UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUÍMICAS

TESIS DOCTORAL

Presiones de vapor en sistemas binarios

MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR

Aurora Compostizo Sañudo

DIRECTOR:

Mateo Díaz Peña

Madrid, 2015

© Aurora Compostizo Sañudo, 1975

UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE CIENCIAS QUIMICAS

PRESIONES DE VAPOR EN SISTEMAS BINARIOS

TESIS

para optar al grado de Doctor en Ciencias Químicas

por

AURORA COMPOSTIZO SAÑUDO

X-53-044347-2 UNIVERSIDAD COMPLUTENSE - MADRID Facultad de Giencies Cullulane BIBLIOTECA N.º Recistro

Departamento de Química-Física

Madrid, Septiembre 1975

A mis padres

.

Este trabajo ha sido -realizado en el Departamento de Quími ca-Física de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid, bajo la dirección del -Prof. Dr. D. Mateo Díaz Peña, Catedr<u>á</u> tico de Química Física, a quien expr<u>e</u> so mi agradecimiento.

Asimismo, mi reconoci-miento al Prof. Dr. D. Jesús Morcillo Rubio, Catedrático de Estructura Atómica-Molecular y Espectroscopía y Director del mencionado Departamento.

INDICE

Pá	g	i	n	a

CAPITULO	I INTRODUCCION	1
CAPITULO	II METODO EXPERIMENTAL	4
2.1	DESCRIPCION DEL APARATO	4
	2.1.1 Sistema de vacio	4
	22 Ebullómetro	6
	2.1.3 Sistema manométrico	8
2.2	MEDIDA DE LA PRESION	8
2.3	MEDIDA DE LA TEMPERATURA	12
2.4	DETERMINACION DE LA COMPOSICION DE LAS -	
	FASES LIQUIDA Y VAPOR	12
2.5	METODO GENERAL DE OPERACION	15
CAPITULO	III SUSTANCIAS PURAS	18
3.1	CARACTERISTICAS DE LAS SUSTANCIAS ESTU	
	DIADAS	18
3.2	VOLUMEN MOLAR	25
3.3	SEGUNDO COEFICIENTE DEL VIRIAL	26
3.4	RESULTADOS	28
CAPITULO	IV DATOS EXPERIMENTALES	30
4.1	MEZCLAS DE COMPOSICION CONOCIDA	30
4.2	PRESIONES DE VAPOR	32
4.3	FUNCION DE GIBBS DE EXCESO	32
4.4	CONSISTENCIA TERMODINAMICA	38
	4.4.1 Método gráfico	39
	4.4.2 Método analítico	41
4.5	CALCULO DE ERRORES	45
	4.5.1 En la composición	45
	4.5.2 En la temperatura	48
	4.5.3. – En la presión	49

	4.5.4 En el volumen molar	50
	4.5.5 En el segundo coeficiente del	
	virial	51
	4.5.6 En el potencial químico de exce	
	80	51
4.6	RESULTADOS EXPERIMENTALES DE LOS SISTE-	
	MAS	54
	4.6.1 Ciclohexano(1)+Benceno(2) 70°C	54
	4.6.2 o-Xileno(1)+n-Heptano(2) 75°C	67
	4.8.3 m-Xileno(1)+n-Heptano(2) 75°C	78
	4.6.4 p-Xileno(1)+n-Heptano(2) 75°C	89
	4.6.5 Metil-ciclohexano(1)+Benceno(2)	
	75°C	100
	4.6.6 Tolueno(1)+Metil-ciclohexano(2)	
	75°C	111
	4.6.7 o-Xileno(1)+Metil-ciclohexano(2)	
	75°C	122
	4.6.8 m-Xileno(1)+Metil-ciclohexano(2)	
	75° C	133
	4.6.9 p-Xileno(1)+Metil-ciclohexano(2)	
	75°C	144
CAPITULO	V TEORIA DE FLORY	155
5.1	INTRODUCCION	155
5.2	ECUACION DE ESTADO DE EYRING Y HIRSCHFEL	
	DER. MODELO DE CELDA	156
5.3	ECUACION DE ESTADO EN LA TEORIA DE FLORY	161
5.4	MEZCLAS BINARIAS	164
5.5	ENERGIA LIBRE DE GIBB DE EXCESO	167
5.6	CALCULO DE X12 Y v EN LA MEZCLA	168
5.7	$CALCULO DE r, v* Y s \dots$	170
5.8	PARAMETROS PARA LIQUIDOS PUROS	172
5.9	RESULTADOS DE LA TEORIA	174
RESUMEN Y	CONCLUSIONES	182
BIBLIOGRA	AFIA	184

2 th

CAPITULO I

INTRODUCCION

El trabajo llevado a cabo en la presente Memoria forma parte de un estudio general de las propiedades de exceso de sistemas binarios, no polares, que se viene realizando en el Departamento de Química-Física de la Universidad Complutense de Madrid.

La Termodinámica Estadística, basada en el estudio de modelos físicos, ha aportado los conocimientos imprescindibles para el desarrollo de teorías en las disolucio nes líquidas. De hecho al mezclar dos líquidos podemos pred<u>e</u> cir con la ayuda de estas teorías el tipo de variaciones que pueden experimentar sus propiedades. Un análisis sistemático de éstas nos va a permitir evaluar en primer lugar, la energía libre de Gibbs de exceso, G^E , y por derivación de ella, en función de la temperatura y presión, la entalpia, H^E , y volumen de exceso, V^E , respectivamente.

Derivando doblemente G^E , con respecto a la tem peratura, por un lado se obtiene la capacidad calorífica de exceso, y de otro, con relación a la presión, la compresibilidad isotérmica.

El coeficiente de expansión se conoce por der<u>i</u> vación con respecto a la temperatura y presión de la energía libre de Gibbs de exceso. El conocimiento de estas magnitudes nos da una visión del comportamiento termodinámico del estado líquido.

Como se sabe, las teorías existentes no son --

sensibles a las derivadas de G^E, superiores a la segunda, de ahí que hayamos elegido para nuestro estudio la energía li-bre de Gibbs de exceso en función de la temperatura, presión y composición, como magnitud termodinámica primordial, siendo además la que presenta mayor consistencia con las predicciones teóricas.

Se ha elegido para el desarrollo de esta Memoria el estudio de una serie de sistemas binarios constituí-dos por el heptano y metil-ciclohexano con benceno y derivados metilados del mismo.

Dentro de las técnicas experimentales existentes, para las medidas de presión de vapor de sistemas bina-rios, hemos utilizado la ebullometría dinámica que nos pro-porciona directamente los valores de la presión a temperatura constante, permitiéndonos además la separación de muestras de las fases líquida y de vapor condensado, para obtener po<u>s</u> teriormente los datos de composición.

Con los valores experimentales de las presiones de vapor a temperatura constante, se procede al cálculo de los potenciales químicos de exceso en función de la comp<u>o</u> sición, verificándose analítica y gráficamente su consistencia interna, como prueba de validez.

De las diversas teorías existentes acerca del estado líquido, las que toman como modelo esferas rígidas -pierden cierta validez al aplicarlas a mezclas de moléculas que poseen una larga cadena, de ahí que haya que prescindir de ellas para el estudio de nuestros sistemas, dada la naturaleza de las moléculas analizadas.

Actualmente, Flory y colaboradores han desarro llado una teoría sobre el estado líquido que presenta una ma yor sensibilidad a las variaciones en los valores de G^E , ---

- 2 -

siendo esta la razón fundamental de que hayamos elegido esta teoría. Su estudio está basado en un modelo molecular simple, suponiendo que entre las moléculas se pone de manifiesto un potencial de interacción sencillo, que una vez calculado nos va a permitir la determinación de G^E .

- 3 -

En la realización de este trabajo se ha puesto a punto un método iterativo para el conocimiento del parámetro de interacción, y por consiguiente de la energía libre de Gibbs de exceso, debido a la ausencia de datos experimentales en la Bibliografía.

Y para finalizar, se hace un estudio comparat<u>i</u> vo de los resultados experimentales y teóricos.

CAPITULO II

METODO EXPERIMENTAL

2.1.- DESCRIPCION DEL APARATO

En la determinación de equilibrios líquido-v<u>a</u> por, a temperatura constante, midiendo la presión y compos<u>i</u> ción de ambas fases, hemos utilizado como técnica experimen tal la ebullometría dinámica, siguiendo las ideas de Brown¹.

El aparato, fundamentalmente, está constituído por un sistema de vacío, un ebullómetro y tres manóm<u>e</u> tros, que a continuación describimos en los siguientes apa<u>r</u> tados:

2.1.1.- Sistema de vacio.

Consta de una bomba de alto vacío EDWARDS, mo delo ED 50; una bomba difusora de mercurio y una trampa, es decir un recipiente de vidrio, enfriado con nitrógeno líqui do con objeto de condensar los vapores de mercurio que puedan pasar de la difusora y los de las sustancias, evitándose que condensen en la bomba rotatoria.

Este sistema, esquematizado en la Figura 2.1, conecta por la llave L_3 a una rama de los manómetros M_1 y - M_2 . El manómetro M_3 está conectado por las llaves L_1 y L_2 , y esta última a su vez, con el balón B, cuya misión es corregir ligeras modificaciones de presión en el ebullómetro que se realizan mediante la llave L_8 . Y por último, la lla-

ve L_A nos permite la comunicación directa con el ebullómetro.

2.1.2.- Ebullómetro.

Como se indica en la Figura 2.2, está formado por un vaso de mezcla, VM, una cámara de separación, S, y -dos vasos de toma de muestra L y V, conectando al resto del sistema mediante el refrigerante, R_2 .

El recipiente, VM, lleva dos resistencias, una interna y otra externa, regulables por dos autotransformadores cuya misión es respectivamente, evitar ebulliciones tu-multuosas del líquido y poner la mezcla en ebullición. Todo el vaso, VM, hasta la cámara de separación, S, va recubierto de sistema aislante.

La cámara de separación, S, lleva alojado un pozo termométrico, P, en el que se introduce la soldadura c<u>a</u> liente del termopar, que se describe posteriormente. En esta cámara, como su nombre indica, tiene lugar la separación de las fases líquida y vapor. La primera, cae al vaso de toma de muestra, L, y la fase de vapor queda condensada en el refrigerante R₁, recogiéndose en el vaso, V. Ambos vasos co--mienzan a llenarse por su parte inferior y el líquido que r<u>e</u> bosa es recogido de nuevo en VM. Mediante un sistema de cierre de imanes, I₁ e I₂, que se accionan desde el exterior -permitiéndonos aislar L y V. Sendos vasos se cierran hermét<u>i</u> camente mediante un sistema de Teflón. Las sustancias a me-dir en el aparato se introducen por C₁ y se adopta un cierre de seguridad de mercurio. El vaciado del aparato se lleva a cabo mediante la llave de Teflón, C₂.

- 6 -

2.1.3.- Sistema manométrico...

Consta fundamentalmente, del manómetro M₁ que tiene sus ramas en la misma vertical para evitar desplaza--mientos angulares del catetómetro, lo que proporciona medi-das con gran precisión.

El manómetro M₂ se utiliza para poner en primera aproximación el aparato a la temperatura de medida deseada.

Y por último el manómetro M_3 , indicador de la presión que hay en el balón B, se emplea para introducir pequeñas modificaciones en la temperatura.

2.2.- MEDIDA DE LA PRESION

Una vez alcanzado el equilibrio de temperatura y composición del sistema, se lee la presión en el manómetro M_1 , como ya se ha indicado en el apartado anterior.

Estas medidas de presión se reducen a valores standard, con objeto de universalizarlas, es decir, a 0°C y a una aceleración de la gravedad constante ($g_0 = 980,665 ---$ cm.sg⁻²).

Si a cero grados centígrados la densidad del mercurio vale ρ_0 y la aceleración de la gravedad g_0 , en un determinado momento le correspondería una altura h_0 , y como nuestras medidas se realizan a una temperatura t_1 , consecue<u>n</u> temente, ρ_1 , g_1 , y h_1 serían la densidad, aceleración de gr<u>a</u> vedad y altura respectivamente, verificándose que:

$${}^{h}\mathbf{1}^{\rho}\mathbf{1}^{g}\mathbf{1} = {}^{h}\mathbf{0}^{\rho}\mathbf{0}^{g}\mathbf{0} \tag{2.1}$$

Si para una temperatura t_0 está calibrada la escala del catetómetro cuyo material posee un coeficiente de expansión lineal α_1 , la diferencia de nivel que se establece entre las ramas del manómetro es h_i, por lo tanto, cuando la escala del catetómetro esté a una temperatura t₂, se verifica que

$$h_1 = h_1' \{1 + \alpha_1(t_2 - t_g)\}$$
(2.2)

La densidad ρ_1 del mercurio a la temperatura - t_1 puede expresarse mediante la ecuación:

$$\rho_0 = \rho_1 (1 + \alpha_M t_1)$$
 (2.3)

donde α_M es el coeficiente de dilatación cúbica medio del -mercurio a temperatura ambiente. Sustituyendo esta ecuación y la (2.2) en la (2.1), obtenemos que:

$$h_0 = h_1' \{1 + \alpha_1 (t_2 - t_0)\} - \frac{1}{1 + \alpha_M t_T} - \frac{g_1}{g_0}$$
(2.4)

y como

$$\frac{1}{1+\alpha_{M}t_{1}} = 1 - \alpha_{M}t_{1}$$
 (2.5)

podemos poner:

$$h_0 = h_1' \{1 + \alpha_1(t_2 - t_0)\}(1 - \alpha_1 t_1) \frac{g_1}{g_0}$$
 (2.6)

donde

 h_0 = altura o presión standard.

- 10 -

 h'_1 = altura o presión medida con el catetómetro.

$$\alpha_1 = 1,84.10^{-5}$$
 (grados⁻¹). Para el latón².

 $\alpha_{\rm M} = 1,818.10^{-4} ({\rm grados}^{-1})^3$,

 $t_0 = 20,0^{\circ}C$ temperatura de calibrado del catetómetro.

t₂ = temperatura alla que se encuentra el catetómetro en el intervalo de la medida.

t₁ = temperatura del manómetro durante la medida.

$$g_1 = 979,953(\text{cm.sg}^2)$$
 en Madrid.

 $g_0 = 980,665(cm.sg^{-2})$ standard.

En este caso las temperaturas del manómetro y de la escala del catetómetro se igualan $t_1 = t_2$ y por consiguiente la ecuación (2.6) se transforma en:

$$h_0 = h_1' \{1 + t_1(\alpha_1 - \alpha_M) - \alpha_1 t_0\} \frac{g_1}{g_0}$$
 (2.7)

Para mayor comodidad se ha tabulado en función de t₁:

$$f = \{1 + t_1(\alpha_1 - \alpha_M) - \alpha_1 t_0\} - \frac{g_1}{g_0}.$$
 (2.8)

habiéndose recogido en la tabla 2.1. La ecuación (2.7), en-tonces adopta la forma:

$$h_0 = h f$$
 (2.9)

permitiéndonos reducir todas las presiones a valores stan--dards.

Tabla 2.1

t°C	f								
16.0	0.99629	17.0	0.99613	18.0	0,99596	19.0	0,99580	20.0	0,99564
1	0,99627	1	0,99611	1	0,99595	1	0,99578	1	0,99562
2	0,99626	2	0,99609	2	0,99593	2	0,99577	2	0,99560
3	0,99624	3	0,99608	3	0,99591	3	0,99575	3	0,99559
4	0,99623	4	0,99606	4	0,99590	4	0,99573	4	0,99557
5	0,99621	5	0,99605	5	0,99588	5	0,99572	5	0,99555
6	0,99619	6	0,99603	6	0,99587	6	0,99570	6	0,99554
7	0,99618	7	0,99601	7	0,99585	7	0,99568	7	0,99552
8	0,99616	8	0,99600	8	0,99583	8	0,99567	8	0,99550
9	0,99614	9	0,99598	9	0,99582	9	0,99565	9	0,99549
21.0	0.99547	22.0	0.99531	23.0	0.99515	24.0	0.99498	25.0	0.99482
1	0,99546	1	0,99529	1	0.99513	1	0,99497	1	0,99481
2	0.99544	2	0.99528	2	0.99511	2	0.99495	2	0.99479
3	0,99542	3	0.99526	3	0.99510	3	0.99493	3	0.99477
4	0,99541	4	0.99524	4	0,99508	4	0,99492	4	0.99476
5	0,99539	5	0,99523	5	0,99506	5	0,99490	5	0,99474
6	0,99537	6	0,99521	6	0,99505	6	0,99488	6	0,99472
7	0,99536	7	0,99519	7	0,99503	7	0,99487	7	0,99471
8	0,99534	8	0,99518	8	0,99502	8	0,99485	8	0,99469
9	0,99533	9	0,99516	9	0,99500	9	0,99484	9	0,99468
26,0	0,99466	27.0	0,99450	28.0	0,99433	29.0	0,99417	30.0	0,99401
1	0,99464	1	0,99448	1	0,99432	1	0,99416	1	0,99399
2	0,99463	2	0,99446	2	0,99430	2	0,99414	2	0,99398
3	0,99461	3	0,99445	3	0,99429	3	0,99412	3	0,99396
4	0,99459	4	0,99443	4	0,99427	4	0,99411	4	0,99394
5	0,99458	5	0,99441	5	0,99425	5	0,99409	5	0,99393
6	0,99456	6	0,99440	6	0,99424	6	0,99407	6	0,99391
7	0,99454	7	0,99438	7	0,99422	7	0,99405	7	0,99389
8	0,99453	8	0,99437	8	0,99420	8	0,99404	8	0,99388
9	0,99451	9	0,99435	9	0,99419	9	0,99402	9	0,99386

ģ

Å

.

2.3. - MEDIDA DE LA TEMPERATURA

Para la medida de la temperatura se ha utiliza do un termopar cobre-constantan de cinco soldaduras. En el pozo termométrico P, está introducida la soldadura caliente y la fría en un vaso Dewar que a su vez contiene una mezcla agua-hielo bidestilada.

En serie con el termopar, se intercala, un potenciómetro VERNIER, con un galvanómetro KIPP A-7C-1774, cuya sensibilidad es de 0,5 μ V. Como pila de referencia se ha empleado una WESTON CAMBRIDGE, cuyo potencial es de 1,01860 0,00005 voltios a 20°C.

