Line spread function formulation

proposed by W. H. Steel:

a revision

A. Manzanares, M. L. Calvo, M. Chevalier, and V. Lakshminarayanan

A revised formulation of the image light distribution of an incoherent line source proposed by Steel [Rev.
Opt. 31, 334-340 (1952)] is presented. Analytical and numerical results based on this new represen-
tation are given. We explicitly show that a major error in Steel’s final expression generates singulari-
ties, thereby preventing convenient numerical computation. © 1997 Optical Society of America

1. Introduction

Steel! formulated the light distribution of an incoher-
ent line source in the image plane in terms of three
separate expressions: (1) direct calculation (in
terms of the Struve function of first order), (2) the
Fourier transform (integral representation), and (3) a
series of Bessel functions.

In the context of image-forming systems, the image
of a line source is usually called the line spread func-
tion (LSF), similar to the image of a point source
called the point spread function (PSF). According to
these well-known criteria for PSF and LSF, the for-
malism given by Steel for representing the incoher-
ent image intensity distribution of a line behaves as
the LSF of a diffraction-limited system with a circular
pupil of unit radius in conditions of incoherent illu-
mination.

Based on the classical theory of image-forming sys-
tems limited by diffraction, an invariant linear sys-
tem can be characterized by its impulse response:
the response of the system to a point source (PSF) or
by its line response, the response of the system to a
line source (LSF).2 The LSF is easier to measure
and sometimes is preferred for characterizing the
system response instead of the PSF. Moreover the
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LSF characterization gives an alternative procedure
in which the edge spread function (ESF) or edge trace
of the system is directly derived. When the research
of Marchand is used,3* the reciprocity between the
LSF and modulation transfer function (MTF') of the
system establishes the characterization of the ESF as
a Fourier transform of the LSF. This gives a sys-
tematic procedure that could be applied to edge-
imaging quality assessment and its influence on
optical instrumentation.> This is the main focus of
interest of this note. Defining the LSF of the sys-
tem, one calculates the output image of the system
directly by convolving the LSF with the input image.
This is the main procedure that we have considered
in our study.

To obtain an explicit expression for the convolution
operation, one may search for a convenient analytical
formulation for the LSF. This goal has a double
purpose: (1) obtaining a simple and manageable for-
mulation and (2) assuring proper mathematical be-
havior (avoiding divergences) and a fast speed of
convergence of the solution. As a first attempt we
introduced Steel’s LSF expression in our calcula-
tions.! We have found that the LSF in terms of a
series of the Bessel function of the order of 1 given by
Steel presents odd symmetry, and it is negative for
some values of the argument. This fact contradicts
the mathematical behavior of the LSF that is defined
as a positive function. As for the mathematical rep-
resentation, Steel employed the so-called standard
notation of Watson,® which coincides with the one
that we used in our study.

According to Steel’s formulation, the LSF is di-
rectly obtained by assuming that the system being
considered is diffraction limited. The function
circ(r) represents the circular pupil of the system
(with a unit radius). We consider such a system to
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Fig. 1. Simplified diffraction-limited system with a telecentric

effective stop. Incoherent conditions of illumination are assumed.

be illuminated by an incoherent and collimated light
beam.

We assume that the optical system is composed of
an arbitrarily defined object plane, where the input
function (object), a lens and its associated Fourier
transform plane F' (where the spectrum of the object
is defined), and the image plane, which is located far
from plane F in the Fraunhofer approximation (see
Fig. 1) are located. For simplicity the pupil of the
system is located close to the Fourier transform plane
(a negligible distance to it). Note that this simplifi-
cation implies that we consider a telecentric effective
stop.”

2. Procedure

On the plane P, is located the object intensity distri-
bution or input function, f(x, ¥). On plane F the
Fourier transform of the input function, FT[ f(x, )],
is defined. It is affected by the optical transfer func-
tion (OTF) of the system; then

F(a, B) = FT[ f(x, y) |OTF(c, B), (1)

where FT is the Fourier transform operation and
OTF(a, B) = circ(p/2)**circ(p/2). (2)

The ** denotes autocorrelation and p = (o + B2)/?is
the radial coordinate.

