
  

Spatial computing in structured spiking neural networks with a robotic 

embodiment 

Sergey A. Lobov1,2,3*, Alexey N. Mikhaylov1, Ekaterina S. Berdnikova1, Valeri A. Makarov 1,4, 

Victor B. Kazantsev1,2,3 

1Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603950 Nizhny Novgorod, 

Russia  
2Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and 

Mechatronics Components, Innopolis University, Universitetskaya Str. 1, 420500 Innopolis, Russia 
3Center For Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, 

Kaliningrad, Russia 
4Instituto de Matemática Interdisciplinar, F. de Ciencias Matemáticas, Universidad Complutense de 

Madrid, 28040 Madrid, Spain 

* Correspondence:  

Corresponding Author 

lobov@neuro.nnov.ru 

Keywords: spiking neural networks, STDP, learning, living computer, neurorobot, neuroanimat, 

synaptic competition, neural competition. 

Abstract 

One of the challenges of modern neuroscience is creating a "living computer" based on neural networks 

grown in vitro. Such an artificial device is supposed to perform neurocomputational tasks and interact 

with the environment when embodied in a robot. Recent studies have identified the most critical 

challenge, the search for a neural network architecture to implement associative learning. This work 

proposes a model of modular architecture with spiking neural networks connected by unidirectional 

couplings. We show that the model enables training a neuro-robot according to Pavlovian conditioning. 

The robot's performance in obstacle avoidance depends on the ratio of the weights in inter-network 

couplings. We show that besides STDP, critical factors for successful learning are synaptic and 

neuronal competitions. We use the recently discovered shortest path rule to implement the synaptic 

competition. This method is ready for experimental testing. Strong inhibitory couplings implement the 

neuronal competition in the subnetwork responsible for the unconditional response. Empirical testing 

of this approach requires a technique for growing neural networks with a given ratio of excitatory and 

inhibitory neurons not available yet. An alternative is building a hybrid system with in vitro neural 

networks coupled through hardware memristive connections. 

1 Introduction 

Since the end of the XX century, the concept of a "living computer" has been developing, including 

the cultivation of neuronal cultures on multi-electrode arrays (Pamies et al., 2014; Potter et al., 1997) 

and their implementation in neurorobots or neuroanimats . Neuroanimats are proposed to give neural 

networks the ability to learn in the context of interaction with the environment, as it happens with 

natural neural networks in the brain (Meyer and Wilson, 1991; Potter et al., 1997; Reger et al., 2000). 

However, despite certain advances in this area (Bakkum et al., 2008; Shahaf et al., 2008), associative 
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learning in neural networks grown in vitro is still limited by the lack of a universal approach that works 

as well as learning algorithms for artificial neural networks (ANNs). 

One possible reason for the failure of early attempts to achieve associative learning is the homogeneous 

structure of the network (Dauth et al., 2016; Pimashkin et al., 2013, 2016). Experimental approaches 

are now emerging for growing heterogeneous networks that include separate subnets connected by 

unidirectional links. The only thing missing is the algorithms for such a "living computer" based on 

neural networks grown in vitro. Earlier, we proposed an approach to explain the problems of learning 

in unstructured neural networks by the competition between different pathways conducting excitation 

to a neuron or set of neurons (Lobov et al., 2017a, 2017b). Recently, the possibility to structure the 

network geometry by directing axon growth was demonstrated experimentally (Forró et al., 2018; 

Gladkov et al., 2017; le Feber et al., 2015; Malishev et al., 2015; Pan et al., 2015), which opens a new 

venue to build network architectures in vitro. 

Recently, in our model study, we proposed an associative learning approach based on "spatial 

computation" (Lobov et al., 2020b). The approach uses the "shortest path rule": On the network scale, 

STDP potentiates the shortest neural pathways and depresses alternative longer pathways. We use 

spiking neural networks (SNNs) and spike-timing dependent plasticity (STDP) because SNN, in 

particular based on the Izhikevich model, exhibit the entire neurocomputational spectrum of behavior 

(Izhikevich, 2003, 2004, 2007), and STDP is an experimentally proven form of Hebb's plasticity (Bi 

and Poo, 1998; Markram et al., 1997, 2011; Sjöström et al., 2001). So far, our approach has been 

illustrated at the scale of small neural circuits containing units of neurons. The question remained open: 

Is it possible to train a medium-scale network containing hundreds and thousands of neurons using the 

“spatial computation”? If we give an affirmative answer to this question, we thereby provide a possible 

algorithm for a "living computer".  