Para el conocimiento de la temperatura correspondiente al potencial leído, E_{ob} , Adams³, ha elaborado unas tablas para los sistemas termopares de cobre-constantan que nos dan la f.e.m., E_A , creada para la diferencia de temperatura. Los valores de ΔE , proporcionados a partir de un calibrado, vienen relacionados por la expresión

$$\Delta E = \frac{E_{ob}}{n} - E_{A} \qquad (2.10)$$

siendo n el número de soldaduras del termopar.

Previamente, ha sido calibrado este termopar en el intervalo de temperaturas en el que hemos realizado to das nuestras medidas experimentales.

2.4. - DETERMINACION DE LA COMPOSICION DE LAS FASES LIQUIDA Y VAPOR

La técnica experimental que nos ha permitido llevar a cabo el análisis de la composición de ambas fases ha sido la refractometría, empleándose un aparato BAUSCH and LAMB, termostatizado, que nos proporciona una apreciación en la medida de la temperatura de 0,05°C y en el índice de re--fracción de 0,00003, utilizándose como fuente luminosa una ---lámpara de sodio.

El calibrado del refractómetro se realiza toman do como patrón de referencia un prisma de índice de refrac---ción previamente conocido.

La composición de ambas fases se ha determinado por medidas de sus índices, que una vez hallados, se comparan con los de sus mezclas de composición conocida.

Para la preparación de las mezclas de composi-ción conocida se ha procedido a la pesada del matraz vacío, a continuación se añade en primer lugar, con la ayuda de una je ringa hipodérmica, una pequeña cantidad del componente menos volátil, a fin de evitar pérdidas por evaporación al introducir el segundo componente, dejándose destapado aproximadamente una hora para establecer el equilibrio líquido-vapor.

Transcurrido este tiempo se tapa, se repite la pesada del matraz, rápidamente le agregamos el componente 2 hasta completar su volumen, pesándolo nuevamente. A continuación se agita bien para homogeneizar la mezcla y se calcula su índice de refracción. Esta operación se repite sucesivas veces, aumentando progresivamente la cantidad de componente 1 en la mezcla, de forma que obtengamos datos en todo el intervalo de fracciones molares, para cuyo cálculo se definen previamente las siguientes magnitudes:

M₀ = pesas que equilibran en la balanza al matraz vacío.

 $M_1 = pesas$ que equilibran al matraz con el componente 1.

 M_2 = pesas que equilibran el matraz con ambos componentes.

- 13 -

 σ = densidad del aire a la temperatura ambiente. P_M = densidad de las pesas a la temperatura ambiente. P_V^1 = peso del componente 1 en fase vapor. P_V^M = peso de ambos componentes en fase vapor. P_L^M = peso de ambos componentes en fase líquida. V_T = volumen total del matraz.

Considerando el empuje del aire, tenemos:

$$(M_1 - M_0)(1 - \frac{\sigma}{b_M}) = P_L^1 + P_V^1 - V_T \sigma$$
 (2.11)

$$(M_2 - M_0)(1 - \frac{\sigma}{\rho_M}) = P_L^M + P_V^M - V_T \sigma$$
 (2.12)

 P_V^1 lo hemos calculado suponiendo que el gas se comporta como ideal a la temperatura ambiente.

El volumen ocupado por la fase de vapor de este componente se dedujo restando al volumen total, V_T , el ocupado por el líquido y este volumen a partir de su peso no corr<u>e</u> gido, es decir ($M_1 - M_0$), y de la densidad del mismo a la te<u>m</u> peratura ambiente.

El valor de P_V^M es insignificante, ya que el volumen ocupado por las fases de vapor de ambos componentes es despreciable.

Si llamamos f =
$$(1 - \frac{p}{M})$$

de (2.11) y (2.12) se puede deducir el peso de ambos compo-nentes:

$$P_{L}^{1} = f(M_{1} - M_{0}) + V_{T} \sigma - P_{V}^{1}$$
 (2.13)

$$P_{L}^{2} = f (M_{2}-M_{1}) + P_{V}^{1}$$
 (2.14)

Para calcular las fracciones molares $x_1 y x_2 = 1 - x_1$, bastará calcular el número de moles de cada componen te, dividiendo los pesos por los correspondientes pesos mole culares, $Pm_1 y Pm_2$.

$$\mathbf{x}_{1} = \frac{\frac{P_{L}^{1}}{Pm_{1}}}{\frac{P_{L}^{1}}{Pm_{1}} + \frac{P_{L}^{2}}{Pm_{2}}}$$
(2.15)

De esta forma, se dispone de una tabla de índ<u>i</u> ces de refracción de mezcla frente a composición. Comparando estos valores, con los índices de refracción de las muestras de las fases líquida y de vapor, se pueden calcular las fra<u>c</u> ciones molares de las mismas.

2.5.- METODO GENERAL DE OPERACION

Una vez fijada la temperatura de medida y est<u>a</u> blecidos los valores de E_A y ΔE , calculamos la E_{ob} , mediante la relación (2.10) que ponemos en el potenciómetro. Poste--riormente, se prepara una mezcla de agua-hielo, bidestilada, en un vaso Dewar, en el que se introduce la soldadura fría del termopar. En la rama superior del manómetro M₁ se efec.. túa alto vacío y una vez conseguido, se cierra la llave L₃. para independizarla del sistema de vacío.

Por el cierre C_1 , se llena el ebullómetro del componente 1 para calcular la presión de la sustancia pura a diferentes temperaturas. Una vez cerrado, se introduce vacío a través de la llave L_{10} como primera aproximación a la presión deseada, con la ayuda del manómetro M_2 . Después se co-nectan las resistencias interna y externa y cuando el líquido recicla en régimen, se comprueba si la E_{ob} es la que co-rresponde a la temperatura de medida, y, de no ser así, a -través del balón B, mediante su sistema de llaves L_6, L_8 , se introduce aire o por L_2, L_8 , vacío.

En el momento en que el spot del galvanómetro marca cero, nos encontramos a la temperatura de medida, procediéndose, entonces, a la lectura de la presión en el manómetro M₁ mediante un catetómetro. Los valores de estas medidas son contrastados con los de la bibliografía, lo que nos sirve como criterio de pureza para las sustancias medidas.

A continuación se desconectan las resistencias y se hace llegar aire por el tubo T, cerrando, previamente,la llave L_7 que comunica con los pulmones P.

Por el cierre C_1 , se adiciona una pequeña cantidad del componente 2, se hace vacío en primera aproxima--ción y se conectan las resistencias, regulando la ebullición con los autotransformadores. Para conseguir la temperatura de medida, se vuelve a efectuar, a través del balón B y su sistema de llaves, las correcciones de presión necesarias.

Al principio, se realizan frecuentes ajustes que poco a poco se van espaciando hasta que se alcanza el -equilibrio, transcurridas tres o cuatro horas, dependiendo de la naturaleza del sistema. Logrado el equilibrio, proced<u>e</u> mos a la medición de presión del sistema, cerrando en primer lugar la llave L_{11} para independizar el manómetro M_1 y aislando los vasos de toma de muestra por medio de los cierres magnéticos I₁ e I₂; luego se desconectan las resistencias, midiéndose la diferencia de alturas en las ramas del manómetro M₁ con el catetómetro. Esta diferencia corregida a valores standard es el valor de la presión de vapor del equili-brio.

Realizada esta operación, se pone el sistema a la presión atmosférica, enfriándose exteriormente, los vasos L y V con agua-hielo, a fin de evitar posibles alteracio nes en su composición, sobre todo, el vaso L que se encuen-tra prácticamente a la temperatura a la que se ha efectuado la medida.

El análisis de la composición de las fases líquido-vapor se lleva a cabo, separando los vasos del ebullómetro, una vez enfriados, procediendo muy rápidamente, a la determinación del índice de refracción de ambas fases.

De nuevo se colocan los vasos L y V introdu--ciéndose otra pequeña cantidad del componente 2 por el cierre C_1 . Todas las operaciones, anteriormente descritas, se repiten hasta alcanzar aproximadamente una composición equimolecular del sistema. Después se vacía el ebullómetro y se seca, llenándolo ahora con el componente 2 del que se calculan sus presiones de vapor a diferentes temperaturas y posteriormente se va añadiendo componente 1 hasta aproximarnos a la frac ción molar 0,5.

Mediante este procedimiento nos ha sido posi-ble obtener una serie de valores de p, x e y a la temperatura constante de medida del sistema. Estos datos nos permiten el cálculo de la energía libre de Gibbs, G^E , como se detalla en el Capítulo IV.

- 17 -

CAPITULO III

SUSTANCIAS PURAS

3.1.- CARACTERISTICAS DE LAS SUSTANCIAS ESTUDIADAS

Para la realización de este trabajo hemos utilizado las sustancias que vienen detalladas en la Tabla 3.1, indicándose, además, la procedencia así como su grado de pureza.

Tabla 3.1

Sustancia	Procedencia	Grado de pureza
Benceno	Carlo Erba	p. cromatografía
Tolueno	Merck	p. análisis
Ciclohexano	Carlo Erba	p. cromatografía
n-Heptano	Fluka	puriss
Metil-ciclohexano	Hopkin & Williams	p. cromatografia
o-Xileno	Fluka	puriss
m-Xileno	Fluka	puriss
p-Xileno	Fluka	puriss

Procedencia y grado de pureza

Todas las sustancias relacionadas han sido sometidas a un tratamiento, con sodio hilado, habiéndose purificado, previamente, el ciclohexanó y metil-ciclohexano que fueron destilados por fraccionamiento en una columna de 35 platos teóricos, con relación de reflujo, 120/1, recogiéndose únicamente su porción central.

La pureza de estas sustancias ha sido verifica da por medidas de densidad, índice de refracción y presión de vapor a diferentes temperaturas, cuyos valores han sido comprobados con los existentes en la Bibliografía (Tablas --3.2 - 3.10) y complementados mediante un análisis de cromat<u>o</u> grafía de gases.

Tabla 3.2

Sustanzia	ρ ^{25°} (g.cm ⁻³)		30 n _D	0
Sustancia	Este trabajo	Bibliografía	Este trabajo	Bibliografía
Benceno	0,87370	0,87369 ⁴ 0,87366 ⁵	1,49481	1,49478 ¹⁷
Tolueno	0,86231	0,86230 ⁶ 0,86232 ⁷	1,49139	1,49126 ¹⁸
Ciclohexano	0,77386	0,77383 ⁸ 0,77390 ⁹	1,42076	1,4210 ¹⁹
n-Heptano	0,67982	0,6798 ¹⁰ 0,67981 ¹¹	1,38255	1,38258 ¹⁸
Metil- ciclohexano	0,76512	0,76512 ¹² 0,76501 ¹³	1,41800	1,4182 ²⁰
o-Xileno	0,87514	0,87596 ⁶ 0,8752 ¹⁴	1,49988	1,50032 ¹⁸
m-Xileno	0,85987	0,85990 ⁶ 0,8600 ¹⁵	1,49204	1,49198 ¹⁸
p-Xileno	0,85661	0,85666 ¹³ 0,8567 ¹⁶	1,49056	1,49059 ²⁵

Densidad e índice de refracción de las sustancias puras

Tabla 3.3

Presiones de vapor del benceno

t°C	p(mm.	Hg)
	Este trabajo	Fortziati ¹⁷
40,0	183,01	182,79
45,0	223,45	223,50
50,0	271,24	271,27
55,0	327,03	326,94
60,0	391,56	391,44
65,0	465,61	465,72
70,0	550,78	550,80
75,0	647,84	647,75

Los valores de Fortziati han sido calculados apartir de la ecuación:

$$\log p = 6,91210 - \frac{1214,645}{t+221,205}$$
(3.1)

Tabla 3.4

Presiones de vapor del tolueno

+°C	p(mm.Hg)			
	Este:trabajo j	Rossini ²¹		
45,0	74,09	74,13		
50,0	92,22	92,11		
55,0	113,76	113,56		
60,0	138,91	138,96		
65,0	169,00	168,83		
70,0	203,69	203,75		
75,0	244,27	244,33		
80,0	291,12	291,22		

Los valores de Rossini han sido calculados según la ecuación

$$\log p = 6,95464 - \frac{1344,80}{t+219,482}$$
(3.2)

Tabla 3.5

+°C	p(mm.Hg)			
	Este trabajo	Jordan ²²		
40,0	184,67	184,69		
45,0	224,91	224,86		
50,0	271,96	271,80		
55,0	326,44	326,30		
60,0	389,27	389,20		
65,0	461,65	461,40		
70,0	543,75	543,83		
75,0	637,43	637,45		

Presiones de vapor delociclohexano

Los valores de Jordan han sido calculados mediante la ecuación

ł

$$\log p = 6,84498 - \frac{1203,526}{t+222,863}$$
(3.3)

Tabla 3.6

Presiones	de	vapor	de1	n -]	heptano
-----------	----	-------	-----	--------------	---------

+°C	p(mm.Hg)			
	Este trabajo	Brown ¹		
50,0	141,57	141,64		
55,0 60,0	210,38	210,32		
65,0 70,0	252,62 303,54	252,77 303,79		
75,0 80,0	361,55 427,98	361,79 428,20		

Los valores de Brown han sido calculados por la ecuación

$$\log p = 6,88686 - \frac{1258,27}{t+215,701}$$
(3.4)

Tabla 3.7

Presiones de vapor del metil-ciclohexano

+°C	p(mm.Hg)			
	Este trabajo	Rossini ²¹		
40,0	91,21	91,57		
45,0	112,60	112,98		
50,0	137,92	138,31		
55,0	167,72	168,10		
60,0	202,54	202,89		
65,0	242,87	243,28		
70,0	289,41	289,89		
75,0	342,99	343,40		
80,0.	404,06	404,51		

Los valores de Rossini han sido calculados teniendo en cuenta la ecuación

$$\log p = 6,82689 - \frac{1272,864}{t+221,63}$$
(3.5)

Tabla 3.8

+ °C	p(mm.	.Hg)
	Este trabajo	Willingham ²³
60,0	40,92	40,81
65,0	51,13	50,98
70,0	63,37	63,19
75,0	78,00	77,74
80,0	95,20	94,97

Presiones de vapor del o-xileno

Los valores de Willingham han sido calculados a partir de la ecuación

$$\log p = 7,00154 - \frac{1476,393}{t+213,872}$$
(3.6)

Tab1a 3.9

Presiones de vapor del m-xileno

t°C	p(mm.	.Hg)
	Este trabajo	Chu ²⁴
55,0	39,48	39,39
60,0	49,47	49,41
65,0	61,36	61,47
70,0	75,93	75,90
75,0	93,07	93,03
80,0	113,34	113,24

Los valores de Chu han sido calculados según -

la ecuación

$$\log p = 7,00908 - \frac{1462,266}{t+215,105}$$
(3.7)

Tabla 3.10

Presiones de vapor del p-xileno

f °r	p(mm.Hg)		
	Este trabajo	Chu ²⁴	
55,0	41,10	41,07	
60,0	51,49	51,43	
65,0	63,90	63,88	
70,0	78,84	78,75	
75,0	96,54	96,38	
80,0	117,33	117,16	

Los valores de Chu han sido calculados mediante la ecuación

$$\log p = 6,99052 - \frac{1453,430}{t+215,307}$$
(3.8)

3.2.- VOLUNEN MOBAR

Para el cálculo de la energía libre de Gibbs de exceso, G^E , es necesario el conocimiento del volumen mo-lar, v, a la temperatura de medida. Para ello, hemos utiliz<u>a</u> do las ecuaciones siguientes:

Benceno²⁶ $V_{p} = 1,11062+1,3105.10^{-3}t+1,477.10^{-6}t^{2}+7,65.10^{-9}t^{3}$ (3.9)Tolueno²⁷ $\frac{d\rho}{d\rho} = -0,000938099 \{1+0,00096907(t-20)\}$ (3.10)đt Ciclohexano²⁸ $V_{2} = 1,25459+1,4362.10^{-3}t+2,529.10^{-6}t^{2}+5,37.10^{-9}t^{3}$ (3.11) $n-Heptano^{29}$ $\rho = 0,7005-0,08498.10^{-2}t+0,00185.10^{-4}t^{2}-0,0047.10^{-6}t^{3} -0.000281.10^{-8}t^4$ (3.12)Metil-ciclohexano²⁵ $\rho = 0,78657-8,64535.10^{-4}t-5,70465.10^{-8}t^{2}-1.21213.10^{-9}t^{3} -4.90787.10^{-12}t^4$ (3.13)o-Xileno²⁷ $\frac{d\rho}{d\rho} = 0,000844595 \{1+0,000703996(t-20)\}$ (3.14)dt. m-Xileno²⁷ $\frac{d\rho}{d\rho} = 0,00085791 \{1+0,000542(t-20)\}^{\circ}$ (3.15)dt

- 25 -

p-Xileno²⁷

 $\frac{d\rho}{dt} = -0,00086265 \{1+0,000747(t-20)\}$ (3.16)

donde:

$$V_e = volumen específico (cm^3.g^{-1})$$

 $\rho = densidad (g.cm^{-3})$

 $\frac{d\rho}{dt}$ es la derivada de la densidad con respecto dt

a la temperatura. Para calcular la densidad a la temperatura deseada, se partió de la medida de densidad a 25°C realizada por nosotros.

3.3.- SEGUNDO COEFICIENTE DEL VIRIAL

Los valores del segundo coeficiente del virial, B, para las diferentes sustancias estudiadas, salvo el p-xileno y metil-ciclohexano, a la temperatura de medida, se han obtenido mediante la ecuación:

$$B = \sum_{i=0}^{L} C_i T^i$$
 (3.17)

siendo C los coeficientes que nos relacionan la variación de B con la temperatura, T.

Los coeficientes de la ecuación (3.17) se dan en la Tabla 3.11, junto con sus desviaciones standards.