In plane P;, one has the image intensity distribu-
tion or output function. By applying the inverse
Fourier transform in Eq(1), we have

I(x',y") = FT YFT[ f(x, y)JOTF (o, B)}

= f(x', y")*FT '[cire(p/2)**circ(p/2)],
(3)

where * denotes convolution and (x', y') = (—x, —y)
are the spatial coordinates at the image plane. Note
that we assume a unit magnification.

By using the properties of the Fourier transform
related to the convolution, we have

FT circ(p/2)**circ(p/2)] = [FT Ycirc(p/2)]]
_ {Jl(r)r (4)

r

where r = [(x")? + (y")?]/? and J, is the Bessel func-
tion of first order. Therefore
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The LSF is defined by the convolution integral given
in Eq. (5) provided that the object intensity distribu-
tion f(x, y) at the input of the system depends on a
single variable, i.e., x. In this situation

w oo 2 21/272
I(x') = f f flx' — u)[w} dudv

(u2 + 02)1/2

(6)
where (u, v) are dummy variables.
o = [, (u? + v2)1/2 2
I(.?C’)=JA f(x’—u)f W dov }du
- fw fx' — u)LSF(u)du. )

According to Eq. (7) we arrive at a well-known result
expressing the output image intensity distribution as
a convolution of the one-dimensional input object in-
tensity distribution with the normalized LSF of the
system, given in terms of the Struve function®-® of
first order H,(u):

- 2 201/272 H.(2
LSF(u)=J' [Jl(”“)] dv=3§ 152”). )

(u2 + U2)1/2

3. Series Expansion

By substituting the Struve function in terms of its
series expansion,® one obtains

LSF@) = &S (D™ 9)
W= 2 v 32T+ 5/2)

Figure 2 shows the numerical behavior of Eq. (9) for
0 = n = 30. The convergence of the series is as-
sured. Nevertheless the speed of convergence of the
series appears to be slow, even if the number of terms
of the series increases. (For n > 30 no improvement
has been found.) The time required to compute Eq.
(9) with 31 terms is 27.95 s, when a common math-
ematical software (Mathematica 2.2.1 on a Pentium
computer operating at 120 MHz) is used. It is inter-
esting therefore to look for an alternative series ex-
pansion for which the convergence becomes faster.
Steel proposed the use of the integral representation
of H,(u) as well as the Fourier expansion of the ar-
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Fig. 2. LSF representation in terms of a polynomial series of the

argument [see Eq. (9)]. The x represent the spatial coordinate.

The ordinate axis represents the line image radiant flux density (in

arbitrary units).

gument,! which depends on a series expansion of
Bessel functions.

We have reproduced this calculation and found an
analogous result:

J2n( u)

LSF(u) = e

— Jo(2u) + 2 E (10)

where J, is the Bessel function of zero order and JJ,,,
is the Bessel function with n > 0 and even order.
Steel proposed a simplification of Eq. (10) where the
mathematical procedure was not specified, leading
to a new expression that exhibits a divergent be-
havior:

LSF(u) = i [u RS J1(4””)] . av

n=1 4n2 - 1

This is an odd function. Figure 3 displays this
result for 1 = n = 100. The figure also shows
negative values for the LSF and a loss of symmetry.
There is also a lack of lobes and the center exhibits
a singular behavior. The latter characteristics do
not correspond to the expected shape for a typical
LSF function. To verify whether Eq. (11) repre-
sents a LSF, one may calculate the MTF and the
ESF associated with Steel’s LSF. By using the def-
initions,? one may prove that these functions di-
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Fig. 3. LSF representation as given by Steel [see Eq. (11)].
Units are as in Fig. 2.

verge. To calculate the ESF from the LSF of Steel,
one has to solve the integral of the LSF for the
interval (—«, x). In particular, one has to calculate
the integral of the first term for the interval (—«, x),
but the result of this integral is log(x). Obviously,
log(—=) diverges, and it is not possible to define the
ESF associated with the LSF of Steel. Similar
problems are found if one calculates the MTF asso-
ciated with the LSF of Steel. Again it is not pos-
sible to define the MTF since a singularity appears
in the expression.