Another important question that requires an answer according to the research results is the possibility 

of the subsequent implementation of heterogeneous networks in vitro with artificial elements based on 

the developed algorithms. The key elements of such networks are unidirectional connections between 

subnets with the property of synaptic plasticity. Memristors and memristive systems (Chua and Kang, 

1976), which are implemented in the form of a simple CMOS-compatible nanostructure with a memory 

effect, are ideally suited for the role of such connection (Strukov et al., 2008). The first step in this 

direction has already been taken recently: commercial memristive devices with the effect of short-term 

plasticity are used to arrange communication between individual subnets in vitro and provide 

synchronous activity of target subnets under the control of the source subnet (Dias et al., 2021). In 

accordance with the general concept of memristive neurohybrid systems (Mikhaylov et al., 2020) and 

the first experimental results (Dias et al., 2021; Juzekaeva et al., 2019), it is the application of 

memristive devices and systems that will provide the necessary balance in terms of miniaturization, 

energy efficiency, and computational capabilities required for the hardware implementation of adaptive 

electronic interfaces between living neurons and their networks. 

 

Earlier we formulated the basic principles of associative learning in SNN: (i) Hebbian learning (STDP); 

(ii) synaptic competition or competition of SNN inputs; (iii) neural competition or competition of SNN 

outputs (Lobov et al., 2020a, 2020b). The aim of the current work is to consistently implement these 

principles in a medium-scale SNN consisting of several subnets connected by unidirectional links. 

 

 

 



   Spatial properties of STDP 

 
3 

2 Models and methods 

To simulate the dynamics of a SNN, we adopt the approach described elsewhere (Lobov et al., 2017a). 

Briefly, the dynamics of a single neuron is given by (Izhikevich, 2003): 

𝑑𝑣

𝑑𝑡
= 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼(𝑡), (1) 

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢), (2) 

where 𝑣 is the membrane potential, 𝑢 is the recovery variable, and 𝐼(𝑡) is the external driving current. 

If 𝑣 ≥ 30, then 𝑣 ← 𝑐, 𝑢 ← 𝑢 + 𝑑, which corresponds to generation of a spike. We set 𝑎 = 0.02, 𝑏 = 0.2, 

𝑐 = -65, and 𝑑 = 8. Then, the neuron is silent in the absence of the external drive and generates regular 

spikes under a constant stimulus, which is a typical behavior of cortical neurons (Izhikevich, 2003, 

2004). The driving current is given by: 

𝐼(𝑡) = 𝜉(𝑡) + 𝐼𝑠𝑦𝑛(𝑡) + 𝐼𝑠𝑡𝑚𝑙(𝑡), (3) 

where 𝜉(𝑡) is an uncorrelated zero-mean white Gaussian noise with variance 𝐷, 𝐼𝑠𝑦𝑛(𝑡) is the synaptic 

current, and 𝐼𝑠𝑡𝑚𝑙(𝑡) is the external stimulus. As a stimulus, we use a sequence of square electric pulses 

of the duration of 3 ms delivered at 10 Hz rate, with the amplitude sufficient to excite the neuron. 

The synaptic current is the weighted sum of all synaptic inputs to the neuron: 

𝐼𝑠𝑦𝑛(𝑡) = ∑ 𝑔𝑗𝑤𝑗(𝑡)𝑦𝑗(𝑡)𝑗 , (4) 

where the sum is taken over all presynaptic neurons, 𝑤𝑗 is the strength of the synaptic coupling directed 

from neuron 𝑗, 𝑔𝑗 is the scaling factor, in this paper we set them equal to 20 or −20 (Lobov et al., 

2017a) for excitatory and inhibitory neurons, respectively, and 𝑦𝑗(𝑡) describes the amount of 

neurotransmitters released by presynaptic neuron 𝑗.  