De la bibliografía para el benceno y ciclohexa no, se han tomado los coeficientes de R. Cheda³⁰; para el -n-heptano, de Diaz Peña³¹; y para el tolueno, o-xileno y --- Tabla 3.11

Sustancia	c ₀ 10 ⁻²	c ₁ 10 ⁻⁵	c ₂ 10 ⁻⁸	C ₃ 10 ⁻¹⁰	C410 ⁻⁷	Ø
Benceno	3,2055	-4,4046	1,2521	-4,5926	1 8 8 8 8 8 8 8 8 8 8 8 8	6,17
Tolueno	-231,125	286,161	-117,560	152,972	r r r r i	33,10
Ciclohexano	4,3512	-5,8783	1,7597	-5,5760	F F F F F	6 6 7 8 6
n-Heptano	23,897	-35,277	16,272	-31,749	-5,2956	6,33
o-Xileno	-403,571	453,105	-166,926	190,244	8 8 8 8 8 8 8 8 8 8 8 8	30,27
m-Xileno	-199,513	214,123	-72,5916	64,6937	£ 6 7 1	15,98

Coeficientes de la ecuación del virial

m-xileno de Saez Diaz³².

Los coeficientes del p-xileno se han obtenido de la representación gráfica de los datos experimentales de \cos^{33} y Andon³⁴. Para el caso del metil-ciclohexano por car<u>e</u> cer de datos experimentales se ha procedido al cálculo de -los coeficientes a partir de sus constantes críticas³⁵.

3.4.- RESULTADOS

En la Tabla 3.12, hemos recogido los valores calculados para el volumen molar, v, y el segundo coeficiente del virial, B, de las sustancias puras a la temperatura de medida.

- 28 -

Tabla 3.12

Valores del volumen molar, v, y segundo coeficiente del virial, B, en función de la temperatura

Sustancia	t°C	$v(cm^3mo1^{-1})$	$-B(cm^{3}mo1^{-1})$
Benceno	70,0	94,692	1036,0
201100	75,0	95,335	999,9
Toluemo	75,0	113,350	1657,3
Ciclohexano	70,0	115,249	1163,0
n-Heptano	75,0	157,622	1847,9
Metil-ciclohexano	75,0	136,234	1463,8
o-Xileno	75,0	127,493	2845,9
m-Xileno	75 ,0	130,159	2768,0
p-Xileno	75,0	130,793	2704,0

CAPITULO IV

DATOS EXPERIMENTALES

El objetivo fundamental de nuestro trabajo -es la determinación de la energía libre de Gibbs de exceso, G^E , en sistemas binarios, a partir de medidas de presión de vapor, basándonos, en un estudio termodinámico comparativo de las propiedades de sus mezclas, que presentan un comportamiento no ideal, frente a las que adoptarían en la ideal<u>i</u> dad.

Para ello, se ha procedido a un conocimiento previo de los apartados que a continuación detallamos.

4.1.- MEZCLAS DE COMPOSICION CONOCIDA

El cálculo del índice de refracción de exceso, n^E , requiere el conocimiento de los valores de la fracción molar e índice de refracción de las mezclas de compos<u>i</u> ción conocida, especificados en el Capítulo II.

Partiendo de la ecuación

$$n^{E} = n - (x_{1}n_{1} + x_{2}n_{2})$$
 (4.1)

donde:

n = indice de refracción de la mezcla x_1 = fracción molar del componente 1 n_1 = indice de refracción del componente 1 puro x_2 = fracción molar del componente 2 n_2 = indice de refracción del componente 2 puro
La temperatura de medida de los índices de refracción fue de 30,0°C.

Para cada sistema, hemos elaborado una tabla con los valores de la fracción molar, índice de refracción e índice de refracción de exceso, junto a las diferencias exis tentes en los valores de los índices experimentales, respecto a los calculados, para el grado del ajuste elegido en cada sistema.

Los datos experimentales se han ajustado a las ecuaciones siguientes

$$n = \sum_{i=0}^{n} A_{i} x_{1}^{i}$$
(4.2)

$$n^{E} = x_{1} x_{2} \sum_{i=0}^{n} A_{i} (x_{1} - x_{2})^{i}$$
(4.3)

siendo A_i los coeficientes del polinomio de ajuste.

En esta misma tabla adjuntamos los valores --calculados del índice de refracción y el del exceso, así como el coeficiente de ambos ajustes y sus desviaciones stan-dard , σ .

De todos los ajustes del polinomio, hemos elegido el que teniendo menor grado se aproxima más a nuestros valores experimentales.

A continuación de cada tabla hemos representado, para el grado de ajuste seleccionado, los valores del <u>in</u> dice de refracción y los de exceso. En estas Figuras 4.1, --4.6, 4.11, 4.16, 4.21, 4.26, 4.31, 4.36 y 4.41, los polino-mios de ambos ajustes vienen representados por líneas de tr<u>a</u> zo continuo y los datos experimentales por puntos blancos.

4.2.- PRESIONES DE VAPOR

Con los coeficientes de los ajustes de las mez clas de composición conocida, elegidos en el apartado ante-rior, hemos determinado las fracciones molares de las fases líquida y vapor, obteniéndose para ambos ajustes resultados concordantes. Para todos nuestros cálculos, hemos tomado el ajuste correspondiente al del índice de refracción de las -mezclas.

Para todos los sistemas estudiados, damos las Tablas 4.2, 4.9, 4.14, 4.19, 4.24, 4.29, 4.34, 4.39 y 4.44, correspondientes a sus presiones de vapor, especificando --los valores de las fracciones molares, de las fases líquida y vapor, $x_1 e y_1$ respectivamente, junto a la presión total medida, p, y las presiones parciales calculadas $p_1 y p_2$, a la temperatura de 75,0°C, excepto el sistema ciclohexano(1)+ +benceno(2), medido a 70,0°C.

Seguidamente hemos representado en las Figuras 4.2, 4.7, 4.12, 4.17, 4.22, 4.27, 4.32, 4.37 y 4.42 la fase de vapor frente a la líquida, y en las 4.3, 4.8, 4.13, 4.18, 4.23, 4.28, 4.33, 4.38 y 4.43, las presiones en función de la composición del componente 1, en fase líquida. En ambas representaciones el trazo discontinuo refleja la idealidad.

4.3.- FUNCION DE GIBBS DE EXCESO

Si consideramos una mezcla de dos gases, se -puede demostrar, por consideraciones termodinámicas³⁶ que, los potenciales químicos de cada uno de los componentes en la mezcla, $\mu_1^V y \mu_2^V$, vienen dados en función de V y T, por las expresiones:

$$\mu_1^V = \mu_1^+ + RT \ln \frac{n_1 RT}{V p^+} + \frac{2RT}{V} (B_{11}n_1^{+}B_{12}n_2^{-}) \quad (4.4)$$

$$\mu_{2}^{V} = \mu_{2}^{*} + RT \ln \frac{n_{2}RT}{V p^{+}} + \frac{2RT}{V} (B_{22}n_{2}^{+}B_{12}n_{1}) \quad (4.5)$$

siendo:

- µ⁺ = potencial químico standard del componente 1.
- μ_2^+ = potencial químico standard del componente 2.
- p⁺ = presión de referencia para la que usualmente se toma el valor de una atmósfera.
- B_{11} = segundo coeficiente del virial de la sus tancia pura 1.
- B_{22} = segundo coeficiente del virial de la sus tancia pura 2.
- B_{12} = segundo coeficiente del virial de intera ción de ambas sustancias 1 y 2.

El cálculo de B₁₂ se ha efectuado mediante la ecuación

$$B_{12} = \left(\frac{B_{11}^{1/3} + B_{22}^{1/3}}{2}\right)^3$$
(4.6)

suponiendo que la mezcla gaseosa sigue una ecuación de estado de la forma

$$\frac{p V}{(n_1 + n_2) RT} = 1 + \frac{B^M (n_1 + n_2)}{V} + \dots \qquad (4.7)$$

donde B^M , es el segundo coeficiente del virial de la mezcla, que se puede expresar como:

$$B^{M} = B_{11}y_{1}^{2} + 2B_{12}y_{1}y_{2} + B_{22}y_{2}^{2}.$$
(4.8)

Sustituyendo B^M en la ecuación (4.7) y haciendo el cambio de la variable V por p, en las ecuaciones (4.4) y (4.5) obtenemos:

$$u_{1}^{V} = u_{1}^{+} + RT1ny_{1} + RT1n \frac{p}{p^{+}} + p_{1}^{+} B_{11} - y_{2}^{2} (B_{11} - 2B_{12} + B_{22})$$

$$u_{2}^{V} = u_{2}^{+} + RT1ny_{2} + RT1n \frac{p}{p^{+}} + p \{B_{22} - y_{1}^{2} (B_{11} - 2B_{12} + B_{22}) \}$$

$$(4.9)$$

$$(4.10)$$

Ecuaciones que proporcionan los potenciales -químicos en función de p y T.

Llamando $\delta_{12} = B_{11} - 2 B_{12} + B_{22}$ y teniendo en cuenta que las presiones parciales de cada componente vienen definidas por:

$$p_1 = py_1 \quad y \quad p_2 = py_2$$
 (4.11)

Las ecuaciones (4.9) y (4.10) se pueden expresar por:

$$\mu_2^V = \mu_2^+ + RT \ln \frac{p_2}{p^+} + p(B_{22}^+ y_1^2 \delta_{12})$$
 (4.13)

Los potenciales químicos de los componentes puros antes de la mezcla serían:

$$\mu_1^{\circ}(p_1^{\circ}) = \mu_1^{+} + RT \ln \frac{p_1^{\circ}}{p^{\bullet}} + p_1^{\circ}B_{11}$$
 (4.14)

$$\mu_2^{\circ}(p_2^{\circ}) = \mu_2^+ + RT \ln \frac{p_2^{\circ}}{p^+} + p_2^{\circ}B_{22}$$
 (4.15)

- 34 -

y restando (4.14) de (4.12) y (4.15) de (4.13)

$$\mu_{1}(p) - \mu_{1}^{\circ}(p_{1}^{\circ}) = RT1n \frac{p_{1}}{p_{1}^{\circ}} + (p - p_{1}^{\circ})B_{11} + py_{2}^{2}\delta_{12}$$
(4.16)

$$\mu_{2}(p) - \mu_{2}^{\circ}(p_{2}^{\circ}) = RT1n \frac{p_{2}}{p_{2}^{\circ}} + (p - p_{2}^{\circ})B_{22} + py_{1}^{2}\delta_{12}$$
(4.17)

donde hemos escrito $\mu(p) - \mu^{\circ}(p^{\circ})$ para resaltar la dependencia de μ con la presión, siendo p_1° y p_2° las presiones de vapor de los componentes 1 y 2 puros.

Obtenidos ya los potenciales químicos en la f<u>a</u> se gaseosa, pasamos a calcularlos en la fase líquida, siendo deseable que todos los potenciales químicos estén relacionados con la misma presión de referencia p^+ .

A temperatura constante, se tiene:

$$\frac{\partial \mu_1}{\partial p} = \frac{\partial^2 G}{\partial p \partial n_1} = \frac{\partial V_1}{\partial n_1} = v_1 \qquad (4.18)$$

donde V_1 es el volumen molar parcial. De esta última ecua--ción se obtiene para el componente 1 en la mezcla

$$\int_{p^{+}}^{p} d\mu_{1} = \int_{p^{+}}^{p} v_{1} dp \qquad (4.19)$$

$$\mu_{1}(p) - \mu_{1}(p^{+}) = \int_{p^{+}}^{p} v_{1}dp = v_{1}(p-p^{+}) \qquad (4.20)$$

y para el componente 1 puro

$$\int_{p+}^{p_{1}^{\circ}} d\mu_{1} = \int_{p+}^{p_{1}^{\circ}} v_{1}^{\circ} dp \qquad (4.21)$$

$$\mu_{1}^{\circ}(p_{1}^{\circ}) - \mu_{1}^{\circ}(p^{+}) = \int_{p^{+}}^{p_{1}^{\circ}} v_{1}^{\circ}dp = v_{1}^{\circ}(p_{1}^{\circ} - p^{+}) \qquad (4.22)$$

con expresiones analogas para el componente 2.

En la resolución de las integrales anteriores, se supone que el volumen es independiente de la presión, en el intervalo de integración. Esto se cumple siempre que la presión de referencia p^+ no exceda a la presión medida en v<u>a</u> rias atmósferas. Para la mayoría de las mezclas líquidas se puede suponer que el volumen molar parcial de cada componente es el mismo que el del componente puro, o lo que es igual, el volumen de mezcla es cero. Según esto, la ecuación (4.20) adopta la forma:

$$\mu_{i}(p) - \mu_{1}(p^{+}) = v_{1}^{\circ}(p-p^{+}) \qquad (4.23)$$

Si definimos el potencial químico de mezcla --

por:

$$\mu_1^{\rm M} = \mu_1(p^+) - \mu_1^{\circ}(p^+) \qquad (4.24)$$

y sustituyendo ahora $\mu_1(p^+)$ y $\mu_1^{\circ}(p^+)$ por sus valores dados - en (4.22) y (4.23), se obtiene:

$$\mu_{1}^{M} = \mu_{1}(p) - \mu_{1}^{\circ}(p_{1}^{\circ}) - v_{1}^{\circ}(p - p_{1}^{\circ})$$
(4.25)

expresión que nos da el potencial químico de la mezcla en f<u>a</u> se líquida.

La condición de equilibrio exige que:

$$\mu_{1}^{L} = \mu_{1}^{V}$$

$$\mu_{2}^{L} = \mu_{2}^{V}$$
(4.26)

Por lo tanto, podemos sustituir en (4.25) ---- $\mu_1(p) - \mu_1^{\circ}(p_1^{\circ})$ por su valor en la fase gaseosa dado por ----(4.16), obteniéndose:

$$\mu_{1}^{M} = RT1n \frac{p_{1}}{p_{1}^{\circ}} + (B_{11} - v_{1}^{\circ})(p - p_{1}^{\circ}) + py_{2}^{2}\delta_{12}$$
(4.27)

y como

$$\mu_{1}^{E} = \mu_{1}^{M} - \mu_{1}^{M, \text{id}}$$
(4.28)

у

$$\mu_1^{M, id} = RT1nx_1$$
 (4.29)

se obtiene, finalmente:

$$\mu_{1}^{E} = RT1n \frac{py_{1}}{x_{1}p_{1}^{\circ}} + (B_{11} - v_{1}^{\circ})(p - p_{1}^{\circ}) + py_{2}^{2}\delta_{12}$$
(4.30)

análogamente

$$\mu_{2}^{E} = RT1n \frac{py_{2}}{x_{2}p_{2}^{\circ}} + (B_{22} - v_{2}^{\circ})(p - p_{2}^{\circ}) + py_{1}^{2}\delta_{12}$$
(4.31)

y la energía libre de Gibbs de exceso

$$G^{E} = x_{1} \mu_{1}^{E} + x_{2} \mu_{2}^{E}$$
 (4.32)

Con nuestros datos experimentales y los valores que figuran en la Tabla 3.12, se ha procedido al cálculo de los potenciales químicos, que nos han conducido a la determinación de la energía libre de Gibbs de exceso, recopilándose todo ello en una tabla para cada sistema medido (Tablas 4.3, 4.10, 4.15, 4.20, 4.25, 4.30, 4.35, 4.40 y 4.45).

Los valores de G^E se han ajustado a un <u>polino-</u> mio del tipo

$$G^{E} = x_{1} x_{2} \sum_{i=0}^{n} A_{i} (x_{1} - x_{2})^{i}$$
(4.33)

obteniéndose los coeficientes de este ajuste, que se dan en una nueva tabla, indicando sus desviaciones standard . Com-pletándose con los valores calculados del ajuste para los -distintos grados del polinomio (Tablas 4.4, 4.11, 4.16, 4.21, 4.26, 4.31, 4.36, 4.41 y 4.46).

Para finalizar este apartado, representamos en las Figuras (4.4, 4.9, 4.14, 4.19, 4.24, 4.29, 4.34, 4.39 y 4.44) los valores de G^E frente a x_1 . La línea de trazo cont<u>i</u> nuo indica el polinomio de ajuste, elegido convenientemente para cada sistema. En la Figura 4.4 juntamente con nuestros valores experimentales, se han representado los bibliográficos de Scatchard³⁷, R. Cheda³⁰ y Sáez³², comprobándose su -perfecta concordancia.

4.4.- CONSISTENCIA TERMODINAMICA

Un equilibrio líquido-vapor queda establecido por las medidas experimentales de las variables, presión y composición de ambas fases. En la práctica, estas medidas -vienen afectadas de ciertos errores debidos al dispositivo experimental utilizado, o al mismo proceso de medida. Cuando hallamos una discrepancia en la representación gráfica de la variable medida, respecto de las -restantes, es indicativo, sin duda, que la medida es inco-rrecta. Aunque, a veces, un ajuste de todos los valores a una determinada ley o curva no es una total garantía de la consistencia de dichos valores, ya que, simplemente, un error sistemático no quedaría reflejado en un análisis de este tipo.

Es por ello, que la consistencia de datos exp<u>e</u> rimentales hay que buscarla en el cumplimiento de estos val<u>o</u> res como variables termodinámicas que son, y además relacionarlos con los de validez universal. Este es, precisamente, el tratamiento que hemos seguido para el desarrollo de este trabajo y que a continuación detallamos.

4.4.1.- Método gráfico

La ecuación de Gibbs-Duhem aplicada a funcio-nes de exceso de sistemas formados por dos componentes líqui dos, establece que:

$$x_{1}\left(\frac{\partial \mu_{1}^{E}}{\partial x_{1}}\right)_{\mp,p} + x_{2}\left(\frac{\partial \mu_{2}^{E}}{\partial x_{f}}\right)_{T,p} = 0 \qquad (4.34)$$

La aplicación directa de esta ecuación es labo riosa, ya que implicaría o bien un ajuste de los valores de μ^{E} para obtener una ecuación del tipo $\mu^{E} = \mu^{E}$ (x), o la representación gráfica de μ^{E} frente a x, y, posteriormente, o<u>b</u> tención del valor de las derivadas por el cálculo gráfico de las pendientes de las tangentes a la curva, lo que lleva co<u>n</u> sigo una imprecisión.

