.0001). Furthermore, due to the higher level of viral load, this group also showed a 

higher proportion of patients who developed drug resistance (16% vs. 2%, p = 0.0270). 

The HIV data showed a similar result in both groups with most of the patients responding 

to the treatment (84% vs. 94%). 

 

HBV response to treatment and drug resistance development were finally 

evaluated at week 48. Following to previous weeks, the median HBV DNA was higher in 

the HBeAg positive group (p = 0.0009) and the number of patients with undetectable 
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viral load was lower (23% vs. 96%, p< 0.0001) (Figure 3.2). In this group, both the HBV 

virological failure (59% vs. 4%, p < 0.0001) and the HBV drug resistance development 

(68% vs. 4%, p < 0.0001) were significantly than in HBeAg negative group. Therefore, 

HBeAg and HBV DNA viral load are the main predictors in failure treatment and drug 

resistance development. Moreover, HIV virological response rate was quite 

homogeneous in both groups (9% vs. 4%, p = 0,6078).  

 

In the multivariate analysis the only independent predictor to HBV response at 

week 48 was the HBeAg negative sero-status in comparison with the HBV DNA [OR: 

0.028 (0.003-0.278), p < 0.002]. 



  

 

 

 

 

Table 3.3 HIV and HBV status according to HBeAg serostatus. 

Week              n HBeAg+/anti-HBe- n HBeAg-/anti-HBe+ p-value 

0 

HBV DNA , IU/ml, median (range) 
62 

12.4x10
7
  

[16.5x10
4
 - 82.5x10

7
] 

38 
42.5x10

2
  

[10.9x10
1
 - 10.3x10

7
] 

<.0001 

Patients with HBV DNA < 14 IU/ml, number (%) 63 1 (2) 44 6 (14) 0,0185 

HIV RNA , Log copies/mL, median (range) 38 
4.22  

[3.02 - 4.88] 
36 

3.92  
[2.73 - 5.08] 

0,1515 

HIV RNA detectable, number (%) 38 38 (100) 36 36 (100) 1,0 

24 

HBV DNA , IU/ml, median (range) 
44 

37.3x10
2
  

[14.0 - 21.9x10
5
] 

47 
14.0  

[14.0 - 48.9x10
1
] 

<.0001 

Patients with HBV DNA < 14 IU/ml, number (%) 44 4 (9) 47 33 (70) <.0001 

HBV partial virological response, number (%) 44 37 (84) 47 7 (15) <.0001 

HBV drug resistance 44 7 (16) 47 1 (2) 0,0270 

HIV RNA , Log copies/mL, median (range) 44 
2.30  

[2.30 - 2.30] 
47 

2.30  
[2.30 - 2.30] 

1,0 

HIV RNA detectable, number (%) 44 7 (16) 47 3 (6) 0,1885 

48 

HBV DNA , IU/ml, median (range) 22 
73.2x10

5
  

[14.0 - 47.4x10
7
] 

23 
14.0  

[14.0 - 14.0] 
0,0009 

Patients with HBV DNA < 14 IU/ml, number (%) 22 5 (23) 23 22 (96) <.0001 

HBV partial virological response, number (%) 22 4 (18) 23 0 0,0491 

HBV virological failure, number (%) 22 13 (59) 23 1 (4) <.0001 

HBV drug resistance 22 15 (68) 23 1 (4) <.0001 

HIV RNA , Log copies/mL, median (range) 22 
2.30  

[2.30 - 4.45] 
23 

2.30  
[2.30 - 2.30] 

1,0 

HIV virological failure, number (%) 22 2 (9) 23 1 (4) 0,6078 

                                                                             P
a

g
e

 8
9 
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Figure 3.2 HBV virological response at week 24 and week 48 for the entire 

population and according to its HBeAg serological status.  
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3.4 Genetic characterization of pol/S genes 

 

Sequencing of the pol gene was attempted in all samples with detectable viral 

load. Overall, 93/104 (89 %) samples at week 0, 33/53 (62%) samples at week 24 and 

18/20 (90%) at week 48 were successfully sequenced and analysed. The alignment of 

the wt sequences showed a consensus sequences corresponding to genotype A1.  

 

3.4.1 Polymerase gene 

 

In total, 27 different patients showed at least one drug-associated resistance 

mutation at some time point. Prevalence of HBV drug-associated resistance mutations 

was as follow: 6/104 (6%) at week 0, 8/53 (15%) at week 24 and 17/20 (85%) at week 

48. The evolution of mutations in each patient is shown in the table 3.4. 

 

At week 0, naïve patients showed HBV drug resistance mutations associated to 

the ETV pathway; rtM250L in 1/104 (2%) and rtI169L in 2/104 (4%) 55,56. At week 24, 

secondary mutation rtI169L appeared in one patient (2%) in combination with rtM204I, 

which confers primary drug resistance. Another patient showed rtI169L alone (2%). 

Furthermore, the primary drug resistance rtM204VI emerged in 6 more patients (11%). 

At week 48, different drug resistance combinations were found showing the low genetic 

barrier of the 3TC, which is enhanced in HIV co infected patients 153. The combination 

rtI169L, rtV173L, rtL180M, rtM204V was found in 1/20 (5%) and rtL80I, rtL180M, 

rtM204IV in 2/20 (10%). In the other 14 patients, we found five different patterns of 

mutations as rtL180M, rtA181S, rtM204IV in 2/20 (10%), rtL80I, rtM204I in 1/20 (5%), 

rtL180M, rtM204V in 8/20 (40%), rtV173L, rtL180M, rtM204V in 2/20 (10%), rtI169L, 
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rtV173L, rtL180M, rtT184I, rtM204IV in 1/20 (5%). Most of them harboured secondary 

mutations that restore the viral fitness pointing the high viral load out observed in these 

samples.  

 

3.4.2 Surface gene 

 

The genetic evolution on the Surface gene was also studied since both genes are 

overlapped finding mutations associated to immune escape (Table 3.5). It is necessary 

highlight that, in most cases, these mutations did not appeared alone since they were in 

combination with others along the gene. 

 

Few mutations increased its prevalence at the end of the follow up. These 

included sQ101K (up to 10%), sT118MRK (up to 20%), sA128V (up to 10%) and 

sG145R (up to 10%). It is noticeable that the most common immune escape mutant, 

sG145R, appeared in two naïve patients. In another patient appeared at week 24 but 

was reverted at week 48 and another patient selected it at week 48. The double mutant 

sE164D + sI195M appeared at week 48 with a prevalence of 20% due to the 

development of triple 3TC-resitance rtV173L + rtL180M + rtM204V 121.  