To model the neurotransmitters, we use Tsodyks-Markram’s model (Tsodyks et al., 1998) that accounts 

for short-term depression and facilitation. We use this model with the following parameters: the decay 

constant of postsynaptic currents 𝜏𝐼 = 10 ms, the recovery time from synaptic depression 𝜏𝑟𝑒𝑐 = 50 ms, 

the time constant for facilitation 𝜏𝑓𝑎𝑐𝑖𝑙 = 1 s. 

The dynamics of the synaptic weight 𝑤𝑖𝑗 of coupling from an excitatory presynaptic neurons 𝑗 to a 

postsynaptic neuron 𝑖 is governed by the STDP with two local variables (Morrison et al., 2008; Song 

et al., 2000). Assuming that 𝜏𝑖𝑗 is the time delay of spike transmission between neurons j and i, a 

presynaptic spike fired at time 𝑡𝑗 and arriving to neuron 𝑖 at 𝑡𝑗 + 𝜏𝑖𝑗 induces a weight decrease 

proportional to the value of the postsynaptic trace 𝑠𝑖. Similarly, a postsynaptic spike at 𝑡𝑖 induces a 

weight potentiation proportional to the value of the presynaptic trace 𝑠𝑗. The weighting functions obey 

the multiplicative updating rule (Morrison et al., 2008; Song et al., 2000). Thus, the weight dynamics 

is given by: 
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𝑑𝑠𝑖

𝑑𝑡
= −

𝑠𝑖

𝜏𝑆
+ ∑ 𝛿(𝑡 − 𝑡𝑖)

𝑡𝑖

, (5) 

𝑑𝑠𝑗

𝑑𝑡
= −

𝑠𝑗

𝜏𝑆
+ ∑ 𝛿(𝑡 − 𝑡𝑗 − 𝜏𝑖𝑗)

𝑡𝑗

, (6) 

𝑑𝑤𝑖𝑗

𝑑𝑡
= 𝜆[(1 − 𝑤𝑖𝑗)𝑠𝑗𝛿(𝑡 − 𝑡𝑖) − 𝛼𝑤𝑖𝑗𝑠𝑖𝛿(𝑡 − 𝑡𝑗 − 𝜏𝑖𝑗)], (7) 

where 𝜏𝑆 = 10 ms is the time constant of spiking traces, 𝜆 = 0.001 is the learning rate, and 𝛼 = 5 is the 

asymmetry parameter. 

The modular SNN contained subnets, each of which included 500 Izhikevich neurons. By default, the 

ratio between excitatory and inhibitory neurons was 1:4. Connections between neurons were 

predominantly local. Subnets were connected by unidirectional connections. 

We detected network bursts of spikes for each subnet as follows. In a time window of 50 ms, the total 

number of spikes generated by the subnet was counted. The value of 50 spikes was taken as the burst 

generation threshold; the time at the moment the threshold was exceeded was considered the burst start. 

When a burst was generated in the leading (presynaptic) subnet in an interval of 100 ms, the presence 

of the beginning of generation of a synchronous burst in the slave (postsynaptic) subnet was checked. 

The network burst transmission percentage was calculated based on the ratio of the number of bursts 

in the postsynaptic subnet, synchronous with the presynaptic, to the total number of bursts in the 

presynaptic subnet.  

We implemented the SNN model as custom software NeuroNet developed in QT C++ environment. 

The app supports SNNs with up to 104 neurons. On an Intel® CoreTM i3 processor, the simulation can 

be performed in real time for a SNN with tens of neurons. 

3 Results 

3.1 Self-reinforcing effect of connections in neural circuits 

In model studies, the efficiency of connections between neurons is usually understood as their weight, 

w, which determines the synaptic current arising in postsynaptic neuron when a spike is generated by 

presynaptic one (4). However, it is impossible to measure w under experimental conditions; therefore, 

the efficiency is estimated indirectly by the amplitude of the postsynaptic potential or by the number 

of spikes "transmitted" from one neuron to another. Likewise, it is possible to determine the 

effectiveness of connections between subnets in experiments in vitro (Pan et al., 2014, 2015; Pigareva 

et al., 2021). Let us consider in the model both cases - with separate neurons (Fig. 1A) and subnets 

(Fig. 1B). For the efficiency of connections, P, here we will take the percentage of activity (individual 

spikes or their bursts) that arose in the second, postsynaptic neuron (subnet) a short time after 

registration of activity in the presynaptic neuron (subnet). The dependence of the efficiency of 

connections P on w has a pronounced sigmoid character both in the case of individual neurons (Fig. 