Para evitar estos inconvenientes, Redlich, O. y Kistir, A.T.³⁸ propusieron un método que se reduce al cálculo de un área. Partiendo de la expresión para G^E

$$G^{E} = x_{1}\mu_{1}^{E} + x_{2}\mu_{2}^{E}$$

se llega a:

$$\int_{0}^{1} (\mu_{1}^{E} - \mu_{2}^{E}) dx_{1} = 0 \qquad (4.35)$$

En la deducción de (4.35) a partir de (4.32)está implicada la ecuación (4.34) y, por tanto, si una serie de valores experimentales, a partir de los cuales se calcula primero μ_1^E y μ_2^E y luego se representa su diferencia frente a x_1 , son tales que el área encerrada entre esta curva y el -eje de abcisas, es 0, teniendo en cuenta el signo de las --áreas, queda implicado que son termodinámicamente consistentes, ya que derivando (4.32)

$$(\partial G^{E} / \partial x_{1})_{T,p} = \mu_{1}^{E} - \mu_{2}^{E} + \{x_{1} (\partial \mu_{1}^{E} / \partial x_{1})_{T,p} + x_{2} (\partial \mu_{2}^{E} / \partial x_{1})_{T,p}\}$$
(4.36)

pero en el segundo miembro de esta última relación, la expr<u>e</u> sión entre paréntesis es la ecuación (4.34)

$$(\partial G^{E}/\partial x_{1})_{T,p} = \mu_{1}^{E} - \mu_{2}^{E}$$
 (4.37)

integrando en todo el intervalo

$$\int_{0}^{1} dG^{E} = \int_{0}^{1} (\mu_{1}^{E} - \mu_{2}^{E}) dx_{1} = (G^{E}(x))_{0}^{1} = 0 \qquad (4.38)$$

ya que $G^{E}(1) = 0$ y $G^{E}(0) = 0$

Los valores de $\mu_1^E - \mu_2^E$ se han representado --frente a la fracción molar, x_1 , para los sistemas estudiados en las Figuras 4.5, 4.10, 4.15, 4.20, 4.25, 4.30, 4.35, ---- 4.40, y 4.45 y en la 4.5 se dan tambien los valores biblio-gráficos.

Los valores experimentales se han ajustado a un polinomio que adopta la forma:

$$\mu_{1}^{E} - \mu_{2}^{E} = \sum_{i=0}^{3} B_{i} x_{1}^{i} \qquad (4.39)$$

Para tres grados de este polinomio, las dos -áreas A_1 (superior) y A_2 (inferior) se han calculado mediante la ecuación de Simpson (4.39). Tomando en cada caso el po linomio que da menor porcentaje en la diferencia de dichas áreas.

4.4.2. - Método analítico

Para todos los sistemas estudiados, se ha med<u>i</u> do experimentalmente la presión total, p, y las composicio-nes de la fase líquida, x_1 , y de vapor, y_1 y por dedución, las presiones parciales p_1 y p_2 , todo ello a temperatura --constante, t, y en el equilibrio.

Desde el punto de vista termodinámico, ha de cumplirse la ecuación de Duhem-Margules:

$$(1-x_2)\left[\frac{\partial \ln p_1}{\partial x_2}\right]_T + x_2\left[\frac{\partial \ln p_2}{\partial x_2}\right]_T = 0$$
(4.40)

que relaciona la composición del líquido con la presión to-tal o parciales y como puede observarse, una variable de más queda determinada.

Esto nos va a permitir calcular una de las variables, en este caso, y_1 , partiendo de valores de p y x, -posteriormente compararla con la experimental. Por consi---- guiente, la buena concordancia de los valores y₁(calculados) e y₂(experimentales) implica una prueba de consistencia.

El método seguido está basado en el de Barker³⁹ y tiene el siguiente desarrollo:

La energía libre de exceso

$$G^{E} = x_{1} \mu_{1}^{E} + x_{2} \mu_{2}^{E} = x_{1} x_{2} \{a+b (x_{1}-x_{2}) + c (x_{1}-x_{2})^{2} + \dots\}$$

(4.41)

puede expresarse por esta ecuación con la precisión que se desee, con tal de elegir el suficiente número de términos.

Los potenciales de exceso tienen por expresión:

$$\mu_{1}^{E} = RT1n\gamma_{1} = RT1n \frac{py_{1}}{p_{1}^{*}x_{1}} + (p_{1}^{*}-p)(v_{1}^{*}-B_{11}) + py_{2}^{2}\delta_{12} \quad (4.42)$$

$$\mu_{2}^{E} = PT1n\gamma_{2} = RT1n \frac{py_{2}}{p_{2}^{2}x_{2}} + (p_{2}^{\circ}-p)(v_{2}^{\circ},B_{22}) + py_{1}^{2}\delta_{12} \quad (4.43)$$

de (4.42) y (4.43) se deduce:

$$py_{1} = p_{1}^{\circ} x_{1} \gamma_{1} exp \left(\frac{(p - p_{1}^{\circ})(v_{1}^{\circ} - B_{11})}{RT} - \frac{p \delta_{12} y_{2}^{2}}{RT} \right)$$
(4.44)

$$py_{2} = p_{2}^{\circ} x_{2} \gamma_{2} exp \left(\frac{(p - p_{2}^{\circ})(v_{2}^{\circ} - B_{22})}{RT} - \frac{p\delta_{12}y_{2}^{2}}{RT} \right)$$
(4.45)

sumando:

$$p = \gamma_1 p_1' + \gamma_2 p_2'$$
 (4.46)

donde:

$$p_{1}^{*} = x_{1}p_{1}^{\circ} exp\left[\frac{(p-p_{1}^{\circ})(v_{1}^{\circ}-B_{11})}{RT} - \frac{p\delta_{12}y_{2}^{2}}{RT}\right] \qquad (4.47)$$

$$p_{2}^{*} = x_{2}p_{2}^{\circ} exp\left[\frac{(p-p_{2}^{\circ})(v_{2}^{\circ}-B_{12})}{RT} - \frac{p\delta_{12}y_{1}^{2}}{RT}\right] \qquad (4.48)$$

La ecuación (4.41) implica que:

$$\ln \gamma_{1} = AI_{1} + Bm_{1} + Cn_{1} + \cdots$$

$$\ln \gamma_{2} = AI_{2} + Bm_{2} + Cn_{2} + \cdots$$
(4.49)

donde:

$$1_{1} = x_{2}^{2}; \quad m_{1} = -x_{2}^{2}(1-4x_{1}); \quad n_{1} = x_{2}^{2}(1-3x_{1}+12x_{1}^{2})$$

$$1_{2} = x_{1}^{2}; \quad m_{2} = +x_{1}^{2}(1-4x_{2}); \quad n_{2}^{2} = x_{1}^{2}(1+8x_{2}+12x_{2}^{2})$$
(4.50)

y:

$$A = \frac{a}{RT} \qquad B = \frac{b}{RT} \qquad C = \frac{c}{RT} \qquad (4.51)$$

Los valores de A, B y C se determinan por un proceso de sucesivas aproximaciones. La primera consiste en suponer que la solución se comporta como si fuese ideal, es decir, B=0, C=0 y despreciar las correcciones por no idealidad de la fase vapor. Entonces A viene dado por:

$$A = 4 n \frac{2p^{*}}{p_{1} p_{2}}$$
(4.52)

donde p* es la presión de vapor de la mezcla cuando $x_1 = x_2 = 1/2$, que se puede estimar gráficamente del diagrama pre---

sión-composición. Utilizando este valor de A, se calculan -aproximadamente las concentraciones en la fase vapor, que son lo suficientemente válidas para utilizarlas en el término de corrección $p\delta_{12}y^2/RT$ de las ecuaciones (4.47) y (4.48).

Se calculan $p'_1 y p'_2$ para los valores experimen tales de composición del líquido. Utilizando la primera apro ximación de A, se calculan $\gamma_1 y \gamma_2$ por las ecuaciones (4.49); p por (4.46); $\Delta p=p_{exp}-p_{cal} y$ las derivadas.

 $dp/dA = 1_{1}\gamma_{1}p_{1}' + 1_{2}\gamma_{2}p_{2}'$ $dp/dB = m_{1}\gamma_{1}p_{1}' + m_{2}\gamma_{2}p_{2}'$ $dp/dC = n_{1}\gamma_{1}p_{1}' + n_{2}\gamma_{2}p_{2}'$ (4.53)

Luego se determinan las ecuaciones de A, B y -C, δA , δB y δC que hacen tender a cero los Δp , ajustando por mínimos cuadrados la ecuación:

$$(dp/dA)\delta A + (dp/dB)\delta B + (dp/dC)\delta C = \Delta p$$
 (4.54)

se resuelve el sistema:

$$\delta A \sum (dp/dA)^{2} + \delta B \sum (dp/dA) (dp/dB) + \delta C \sum (dp/dA) (dp/dC) = \sum \Delta p (dp/dA)$$

$$\delta A \sum (dp/dA) (dp/dB) + \delta B \sum (dp/dB)^{2} + \delta C \sum (dp/dB) (dp/dC) = \sum \Delta p (dp/dB)$$

$$\delta A \sum (dp/dA) (dp/dC) + \delta B \sum (dp/dB) (dp/dC) + \delta C \sum (dp/dC)^{2} = \sum \Delta p (dp/dC)$$

$$\{4.55\}$$

Las sumas extensibles a todos los valores exp<u>e</u> rimentales. Sumando las variaciones a los valores de A, B y C, se obtienen nuevas constantes. Se procede así, sucesivas veces hasta que los valores de A, B y C no cambien de forma significativa.

Siguiendo el método Barker³⁹ hemos puesto a -punto un programa de cálculo que nos ha permitido conocer, -

- 44 -

además de G^E , Δy , Δp e ΔG^E , de los ajustes del polinomio, h<u>e</u> mos elegido el que presenta menores desviaciones standard . Detallamos este último ajuste en las Tablas 4.5, 4.6, 4.7, -4.12, 4.17, 4.22, 4.27, 4.32, 4.37, 4.42 y 4.47. En la 4.6 y 4.7 adjuntamos también los valores de la Bibliografía.

4.5.- CALCULO DE ERRORES

En este apartado, vamos a describir brevemente el cálculo de errores llevado a cabo en todasilas medidas e<u>x</u> perimentales, así como en el cálculo de las funciones termodinámicas utilizadas.

4.5.1.- En la composición. Pueden enumerarse tres ti-pos distintos de errores.

a) Error cometido en la determinación de la -fracción molar en la preparación de las mezclas de composi-ción conocida.

Las pesadas M_0 , M_1 y M_2 de las ecuaciones ----(2.13) y (2.14) son, respectivamente del orden de 25, 35, --45 g, como la balanza nos permite apreciar 0,00005 g, con é<u>s</u> to el error cometido al calcular la diferencia de pesadas, es:

 $\frac{\Delta (M_1 - M_0)}{(M_1 - M_0)} = \frac{\Delta (M_2 - M_1)}{(M_2 - M_1)} = \frac{0,0001}{10} = 0,00001$

Considerando condiciones extremas de presión y temperatura en el laboratorio, se puede tomar:

$$\sigma = (0,00111 \pm 0,00001) \text{ g.m1}^{-1}$$

con este valor y el de $\rho_M = 7,70 \text{ g.ml}^{-1}$, resulta:

$$\frac{\sigma}{\rho_{M}} = 0,000144 \pm 0,000002$$

Por lo tanto, el error cometido en el cálculo de los primeros términos de dichas ecuaciones es del orden de 10⁻⁵.

El error cometido al considerar P_V^1 es despreciable, sin embargo el producto $V_T\sigma$ vale, aproximadamente, - 3.10^{-2} , afectado de un error del 1%; con esto se puede consi derar que el error absoluto en la determinación de P_L^1 es de $\frac{1}{2}$ 0,0004 g.y de $\frac{1}{2}$ 0,0001 en la de P_L^2 , siendo:

$$n_1 = \frac{P_L^1}{Pm_1}$$
 $y \quad n_2 = \frac{P_L^2}{Pm_2}$

donde Pm_1 y Pm_2 son, respectivamente, los pesos moleculares de los componentes 1 y 2.

$$\frac{\Delta n_1}{n_1} = \frac{\Delta n_2}{n_2} = \frac{2}{10000}$$

De aquí se puede deducir para las fracciones - molares un error relativo menor de 4.10^{-4} .

b) Error cometido en la determinación del índ<u>i</u> ce de refracción.

El refractómetro utilizado nos permite apreciar 0,00003 en la medida del índice de refracción, ahora bien, como se calibra con un prisma de índice de refracción conocido, cometemos un error que es aproximadamente igual al anterior, por lo que el error absoluto se duplica. Debido a que las medidas de índice de refrac-ción se realizan a temperatura constante, es preciso tener en cuenta la variación que experimenta n, debida a una fluctuación en la temperatura de $\stackrel{+}{=}$ 0,05°C.

Considerando esto, el error cometido en 1a determinación del índice de refracción es \$ 0,0001.

c) Error en la determinación de la fracción m<u>o</u> lar de las fases líquida y de vapor a través de los coeficien tes del ajuste.

En la preparación de las mezclas de compos<u>i</u> -ción conocida, se ajustaron los valores experimentales de <u>in</u> dice de refracción y fracción molar al polinomio dado según la ecuación (4.2). Diferenciando dicha ecuación, se tiene:

$$dn = \sum_{i=0}^{n} dA_{i} x_{1}^{i} + \sum_{i=0}^{n} i A_{i} x_{1}^{i-1} dx_{1}$$
(4.56)

donde

dn = σ , desviación standard del ajuste. dx₁ = Δx_1 , error experimental en la determinación de x₁.

y los valores de los coeficientes A_i, se dan en las tablas para los diversos sistemas.

La determinación de la fracción molar de las fases líquida y de vapor se lleva a cabo por medidas de índi ce de refracción de ambas fases y utilizando los coeficientes mencionados anteriormente. Para ello, se ha empleado el méto do de la bisectriz. Por lo tanto, se puede poner:

$$\Delta n = \sum_{i=0}^{n} dA_{i} x_{1}^{i} + \sum_{i=0}^{n} i A_{i} x_{1}^{i-1} dx_{1} + \Lambda \qquad (4.57)$$

donde

Δn = 0,0001 error experimental en la medida de
 n.
 Λ = 0,00001 error de corte.

Despejando de (4.57) dx, queda:

$$dx_{1} = \frac{1}{\sum_{i=0}^{n} i A_{1} x_{1}^{i-1}} \left| A + \Delta n + \sum_{i=0}^{n} dA_{i} x_{1}^{i} \right|$$
(4.58)

de la ecuación (4.56)

$$\sum_{i=0}^{n} dA_{i} x_{1}^{i} = \sigma + \sum_{i=0}^{n} i A_{i} x_{1}^{i-1} \Delta x_{1}$$

valor que sustituimos en (4.58)

$$dx_{1} = \frac{1}{\sum_{i=0}^{n} i A_{1} x_{1}^{i-1}} \left| A + \Delta n + \sigma + \sum_{i=0}^{n} i A_{i} x_{1}^{i-1} \Delta x_{1} \right| (4.59)$$

donde el valor de todos los símbolos que aparecen se ha def<u>i</u> nido anteriormente.

Por aplicación de la ecuación (4.59), se puede calcular el error cometido en la determinación de las frac-ciones molares.

4.5.2. - En la temperatura

El error máximo en la medida de la temperatura

es de 0,02°C en el calibrado del termopar.

El equipo de medida, potenciómetro-galvanóme-tro es capaz de detectar oscilaciones de 0,5 μ V lo que equivale a una apreciación posible de variación de temperatura de ⁺ 0,01°C.

A lo largo de la medida de los sistemas, una vez alcanzado el equilibrio, nunca se ha observado oscilacio nes en el galvanómetro superior a 1 μ V, es decir, los errores ren la temperatura fueron siempre inferiores de 0,02°C.

4.5.3. - En la presión

Las fuentes posibles de errores son:

a) Error en la lectura del catetómetro, en nues tro caso [<] 0,05 mm de Hg. Debido a que la medida se realiza por diferencias de alturas en las dos ramas de manómetro, el error cometido será:

- 0,1 mm de Hg

b) Error derivado de la apreciación de ⁺ 0,1°C en el termostato del manómetro:

5 0,01 mm de Hg

c) Error debido a la presión ejercida por la columna de aire entre la línea de condensación del vapor y la rama inferior de manómetro:

5 0,03 mm de Hg

d) Error debido a la fijación de la temperatura de equilibrio, ⁺0,02°C. El valor de dicho error dependerá de la naturaleza de la sustancia y en el caso de los siste-mas, de los componentes y de su fracción molar. Suponiendo que el sistema se comporta como una mezcla ideal, ha de cumplirse:

 $p = x_1 p_1^{\circ} + x_2 p_2^{\circ}$ (4.60)

El error cometido en p_1^o y p_2^o se ha calculado d<u>i</u> ferenciando las ecuaciones correspondientes.

Teniendo en cuenta la ecuación (4.60) el error cometido en la presión de equilibrio será:

$$\Delta p = \Delta x_1 p_1^{\circ} + x_1 \Delta p_1^{\circ} + \Delta x_2 p_2^{\circ} + x_2 \Delta p_2^{\circ}$$
 (4.61)

Con todo esto, queda un error medio en la presión de vapor en el equilibrio, debido a la fijación de la temperatura de $\Delta p = \frac{+}{2} 0,8$ mm.de Hg.

Teniendo en cuenta los cuatro efectos fundamen tales mencionados anteriormente, se puede decir que el error total en la medida de la presión para todos los sistemas es aproximadamente igual a 1 mm.de Hg.

4.5.4. - En el volumen molar

Han sido calculados a partir de las ecuaciones mencionadas en el párrafo 3.2. Las densidades o volúmenes es pecíficos de las medidas experimentales de las que se dedujeron dichas ecuaciones, vienen afectadas con una precisión de $0,0001 \text{ g.cm}^{-3}$. Por lo tanto, el Volumen molar tiene una precisión de

 $\leq 0.02 \text{ cm}^3 \cdot \text{mol}^{-1}$

4.5.5.- En el segundo creficiente del virial

Puede considerarse que la precisión en conjunto de los coeficientes del virial es, aproximadamente, del orden de \pm 50 cm³.mol⁻¹.