 

Other mutations were also found with possible relation to immune escape. 

However, similar prevalence during the three different time points was observed for 

these mutations, which included sL109IP, sP120TS, sT126SN, sQ129R, sG130DNS, 

sN131KS, sM133IT, sF134L, sP142LS, sT143M, sD144EA. 



  

 

 
 
 

 

Table 3.4 Evolution of mutations associated to drug resistance in the polymerase gene at each time point. 

Overall, 27 different patient showed some mutation associated to drug resistance at least in one time point. (NA: Not 

Available, wt: wild type) 

 
 Week 0 Week 24 Week 48 

Sequences (n)  93 33 18 

Samples detected  104 53 20 

% Drug resistance  6 15 85 

Patient (no.)           

1  rtM250L   NA 
   

NA 
  

2  rtM250L   wt 
   

NA 
  

3  rtI169L    rtI169L 
   

NA 
  

4  rtI169L   rtI169L, rtM204I 
 

rtI169L, rtV173L, rtL180M, rtM204V 

5  rtI169L   wt 
   

wt 
  

6  rtI169L   NA 
   

NA 
  

7 to 10  wt rtM204I  
  

NA 
  

11  wt rtM204V 
  

NA 
  

12  wt rtM204V rtL80I, rtL180M, rtM204IV 

13, 14  NA/wt   wt 
 

rtL180M, rtA181S, rtM204IV  

15  wt   NA 
 

rtL80I, rtM204I 

16 to 23  wt   wt 
 

rtL180M, rtM204V  

24, 25  wt   wt 
 

rtV173L, rtL180M, rtM204V  

26 
 

NA   wt 
 

rtI169L, rtV173L, rtL180M, rtT184I, 
rtM204IV 

27  wt   wt 
 

rtL80I, rtL180M, rtM204IV 

                                                                             P
a

g
e

 9
3 
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  Week 0   Week 24   Week 48 

Sequences (n) 93   33   18 

Samples detected 104   53   20 

            

Mutation           

sQ101K 3   6   10 

sL109IP 3   2   5 

sI110L 1   -   0 

sT118MRK 7   4   20 

sP120TS 6   2   5 

sT126NS 2   2   - 

sA128V 1   2   10 

sQ129R 3   4   - 

sG130DNS 3   2   - 

sN131KS 2   2   5 

sM133IT 2   -   - 

sF134L 3   4   5 

sP142LS 3   2   - 

sT143M 2   4   - 

sD144EA 2   2   - 

sG145R 2   6   10 

sE164D, sI195M -   -   20 

 

 

Table 3.5 Prevalence (%) of immune escape associated mutations in the Surface 

gene at each week  
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4. Discussion 

 

In this study we have evaluated the efficacy of 3TC-based HAART during 48 

weeks of follow-up within a HIV/HBV co-infected population from Blantyre, the largest 

city of Malawi. We assessed the HBV virological outcomes at three different points: 

before HAART initiation, at week 24, and at week 48. Moreover, the HBV genetic 

variability in both pol and S genes was evaluated. We also established the prevalence of 

HIV/HBV co-infection in this region (12%), which was similar to previous reports 172–174. 

The overall virological response (HBV-DNA < 10 IU/mL) was at week 48 was 60%. 

However, when patients were stratified by HBeAg sero-status, HBV virological reponse 

was significantly lower in HBeAg positive patients compared with HBeAg negative (23% 

vs. 96%, respectively). The multivariate analysis identified HBeAg as the only 

independent predictor to HBV response at week 48 after one year of 3TC-based HAART 

in HIV/HBV co-infected patients. Regarding HBV variability, we observed a very high 

incidence of 3TC resistance after one year of treatment (85%) which is quite high in 

comparison with previous reports.  

 

Similarly to other countries in South Africa, Malawi is a highly endemic country for 

both HIV (up to 76%) and HBV chronic infections (17.5%). HIV/HBV co-infection ranged 

from 10 to 20% 172–174. We had established a prevalence of HIV/HBV co-infection in 

Blantyre of 12% among the HIV population randomly selected for HBV testing. The 

national antiretroviral regimen in Malawi included 3TC as the unique drug active against 

HBV. 
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The virological success of treatment against HBV infection using 3TC as 

monotherapy might be highly compromise for the high risk and incidence for the 

development HBV resistance. In this study population, we observed that 60% of patients 

reached HBV virological response at week 48. Interestingly, the proportion of patients 

who achieved virological response was significantly higher in HBeAg negative patients 

compared with HBeAg positive (96% vs. 23%, respectively, p < 0.0001). Most part of 

patients showed undetectable HIV viral load at week 48 which demonstrated the 

compliance to the regimen. In the multivariate analysis we identified HBeAg negative as 

the only independent predictor to HBV response at week 48 (p < 0.002). This fact, likely 

lead to higher HBV DNA levels in HBeAg positive patients (p = 0.0009) and 

consequently, more probability for the development of HBV drug resistance at week 48 

in HBeAg positive compared with HBeAg negative patients (68% vs. 4%, respectively p 

< 0.0001). The association between the HBeAg positive sero-status and a higher risk for 

the development of HBV drug resistance has been previously described by Ramos et al. 

which found that nearly 90% of patients who had developed 3TC resistance were 

HBeAg positive 183,184. 

 

We also found a high level of HBV drug resistance development after less than 

one year of 3TC-based HAART (85%). This rate is worrying in comparison with previous 

reports that established a similar prevalence of 3TC-resistance (>80%) but after 4 years 

of treatment in HIV/HBV co-infected patients 46,152,185,186. At baseline (before HAART 

initiation), the overall prevalence of HBV drug resistance mutations to NAs in the study 

population was low (6%). Mutation rtM250L (2%) and rtI169L (4%) related with 

resistance to entecavir were the only found at baseline. However, these mutations alone 

were not able to confer HBV drug resistance to NAs. The presence of HBV drug 

resistance mutations in naïve patients shows the risk of transmission of these strains. 
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There are several articles that previously have shown HBV drug resistance mutations in 

newly diagnosed patients. Thibault et al. showed in 2002 the first report of 3TC-

resistance transmission in a HIV infected patient who developed acute hepatitis 187. 