1C) and in the case of subnets (Fig. 1D represents the dependence of P on W - the average weight of 

inter-subnet connections). Note, that a nonlinear dependence of the slave subnet activity on the master 

one is also observed in experiments (Pan et al., 2014, 2015).   
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Figure 1: Self-reinforcing effect of connections in network structures: A, B) Scheme of paired stimulation of 

neurons (subnets) connected by unidirectional connections; C) Percentage of synchronous activity of connected 

neurons depending on the weight of the connection; D) Percentage of synchronous activity of connected subnets 

depending on the average weight of connections between subnets (the number of connections N = 10); E, F) 

Dynamics of changes in weights under conditions of spontaneous activity (Spont), stimulation of a presynaptic 

neuron or subnet (S1), paired stimulation (S1 + S2).  

The presence of STDP in unidirectional connections can lead to a self-reinforcing effect of – i.e., to 

potentiation in the case of “effective” transfer of spikes through a connection. This effect is observed 

especially quickly when the STDP protocol of paired stimulation is applied, in which the presynaptic 

neuron is first stimulated, and after a short period of time (10 ms) - the postsynatic neuron (Fig. 1E, S1 

+ S2) However, potentiation also occurs in the presence of stimulation of only the presynaptic neuron 

(fig. 1E, S1). And even with the only spontaneous activity, we can observe slow potentiation (Fig. 1E, 

Spont). This is because the presynaptic neuron sometimes excites the postsynaptic one, and according 

to the STDP rule, this leads to the potentiation. In a circuit with neural subnets, these patterns also 

appear. However, they develop much more slowly and with much smaller differences between evoked 

and spontaneous activity (Fig. 1F). 

STDP-based self-reinforcing effect may underlie the formation of neural structures with cyclic activity 

and, possibly, central rhythm generators, CPG. Consider a system consisting of four subnets closed by 

unidirectional connections (Fig. 2 A). With low weights of interconnection and/or an insufficient 

number of them, the activity of subnets is practically uncorrelated (Fig. 2 B). Due to the rather high 

probability of temporal overlap of packs in the absence of connections, our method shows the average 

percentage of packets passing P = 27%, which can be considered as the basic level. In the presence of 

a sufficient number of connections between subnets, the self-reinforcement effect leads to their 

potentiation and the emergence of circulating activity (Fig. 2 C). In this case, neural activity is 

transmitted from one subnet to another, and complete cycles can be repeated. The value of P can reach 

80% or more. Note, that the possibility of this effect occurring is determined by the number of 

connections NW between subnets (Figure 2 D). E.g., in the model with NW < 4, no circulating activity 

was observed. In the presence of bidirectional connections, self-reinforcement of pathways is also 

observed - after a certain time of STDP rearrangements, there is an increase in connections that provide 

the circulation of activity in the direction either clockwise or counterclockwise. 
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Figure 2: Cyclic structures and circulating activity. A) Network architecture, including subnets connected by 

unidirectional links; B, C) An example of raster diagrams before and after learning, demonstrating the 

occurrence of neural activity circulating through the network. D) Dependence of the efficiency of passing 

busts from one subnet to another on the number of connections between subnets before and after learning.  

3.2 The shortest pathway rule 

One can try to implement the simplest associative links on a two-block architecture (Fig. 1). In this 

case, the activity of the postsynaptic neuron (subnet) can be considered as the output response of the 

system. Accordingly, in terms of the Pavlovian conditioning, the stimulation of the presynaptic neuron 

(subnet) will be unconditional signal, and the stimulation of the first neuron will be conditional. 

However, here we are faced with a number of problems: spontaneous (without stimuli) strengthening 

of connections, strengthening of connections when only a conditioned stimulus is given (no 

association), and finally, the absence of a mechanism for removing an association when it is irrelevant 

(for example, when the conditional stimulus is not supported by an unconditional one). Thus, when 

trying to implement associative learning, the main problem is not the strengthening of the connections 

that carry out the association, but with the weakening of the connections that are not involved in the 

association of stimuli. 