4.5.6.- En el potencial químico de exceso

Una vez analizados los errores de la composi-ción, temperatura, presión, volumen molar y coeficientes del virial, vamos a considerar su influencia en los potenciales químicos de exceso.

Se puede suponer que la temperatura en los potenciales químicos de exceso sólo influye a través de la pr<u>e</u> sión, error que ha sido ya calculado con anterioridad.

Hecha esta salvedad, los potenciales químicos de exceso, μ^E , a temperatura constante y desde el punto de vista de la teoría de errores, pueden considerarse como una función de las siguientes variables: presión total del sist<u>e</u> ma p; presión de los componentes puros, p_i° ; componentes de las fases líquida y de vapor, x e y; coeficientes del virial, B_{ii} ; volúmenes molares de los componentes puros, v_i° y factor δ . Esto puede expresarse de la siguiente forma:

 $\mu^{E} = \mu^{E}(p, p_{i}^{\circ}, x, y, B_{ii}, v_{i}^{\circ}, \delta)$ (4.62)

El error o variación en los potenciales químicos de exceso, $\Delta \mu^E$, debido a los errores en las variables d<u>e</u> pendientes, tiene el mismo valor que la diferencial total de dicha función, esto se puede expresar abreviadamente:

$$\Delta \mu^{E} = \sum \psi_{i}(z) \Delta z \qquad (4.63)$$

donde

$$\psi_{i}(z) = \left(\frac{\partial \mu^{E}}{\partial z}\right)_{j,k}$$

y z representa cualquiera de las variables de la función ---(4.62) y, por consiguiente ψ_i (z) la variación que experimen ta el valor de μ^E al modificarse una de las variables permaneciendo constantes las restantes.

Diferenciando las ecuaciones (4.30) y (4.31) y ordenando convenientemente cada término:

$$\Delta \mu_{1}^{E} = \left\{ \frac{RT}{p} - \left\{ \mathbf{v}_{1}^{\circ} - \mathbf{B}_{11} \right\} + \delta_{12} \left(1 - \mathbf{y}_{1} \right)^{2} \right\} \Delta p - \left\{ \frac{RT}{p_{1}^{\circ}} - \left(\mathbf{v}_{1}^{\circ} - \mathbf{B}_{11} \right) \right\} \Delta p_{1}^{\circ} - \frac{RT}{x_{1}} \Delta x_{1} + \left\{ \frac{RT}{y_{1}} - 2p\delta_{12} \left(1 - \mathbf{y}_{1} \right) \right\} \Delta y_{1} + \left(p_{1}^{\circ} - p \right) \Delta v_{1}^{\circ} - \left(p_{1}^{\circ} - p \right) \Delta B_{11} + p \left(1 - \mathbf{y}_{1} \right)^{2} \Delta \delta_{12}$$
(4.64)

análogamente

$$\mu_{2}^{E} = \{\frac{RT}{p} - (v_{2}^{\circ} - B_{22}) + \delta_{12} y_{1}^{2}\} \Delta p - \{\frac{RT}{p_{2}^{\circ}} - (v_{2}^{\circ} - B_{22})\} \Delta p_{2}^{\circ} + \frac{RT}{1 - x_{1}} \Delta x_{1} - \{\frac{RT}{1 - y_{1}} - 2p\delta_{12} y_{1}\} \Delta y_{1} + (p_{2}^{\circ} - p) \Delta v_{2}^{\circ} - (p_{2}^{\circ} - p) \Delta B_{22} + p y_{1}^{2} \Delta \delta_{12}$$
(4.65)

Cada coeficiente de Δp , Δx_1 ... será precisamen te la ψ (z) correspondiente, es decir, ψ (p), ψ (x),... y es tas funciones tendrán un valor numérico concreto.

El error debido al volumen molar, $(\Delta \mu^E)_{\nu^{\alpha}}$, es

puede considerar despreciable.

En general para todos los casos, el error rela tivo de los potenciales químicos de exceso es inferior al 5%.

4.6.1.- Resultados experimentales del sistema Ciclohexano(1)+ Benceno(2) 70°C.

•

Tabla 4.1

					Y
N°	x ₁	×2	n	n ^E	ⁿ exp ⁻ⁿ cal
N° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	x ₁ 0,0000 0,0327 0,0733 0,0962 0,1363 0,1774 0,2651 0,2980 0,3534 0,4130 0,4668 0,5310 0,5821 0,6388 0,6802 0,7425 0,7991	x 1,0000 0,9673 0,9267 0,9038 0,8637 0,8226 0,7349 0,7020 0,6466 0,5870 0,5332 0,4690 0,4179 0,3612 0,3198 0,2575 0,2009	n 1,49481 1,49131 1,48712 1,48712 1,48484 1,48094 1,47705 1,46926 1,46641 1,46180 1,45708 1,45297 1,44829 1,44829 1,44474 1,44099 1,43836 1,43459 1,43138	n ^L -0,00108 -0,00226 -0,00285 -0,00378 -0,00462 -0,00592 -0,00633 -0,00684 -0,00715 -0,00727 -0,00727 -0,00720 -0,00697 -0,00652 -0,00608 -0,00524 -0,00426	$n_{exp} - n_{cal}$ 0,00006 -0,00004 -0,00004 -0,00003 -0,00004 0,00007 0,00004 0,00003 0,00004 0,00003 0,00004 -0,0004
17 18	0,8506	0,1494	1,42852	-0,00330	0,00006
L	1,0000	0,0000	1,42070	!	1 -0,00004

MEZCLAS DE COMPOSICION CONOCIDA A 30,0°C DEL SISTEMA CICLOHEXANO(1) + BENCENO(2)

VALORES CALCULADOS DEL AJUSTE

COEFICIENTES

	A _c = 1,49475	$A_0 = -0,02898$
	A ₁ ≠∞0,10625	$A_1 = 0,00277$
	$A_2 = 0,03895$	$A_2 = -0,00024$
	$A_3 = -0,00665$	$A_3 = 0,00275$
	$\sigma = 0,00004$	$\sigma = 0,00002$
	n	n ^E
0	1,49475	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×1	n	n-
	0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00	1,49475 1,48450 1,47500 1,46620 1,45805 1,45053 1,44358 1,44358 1,43718 1,43127 1,42582 1,42080	-0,00295 -0,00501 -0,00636 -0,00709 -0,00724 -0,00682 -0,00582 -0,00429 -0,00230

ſ

~ ~

SISTEMA

CICLOHEXANO(1) + BENCENO(2)

PRESICNES DE VAPOR (hPa)

TEMPERATURA = 70.0 C

Figura 4.2

· .

Figura 4.3

Tabla 4.3

SISTEMA

CICLOHEXAND(2) + BENCENO(2)

TEMPERATURA = 70.0 C

V1 =	115.249	811	-	-1163.0
V2 =	94.692	B22	-	-1036.0
		812	-	-1098.3

VALORES EXPERIMENTALES (J.mol⁻¹)

-

.

× ₁	Y ₁	Р	μ ^Ε μ1	μ <mark>Ε</mark> μ2	$\begin{array}{c} \mu E & \mu E \\ \mu 1 & - \mu 2 \end{array}$	GE
0.0000		734.31				
0.0439	0.0600	748.55	979.85	4.73	975.12	47.54
0.0664	0.0890	754.06	944.44	3.56	940.88	66.03
0.1057	0.1343	763.87	827.53	16.52	811.01	102.24
0.1517	0.1847	774.34	743.35	33.69	709.66	141.34
0.1779	0.2126	779.31	707.80	41.56	666.24	160.08
0.2040	0.2392	783.35	667.79	49.85	617.94	175.91
0.2479	0.2795	788.81	575.08	75.65	499.43	199.46
0.3048	0.3314	794.49	491.24	106.63	384.60	223.86
0.3641	0.3826	797.99	405.99	145.83	260.16	240.56
0.3826	0.3966	798.99	370.57	168.08	202.48	245.55
0.4278	0.4356	800.16	323.62	198.42	125.20	251.98
0.4808	0.4790	800.49	262.51	248.61	13.91	255.29
0.5218	0.5118	799.91	215.99	295.76	-79.77	254.13
0.5405	0.5283	799.27 -	203.85	309.26	-105-41	252.29
0.5626	0.5464	758.27	182.19	334.80	-152.61	248.94
0.6123	0.5886	795.44	143.16	390.53	-247.36	239.06
0.6514	0.6226	752.36	116.10	437.00	-320.90	227.96
0.6757	0.6443	790.11	101.51	466.33	-364.82	219.82
0.7405	0.7044	782.71	68.78	548.27	-479.49	193.20
0.8100	0.7725	771.67	37.01	651.29	-614.28	153.72
0.8552	0.8201	763.44	23.16	726.99	-703.83	125.07
0.9182	0.8921	749.00	7.82	844.99	-837.17	76.30
0.9504	0.9319	740.41	2.16	927.31	-925.15	48.05
1.0000	•	724.94				

Tabla 4.4

SISTEMA

CICLOHEXAND(2) + BENCEND(2)

TEMPERATURA = 70.0 C

AJUSTE POR MINIMOS CUADRADOS DE DATOS EXPERIMENTALES DE G^E

COEF		GRADO DE	L POLINOMIO		
	UNO	DOS	TRES	CUATRO	CINCO
A 0 A.1 A 2 A 3 A 4 A 5	1036.52 -58.28	1021.38 -55.28 50.81	1021.23 -76.95 51.50 38.62	1019.95 -76.00 67.47 37.13 -20.78	1019.94 -80.12 68.46 59.00 -22.21 -22.05
٥	2.70	1.19	0. 93	0.86	0.91

VALORES CALCULADOS DEL AJUSTE

×1		GRADO DE	L POLINOMIO		
	UNO	DOS	TRES	CUATRO	C INCO
0.05	51.73	52.83	52.44	52.36	52.39
0.10	97.48	98.83	98.64	98.68	98.62
0.15	137.36	138.33	138.60	138.78	138.68
0.20	171.44	171.65	172.42	172.66	172.60
0.25	199.81	199.07	200.20	200.41	200.45
0.30	222.56	220.84	222.13	222.23	222.35
0.35	239.79	237.18	238.40	238.34	238.52
0.40	251.56	248.27	249.21	249.00	249.17
0.45	257.98	254.28	254.78	254.48	254.57
0.45	259.13	255.34	255.31	254.99	254.98
0.55	255.10	251.55	250.99	250.73	250.64
0.60	245.97	242.96	241.97	241.85	241.70
0.65	231.83	229.63	228.37	228.42	228.28
0.70	212.77	211.55	210.24	210.46	21C.38
0.75	188.88	188.71	187.59	187.91	187.93
0.80	160.25	161.04	160.31	160.63	160.75
0.85	126.95	128.47	128.25	128.46	128.60
0.90	89.09	90.87	91.12	91.16	91.22
0.95	46.74	48.11	48.54	48.43	48.39

Figura 4.4

- 04 -

CALCULO DE G^E POR EL METODO DE BARKER

POLINOMIO DE GRADO = 3

COEFICIENTES

,
2
)
)

. × ₁	Δ¥	ΔΡ	Y 1	Y 2	۵GE	GE
1 0.0439 0.0664 (.1057 0.1517 0.1779 0.2C40 0.2479 0.3048 (.3641 0.3826 0.4278 0.4808 0.5218 (.5405 0.5626 0.6123 0.6514	-0.0005 -0.0001 -0.0015 -0.0014 -0.0003 0.0006 -0.0003 0.0011 0.0018 0.0018 0.0018 0.0018 0.0014 0.0012 0.0010 0.0001 -0.0002	$\begin{array}{c} 0.26 \\ -0.55 \\ -0.57 \\ 0.22 \\ 0.49 \\ 0.40 \\ 0.05 \\ 0.06 \\ -0.32 \\ -0.14 \\ -0.23 \\ -0.11 \\ 0.06 \\ 0.03 \\ -0.04 \\ 0.04 \\ 0.06 \end{array}$	1 1.4206 1.3951 1.3527 1.3068 1.2825 1.2597 1.2244 1.1840 1.1481 1.1381 1.1158 1.0933 1.0782 1.0720 1.0651 1.0512 1.0418	2 1.0008 1.0019 1.0048 1.0099 1.0137 1.0180 1.0265 1.0397 1.0559 1.0559 1.0559 1.0559 1.0558 1.0942 1.1095 1.1168 1.1257 1.1470 1.1649	$1 \cdot 36 \\ -2 \cdot 01 \\ -1 \cdot 02 \\ 1 \cdot 66 \\ 1 \cdot 98 \\ 1 \cdot 12 \\ 0 \cdot 29 \\ -0 \cdot 15 \\ -1 \cdot 51 \\ -0 \cdot 56 \\ -0 \cdot 97 \\ -0 \cdot 34 \\ 0 \cdot 23 \\ 0 \cdot 24 \\ -0 \cdot 07 \\ 0 \cdot 17 \\ 0 \cdot 16 \\ 0 $	46.17 68.04 103.27 139.68 158.10 174.79 199.17 224.01 242.06 246.11 252.95 255.63 253.91 252.05 249.01 238.90 227.80
C.6757 C.7405 O.8100 C.8552 O.9182 O.9504	-0.0002 -0.0001 -0.0003 -0.0002 -0.0000 -0.0002	0.11 0.26 -0.17 0.06 -0.11 -0.08 0.25	1.0364 1.0242 1.0137 1.0084 1.0029 1.0011	1.1767 1.2112 1.2549 1.2884 1.3449 1.3794	0.29 0.90 -0.85 0.04 -0.43 -0.49 0.95	21 9. 53 192. 30 154. 57 125. 03 76. 73 48. 55

.

•

Tabla 4.6

SISTEMA

CICLOHEXAND(2) + BENCENO(2)

CALCULO DE GE POR EL METODO DE BARKER

POLINOMIO DE GRADO = 3

SAEZ,C.

CCEFICIENTES

A1	×	1016.01
A2	-	-84.58
A3	=	90.32
A 4	-	61.84

		r		·····		
×	۷۵	ΔΡ	Υ ₁	۲ ₂	۵GE	G ^E
0.0812	0.0011	0.08	1.3834	1.0030	-0.60	83.10
0.1151	0.0003	0.36	1.3452	1.0061	1.11	112.69
0.1432	C. 0006	0.15	1.3156	1.0094	0.13	134.95
0.2112	0.0002	-0.17	1.2517	1.0203	-0.74	180.44
0.2452	0.0022	-0.55	1.2238	1.0271	-3.02	198.84
0.2511	0.0023	-0.18	1.2193	1.0284	-1.69	201.75
C.2680	0.0022	-0.43	1.2066	1.0321	-2.49	209.62
0.2994	0.0013	0.16	1.1846	1.0397	0.13	222.45
0.3078	0.0011	-0.23	1.1790	1.0418	-1.20	225.49
0.3375	0.0019	0.48	1.1605	1.0497	1.20	234.98
0.3579	0.0008	0.18	1.1487	1.0554	0.49	240.36
0.3898	0.0028	0.04	1.1318	1.0648	-0.29	246.98
0.4043	0.0013	0.15	1.1246	1.0693	0.39	249.29
0.4909	0.0019	0.18	1.0883	1.0980	0.75	254.31
0.5103	0.0016	0.40	1.0815	1.1050	1.55	253.47
C.5402	0.0020	-0.22	1.0718	1.1160	-0.50	250.83
0.5507	0.0008	-0.10	1.0686	1.1200	-0.24	249.51
0.5684	0.0014	0.07	1.0635	1.1269	0.50	246.86
0.5811	0.0011	0.01	1.0599	1.1320	0.27	244.62
0.6012	0.0008	0.70	1.0547	1.1402	2.71	240.50
0.6348	-0.0013	-0.31	1.0465	1.1545	-1.52	232.06
0.6539	0.0005	-0.70	1.0422	1.1631	-2.38	226.39
0.7238	-0.0004	-0.17	1.0285	1.1979	-0.80	200.27
0.7395	-0.0011	-0.09	1.0258	1.2066	-0.85	193.22
0.7855	-0.CC21	-0.07	1.0179	1.2373	-1.43	167.74
0.8137	0.0003	-0.55	1.0145	1.2542	-1.86	153.68
0.8532	-0.0003	0.66	1.0095	1.2852	2.27	128.15
0.8784	0.0003	0.77	1.0068	1.3078	3.09	110.08
0.9557	0.0002	-0.78	1.0010	1.3951	-2.85	44.91
σ	0.0014	0.39			1.58	

SISTEMA

BENCEND(1) + CICLOHEXAND(2)

CALCULO DE G^E POR EL METODO DE BARKER

POLINOMIO DE GRADO = 3 SCATCHARD.G.

COEFICIENTES

A1	-	1019.05
A2	*	59.91
A3	-	5.91
A4	#	24.10

× ₁	ΔY	ΔΡ	Υ1	Υ ₂	۵GE	GE
0.1186 C.24C5 0.3759 C.4945 0.6180 0.7248 0.8659	-0.0C22 0.C010 -0.0037 -0.C036 -0.0004 0.0006 -C.0023	-0.06 0.11 -0.03 -0.12 0.12 -0.01 -0.02	1.3088 1.2292 1.1542 1.1013 1.0588 1.0314 1.0080	1.0040 1.0180 1.0470 1.0856 1.1406 1.2034 1.3167	1.31 -0.19 0.94 -0.23 0.34 0.21 -1.68	100.99 180.35 235.58 254.57 244.06 209.31 124.88
.σ	0.0023	0.08			0.90	

PCLINCMID DE GRADO = 3 CHEDA.D.