Additionally, within a Spanish cohort, two patients recently diagnosed were found 

infected with strains which harboured rtM204V and later were also found four more 

patients (rtL180Mx2, rtL80V, rtV173L) 148,149. Recently, one naïve patient harbouring he 

triple mutant (rtV173L, rtL180M, rtM204V) was identified in Japan 188 and 13 HBV 

monoinfected patients who were also naïve showed HBV drug resistance mutations 

(rtM204V+rtL180Mx3, rtL80Vx2, rtV173L, rtI233Vx4, M250LVx3) 189.  

 

During the follow-up, the pattern of HBV drug resistance mutations recognized 

was mainly associated with 3TC resistance. At week 24, the main drug resistance 

mutation selected was rtM204IV in 87.5% of patients (7/8). At week 48, 8 different 

patterns of mutations were detected which included the triple mutant (rtV173L, rtL180M, 

rtM204V) in 20% of patients (4/20). Additionally, we found mutations that potentially 

confer cross-resistance to ETV such as rtT184I (1/20, 5%) or rtI169L (2/20, 10%). 

Interestingly, one patient showed an interchange between Isoleucine and Valine at 

position 204 from week 24 to 48. This has been recently explained by Svicher et al. who 

pointed out that this interchange could be an easy phenomenon since rtM204I would 

have a higher genetic barrier because it produces a stop codon within the S gene at the 

same time 61,190,191. Furthermore, as expected, all patients who developed the triple 3TC-

associated resistance (n = 4, 20%), produced the double mutation (sE164D, sI195M) in 

the S gene. These mutations are capable to avoid the immunologic response at the 

same level of sG145R 124,134. The mutation rtV173L more likely restores the replication 

capacity in strains that previously harbours mutations rtL180M and rtM204V 192. A 

previous report by Matthews et al. found a higher prevalence (17%) of the triple 3TC 
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resistance mutation (rtV173L, rtL180M, rtM204V) in HBV patients infected with non-

genotype A. We could not evaluate this association due to the homogenous nature of 

our population which was also similar to previous studies in the area (genotype A1, 99%) 

186,193,194. Another study by Ramos et al. showed a high prevalence of 3TC-associated 

resistance mutations among patients after 34 months (47%) which was more frequently 

in HBeAg positive patient with higher HBV DNA levels 183. The genetic analysis of the 

Surface gene showed a high variability after 48 weeks because the drug pressure; these 

mutations included sP120TS, N131KS, sM133IT, sF134L, sD144EA, sG145R and the 

double mutant sE164D, sI195M among others 61,87,122–125,127,130,162. The fact whether a 

single mutation is able to produce a conformational change in the AGL or it is necessary 

more than one mutation for being clinically relevant is not totally clear. Interestingly, we 

found in a naïve patient the most common mutation sG145R; this mutation is able to 

avoid the immune response and has been widely identified among vaccinated patients 

that are infected by HBV. Unfortunately, we could not confirm if the patient was 

previously vaccinated. 

 

The data of HDV prevalence in Africa are scarce and seems to differ among 

regions 195,196. Transmission of Hepatitis Delta has been related to Mediterranean areas 

and intravenous drug addicts with HBV infection. After HBV vaccination programmes 

were implemented, the HDV infection significantly decreased in Europe. However, after 

the 90s when immigration came from areas where HBV is endemic such as Central 

Africa, Eastern Turkey, Central Asia, some Eastern European countries and some 

regions in Brazil have increased the prevalence of HDV 196–199. We have estimated the 

first data of HDV infection (0,8%) in the region. Since sexual is the main route of 

transmission for HBV in our population might explain the very low prevalence of HDV 

infection observed in our population compared with that reported in other countries. 
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In summary, we have shown a high rate of HBV virological response to a 3TC-

based HAART at week 48 in a HIV/HBV co-infected population from Malawi especially in 

those HBeAg negative patients. Indeed, HBeAg negative was identified as the unique 

independent predictor of HBV virological response. These data suggest that the HBeAg 

test might be considered at the beginning of HIV/HBV co-infection therapy to avoid the 

rapid selection of 3TC resistance mutations. In case of HBeAg positive patients the use 

of more potent drugs such as TDF instead of 3TC it would be desirable. 
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CONCLUSIONS 

 

 

1. There is a high prevalence of HIV/HBV co-infection in Kumasi, Ghana (15%) and 

Blantyre, Malawi (12%). In addition, a high prevalence of occult HBV infection in 

HIV positive patients was observed in Ghana (20%). 

 

2. In Ghana, the overall prevalence of resistance to nucleos(t)ide analogues in the 

polymerase gene was higher in the occult HBV than in the HIV/HBV co-infected 

cohort (9% vs. 31%, respectively). Similarly, the rate of mutations in the Surface 

gene was also higher in the occult HBV cohort (20% vs. 43,5%).  

 

 

3. The genetic variability was higher in the S than in the polymerase gene among 

HBV monoinfected, HIV/HBV infected and occult HBV cohort. A higher variability 

was generally observed in both HIV co-infected and occult HBV cohorts. This 

result in the latter cohort might explain the HBV diagnostic failure either by a 

defect in the secretion of HBsAg and/or by an impaired of viral fitness.  

 

4. In Malawi, higher rates of HBV virological response (HBV DNA < 14IU/mL) after 

48 weeks of lamivudine-based HAART was observed in HBeAg negative 

compared with HBeAg positive patients (96% vs. 23%, respectively, p < 0.001). 

Indeed, HBeAg was recognized as the unique independent predictor of HBV 

virological response at week 48.  
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5. A high level of HBV resistance (85%) to nucleos(t)ide analogues was observed at 

week 48 in patients with detectable HBV-DNA levels. These results highlight the 

high risk of development drug resistance using lamivudine-monotherapies in 

HIV/HBV co-infected patients. 
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APPENDIX 
 

APPENDIX 1: ADDITIONAL FIGURES AND TABLES OF INTEREST. 