We previously described an effect called the shortest pathway rule and proposed a simple neural circuit 

with associative learning based on it (Lobov et al., 2020b). Consider this phenomenon on neural 

networks connected by unidirectional connections (Fig. 3). In the presence of two alternative ways of 

conducting excitation (W1 and W2, Fig. 3A), the shortest path (W1, Fig. 3B) is potentiated. In this 

case, synapses involved in the transmission of excitation along a longer pathway are depressed (W2, 

Fig. 3B). Further we will use both properties of the rule: potentiation and depression. Since the quality 

of training of the studied network architectures is ultimately determined by both properties, we 

introduce the coefficient of the quality of learning: 

𝑄 =
2𝑊𝑝𝑜𝑡

𝑊𝑝𝑜𝑡+𝑊𝑑𝑒𝑝
− 1, (8) 

where 𝑊𝑝𝑜𝑡 is the average value of connections between subnets that should be potentiated in the 

learning process, 𝑊𝑑𝑒𝑝 is the average value of connections that should be depressed. In cases where 

learning is poor, Q has a value close to zero, with “wrong” learning the value of Q is negative. We will 

conventionally assume that neural architectures with Q > 0.5 are properly trained. 
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Figure 3: The shortest pathway rule for subnets structure. A) The network architecture. B) Dynamics of weights 

and the coefficient of the quality of learning 

3.3 Synaptic competition in SNN 

The shortest pathway rule can be used to implement synaptic competition, which solves problems with 

uncontrolled growth of the efficiency of connections and allows us to remove associations if they are 

irrelevant. Consider network architectures with two input elements and one output element (Fig. 4). In 

terms of Pavlovian conditioning, this architecture allows us to model a situation with two possible 

conditional stimuli CS and one unconditional stimulus US. During the learning process, the output 

element (N3, Fig. 4A; Snet3, Fig. 4D) will change the weights of the incoming connections depending 

on the correlation of its activity with the activities of the input elements. In the implemented protocol 

(Fig. 4B, Fig. 4E), "incorrect" pre-training occurs first when combining US with CS1. Then the main 

stage of training is carried out, in which US is combined with CS2. Such a protocol allows us to analyze 

not only the ability of the system to form associative links, but also the ability to retrain when changing 

external conditions (in our example, replacing CS1 with CS2). 

Bidirectional connections between input elements (wc, Fig. 4A; WC in Fig. 4D) are a key element of 

synaptic competition. They close the alternative long path when one of the input elements is jointly 

activated. As a result, along with the strengthening of the currently relevant associative connection, a 

weakening of the irrelevant association occurs and, accordingly, the learning coefficient Q increases 

(Fig. 4B, 4E). The results of simulations with different weights of the competition connection show a 

certain range for which optimal learning is observed (Fig.4C, 4F, pink area). Combining two input 

subnets (Snet1 and Snet2) into one in our simulations also provided good learning with Q = 0.63 ± 

0.11 (n = 6). Comparing the learning results obtained in a chain of individual neurons and a network 

with subnets, it can be noted that in the second case, learning is slower (Fig. 4B vs. 4E) and with lower 

quality (Fig. 4C vs. 4F). This is due to the more complex neural dynamics of subnets and the presence 

of stimulus-induced synaptic rearrangements not only between subnets, but also within subnets. 
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Figure 4: Associative learning and synaptic competition. 

3.4 Neural competition of SNN outputs 

A neural network can have not only several possible input (conditional) stimuli, but also several output 

(unconditional) ones. Therefore, for effective learning, it is necessary to implement not only 

competition between input neural elements (synaptic competition) but also competition between output 

elements – let us call it neuronal. Consider a circuit with one input and two output (Fig. 5A, C). In 

terms of Pavlovian conditioning, this architecture allows one to model a situation with one possible 

conditioned stimulus CS and two unconditioned stimuli CS. Here, as before (Lobov et al., 2020b, 

2020a), to implement neural competition, we will use lateral inhibition, which suppresses the activity 

of neighboring neuronal elements upon strong activation (“win”) of one of the elements. As a result of 

this process, only the winning element undergoes learning in the form of association. Since in this case 

we do not use the mechanism for removing irrelevant associations, the training protocol does not 

contain a phase of “wrong” pre-training. In the case of subnets, we combined two output networks into 

one, bearing in mind the impossibility of forming exclusively inhibitory connections between subnets 

in experimental condition. 