CCEFICIENTES

A1	*	1019.20
A2	*	25.39
A 3	*	78.92
A 4	*	117.47

× ₁	۵۲	ΔP	Y ₁	Υ ₂	۵GE	GE
C.135E C.23C9 C.3150 O.3936 O.4411 O.5004 O.5485 O.5963 O.6650 C.7949 O.8614	0.0012 0.0008 0.0003 0.0014 0.0041 0.0041 0.0041 -0.0072 -0.0072 -0.0093 C.0006 -0.0022 -0.0008	$\begin{array}{r} -0.22 \\ -0.01 \\ 0.68 \\ 0.32 \\ -0.65 \\ -0.62 \\ -0.11 \\ -0.20 \\ 1.26 \\ -0.72 \\ 0.30 \end{array}$	1.3044 1.2380 1.1835 1.1409 1.1191 1.0957 1.0795 1.0655 1.0481 1.0219 1.0114	1.0057 1.0178 1.0352 1.0562 1.0709 1.0911 1.1092 1.1288 1.1610 1.2443 1.3084	$ \begin{array}{r} -1.67\\ -0.52\\ 2.32\\ 0.78\\ -3.07\\ -2.40\\ -0.98\\ -2.43\\ 4.64\\ -3.79\\ 0.62 \end{array} $	120.01 179.38 218.94 242.55 250.75 254.80 253.22 247.43 231.77 177.01 134.09
0•9432 σ	0.0011	-0.11	1.0023	1.7248	2.37	03001
4.6.2.- Resultados experimentales del sistema o-Xileno(1)+ n-Heptano(2) 75°C.

N°	× 1	x ₂	n	n ^E	ⁿ exp ⁻ⁿ cal
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0,0000 0,0690 0,1314 0,1860 0,2503 0,2989 0,3466 0,3986 0,4550 0,4974 0,5595 0,6067 0,6584 0,6946 0,7421 0,7848 0,8306 0,8909 0,9170 0,9517	1,0000 0,9310 0,8686 0,8140 0,7497 0,7011 0,6534 0,6014 0,5450 0,5026 0,4405 0,3933 0,3416 0,3054 0,2579 0,2152 0,1694 0,1091 0,0830 0,0483	1,38255 1,38905 1,39520 1,40074 1,40744 1,41263 1,41779 1,42358 1,42995 1,43483 1,44213 1,44784 1,44784 1,45420 1,45872 1,46478 1,47034 1,47639 1,48819 1,49303	$\begin{array}{c} -0,00160\\ -0,00277\\ -0,00363\\ -0,00448\\ -0,00499\\ -0,00543\\ -0,00574\\ -0,00598\\ -0,00608\\ -0,00608\\ -0,00607\\ -0,00589\\ -0,00560\\ -0,00589\\ -0,00560\\ -0,00560\\ -0,00533\\ -0,00484\\ -0,00429\\ -0,00361\\ -0,00251\\ -0,00195\\ -0,00118\end{array}$	$\begin{array}{c} 0,00008\\ -0,00005\\ -0,00006\\ -0,00004\\ -0,00001\\ 0,00002\\ 0,00001\\ 0,00005\\ 0,00004\\ 0,00005\\ 0,00004\\ 0,00003\\ -0,00000\\ 0,00000\\ -0,00002\\ -0,00002\\ -0,00002\\ -0,00002\\ -0,00002\\ -0,00002\\ 0,000002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,000002\\ 0,000002\\ 0,00000\\ 0,00000\\ 0,00000\\ 0,0000\\ 0,0000\\ 0,0000\\ 0,0$

MEZCLAS DE COMPOSICION CONOCIDA A 30,0°C DEL SISTEMA o-XILENO(1) + n-HEPTANO(2)

VALORES CALCULADOS DEL AJUSTE

COEFICIENTES

	$A_0 = 1,38247$	$A_0 = -0, 02433$
	$A_1 = 0,09468$	$A_1 = -0,00097$
	$A_2 = 0,01963$	$A_2 = -0,00111$
	$A_3 = 0,00307$	2
	$\sigma = 0,00003$	$\sigma = 0,00004$
×1	n	n ^E
,00	1,38247	
,10	1,39214	-0,00218
,20	1.40222	0 0 0 7 9 6
	1910000	-0,00300
,30	1,41273	-0,00380
, 30 ,40	1,41273 1,42368	-0,00506 -0,00575
,30 ,40 ,50	1,41273 1,42368 1,43510	-0,00506 -0,00575 -0,00607
,30 ,40 ,50 ,60	1,41273 1,42368 1,43510 1,44701	-0,00506 -0,00575 -0,00607 -0,00593
,30 ,40 ,50 ,60 ,70	1,41273 1,42368 1,43510 1,44701 1,45942	-0,00506 -0,00575 -0,00607 -0,00593 -0,00528

-0,00408 -0,00231

1,47235 1,48583

1,49986

0, 0

0

0,40

0,50

0,60

0,70

0,80

0,90 1,00

ì

- 68 -

SISTEMA

o-XILENO(1) + n-HEPTANG(2)

PRESIGNES DE VAPOR (hPa)

TEMPERATURA = 75.0 C

×1	۲ ₁	P	P ₁	P 2
0.0544	0.0177	463.99	8.20	455.79
0.1103	0.0357	445.66	15.89	429.77
C.1837	0.0598	422.02	25.23	396.79
0.2417	0.0795	402.66	32.00	370.66
0.3090	0.1026	381.85	39.16	342.69
0.3415	C.1157	370.60	42.87	327.72
0.4007	0.1381	352.17	48.65	303.53
0.4326	0.1524	341.00	51.95	289.05
0.4619	0.1654	331.24	54.79	276.45
0.4539	0.1810	320.37	57.99	262.38
0.5191	0.1931	311.99	60.26	251.73
0.5728	0.2231	253.07	65.37	227.70
0.6124	0.2472	278.91	68.95	209.96
0.6473	0.2706	266.28	72.06	194.22
0.6841	0.2979	252.53	75.23	177.29
0.7202	0.3285	238.86	78.47	160.39
0.7592	0.3680	222.99	82.06	140.94
0.802	0.4151	205.97	85.49	120.48
0.8377	0.4699	189.04	88.82	100.21
0.8683	0.5256	174.63	91.78	82.85
0.9031	0.6018	157.57	94.83	62.74
0.9373	0.7014	139.68	97.98	41.70
0.9641	0.8057	124.75	100.51	24.24

Figura 4.8

- /J -

SISTEMA

o-XILEND(1) + n-HEPTANO(2)

TEMPERATURA = 75.0 C *

V1 =	*	127.493	811	*	-2845.9
V2 =	æ	157.622	822	*	-1847.9
			B1 2	-	-2311.1

VALORES EXPERIMENTALES (J.mol⁻¹)

× ₁	Y ₁	Р	E ۲ 1	μ ^Ε μ2	$\mu_1^E - \mu_2^E$	GE
×1 0.00000 0.0544 0.1103 0.1837 0.2417 0.3090 0.3415 0.4007 0.4326	Y 1 C.0177 O.0357 O.0598 O.C795 O.1026 O.1157 O.1381 O.1524	P 482.03 463.99 445.66 422.02 4C2.66 381.85 370.60 352.17 341.00	975.02 848.36 714.01 613.61 493.27 468.26 375.46 348.83	μ ² 3.44 13.28 36.24 56.25 102.27 114.84 169.33 188.16	$\mu_{1}^{E} - \mu_{2}^{E}$ 971.59 835.Cd 677.77 557.36 391.00 353.42 206.13 160.67	G ^E 56.29 105.39 160.74 190.96 223.09 235.53 251.93 257.67
0.4326 0.4619 0.4939 0.5191 0.5728 0.6124 0.6473 0.6841 0.7202	0.1524 0.1654 0.1810 0.1931 0.2231 0.2472 0.2706 0.2979 0.3285	341.00 331.24 320.37 311.99 293.07 278.91 266.28 252.53 238.86	348.83 314.84 288.41 257.31 214.75 178.91 149.83 118.40 95.49	188.16 214.81 243.30 272.97 328.77 378.66 428.83 486.58 550.57	160.67 10J.03 45.11 -15.66 -114.02 -199.74 -279.00 -368.13 -455.09	257.67 261.01 265.58 264.84 263.46 256.33 248.24 234.71 222.82
0.7592 0.8002 0.8377 0.8683 0.9031 0.9373 0.9641 1.0000	0.3680 0.4151 0.4699 0.5256 0.6018 0.7014 0.8057	222.99 205.97 189.04 174.63 157.57 139.68 124.75 103.99	77.14 48.56 31.53 26.57 12.25 4.33 1.15	613.85 703.50 775.57 832.35 919.76 1001.41 1047.51	-536.71 -654.94 -744.04 -805.78 -907.51 -997.03 -1046.37	206.38 179.42 152.29 132.69 100.19 66.85 38.71

٠

• .

SISTEMA

1. State 1. State

f i

. . 0-XILENO(1) + n-HEPTANO(2)

TEMPERATURA = 75.0 C

								F
AJUSTE	POR	MINIMOS	CUADRACOS	DE	DATOS	EXPERIMENTALES	DE	G Ľ

60 F F	GRADO DEL POLINCMIO						
CUEF	UNO	DCS	TRES	CUATRO	C INCO		
Δ ₀ Δ1 Δ2 Δ3 Δ3 Δ4 Δ5	1081.71 49.98	1063.53 42.32 64.81	1061.51 89.19 72.64 -85.64	1056.64 83.61 133.71 -75.38 -79.88	1057.23 64.22 123.50 30.49 -65.34 -107.86		
σ	3.70	1.98	1.34	1.29	1.25		

VALORES CALCULADOS DEL AJUSTE

~ 1	GRADE DEL POLINOMIO					
XI	UND	CO S	TRES	CUATRO	CINCO	
0.05	49.24	51.20	52.37	51.88	52.16	
0.10	93.76	96.40	97.24	97.31	97.01	
0.15	133.46	135.87	135.67	136.46	135.76	
0.20	168.28	169.83	168.42	169.69	169.04	
0.25	198.14	198.48	196.08	197.38	197.15	
0.30	222.96	221.56	219.02	219.95	220.24	
0.35	242.68	240.39	237.42	237.73	238.42	
0.40	257.21	253.84	251.34	250.98	251.76	
0.45	266.49	262.34	260.72	259.80	260.37	
n.50	270.43	265.88	265.38	264.16	264.31	
0.55	268.96	264.43	265.09	263.90	263.57	
0.60	262.01	257.50	259.58	258.71	258.03	
0.65	249.50	246.17	248.54	248.22	247.44	
0.70	231.36	229.07	231.70	231.97	231.39	
0.75	207.51	206.42	208.79	209.52	209.36	
0.80	177.87	177.96	179.63	180.53	180.79	
0.85	142.38	143.43	144.10	144.79	145.27	
0.90	100.95	102.50	102.20	102.40	102.70	
0.95	53.52	54.82	54.06	53.81	53.71	

CALCULO DE G^E POR EL METODO DE BARKER

PELINEMIO DE GRADO = 3

CCEFICIENTES

A1 =	1069.85
A2 =	71.95
A3 =	51.39
A4 =	-26.27

× ₁	٨٧	ΔΡ	۲ ₁	Υ ₂	۵GE	GE
C.0544	0.0002	0.06	1.3858	1.0012	1.50	54.79
C.1103	0.0003	-0.00	1.3309	1.0049	1.62	103.11
0.1837	C.0004	0.09	1.2713	1.0128	3.06	157.68
0.2417	0.0004	-0.56	1.2317	1.0215	-1.48	192.45
0.3090	-0.0006	0.35	1.1920	1.0343	-1.39	224.48
0.3415	C. 0002	-0.32	1.1747	1.0416	-1.28	236.81
0.4007	-0.0011	0.61	1.1458	1.0570	-2.09	254.02
0.4326	-0.0005	0.01	1.1314	1.0666	-2.80	260.47
0.4619	-0.0006	0.02	1.1190	1.0762	-3.61	264.62
0.4939	-0.0002	-0.07	1.1060	1.0877	-1.63	267.21
C.5191	-0.0007	0.12	1.0964	1.0976	-2.94	267.78
0.5728	0.0001	-0.18	1.0772	1.1211	-1.14	264.60
0.6124	0.0001	-0.25	1.0643	1.1410	-2.00	258.33
0.6473	-0.0000	-0.16	1.0538	1.1604	-1.72	249.95
0.6841	-0.0004	-0.12	1.0436	1.1830	-3.44	238.15
C. 7202	-0.0006	0.19	1.0346	1.2075	-0.71	223.53
0.7592	0.0004	0.03	1.0259	1.2368	2.12	204.26
C-8002	-0.0011	0.30	1.0180	1.2710	-0.59	180.01
C.8377	-0.0006	0.05	1.0120	1.3055	-1.86	154.15
0.8683	0.0009	-0.07	1.0080	1.3362	2.30	130.39
0.9031	-0.0000	-0.00	1.0043	1.3740	-0.23	100.42
0.9373	0.0001	-0.06	1.0018	1.4142	-1.00	67.85
0.9641	0.0013	-0.22	1.0006	1.4480	-1.43	40.15
σ	C. CC06	0.24			2.02	

4.6.3.- Resultados experimentales del sistema m-Xileno(1)+ n-Heptano(2) 75°C.

,

N°	x ₁	x ₂	n	n ^E	ⁿ exp ⁻ⁿ cal
	0,0000	1,0000	1,38255		0,00005
1	0,0567	0,9433	1,38754	-0,00122	-0,00007
2	0,1157	0,8843	1,39304	-0,00218	-0,00001
3	0,1926	0,8074	1,40036	-0,00328	0,00001
4	0,2314	0,7686	1,40414	-0,00376	0,00002
5	0,2858	0,7142	1,40953	-0,00431	0,00003
6	0,3398	0,6602	1,41499	-0,00476	0,00002
7	0,4105	0,5895	1,42232	-0,00518	0,00002
8	0,4571	0,5429	1,42724	-0,00536	-0,00001
9	0,4966	0,5034	1,43148	-0,00544	-0,0003
10	0,5489	0,4511	1,43723	-0,00542	-0,00004
11	0,6001	0,3999	1,44299	-0,00527	-0,00002
12	0,6478	0,3522	1,44848	-0.00500	0,00001
13	0,6895	0,3105	1,45337	-0,00467	0,00004
14	0,7445	0,2555	1,45988	-0,00418	0,00002
15	0,7906	0,2094	1,46547	-0,00364	0,00004
16	0,8267	0,1733	1,46988	-0,00319	0,00001
17	0,8797	0,1203	1,47648	-0,00239	-0,00002
18	0,9039	0,0961	1,47955	-0,00197	-0,00002
19	0,9506	0,0494	1,48560	-0,00103	0,00002
	1,0000	0,0000	1,49204	-	-0,00001

MEZCLAS DE COMPOSICION CONOCIDA A 30,0°C DEL SISTEMA m-XILENO(1) + n-HEPTANO(2)

VALORES CALCULADOS DEL AJUSTE

COEFICIENTES

A _o =	1,38250	$A_0 = -0,02168$
$A_1 =$	0,08912	$A_1 = -0,00164$
A_2^{-}	0,01821	$A_2 = 0,00110$
$A_3 =$	0,00223	$A_3 = 0,00218$
-		$A_4 = -0,00262$

	-	•
×1	n	n ^E
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90	1,38250 1,39159 1,40106 1,41093 1,42120 1,43188 1,44300 1,45456 1,46658 1,47907	$\begin{array}{c} -0,00197\\ -0,00333\\ -0,00442\\ -0,00512\\ -0,00542\\ -0,00527\\ -0,00464\\ -0,00354\\ -0,00200\end{array}$
1,00	1,49205	-

 $\sigma = 0,00003 \quad \sigma = 0,00002$

SISTEMA

.

- 7 - 8 - 9

m-XILEND(1) + n-HEPTANC(2)

PRESIENES DE VAPOR (hPa)

TEMPERATURA = 75.0 C

× ₁	¥1	Р	P 1	P 2
D. C 820	0.0293	455.88	13.37	442.51
0.1275	0.0502	438.59	22.01	416.58
.2207	0.0820	412.38	33.81	378.57
0.2697	0.1011	397.45	40.19	357.26
.3143	0.1200	383.53	46.02	337.51
. 3692	0.1448	366.34	53.03	313.31
0.4101	0.1643	353.29	58.03	295.26
0.4401	0.1806	343.16	61.97	281.19
.4692	0.1960	333.52	65.36	268.16
. 5054	0.2160	322.17	69.58	252.59
.5358	0.2341	312.20	73.09	239.11
0.5630	0.2511	303.25	76.14	227.11
0.5895	0.2679	294.56	78.92	215.64
.6260	0.2941	282.08	82.95	199.13
0.6670	0.3264	268.07	87.51	180.56
0.6535	0.3494	258.58	90.36	168.22
.7212	0.3769	248.05	93.48	154.57
.7425	0.3980	240.31	95.66	144.66
.7570	0.4145	234.41	97.16	137.24
.7653	0.4243	231.30	98.14	133.16
.7835	0.4465	224.14	100.08	124.06
.7583	0.4660	218.24	101.70	116.54
.8226	0.4991	208.37	103.99	104.38
.8442	0.5351	199.30	106.64	92.66
.9108	0.6742	169.27	114.12	55.14
.9425	0.7635	153.99	117.57	36.42
.9729	0.8737	138.47	120.98	17.49

.

- 81 -

.

а.

.

Figura 4.12

•••

SISTEMA

ľ.

m-XILENO(1) + n-HEPTANO(2)

TEMPERATURA = 75.0 C

V1 =	130.159	811 =	-2768.0
V2 =	157.622	822 =	-1847.9
		812 =	-2277.0

VALORES EXPERIMENTALES (J.mol⁻¹)

× ₁	Y ₁	Р	μ ^Ε μ1	μ ^Ε 2	$\mu^{E}_{1} - \mu^{E}_{2}$	GE
0.00to		482.03				
0.0820	0.0293	455.88	694.19	5.40	688.79	61.88
0.1375	0.0502	438.59	649.36	14.45	634.91	101.75
0.2207	0.0820	412.38	529.02	36.40	492.63	145.12
0.2657	0.1011	397.45	452.16	59.76	392.40	165.59
0.3143	0.1200	383.53	405.96	80.26	325.70	182.63
0.3692	0.1448	366.34	355.85	109.83	246.02	200.66
0.4101	0.1643	353.29	316.09	134.72	181.37	209.10
0.4401	0.1806	343.16	304.13	146.60	157.54	215.93
0.4692	0.1960	333.52	275.90	165.64	110.20	217.37
0.5054	0.2160	322.17	245.02	199.29	45.73	222.40
0.5358	0.2341	312.20	220.66	226.29	-5.63	223.27
0.5630	0.2511	303.25	198.60	253.75	-55.13	222.70
0.5895	0.2679	294.56	171.19	286.72	-115.53	218.61
0.6260	0.2941	282.08	145.59	327.99	-182.41	213.81
0.6670	0.3264	268.07	120.05	383.87	-263.82	207.50
0.6935	0.3494	258 .58	102.70	420.90	-318.21	200.23
0.7212	0.3769	248.05	91.23	451.83	-360.60	191.77
0.7425	0.3980	240.31	75.17	492.05	-416.89	182.51
0.7570	0.4145	234.41	66.41	508.54	-442.14	173.84
0.7653	0.4243	231.30	64.74	522.29	-457.55	172.13
0.7835	0.4465	224.14	55.35	552.55	-497.20	162.99
0.7983	0.4660	218.24	49.29	577.60	-528.31	155.85
0.8226	0.4991	208.37	30.01	632.06	-602.04	136.82
0.8442	0.5351	199.30	30.40	665.07	-634.67	129.28
0.9108	0.6742	169.27	15.16	783.50	-768.34	83.70
0.9425	0.7635	153.99	6.71	856.57	-849.85	55.58
0.9729	0.8737	138.47	2.06	914.00	-911.94	26.77
1.0000		124.08				
1 = = = = = = =						

.