 

HBV VL 
(IU/mL) 

Gen pol variations Gen S variations 

56,108 V27I - 

3,769 R120K, I162IT, R266T, M267L  G112R, T126I, L127P, S154P, Q181R, P214H  

1,877 V142I, S143T, S223A, S256R, R266T, M267L  Q129H, M133I, F134L, E164A  

784 S53AP, S54APT, Y221FY, I233IL 
T57N, Y206F, L209W, F212L, L216S, P217L, 

V224A  

772 H234Q, R266T, M267Q V14A, S31NS, Q101H, S143L, D144E  

593 
K11EQ, R18K, A38E, S53N, L77V, S109Q, 

N123D, I162S, V173L, A211P, Q215H, L217R 

E2D, T5I, G10KR, Q30K, A45T, Q101K, T125M, 
L127P, S140L, D144E, E164V, S154AV, S174N, 

L175S, V177A, N207T, L209V, F220C 

510 S53I, P130Q, E263D  A45S  

393 N236I, N279H  
N59S, Q101R, T125M, L127P, E164A, V177A, 

P178L 

367  L127P, G145A, I213T 

352 V27I, S53N A45AT 

325 L91I, N118T, P130Q, V173M, S246C, R266K  S3N, L49P, I110L, P217L 

272 R153KQ, R266T, M267L  D144E, G145R, P178L 

263 
V112I, H124Y, S143T, I162T, I187L, Q215H, 

S219A, S256C  
G10E, V96G, M103I, F134L, S136L, S154P, E164G, 

Q181R, N207T, S210K, P217L, V224A  

230 
K11Q, R18K, N118T, H124Q, N139S, I169L, 

L175I  

E2D, G10R, S34L, N40S, P56L, Y100C, Q101H, 
I110L, T116N, T125M, T126I, L127P, T131A, 

D144E, N146S, T148I, K160NS, E164G, W165L, 
S167L, R169H, S174N, Q181R, P217L, Y225S  

220 L29P, V30A, S53I, S54C, M267L, V278I  A45S, P46A  

199 K11N, G210A, R266T, M267L  S3I, G202R  

188 S40A, N118T, R266T, M267L, D271N  I110L, T27I, S31R 

172 N118T, T128I, Y141S, V142D, R266T, M267L  
G44E, I110L, P120S, L127P, M133L, F134I, D144A, 

S204N, P211R, F220C  

170 R18K, L80I, L180M, M204V, R266T 
G10R, L127P, S154L, E164G, S174N, P178Q, 

I195M 

166 E8A, I162V, Q215H, N248H  
T27I, L84H, Q101H, T126I, I150T, E164G, L175S, 

N207T 

155 V173L, L180M, M204V, R266T, M267L  L127P, S143L, E164D, I195M  

152 K11R, Q215H S3G, P62L, L127P, S143L, D144E, N207T, P217L  

146 P130Q, N131S, L229V, R266K  
S3N, Q30R, N40S, S64F, Q101R, R122K, T123A, 

L127P, F220L  
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Appendix 2.1) Mutations in the pol and S genes corresponding to antiviral 

resistance and immune escape in HIV/HBsAg negative patients. The treatment and 

the viral load from each patient are also indicated. 

 

 

 

 

 

 

 

 

 

 

 

141 N248H, G258X, R266T, M267L  
S31N, N40S, G44E, L49R, Q101H, L127P, Q129R, 

F134S, S154L, K160R, E164G, S174N, P214L, 
V224G  

139 
D7T, E8D, R18K, Q48X, I53V, N122H, M129L, 

W153R, V163I, L164M, Q215H, T259S 
G10R, V14G, N40X, K122R, E164V, S167L, V168A, 

L175S, A194V, S207T, V209L, P217L  

138 V23I, L91I, H234Q  Q101R, T125M, L127P, K160R, E164G,168AV  

125 
V112I, I254X, S256R, R266T, M267L, P281S, 

W284*  
M103I, L127P, E164V, P217L 

100 P130Q, N248H L84HP, L127P, A184V, L175S 

99 K11R, L209M, N238H, S256N, G258*  S3G, G44E, S174N, Y200*  

77 
P17R, T19A, L42V, V44E, D45E, G52E, S53C, 

S54*, R55G, W58C, P59Q, K60N, F61LR, N118T, 
Q125H, I169L, S185R 

L9V, V14A, D33E, W36R, T37N, G44S, P46DE, 
V47A, G50A, Q51K, N52I, S53A, Q101H, I110L, 
S117I, K160N, W165L, L175S, V177AG, A184V 

76 V27I -  

65 A38E  Q30K, S143L, E164G, S167L, V177A  

63 H13Y, I163V, R266T, M267L E164G, W182S 

59 
D45X, Q48H, S50X, R51W, S53I, I121T, I122L, 

V214A  
T37L, N40S, L42S, A45S, S113T, L127P, E164V, 

Y206H  

55 S53I, L66DN, R110G, S117Y  
E2G, S3N, S34L, A45S, P56L, S58T, Y100S, L109I, 

L127P, Q129H, D144E, S154L, G159V, S167L, 
L175S, Q181R, L209S, P217L  

53 R266T, M267L T126I, Q129H, L209W 

53 S53I, I122L, V214A A45S, L127P, E164V, Y206H 

35 A113T, I122S, P130Q  S3N, L109R, S114A, L127P, S174N  

34 R55S, A87E, F148I, H197Q, L229V  
S34L, P56Q, T57I, W74LW, R79S, C139*, T189N, 

F220L  
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Appendix 2.2a) Mean nucleotide entropy values at each codon position along the 

S gene were determined for HIV-/HBsAg+ population. The entropy was measured 

for each group according to the codon number in the S gene. Variability was 

observed in both pol and S genes and at each codon p1s3, p3s2, p2s1. Each peak 

represents the entropy value or variation at one codon position. 
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Appendix 2.2b) Mean nucleotide entropy values at each codon position along the 

S gene were determined for HIV+/HBsAg+ population. The entropy was measured 

for each group according to the codon number in the S gene. Variability was 

observed in both pol and S genes and at each codon p1s3, p3s2, p2s1. Each peak 

represents the entropy value or variation at one codon position. 
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Appendix 2.2c) Mean nucleotide entropy values at each codon position along the 

S gene were determined for c) HIV+/HBsAg- population. The entropy was 

measured for each group according to the codon number in the S gene. Variability 

was observed in both pol and S genes and at each codon p1s3, p3s2, p2s1. Each 

peak represents the entropy value or variation at one codon position. 
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Appendix 2.3a Total Entropy between HIV-/HBsAg+ vs. HIV+/HBsAg- 