In the analysis of the general formulation [see Eq.
(10)], the main goal is to obtain a series expansion for
which a higher speed of convergence is found in terms
of the Bessel functions. By using the property,1°

1=dy(x) + 2, Jan(x), (12)
n=1

and by substituting /(x) into Eq. (10), we found that

LSF(u) = E Z JZ"@”).

(13)

This expression appears to have a higher speed of
convergence, since Eq. (13) needs only three terms in
the series to converge (1 = n = 3) and the time
required to compute is 1.48 s, when one is operating
as in the precedent computation conditions of Eq. (9).
Figure 4 shows both numerical behaviors of Eqs.(11)
and (13).

Obviously, the LSF given by Eq. (13) shows a
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Fig.4. Comparison between the correct LSF [see Eq. (13)] and the
LSF given by Steel [see Eq. (11)]. Units are as in Fig. 2.

smooth central peak and sidelobes. Moreover it is
positive for all the arguments as expected. It is
possible also to calculate the associated ESF and
MTF with this LSF. For brevity, we omit the long
definitions of the operations. It can be shown that
by integrating Eq. (13), we can give the ESF

ESF(x) = f LSF(a)do

- n? -1
=12
E4n2—1 4n® -1

2n —Dal@n+1) "7 2/’
X (n +1,2n+ 1),_362}],
2 4 (14)

where F, is the generalized hypergeometric func-
tion.1° Figure 5 displays the numerical representa-
tion of the ESF calculated from the LSF [Eq. (13)].
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Fig. 5. (a) ESF or edge trace calculated from the correct LSF by
integrating Eq. (13). The x represents the spatial coordinate.
The ordinate axis represents the edge image radiant flux density
(in arbitrary units). The normalization has been obtained with
respect to ESF(x — +»).
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Fig. 6. MTF calculated from the correct LSF by applying the
Fourier transform to Eq. (13).

By taking the Fourier transform of Eq. (13), one can
give the MTF as

MTF(u) = |TF[LSF(x)]|

2
= n 1
=12 5| oI —n—=
11
n — 5, 5, 1T2u2) , (15)

where ,F is the hypergeometric function of the order
of 1.1 Figure 6 displays the corresponding MTF.
Both functions show the typical behavior for the ESF
and the MTF of a perfect system. This result gives
another cue for considering that the proposed LSF
fulfills all the desirable properties for a perfect LSF.

4. Conclusions

One can establish that the image of the line source
introduced earlier by Steel can be considered as a
LSF, since the assumed optical system is diffraction
limited by a circular pupil and acts in conditions of
incoherent illumination. By reproducing the corre-
sponding calculations, to find the same final expres-
sion for the LSF, one finds a major error in Steel’s
formulation.

We have introduced here an alternative method for
calculating the correct expression for the image of a
line or LSF in an analogous optical system. A com-
parison between the two LSF expressions shows dra-
matic differences. In particular the LSF of Steel
does not have the properties necessary to be consid-
ered as a LSF:

e Smooth central peak with even symmetry (ap-
proximate to a parabolic function).

¢ Even shape for all the values of the function.

e Sidelobes (these lobes take account of the
second-order diffraction).

¢ Convergent asymptotic behavior.

e Defined MTF and ESF associated with the LSF.

The fulfillment of these main characteristics is nec-
essary for defining the LSF. The expression derived
here, represented by Eq. (13) and displayed in Fig. 4,
can prove to be the correct fit.
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