- 85 -

SISTEMA

m-XILENO(1) + n-HEPTAND(2)

TEMPERATURA = 75.0 C

AJUSTE POR MINIMOS CUADRACOS DE DATOS EXPERIMENTALES DE G^E

0055		GRADO DE	L POLINOMIO		
CUEF	UND	DOS	TRES	CUATRO	C INCO
A 0 A 1 A 2 A 3 A 4 A 5	898.17 113.23	886.38 105.14 49.19	886.01 108.26 50.60 -6.54	885.89 107.97 52.07 -5.90 -2.09	884.76 ↓22.87 70.59 -96.63 -32.92 ↓00.46
σ	2.37	1.60	1. 58	1.58	1.49

VALORES CALCULADOS DEL AJUSTE

		GRADO DEL POLINOMIO			
XI	UNO	DO S	TRES	CUATRO	C INCO
0.05	37.82	39.50	39.63	39.61	38.99
2.10	72.68	75.04	75.16	75.15	75.12
0.15	104.41	106.70	106.75	106.76	107.32
0.20	132.84	134.56	134.51	134.54	135.24
0.25	157.79	158.65	158.50	158.54	158.97
0.30	179.11	178.96	178.75	178.79	178.76
0.35	196.61	195.48	195.25	195.27	194.82
0.40	210.13	208.16	207.94	207.94	207.29
0.45	219.50	216.90	216.73	216.72	216.13
0.50	224.54	221.59	221.50	221.47	221.19
0.55	225.10	222.10	222.09	222.06	222.17
0.60	221.00	218-25	218.31	218.28	216.73
0.65	212.06	209.83	209.95	209.94	210.52
0 70	198.13	196.62	196.77	196.77	197.23
0 75	179 02	178.36	178.49	178.51	178.66
0.19	154 59	154 75	154.84	154.86	154.65
	104 40	125 47	125.50	125.52	125.10
0.00	124.02	120.19	00.15	00 15	80.84
0.90	00.99	70.10	70019 40 43	49.42	44.84
0.95	47.50	40.49	40.43	70073	

CALCULC DE G^E POR EL METODO DE BARKER

POLINCHIO DE GRADO = 2

CCEFICIENTES

A1	*	893.20
A2	3	101.24
A3	-	36.00

× ₁	Δγ	ΔΡ	Υ ₁	Υ ₂	۵GE	GE
X1 0.082C 0.1375 0.22C7 0.2697 0.3143 0.3692 0.4101 0.4401 0.4692 0.5054 0.5358 0.563C 0.5895 0.6260 C.667C C.6935 0.7212 0.7425 C.757C	ΔΥ -0.0001 C.0002 -0.0019 -0.0010 -0.0008 -0.0009 0.0003 0.0004 0.0003 0.0004 0.0003 0.0004 -0.0003 -0.0004 -0.0006 -0.0006 -0.0006 -0.0002	ΔP -0.02 0.15 -0.06 0.28 0.29 0.34 0.22 -0.35 -0.64 -0.27 -0.27 -0.19 0.02 0.02 0.37 0.39 0.03 0.28 -0.08	Y 1.2773 1.2449 1.2015 1.1784 1.1588 1.1364 1.1208 1.1208 1.1208 1.100 1.0999 1.0880 1.0785 1.0704 1.0629 1.0531 1.0430 1.0369 1.0310 1.0268 1.0240	Υ ₂ 1.0018 1.0049 1.0127 1.0191 1.0262 1.0367 1.0459 1.0534 1.0615 1.0725 1.0828 1.0928 1.1033 1.1192 1.1392 1.1534 1.1694 1.1826 1.1921	ΔG^{-} -0.88 2.29 -0.71 -2.66 -2.84 -1.77 -2.86 -1.31 -3.56 -1.15 -0.74 -0.33 -2.20 -1.82 1.11 0.89 1.75 0.73 -1.78	G ⁻ 62.76 99.47 145.83 168.25 185.47 202.42 211.56 217.23 220.93 223.55 224.01 223.C3 220.81 215.63 206.79 199.33 190.02 181.78 175.63
0.7653 C.7835 C.7983 O.8226 O.8442 C.9108 O.9425 O.9725	0.0000 0.0002 -0.0015 0.0000 0.0021 0.0017 0.0017 0.0017	0.01 -0.02 -0.03 0.02 0.02 -0.25 -0.22 -0.22 -0.22	1.0225 1.0194 1.0170 1.0133 1.0104 1.0036 1.0015 1.0003	1.1977 1.2105 1.2214 1.2403 1.2583 1.3213 1.3559 1.3923	0.23 -0.22 0.24 -5.25 0.39 2.40 0.79 -0.15 1.93	171.5C 163.21 155.61 142.06 128.89 81.30 54.79 26.92

4.6.4.- Resultados experimentales del sistema p-Xileno(1)+ n-Heptano(2) 75°C.

,

į,

					· · · · · · · · · · · · · · · · · · ·
N°	^x 1	x ₂	n	n ^E	ⁿ exp ⁻ⁿ cal
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0,0000 0,0628 0,1198 0,2361 0,2944 0,3413 0,3980 0,4530 0,4530 0,4997 0,5530 0,5935 0,6621 0,6928 0,7415 0,7834 0,8216 0,8645 0,9064 0,9543	1,0000 0,9372 0,8802 0,8121 0,7639 0,7056 0,6587 0,6020 0,5470 0,5003 0,4470 0,4065 0,3379 0,3072 0,2585 0,2166 0,1784 0,1355 0,0936 0,0457	1,38255 1,38810 1,39334 1,39978 1,40442 1,41015 1,41483 1,42061 1,42636 1,43137 1,43715 1,44162 1,44934 1,45286 1,45853 1,46347 1,46808 1,47336 1,47856 1,48462	$\begin{array}{c} -0,00123\\ -0,00215\\ -0,00306\\ -0,00363\\ -0,00420\\ -0,00458\\ -0,00493\\ -0,00512\\ -0,00515\\ -0,00513\\ -0,00503\\ -0,00472\\ -0,00472\\ -0,00472\\ -0,00472\\ -0,00472\\ -0,00452\\ -0,00411\\ -0,00369\\ -0,00321\\ -0,00256\\ -0,00189\\ -0,00100\end{array}$	$\begin{array}{c} 0,00005\\ -0,00004\\ -0,00004\\ 0,00000\\ 0,00000\\ 0,00000\\ -0,00000\\ -0,00000\\ -0,00000\\ -0,00000\\ -0,00003\\ 0,00003\\ 0,00003\\ 0,00003\\ 0,00001\\ -0,00000\\ -0,00000\\ -0,00001\\ -0,00000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,00\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -$

MEZCLAS DE COMPOSICION CONOCIDA A 30,0°C DEL SISTEMA p-XILENO(1) + n-HEPTANO(2)

VALORES CALCULADOS DEL AJUSTE

COEFICIENTES

A _o =	1,38250	$A_0 = -0,02057$
$A_1 =$	0,08871	$A_1 = -0,00117$
A_2^{-}	0,01680	$A_2 = -0,00138$
$A_3 =$	0,00251	-
5	· · · · · · ·	

$\sigma = 0,00003$	σ =	0,00002
--------------------	-----	---------

× ₁	n	n ^E
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00	1,38250 1,39159 1,40094 1,41069 1,42083 1,43137 1,44231 1,45369 1,46550 1,47777 1,49051	-0,00185 -0,00326 -0,00427 -9,00490 -0,00514 -0,00501 -0,00447 -0,00348 -0,00202

SISTEMA

p-XILENO(1) + n-HEPTANO(2)

PRESIENES DE VAPOR (hPa)

TEMPERATURA = 75.0 C

×1	۲ ₁	Р	P ₁	P ₂
x_1 0.0525 C.1C67 0.1637 0.2355 0.2767 0.3275 0.3607 0.4C68 0.4370 0.4593 C.4EC0 0.5227 0.5503 0.5683 0.6028 C.6277 0.6666 G.6520 0.7114 0.7413 0.7602 C.7E59 0.8150 C.8399	Y ₁ 0.0195 0.0398 0.0617 0.0898 0.1061 0.1291 0.1443 0.1672 0.1830 0.1950 0.2067 0.2322 0.2487 0.2608 0.2853 0.3117 0.3363 0.3593 0.3777 0.4094 0.4307 0.4622 0.5023 0.5409	P 466.16 449.60 432.14 410.10 397.15 381.13 370.52 355.62 345.76 338.41 331.67 317.41 308.45 302.44 290.64 278.64 268.50 259.46 252.51 241.54 234.50 259.46 259.30 259.46 259.30 259.46 259.30 259.30 259.30 259.30 259.30 259.30 259.46 259.30 259	P ₁ 9.11 17.91 26.67 36.81 42.12 49.21 53.47 59.45 63.27 66.01 68.57 73.72 76.71 78.87 82.91 86.86 90.30 93.23 95.38 98.89 100.99 103.88 107.20 109.97	P2 457.05 431.69 405.47 373.29 355.03 331.91 317.05 296.17 282.49 272.41 263.10 243.70 231.74 223.58 207.74 191.79 178.20 166.23 157.13 142.65 133.51 120.87 106.20 93.33
0.8150 C.8399 O.8606 O.9032 O.9336 C.9582	0.5023 0.5409 0.5770 0.6647 0.7437 0.8217	213.41 203.30 194.74 176.32 162.31 150.41	107.20 109.97 112.36 117.21 120.71 123.60	93.33 82.38 59.11 41.60 26.82

- 33

SISTEMA

P-XILENO(1) + n-HEPTAND(2)

TEMPERATURA = 75.0 C

۷1	3	130.793	811 =	-2704.0
٧2	×	157.622	822 =	-1847.9
			B12 =	-2248.9

VALORES EXPERIMENTALES (J.mol⁻¹)

× ₁	Y ₁	Р	μ ^Ε μ1	μ ^Ε 2	$\mu_1^E - \mu_2^E$	GE
0.0000		482.03		•		
0.0525	0.0195	466.16	765.15	5.40	759.75	45.29
0.1067	0.0398	449.60	677.27	13.98	663.29	84.76
0.1637	0.0617	432.14	597.47	26.98	570.6ú	120.28
0.2355	0.0898	410.10	485.64	51.61	434.04	153.82
0.2767	0.1061	397.15	412.49	69.41	343.08	164.34
0.3275	0.1291	381.13	377.70	88.75	288.95	183.38
0.3607	0.1443	370.52	341.57	104.72	236.84	190.15
0.4068	0.1672	355.62	305.13	127.09	178.04	199.52
0.4370	0.1830	345.76	280.49	143.44	137.04	203.33
0.4593	0.1950	338.41	260.13	156.91	103.21	204.32
0.4800	0.2067	331.67	244.76	170.60	74.16	206.20
0.5227	0.2322	317.41	211.60	199.78	11.82	205.96
0.5503	0.2487	308.45	180.96	228.24	-47•28	202.22
0.5683	0.2608	302.44	169.98	243.72	-73.73	201.81
0.6028	0.2853	290.64	147.35	274.44	-127.08	197.83
0.6377	0.3117	278.64	121.89	312.08	-190.19	190.80
0.6666	0.3363	268.50	108.91	342.05	-233.13	186.64
0.6920	0.3593	259.46	95.53	372.03	-276.5J	180.69
0.7114	0.3777	252.51	83.43	398.86	-315.42	174.47
0.7413	0.4094	241.54	71.99	437.74	-365.75	166.61
0.7602	0.4307	234.50	62.27	466.82	-404.55	159.28
0.7859	0.4622	224.75	50.18	509.30	-459.12	148.48
0.8150	0.5023	213.41	38.98	560.22	-521.25	135.41
0.8359	0.5409	203.30	28.56	606.61	-578.C5	121.11
0.8666	0.5770	194.74	22.98	647.55	-624.57	110.04
0.9032	0.6647	176.32	10.14	746.72	-736.58	81.44
0.9336	0.7437	162.31	3.62	823.30	-819.68	58.04
0.9582	0.8217	150.41	0.11	894.70	-894.59	37.50
1.0000		128.71				

.

- 90 -

SISTEMA

P-XILEND(1) + n-HEPTAND(2)

TEMPERATURA = 75.0 C

AJUSTE POR MINIMOS CUADRADOS DE DATOS EXPERIMENTALES DE G^E

		GRADO DE	L POLINOMIO		
CUEF	UND	DOS ~	TRE S	CUATRO	CINCO
A0 A1 A2 A3 A4 A5	856.78 33.17	821.60 19.57 135.24	821.27 25.55 136.13 -10.70	818.15 21.69 175.93 -4.28 -53.21	818.85 1.92 166.25 107.19 -40.31 -115.76
σ	5.73	1.26	1.30	1.31	1.14

VALORES CALCULADOS DEL AJUSTE

~ .	GRADO DEL POLINOMIO				
×1	UNO	DCS	TRES	CUATRO	C INCO
0.05 0.10 0.15 0.20 0.25 0.30 0.35	39.28 74.72 106.28 133.90 157.54 177.14 192.65	43.38 80.30 111.42 137.33 158.52 175.40 188.32	43.53 80.41 111.40 137.16 158.23 175.04 187.95 197.21	43.19 80.44 111.93 138.00 159.09 175.67 188.18	43.49 80.12 111.18 137.31 158.84 175.58 188.89 197.82
0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95	204.03 211.23 214.19 212.87 207.22 197.18 182.71 163.76 140.27 112.20 79.50 42.11	197.52 203.19 205.40 204.18 199.44 191.05 178.76 162.26 141.16 114.99 83.17 45.08	197.21 202.97 205.32 204.23 199.62 191.30 179.04 162.51 141.33 115.03 83.10 44.57	202.39 204.54 203.46 199.06 191.09 179.20 162.96 141.87 115.43 83.17 44.75	203.00 204.71 203.15 198.39 190.34 178.68 162.87 142.21 115.93 83.45 44.58

CALCULO DE G^E POR EL PETODO DE BARKER

PCLINCMID DE GRADO = 3

CCEFICIENTES

A1 =	820.63
A2 =	76.15
A3 =	134.52
A4 =	-43.79

X	A ¥	٨D	v	~	۸GE	GE
1		<u></u>	¹ 1	2	20	
0-0525	-0.0001	0.21	1.3071	1.0013	0.94	44.35
0.1067	0.0003	0.11	1.2533	1.0049	2.28	82.47
C-1637	0.0010	-0.02	1.2103	1.0104	4.79	115.49
0.2355	0.0010	0.04	1.1696	1.0190	5.38	148.44
0.2767	0.0002	-0.04	1.1511	1.0246	0.76	163.58
0.3275	0.0009	-0.01	1.1316	1.0322	4.50	178.88
0.3607	0.0006	-0.01	1.1203	1.0377	3.18	186.97
0.4068	0.0008	-0.03	1.1060	1.0460	3.72	195.80
0.4370	C.COC8	-0.06	1.0974	1.0520	3.24	200.09
0.4593	0.0006	-0.10	1.0912	1.0568	1.83	202.49
0.4800	0.0005	-0.04	1.0857	1.0615	2.07	204.12
0.5227	0.0003	-0.14	1.0748	1.0724	0.29	205.67
0.5503	-0.0009	0.13	1.0680	1.0803	-3.08	205.30
0.5683	-0.0009	0.17	1.0637	1.0858	-2.66	204.47
0.6028	-0.0010	0.09	1.0556	1.0976	-3.67	201.51
0.6377	-0.0015	0.09	1.0478	1.1110	-5.79	196.59
0.6666	-0.0011	0.03	1.0416	1.1235	-4.34	190.98
0.6920	-0.0009	-0.02	1.0363	1.1356	-4.15	184.84
C.7114	-0.0012	-0.01	1.0325	1.1456	-4.89	179.35
0.7413	-0.0005	-0.06	1.0268	1.1625	-2.88	169.49
0.7602	-0.0006	-0.06	1.0234	1.1741	-3.06	162.34
0.7859	-0.0006	-0.04	1.0191	1.1912	-2.95	151.43
0.8150	-0.0005	-0.01	1.0146	1.2125	-1.95	137.36
0.8399	-0.0005	-0.08	1.0112	1.2324	-2.71	123.82
0.8606	-0.0002	-0.04	1.0086	1.2503	-1.42	111.46
0.9032	-0.0007	0.06	1.0043	1.2911	-1.32	82.76
0.9336	-0.0009	0.07	1.0021	1.3237	-1.42	59.47
0.9582	-0.0012	0.09	1.0008	1.3525	-1.33	38.84
σ	0.0008	0.08			3.22	

4.6.5. - Resultados experimentales del sistema Metil-cicloh<u>e</u> xano(1)+Benceno(2) 75°C.

1999 - E.S.