  HIV-/HBsAg+ HIV+/HBsAg- p-value 

Codon           

p2s1 1,41405 5,37578 <0,001 

p3s2 4,75188 18,53071 <0,001 

p1s3 3,07303 9,74248 <0,001 

Total 9,23896 33,64897 <0,001 

 

 

 

Appendix 2.3b Total Entropy between HIV-/HBsAg+ vs. HIV+/HBsAg+ 

  HIV-/HBsAg+ HIV+/HBsAg+ p-value 

Codon           

p2s1 1,41405 3,91174 <0,001 

p3s2 4,75188 10,27766 <0,001 

p1s3 3,07303 7,59155 <0,001 

Total 9,23896 21,78095 <0,001 

 

 

Appendix 2.3) Shannon Entropy. Each table show the total entropy of each gene 
or by surface codon; a) HIV-/HBsAg+ vs. HIV+/HBsAg-; b) HIV-/HBsAg+ vs. 
HIV+/HBsAg+. * P-value < 0.05 was significant. 
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Appendix 2.3c Total Entropy between HIV+/HBsAg+ vs. HIV+/HBsAg- 

  HIV+/HBsAg+ HIV+/HBsAg- p-value 

Codon           

p2s1 3,91174 5,37578 1.0 

p3s2 10,27766 18,53071 1.0 

p1s3 7,59155 9,74248 1.0 

Total 21,78095 33,64897 <0,001 

 

 

 

Appendix 2.3d Total Entropy between HIV-/HBsAg+ naïve vs. 
HIV+/HBsAg+ naïve 

  HIV-/HBsAg+ naïve HIV+/HBsAg+ naïve p-value 

Codon           

p2s1 1,413 3,09 0,016 

p3s2 4,75 8,982 <0,001 

p1s3 3,071 4,887 0,068 

Total 9,234 16,959 <0,001 

 

Appendix 2.3) Shannon Entropy. Each table show the total entropy of each gene  

or by surface codon; c) HIV+/HBsAg+ vs. HIV+/HBsAg-; d) HBsAg+ naïve vs.  

HIV+/HBsAg+ naïve. * P-value < 0.05 was significant. 
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Appendix 2.5. Number of sites with significant entropy difference between the 

monoinfected patients and the co-infected HBsAg positive or negative, 

respectively. It was found that the most variable nucleotide positions were located 

in the p3, s2 codons. 
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Sequences (n) 93   33   18 
Samples detected 104   53   20 

            

Week 0 Prevalence Week 24 Prevalence Week 48 Prevalence 

            

Q101K 3% Q101K 6% NA 10% 

Q101K   Q101K   Q101K   

Q101K   NA   NA   

NA   Q101H   ND   

ND   ND   Q101K   

L109P 3% ND 2% NA 5% 

L109I   L109I   L109I 

 L109P   NA   NA   

I110L 1% NA - NA - 

T118MRK 7% NA 4% NA 20% 

T118MRK   NA   NA   

T118MRK   N   T118M   

T118MRK   T118R   T118R   

T118MRK   T118K   T118K   

T118MRK   ND   NA   

T118MRK   NA   ND   

-   NA   T118K   

P120TS 6% NA 2% NA 5% 

P120TS   NA   NA   
P120TS   NA   NA   

P120TS   NA   NA   

P120TS   NA   NA   

P120T   P120T   NA   

wt   wt   P120S   

T126S 2% NA 2% NA - 

T126N   T126N   NA   

NA 1% NA 2% A128V 10% 

A128V   A128V   A128V   

 
Appendix 3.5a Evolution of mutations associated to immune escape in the AGL of 

the Surface gene at each week. The prevalence is also shown at each week. (NA: 

Not Available, ND: Not detected wt: wild type) 
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Sequences (n) 93   33   18 
Samples 
detected 

104   53   20 

            

Week 0 Prevalence Week 24 Prevalence Week 48 Prevalence 

Q129R 3% Q129R 4% NA - 

Q129R   Q129R   NA   
Q129R   NA   NA   

G130DNS 3% ND 2% ND - 

G130DNS   G130NS   NA   

G130S   NA   NA   

N131K 2% N131K 2% N131K 5% 

N131S   ND   ND   

M133I 2% NA - NA - 

M133T   NA   NA   

F134L 3% ND 4% NA 5% 

F134L   F134L   F134L   

F134L   F134L   ND   

P142L 3% NA 2% NA - 

P142S   NA   ND   

P142S   P142S   NA   

T143M 2% NA 4% NA - 

T143M   NA   NA   

ND   T143M   ND   

ND   T143M   ND   

D144E 2% D144E 2% NA - 

D144A   NA   ND   

G145R 2% G145R 6% G145R 10% 

G145R   G145R   NA   
ND   G145R   ND   

ND   ND   G145R   

ND - ND - E164D, I195M 20% 

 

 

Appendix 3.5b Evolution of mutations associated to immune escape in the AGL of 

the Surface gene at each week. The prevalence is also shown at each week. (NA: 

Not Available, ND: Not Detected, wt: wild type) 
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Appendix 2: Publications generated in this thesis 
 
 

 Ian Harrison, R Odame Phillips, A Gonzalez, F Sarfo, A Garcia, D Candotti, J-P 

Allain, D Chadwick, and AM Geretti. Impact of HIV Infection on HBV Polymerase 

and Surface Variability among Patients Accessing 3TC-containing ART: Ghana. 

18th Conference on Retroviruses and Opportunistic Infections, 2010. 

 
 

 Antonio Gonzalez del Castillo, Mas Chaponda, Ana Garcia-Diaz, Vicente 

Soriano, Mark Hopkins, Miriam Taegtmeyer, Joep J Oosterhout, Robert S 

Heyderman, Saye Khoo, and Anna Maria Geretti on behalf of the HepB Study 

Group. Outcomes of Lamivudine-based First-line ART in HIV/HBV Co-infected 

Patients in Malawi. 19th Conference on Retroviruses and Opportunistic 

Infections, 2011. 
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ABBREVIATIONS 