Let us investigate how the parameters of the inhibitory elements determine the quality of learning. As 

such parameters, we chose the weight of inhibitory connections (wI in the case of circuits from 

individual neurons and WI in the case of a system from subnets) and the decay time of inhibitory 

postsynaptic current τI in the Tsodyks-Markram's model (Tsodyks et al., 1998). The simulation results 

(Fig. 5B, D) show that in both systems under study, learning fails for wI, WI  < 0.1 and τI  < 40 ms. 

Thus, lateral inhibition is a necessary element of learning. As with the case with two inputs and one 

output, the learning quality is better with individual neuron circuits (Fig. 5B, Qmax = 0.8) than with the 

system of subnets (Fig. 5B, Qmax = 0.7). This is due to the presence of incomplete suppression of 

competing neurons in a large network even at extremely high values of the parameters of inhibitory 

connections. 
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Figure 5: Associative learning and neural competition. 

3.5 Associative learning with robotic embodiment  

Earlier, we proposed a scheme for mapping activity of neural circuit to “behavior” of mobile robot 

training in the context of obstacle avoidance problem (Lobov et al., 2020b). In particular, a LEGO 

robot was used, with two touch sensors and two sonars (Fig. 6A, B). The activity of the motor neuron-

pacemaker (N7 Fig. 6A, C) was translated into the command of rotation of the right and left motors, 

which led to the movement of the robot forward. The signal from touch sensors served as an 

unconditioned stimulus - upon stimulation of the corresponding neurons (N3, N4, Fig. 6C), excitation 

was transmitted to motoneurons that brake the wheels. As a result of such an unconditional reaction, 

the robot could a priori avoid obstacles upon contact with them. The signal from the sonars served as 

a conditional stimulus - when one of the CS neurons (N1 or N2, Fig. 6C) was activated, simultaneously 

with the activation of one of the US neurons (N3 or N4, Fig. 6C), the corresponding connections were 

strengthened, and the robot learned to go around obstacles in advance without contacting them. 

Training the robot could mimic Pavlovian conditioning (when stimuli were given regularly from the 

left and right sides, Fig. 6B), or operant learning (when the robot moved in a free mode, receiving 

stimulation from objects that it encountered on its way). 

We have implemented a similar robotic embodiment in the case of a subnetted neural system (Fig. 6D). 

In this case, we used two subnets - for stimulation with conditional stimuli (Snet 1, Fig. 6D) and 

unconditional stimuli (Snet 2, Fig. 6D). At the same time, the internal connections in the Snet 1 subnet 

provided synaptic competition for interconnections WP and WD projected onto subnet Snet 2. In turn, 

the inhibitory neurons of the Snet 2 provided neural competition - when one of the zones of the Snet 2 

was excited, the other zone was inhibited. Due to the duration of the training process and the poorer 

quality, in the case of a neural system consisting of subnets, training can be carried out only in the 

mode of simulating a Pavlovian conditioning (the dynamics of learning is shown in Fig. 6E). Testing 

robots driven by SNNs with different learning quality values shows relationship between Q and the 
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robot's “behavior” (Fig. 6F). Note, that the dependence of the number of collisions on Q fits well with 

an exponential function, both for a neural system with subnets (Fig. 6F, Subnets) and individual 

neurons (Fig. 6F, Neurons). The higher the quality of learning, the fewer collisions are registered 

during the test time (10 min), which really allows us to call Q the quality of learning. Since the 

dynamics of a complex neural system negatively affects the robot's behavior, the number of collisions 

in the case of using a simple neural circuit is lower over the entire range of Q values. 