 
 3TC: Lamivudine  

 AASLD: American Association for the Study of the Liver Diseases 

 ADAPVEM´s: Antiviral drug-associated potential vaccine escape mutants  

 ADV: Adefovir 

 AGL: antigenic loop or "a" determinant 

 ALT: serum alanine aminotransferase 

 APASL: Asian Pacific Association for the Study of the Liver 

 BCP: basal core promoter  

 cccDNA: close covalent circular DNA 

 CHB: chronic Hepatitis B  

 CYL-I: First cytosolic domain  

 CYL-II: second cytosolic region 

 Cys: Cysteines 

 EACS: European AIDS Clinical Society  

 EASL: European Association for the Study of the Liver  

 ER: endoplasmic reticulum 

 ETV: Entecavir 

 HAART: Highly Active Antiretroviral Treatment  

 HBcAg: Hepatitis B core Antigen 

 HBeAg: Hepatitis B e Antigen  

 HBsAg: Small Hepatitis B Surface Antigen  

 HBxAg: Hepatitis B x Antigen 

 HCC: Hepatocellular carcinoma 
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 HDV: Hepatitis Delta  

 IFN: Interferon- 

 KATH: Komfo Anokye Teaching Hospital  

 LdT: Telvibudine  

 L- HBsAg: Large Hepatitis B Surface Antigen  

 MDR: Multidrug-resistant  

 M-HBsAg: Medium Hepatitis B Surface Antigen 

 NAs: nucleoside/nucleotide analogues 

 OBI: occult HBV infection  

 OLT: orthotropic liver transplantation  

 ORF: Open Reading Frame 

 PC: pre-core  

 PEG-IFN: pegylated interferon- 

 pgRNA: pre-genomic RNA 

 rcDNA: relaxed circular HBV DNA 

 RT: reverse transcriptase 

 SVP: subviral particle  

 TDF: Tenofovir 

 TMD-I: First trans-membrane domain  

 TMD-II: second trans-membrane domain  

 TMD-III: third trans-membrane domain  

 TMD-IV: four trans-membrane domain  

 VEM´s: Vaccine Escape Mutants  

 wt: wild type 
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Impacto del tratamiento antirretroviral basado en Lamivudina 

sobre la evolución genética del virus de la Hepatitis B (HBV) 

entre pacientes HIV/HBV co-infectados 

 

Cerca de 400 millones de personas están infectadas crónicamente por el virus 

de la Hepatitis B (HBV), de las cuales se estima una mortalidad de 600.000 personas al 

año. Es por ello que constituye un grave problema de salud pública que, además, está 

estrechamente relacionado con hepatitis fulminante, cirrosis y Carcinoma Hepatocelular 

(HCC). Las vías de transmisión van, desde la vertical/horizontal (principalmente en 

África a edades tempranas) a la sexual o por uso de drogas (en el mundo occidental). Al 

compartir vías de transmisión con el virus de la inmunodeficiencia humana (HIV), la co-

infección de estos dos virus es frecuente. Se estima que alrededor de 4 millones de 

personas están coinfectadas en el mundo, siendo la prevalencia en África mayor que en 

el mundo occidental (>15% vs. <10%) 1.  

 

El HBV es un virus DNA parcialmente de doble cadena de 3.2 kb cuya principal 

característica es el solapamiento de sus genes. Este solapamiento provoca que el gen 

que codifica la polimerasa (gen pol) del virus este parcialmente solapado con el gen que 

codifica las proteínas de la envuelta (gen S) (Figura 1.1) 12. La segunda característica a 

destacar es su polimerasa, con actividad transcriptasa inversa y similar a la del HIV, su 

tasa de variabilidad es alta para tratarse de un virus DNA 21–23. Por otro lado, su ciclo 

viral se caracteriza, principalmente, por la generación de un DNA circular 

covalentemente cerrado (cccDNA), con una estructura y regulación parecida a la 

cromatina, es el principal culpable de la cronicidad de la enfermedad así como el molde 

usado en la transcripción. La retro-transcripción del RNA pre-genómico (pgRNA) se 

produce al mismo tiempo que se forma la cápside y, una vez formada la cápside y el 
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DNA circular relajado (rcDNA), puede o bien ser envuelto por las proteínas superficie y 

salir a infectar nuevas células o bien regresar al núcleo para producir mayor cantidad de 

cccDNA, lo que ocurre en los primeros estadios de la infección (Figura 1.2) 19,20. 

 

Para tratamiento de la Hepatitis B existen a día de hoy 7 fármacos; IFN, peg-IFN 

y 5 análogos de nucleos(t)ido (NAs), 3TC, LdT, ETV, ADV y TDF (tabla 1.1/figura 1.3). 

El principal objetivo de la terapia antiviral es la supresión de la carga viral del virus algo 

que, sin embargo, no es posible hacerlo por completo debido a que estos fármacos no 

actúan contra cccDNA y al dejar el tratamiento los niveles de carga viral repuntan de 

nuevo. Por ello son frecuentes los tratamientos de larga duración lo que lleva a un 

aumento de posibilidades de generación de resistencias. En el caso de co-infección con 

HIV, las guías de la EACS recomiendan empezar el tratamiento a partir de las 2000 

IU/mL y usar TDF en combinación con 3TC o emtricitabina 33,34,36,182. En África el 

diagnóstico de HBV es limitado y depende del país por lo que no es raro que pacientes 

HIV cuya co-infección por HBV sea desconocida sean tratados durante un gran periodo 

de tiempo con regímenes que incluyen 3TC como único fármaco activo frente a HBV. El 

tratamiento con 3TC en el mundo occidental está contraindicado debido al gran número 

de resistencias que produce, el cual se incrementa en co-infección con HIV 3,38,45,153. 

 

La resistencia a fármacos se define como la selección de cepas de HBV con 

variaciones en la secuencia que confieren una susceptibilidad reducida a los fármacos 

administrados. La resistencia cruzada ocurre cuando las variantes producidas afectan a 

la susceptibilidad de otros fármacos para los cuales el virus nunca ha sido expuesto. 

Las mutaciones de resistencia afectan directamente al gen pol pero, debido al 

solapamiento de los genes, el gen S también se puede ver afectado 47,67,160,161. 

Mutaciones en el gen pol se asociaron; Resistencia a LdT y 3TC se asocia con rtL80I/V, 
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rtV173L, rtL180M/C, rtA181T, rtM204I/V/S 48–51; La resistencia a ETV se produce por 

una combinación de rtI169T o rtT184A/G/I/S o rtS202G/I o rtM250V mas rtL180M/C y 

rtM204I/V. También se asocia con rtI169T, rtT184A/G/I/S, rtS202G/I, rtM250V 55,56; 

Resistencia a ADV se relaciona con rtA181T/V, rtQ215H, rtI233V, rtN238T and rtN236T 

53,54; Resistencia a TDF está asociada con rtA194T aunque aún existe controversia 

sobre esta resistencia 57–60. Mutaciones en el gen S se asocian con escape 

inmunológico o a la vacuna, la cual utiliza el bucle antigénico (AGL) como molde, y 

pueden ser sY100C, sQ101KH, sI110L, sT118MRK, sP120AST, sT126NS, sA128V, 

sQ129HR, sG130DNS, sN131IKT, sM133I, sF134L, sP142LS, sT143M, sD144EA, 

sG145R 61,87,122–125,127,130,162. La doble mutación sE164D + sI195M se asocia con la triple 

mutación asociada a 3TC (rtV173L, rtL180M, rtM204V) y se ha demostrado que produce 

un escape immune similar a sG145R 124. En general, cualquier variante dentro del AGL 

del HBsAg se podría considerar potencial mutante de escape (VEM´s) aunque no se 

haya demostrado in vitro. 
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Objetivos de la tesis 

 

1. Estudiar la prevalencia de HBsAg en una población HIV positiva procedente 

de Ghana y el impacto de la exposición al HAART basado en lamivudina 

durante largo tiempo sobre los genes pol y S del HBV. 

 

2. Estudiar el efecto de la co-infección con HIV sobre el desarrollo de 

resistencias a fármacos en el HBV y la evolución genética de los genes pol y 

S.  

 

3. Estudiar la eficacia de HAART basado en lamivudina durante 48 semanas en 

una población coinfectada con HIV/HBV procedente de Malawi. 

 

4. Estudiar la evolución genética en los genes pol y S durante las 48 semanas 

de HAART basado en Lamivudina en la población de Malawi. 

 

 

 

 

 

 

 

 

 

 

 



HBV genetic variability in HIV co-infected patients  2012

  

 Page 135 

 

 

Ghana. Se estudió una cohorte de 2138 pacientes HIV que, de manera rutinaria, 

acudían la consulta de HIV en el Hospital Komfo Anokye Teaching (KATH) en Kumasi 

durante 2007 y en los que, aproximadamente, el 50% recibía tratamiento antirretroviral 

basado en 3TC. Se recogieron muestras de sangre y plasma; 838 (39%) fueron 

enviadas al Royal Free Hospital (RFH) de Londres y en 1300 (61%) fueron analizadas 

para HBsAg usando el ensayo Determine. De estas últimas, 178 HBsAg positivas fueron 

también enviadas a Londres para repetir los test y caracterizarlas. Además, se 

recibieron las secuencias de muestras mono-infectadas por HBV de mujeres 

embarazadas y donantes de sangre que atendían el mismo hospital, KATH y que 

habían sido estudiadas previamente por el grupo de Jean-Pierre Allain en el 

Departamento de Hematología de la Universidad de Cambridge, UK 151,156,157. En total, 

se seleccionaron en Londres 1016 muestras para el estudio del HBsAg. 212/318 (67%) 

tenían HBsAg positivo y DNA detectable, constituyendo la cohorte HIV/HBV coinfectada, 

con una mediana de carga viral (rango) de 19073 (IQR 23 – 10.0x1013) IU/mL. Por otro 

lado, 111/555 (20%) muestras con HBsAg negativo y anti-HBc positivo tenían carga viral 

detectable, 68 (15 – 56.0x103) IU/mL, y constituían la cohorte de infección oculta por 

HBV (OBI) (tabla 2.2). En el grupo de pacientes co-infectados, 206 muestras pudieron 

ser secuenciadas encontrándose mutaciones asociadas a resistencias en 18 (9%) 

pacientes, 13 (72%) de ellos recibiendo HAART basado en 3TC y 5 (28%) naïve (tabla 

2.3). En estas muestras, además, encontraron también VEM´s en el gen S. En el resto 

de muestras de pacientes co-infectados secuenciadas donde no se encontraron 

mutaciones asociadas a resistencias (188), si se encontraron VEM´s (tabla 2.4). Dentro 

de la cohorte de OBI, 39 (35%) muestras pudieron ser secuenciadas de las cuales el 

31% contenía mutaciones de resistencia (tabla 2.5). En 30 de las muestras no se 

encontraron mutaciones dentro del gen pol (tabla 2.6). Por otra parte, la mayoría de los 
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pacientes mostraban más de dos mutaciones dentro del gen S, no solo dentro del AGL 

sino a lo largo de todo el gen. Por otro lado, la variabilidad de estas dos cohortes se 

estudió junto con una cohorte monoinfectada por HBV de la misma región para estudiar 

el efecto del HIV sobre la evolución de estos dos genes. Para ello, basado en el 

solapamiento de los genes (figura 2.1), se estudió la entropía de las secuencias 

genéticas de cada grupo. La cohorte monoinfectada por HBV mostró una menor 

variabilidad que las otras dos, estando su mayor variabilidad localizada entre los 

codones 25 a 80 (Apéndice 2.4). En la cohorte coinfectada, la mayor variabilidad se 

encontraba entre los codones 100 a 150 y en la cohorte OBI esta zona se aumentaba 

hasta el codón 190. Comparando las diferentes entropías de los codones (p2s1, p3s2, 

p1s3 y total), la mayor diferencia se encontraba en el codón p3s2 y todos estos eran 

significativamente diferentes cuando la cohorte de muestras monoinfectadas se 

comparaba con la coinfectada o la OBI (figura 2.2).  

 

Concluyendo, en una cohorte HIV procedente de Ghana establecimos la 

prevalencia de co-infección HIV/HBsAg positivo (15%) y de la infección oculta por HBV 

en pacientes HIV (20%). En ambos casos, los datos eran más elevados que los datos 

previos en África sub-sahariana 163,164. Además, encontramos una alta prevalencia de 

mutaciones asociadas a resistencia a fármacos tanto en la cohorte coinfectada como en 

la OBI, 9% vs. 31%, y de mutaciones asociadas a escape inmunológico, 20% vs. 43.5%. 