 

Figure 6: Neurobot and the relationship of the network and behavioral level. A) Mapping of the sensory and 

motor neurons in the mobile LEGO robot. B) Training the robot, in which the touch sensor and the ultrasonic 

sensor are simultaneously triggered. C) Neural circuit with associative learning. D) Modular network, consisting 

of subnets connected by unidirectional connections (WP and WD). F) The dynamics of weights of unidirectional 

connections (WP and WD) and the coefficient of quality of learning (Q) in the learning process. D) Dependence 

of the number of collisions of the robot with obstacles on the coefficient of the quality of learning in case of the 

neural circuit (“Neurons”) and the modular network (“Subnets”). 

Conclusions 

In this paper, we investigated the architectures of modular SNNs with subnets connected by 

unidirectional connections. First, we studied a two-block architecture, consisting of two identical 

subnets. Simulating has shown that the presence of STDP in unidirectional connections can lead to the 

effect of self-reinforcement of synapsis with efficient spike transfer. This effect is observed with the 

use of stimulation of the presynaptic network, with paired stimulation according to the STDP protocol, 

as well as in the presence of spontaneous activity caused by neural noise. It is shown that a consequence 

of the strengthening of connections between subnets is an increase in the number of spike busts passing 

from one subnet to another, while the dependence is sigmoidal. An attempt to use the two-block 

architecture in associative learning has identified a number of factors that have a negative impact on 

learning. In particular, the main problem was not the strengthening of the connections that carry out 

the association, but the insufficient weakening of the connections that are not involved in the 

association of stimuli. 

Next, we studied the possibility of an architecture with two input (presynaptic) subnets and one 

postsynaptic subnetwork. Such SNN can implement associative learning with two conditional signals 

and unconditional one. It is important to ensure competition between converging interconnections here. 

Since in the case of a simple neural chain, converging connections are synapses of one neuron, we 
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called this phenomenon synaptic competition. In the current work, as before for neural circuits (Lobov 

et al., 2020b), to implement synaptic competition, we used the "shortest path rule": On the network 

scale, STDP potentiates the shortest neural pathways and depresses alternative longer pathways. It is 

important to note that this rule (Fig. 3), as well as the architecture with converging connections (Fig. 

4), can already be tested experimentally in vitro. 

The next step involved study the architecture with one input and two outputs. Such SNN is able to 

implement associative learning with one conditional signal and two unconditional ones. It is important 

here to ensure competition between diverging connections. Earlier, we called this phenomenon neural 

competition, meaning that postsynaptic neurons compete with each other, suppressing their neighbors 

upon excitation. In the current work, as before (Lobov et al., 2020b, 2020a), we implemented neuronal 

competition using lateral inhibition. This approach is still impossible to test experimentally, since a 

technique for growing neural networks with specified parameters for excitatory and inhibitory elements 

has not yet been proposed. 

Finally, we have proposed the network architecture capable of handling two conditional and two 

unconditional signals and providing two associative links. Associative learning is demonstrated using 

a neurorobot. In the interface scheme, the signal from the robot's sensors is fed to certain sections of 

the network, providing the possibility of synchronous activity in a pair of sections. Before training, the 

robot can only avoid obstacles when it collides with them. When learning, which consists in presenting 

the robot with an obstacle in one of the sides, the conditioned stimulus (CS), mediated by the ultrasonic 

sensor, is associated with the unconditioned stimulus (US), mediated by the touch sensor. As a result 

of training, the robot can go around obstacles without contacting them. To characterize the quality of 

training, we proposed to use the coefficient of the learning quality Q, based on the ratio of the weights 

of connections between subnets. During training, Q can increase up to its maximum value. Experiments 

with a robot controlled by SNNs with different learning quality revealed an exponential relationship 

between the Q and the number of errors, i.e. collision with obstacles. 

The results of this study open up a long-term perspective related to the development of therapeutic 

strategies and neurotechnologies based on direct modulation of neural electrical activity in the 

treatment of neurological disorders (monitor-compute-actuate paradigm). In this case, the developed 

algorithms for learning / stimulating brain subnets and electrically controlled connections between such 

subnets will be useful. Adaptive memristive connections created artificially will provide the necessary 

degree of freedom in setting the parameters of connections (their weights and their number) for the 

occurrence of correlated activity of living subnets. Further development of this technology may be 

associated with the integration of control circuits, memristive and microelectrode arrays on a single 

CMOS chip with subnets spatially ordered by microfluidics (Mikhaylov et al., 2020). 
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