Finalmente, mediante el estudio de la entropía, que mide la variabilidad de las 

secuencias en función de la composición de nucleótidos, demostramos que el HIV 

influye en la variabilidad de estos dos genes, posiblemente debido a la diferente presión 

inmunológica a la que está sometido el paciente que, entre otras cosas, se caracteriza 

por una mayor carga viral de HBV. Esta variabilidad es incluso mayor en la cohorte OBI, 

lo que podría explicar el fallo en diagnóstico clínico del HBsAg.  
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Malawi. Se llevó a cabo un estudio longitudinal de una cohorte de pacientes HIV 

positivos seleccionada en el Hospital Central Queen Elizabeth (QECH) en Blantyre, al 

sudeste de Malawi, donde comenzaron un régimen basado en Stavudina, 3TC y 

Nevirapina en 2007/8. Se recogieron muestras de 133 pacientes en tres momentos 

diferentes, antes del tratamiento así como 24 y 48 semanas después de iniciarse el 

mismo (Figura 3.1). La serología de HBeAg mostró que el 50% de los pacientes eran 

positivos y el estudio de anticuerpos de Hepatitis Delta (HDV) mostró una baja 

prevalencia en la zona (1%). Se cuantificó la carga viral de todas las muestras posibles 

para estudiar la respuesta al tratamiento tras esas 48 semanas. Estudiando la población 

en general, se encontró un alto índice de respuesta tanto para HIV como para HBV, 

91.7% vs. 60% (tabla 3.2/figura 3.2). Sin embargo, cuando los pacientes se 

estratificaban en función del HBeAg se observó un fracaso en la respuesta virológica del 

HBV (DNA < 14 IU/mL) en pacientes HBeAg positivo frente a HBeAg negativo, 23% vs. 

96% (p < 0.0001, tabla 3.3). Esto no ocurría para HIV donde más del 90% de los 

pacientes en ambos grupos presentaban respuesta virológica efectiva (tabla 3.3/figura 

3.2). El análisis multivariante para determinar el factor responsable de la respuesta 

virológica de HBV mostró que el HBeAg positivo era el único predictor independiente 

[OR: 0.028 (0.003-0.278), p < 0.002]. Se llevó a cabo caracterización de los genes pol y 

S en todas aquellas muestras con carga viral detectable para un estudio más 

exhaustivo; 93/104 (89%) en semana 0; 33/53 (62%) en semana 24; y 18/20 (90%) en 

semana 48. El 99% de los pacientes mostró un genotipo A1 y tan solo uno de ellos 

mostró genotipo E, lo que se correspondía con la zona geográfica 193,194. Se observaron 

mutaciones asociadas a resistencia en cada una de las tres semanas de seguimiento 

(tabla 3.4). A semana 0 se encontró en un 6% de los pacientes, si bien no conferían 

resistencia primaria sino que han sido asociadas con resistencia secundaria, rtM250L y 
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rtI169L. A semana 24, un 15% de los pacientes mostraba resistencia donde ya se 

incluía rtM204IV en seis de ellos (75%). Finalmente, el 85% de los pacientes con DNA 

detectable al final del seguimiento presentaban mutaciones asociadas a resistencia, 

todos ellos conteniendo la principal mutación rtM204IV y el 23,5% de ellos la triple 

mutación asociada a 3TC (rtV173L, rtL180M, rtM204V). Además, la generación de 

resistencias en esta última semana era significativamente mayor en el grupo HBeAg 

positivo [68% vs. 4%, p < 0.0001, tabla 3.3]. El estudio del gen S mostró, además, una 

mayor variabilidad en donde la mayoría de las mutaciones aparecían en combinación 

con otras. En este sentido, algunas de las mutaciones aumentaron su prevalencia 

según avanzaba el tratamiento, lo que podía ser causa de la presión inmunológica 

(tabla 3.5). Estas mutaciones incluían sQ101K (hasta un 10%), sT118MRK (hasta un 

20%), sA128V (hasta un 10%) and sG145R (hasta un 10%). Además se observó el 

mutante doble sE164D + sI195M, producto de la generación del triple mutante asociado 

a 3TC. 

 

Concluyendo, hemos establecido la prevalencia de co-infección HIV/HBV en la 

mayor ciudad de Malawi, Blantyre (12%). Durante un año, 133 pacientes fueron 

seguidos al iniciar HAART con 3TC como único agente activo frente a HBV. La 

respuesta al tratamiento en estos pacientes se veía afectada de manera significativa por 

el HBeAg, siendo más frecuente el fallo y la generación de resistencias cuando este 

marcador era positivo. De este modo, el alto porcentaje de resistencias tras 48 semanas 

(85%) es bastante alto y alarmante en comparación con estudios previos, lo que sugiere 

la necesidad de evitar este tipo de regímenes, al menos, entre la población con HBeAg 

positivo 186.  
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Conclusiones generales 

 
 

1. Se encontró una gran prevalencia de co-infección HIV/HBV en Kumasi, Ghana 

(15%) y en Blantyre, Malawi (12%). Además, se observó una alta prevalencia de 

infección oculta por HBV en pacientes HIV positivo de Ghana (20%).  

 

2. En Ghana, el global de resistencias a análogos e nucleós(t)idos en el gen de la 

polimerasa era mayor en la cohorte de infección oculta por HBV que en la de 

HIV/HBV co-infectados (9% vs. 31%, respectivamente). De modo similar, el 

porcentaje de mutaciones en el gen de la envuelta también era mayor en la 

cohorte de infección oculta que en la de HIV/HBV co-infectados (43,5% vs.20%, 

respectivamente).  

 

3. La variabilidad genética era mayor en el gen de la envuelta que en el de la 

polimerasa entre las cohortes de pacientes HBV monoinfectados, HIV/HBV co-

infectados y con infección oculta. Se observó una mayor variabilidad tanto en la 

cohorte HIV/HBV coinfectado como con infección oculta. El resultado de esta 

última podría explicar el fallo diagnóstico de HBV ya sea, bien por defecto en la 

secreción de HBsAg y/o por una reducción de la replicación viral.  

 

4. En Malawi, se observaron mayores porcentajes de respuesta virológica (carga 

viral < 14IU/mL) tras 48 semanas de HAART basado en Lamivudina en 

pacientes HBeAg negativo frente a aquellos HBeAg positivos (96% vs. 23%, 

respectivamente, p < 0.001). De este modo, se demostró que el HBeAg el único 

predictor independiente de la respuesta virológica a la semana 48. 
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5. Por último, en pacientes con carga viral detectable a semana 48 se observó una 

alta prevalencia de mutaciones de resistencias asociadas a lamivudina (85%). 

Estos resultados subrayan el alto riesgo de desarrollo de resistencias en el HBV 

tras la exposición a monoterapias con lamivudina en pacientes co-infectados por 

HIV. 
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