IN°					
	^x 1	×2	n	n ^E	ⁿ exp ⁻ⁿ ca1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19	0,0000 0,0222 0,0776 0,1016 0,1472 0,1905 0,2374 0,2875 0,3269 0,3729 0,4125 0,4810 0,5185 0,5817 0,6166 0,7046 0,7666 0,7666 0,8103 0,9132 0,9731	1,0000 0,9778 0,9224 0,8984 0,8528 0,8095 0,7626 0,7125 0,6731 0,6271 0,5875 0,5190 0,4815 0,4183 0,3834 0,2954 0,2334 0,2954 0,2334 0,1897 0,0868 0,0269	1,49481 1,49207 1,48541 1,48266 1,47765 1,47313 1,46847 1,46380 1,46024 1,45633 1,45312 1,44783 1,44509 1,44078 1,44078 1,43848 1,43307 1,42951 1,42197 1,41918	-0,00103 -0,00344 -0,00435 -0,00585 -0,00705 -0,00811 -0,00983 -0,00946 -0,00984 -0,01001 -0,01003 -0,00989 -0,00935 -0,00897 -0,00762 -0,00642 -0,00539 -0,00270 -0,00088	$\begin{array}{c} 0,00004\\ 0,00005\\ -0,00002\\ -0,00004\\ -0,00004\\ -0,00004\\ -0,00004\\ 0,00002\\ 0,00002\\ 0,00000\\ 0,00003\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00005\\ 0,00000\\ -0,00004\\ 0,00000\\ 0,0000\\ 0,000\\ 0,00$

MEZCLAS DE COMPOSICION CONOCIDA A 30,0°C DEL SISTEMA METIL-CICLOHEXANO(1) + BENCENO(2)

VALORES CALCULADOS DEL AJUSTE

COEFICIENTES

$A_0 = 1,49477$	$A_0 = -0,03991$
$A_1 = -0, 12521$	$A_1 = 0,00814$
$A_2 = 0,06556$	$A_2 = -0,00127$
$A_3 = -0,01718$	2
a = 0.00004	$\sigma = 0.00003$

σ =	0,00004	σ =	0,0000) 5
-----	---------	-----	--------	-----

x ₁	n	n ^E
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00	1,49477 1,48288 1,47221 1,46264 1,45407 1,44640 1,43953 1,43335 1,42776 1,42266 1,41794	-0,00425 -0,00724 -0,00911 -0,00998 -0,00998 -0,00920 -0,00774 -0,00568 -0,00308

• •

- 101 -

SISTEMA

ţ

METIL-CICLOHEXAND(1) + BENCEND(2)

PRESIENES DE VAPOR (hPa)

× ₁	Y ₁	Р	P 1	P 2
0.0809	C.0605	847.62	51.29	796.33
0.1026	0.0760	842.61	81.48	754.29
0.1634 C.1973	0.1412	828.70	97.85	704.09
0.2351 0.2744	0.1667 C.1935	808.59	154.79	642.89
0.3102	0.2164	786.40	196.01	616.22 582.73
0.4168	0.2903	751.94	218.26	533.68
0.4696	0.3277	733.19	240.29	492.90
0.5040	0.3528	720.86	254.34	466.53 459.21
0.5294 0.5458	0.3720 0.3853	711.15 704.77	264.54 271.52	446.61 433.25
0.5595	0.3960 0.4024	699.33 696.C5	276.94 280.11	422.39 415.94
0.5783 C.6128	0.4114 0.4403	691.84 677.57	284.61 298.37	407.23 379.21
0.6670 0.6902	0.4891 0.5112	642.40	319.48 328.39	333.68 314.01
0.7495 C.7E79	0.5739 0.6199	613 . 39 592 . 28	352.00 367.18	261.39 225.10
0.8313 0.9344	0.6773 0.8515	567.43 501.85	384.34 427.34	183.09 74.51
0.9555	0.8949	487.68	436.43	51.25

- 100 -

SISTEMA

.

METIL-CICLOHEXAND(1) + BENCENO(2)

V1 = 136.234 B11 = -1463.8 V2 = 95.335 B22 = -999.9 B12 = -1217.1

VALORES EXPERIMENTALES (J.mol⁻¹)

× ₁	Y ₁	Ρ	μ ^Ε μ1	μ2	$\mu_1^E - \mu_2^E$	GE
0.0000		863.72				
0.0809	0.0605	847.62	884.92	10.87	874.05	81.58
0.1026	0.0760	842.61	840.87	15.27	825.61	99.97
0.1337	0.0975	835.77	773.00	26.38	746.62	126.20
0.1634	0.1181	828.70	723.62	36.73	686.89	148.96
0.1973	0.1412	819.84	665.20	49.48	615.72	170.96
0.2351	0.1667	808.59	600.05	63.10	536.95	189.34
0.2744	0.1935	797.16	544.66	81.23	463.43	208.39
0.3102	0.2164	786.40	475.75	106.17	369. 58	220.82
0.3532	0.2459	772.74	421.22	132.19	289.04	234.27
0.3950	0.2777	757.60	365.37	164.50	200.87	244.65
0.4168	0.2903	751.94	346.61	179.49	167.12	249.15
0.4303	0.2997	747.15	328.84	190.74	138.1J	250.16
0.4696	0.3277	733.19	281.93	226.50	55.44	252.53
0.4859	0.3394	727.33	262.36	243.43	18.93	252.63
0.5040	0.3528	720.86	243.72	262.73	-19.02	253.15
0.5129	0.3597	717.23	235.07	269.93	-34.85	252.05
0.5254	0.3720	711.15	217.04	289.57	-72.53	251.17
0.5458	0.3853	704.77	205.29	304.89	-99.60	250.53
0.5595	0.3960	699.33	191.23	320.89	-129.67	248.34
0.5679	0.4024	6 56. 05	181.40	332.55	-151.15	246.71
0.5783	0.4114	691.84	175.97	342.05	-166.03	246.00
0.6128	0.4403	677.57	146.65	384.67	-238.01	238.81
0.6670	0.4891	653.16	103-16	453.63	-350.47	219.87
0.6902	0.5112	642.40	85.71	487.79	-402.08	210.28
0.7495	0.5739	613.39	52.77	574.94	-522.17	183.57
0.7879	0.6199	592.28	33.28	626.96	-593.68	159.20
0.8313	0.6773	567.43	14.23	694.49	-680.25	128.99
0.9344	0.8515	501.85	-6.81	833.93	-840.74	48.34
0.9555	0.8949	487.68	-8.22	875.40	-883.62	31.10
1.0000		457.28				

- 10/ -

SISTEMA

 $\frac{3}{7}$

METIL-CICLOHEXAND(1) + BENCENO(2)

TEMPERATURA = 75.0 C

								5	
AJUSTE	POR	MINIMOS	CUADRADOS	DE	OA TO S	EXPERIMENTALES	DE	GĽ	

60FF		GRADO DE	L POLINOMIO		
LUEF	UNO	DO S	TRES	CUATRO	C INCO
A 0 A 1 A 2 A 3 A 4 A 5	999 •34 -143 •3 2	1022.43 -143.78 -103.40	1019.10 -27.29 -80.88 -225.89	1010.41 -34.20 70.74 -196.57 -219.07	1010.41 -34.29 70.71 -196.C7 -219.00 -0.55
σ	4.99	4.47	1.84	0.87	0.87

VALORES CALCULADOS DEL AJUSTE

~ 1		GRADO DE	L POLINOMIO		
XI	UND	DCS	TRES	CUATRO	C INCO
0.05	53.60	50.73	54.28	52.16	52.16
C.10	100.26	96.42	99.43	98.46	98.46
0.15	140.21	136.73	137.20	138.19	138.19
C.20	173.65	171.44	168.82	171.27	171.27
0.25	200.81	200.34	195.14	198.01	198.01
0.30	221.90	223.31	216.62	218.90	218.90
0.35	237.13	240.30	233.44	234.46	234.46
0.40	246.72	251.29	245.55	245.11	245.12
0.45	250.88	256.35	252.76	251.14	251.14
0.50	249.84	255.61	254.77	252.60	252.60
0.55	243.79	249.24	251.29	249.35	249.35
0.60	232.96	237.49	242.06	241.07	241.07
0.65	217.57	220.67	226.94	227.37	227.37
0.70	197-82	199.16	205.96	207.87	207.87
0.75	173.94	173.38	179.44	182.39	182.39
0.80	146.14	143.83	147.97	151.12	151.12
0 85	114.62	111.07	112.57	114.89	114.89
0.09	70 42	75 71	74.69	75.42	75.42
0.90	41 24	20 44	26.21	35.62	35.62
110 72	410.34	30.44	30.31	55002	55002

1

CALCULO DE G^E POR EL METODO DE BARKER

PCLINCMID DE GRADO = 3

COEFICIENTES

A1 =	1000.96
A2 =	-50.49
A3 =	-18.05
A4 =	-136.20

×1	۵۷	Δ₽	۲ ₁	¥2	۵GE	GE
0.0809	-0.0002	-0.23	1.3630	1.0038	-1.01	82.59
0.1026	0.0001	-0.36	1.3358	1.0058	-1.13	101.10
0.1337	0.0003	0.15	1.3017	1.0093	0.90	125.30
0.1634	0.0009	0.50	1.2733	1.0132	2.92	146.04
C. 1973	0.0014	0.56	1.2451	1.0182	3.86	167.10
0.2351	0.0018	-0.21	1.2177	1.0245	1.79	187.54
0.2744	0.0024	-0.23	1.1926	1.0318	2.80	205.59
0.3102	0.0013	-0.14	1.1720	1.0392	1.50	219.32
0.3532	0.0016	-0.23	1.1496	1.0492	1.79	232.49
0.3990	0.0017	-0.26	1.1278	1.0614	2.09	242.57
0.4168	0.0019	0.11	1.1198	1.0666	3.76	245.38
0.4303	0.0017	-0.02	1.1139	1.0708	3.05	247.11
0.4656	0.0015	-0.07	1.0975	1.0839	2.46	250.07
0.4859	0.0012	-0.01	1.0910	1.0897	2.23	250.39
C. 504C	0.0011	0.21	1.0840	1.0966	3.03	250.12
0.5129	0.0013	-0.07	1.0807	1.1001	2.31	249.74
0.5294	0.0011	0.12	1.0746	1.1069	2.56	248.61
0.5458	0.0016	0.09	1.0688	1.1139	3.60	246.93
0.5595	0.0015	0.05	1.0641	1.1200	3.25	245.10
0.5679	0.0012	0.12	1.0613	1.1238	2.93	243.78
C. 5783	0.0018	0.11	1.0579	1.1287	4.06	241.94
0.6128	0.0019	0.17	1.0472	1.1457	4.60	234.21
0.6670	0.0021	-0.32	1.0324	1.1750	2.86	217.00
0.6902	0.0018	-0.25	1.0269	1.1883	2.52	207.76
0.7495	0.0015	0.26	1.0153	1.2236	4.39	179.18
0.7879	0.0014	-0.14	1.0096	1.2466	2.13	157.07
0.8313	0.0000	-0.02	1.0049	1.2714	-0.03	129.01
0.9344	-0.0022	0.02	1.0002	1.3141	-4.02	52.36
0.9555	-0.0027	0.09	1.0000	1.3177	-4.49	35.59
σ	0.0016	0.22			2.92	

4.6.6.- Resultados experimentales del sistema Tolueno(1)+ Metil-ciclohexano(2) 75°C.

	^x 1	×2	n	n ^E	ⁿ exp ⁻ⁿ cal
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0,000 0,0632 0,1225 0,1821 0,2370 0,2777 0,3474 0,3958 0,4486 0,5060 0,5542 0,6037 0,6550 0,6919 0,7505 0,7831 0,8329 0,8750 0,9102	1,0000 0,9368 0,8775 0,8179 0,7630 0,7223 0,6526 0,6042 0,5514 0,4940 0,4458 0,3963 0,3450 0,3450 0,3084 0,2495 0,2169 0,1671 0,1250 0,0898	1,41800 1,42141 1,42474 1,42829 1,43158 1,43416 1,43869 1,44195 1,44588 1,44968 1,44968 1,45325 1,45700 1,46103 1,46398 1,46885 1,47161 1,47593 1,47969 1,48290	-0,00123 -0,00225 -0,00307 -0,00381 -0,00422 -0,00481 -0,00510 -0,00534 -0,00546 -0,00543 -0,00543 -0,00504 -0,00504 -0,00423 -0,00423 -0,00320 -0,00253 -0,00190	0,00003 -0,00003 -0,00003 0,00002 -0,00003 0,00002 0,00002 0,00003 0,00000 -0,00000 -0,00000 0,00001 0,00001 0,00000 -0,00000 0,00000 -0,00000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,0000000 0,000000 0,000000 0,000000 0,00000000

MEZCLAS DE COMPOSICION CONOCIDA A 30,0°C DEL SISTEMA TOLUENO(1) + METIL-CICLOHEXANO(2)

VALORES CALCULADOS DEL AJUSTE

COEFICIENTES

A _o =	1,41797	$A_0 = -0,02185$
$A_1 =$	0,05342	$A_0 = -0,00161$
A ₂ =	0,01655	•
A ₃ =	0,00344	
σ =	0,00001	$\sigma = 0,00002$

× ₁	n	n ^E
0,00 0,10 0,20 0,60 0,40 0,50 0,60 0,70 0,80 0,90	1,41797 1,42348 1,42934 1,43558 1,44221 1,44925 1,45672 1,45672 1,46465 1,47306 1,48196	-0,00185 -0,00334 -0,00445 -0,00517 -0,00546 -0,00532 -0,00472 -0,00365 -0,00208

. . .

SISTEMA

ļ.

TOLUENO(1) + METIL-CICLOHEXANO(2)

PRESIENES DE VAPOR (hPa)

1

Figura 4.27

- - -

SISTEMA

TOLUEND(1) + METIL-CICLCHEXANO(2)

۷1	*	113.350	B11 =	-1657.3
٧2	=	136.234	822 =	-1463.8
			812 =	-1 55 8.5

VALORES EXPERIMENTALES (J.mol⁻¹)

× ₁	Y ₁	Ρ	μ <mark>Ε</mark> μ <mark>1</mark>	μ <mark>Ε</mark> μ2	$\mu_1^E - \mu_2^E$	GE
0.0000		457.28				
0.1059	0.0952	454.02	630.78	14.20	616.58	79.50
0.1444	0.1286	452.06	591.50	20.53	570.97	102.97
0.1818	C.1589	449.87	523.57	33.78	489.79	122.82
0.2218	0.1926	446.75	485.07	40.86	444.21	139.39
0.2588	0.2231	444.06	446.98	53.33	393.66	155.21
0.2835	0.2427	442.26	415.43	66.00	349.42	165.06
0.3073	0.2621	440.19	391.49	75.44	316.05	172.56
0.3314	0.2808	438.10	359.00	90.18	268.82	179.27
0.3530	0.2983	436.14	338.59	101.27	237.33	185.04
0.3750	0.3160	433.80	315.33	112.30	203-03	188.43
0.4072	0.3418	430.60	283.19	133.20	149.99	194.27
0.4567	0.3820	425.47	239.17	169.28	69.83	201.20
0.5036	0.4207	419.95	198.71	206.51	-7.80	202.58
0.5291	0.4437	416.62	187.33	219.36	-32.03	202.41
0.5563	0.4672	413.19	168.31	243.29	-74.98	201.58
0.5889	0.4962	408.94	148.58	272.91	-124.33	199.69
0.6306	0.5333	403.10	118.66	320.40	+201.73	193.18
0.6602	0.5611	398.51	100.66	352.00	-251.34	186.07
0.6854	0.5857	394.34	86.70	378.28	-291.58	178.43
0.7062	0.6062	390.86	74.70	404.29	-329.59	171.53
0.7371	0.6392	385.53	65.35	433.71	-368.36	162.19
0.7643	0.6674	380.62	49.22	477.98	-428.70	150.28
0.7984	0.7059	374.57	39.88	528.80	-488.94	138.45
0.8296	0.7430	368.09	27.82	575.70	-547.88	121.18
0.8647	0.7882	360.28	18.10	622.59	-604.49	99.89
0.8981	0.8340	353.04	14.41	680.34	-665.93	82.27
0.9351	0.8887	343.58	4. 55	752.04	-747.49	53.06
1.0000		325.67				

- 110 -

SISTEMA

į

TOLUENO(1) + METIL-CICLOHEXANO(2)

TEMPERATURA = 75.0 C

AJUSTE POR MINIMOS CUADRADOS DE DATOS EXPERIMENTALES DE G^E

60.55	GRADO DEL POLINOMIO							
LUEF	UNO	DOS	TRES	CUATRO	C INCO			
A 0 A 1 A 2 A 3 A 4 A 5	827.09 31.83	810.29 25.43 71.41	810.02 31.83 73.40 -15.24	811.78 33.48 50.98 -20.67 35.64	812.12 27.18 45.01 21.31 47.40 -53.05			
σ	2.58	1.05	1.02	0.95	0.97			

VALORES CALCULADOS DEL AJUSTE

×1	GRADO DEL POLINOMIO							
XI	UNO	DOS	TRE S	CUATRO	C INCO			
0.05	37.93	40.15	40.47	40.92	41.37			
0.10	72.15	75.21	75.54	75.85	76.06			
0.15	102.61	105.50	105.69	105.69	105.59			
0.20	129.28	131.32	131.30	131.06	130.83			
0.25	152.10	152.89	152.69	152.36	152.20			
0.30	171.01	170.43	170.10	169.84	169.86			
0.35	185.99	184.07	183.70	183.63	183.81			
0.40	196.97.	193.94	193.61	193.76	194.02			
0.45	203.92	200.09	199.88	200.22	200.44			
0.50	206.77	202.57	202.50	202.94	203.03			
0.55	205.49	201.35	201.44	201.87	201.79			
0.60	200.03	196.38	196.61	196.90	196.70			
0.65	190.33	187.54	187.86	187.95	187.72			
0.70	176.36	174.70	175.04	174.91	174.77			
0.75	158.06	157.66	157.95	157.67	157.68			
0.80	135.39	136.20	136.36	136.06	136.20			
0.85	108.29	110.04	110.04	109.86	110.03			
0.90	76.73	78.87	78.72	78.77	78.81			
0-95	40.65	42.32	42.13	42.35	42.20			

- 121 -

CALCULO DE G^E POR EL METODO DE BARKER

PCLINOMIO DE GRADO = 3

CCEFICIENTES

A1	Ŧ	814.56
42	Ŧ	40.17
Δ3	Ŧ	57.82
Δ4	2	-29.73

x ₁	٨٧	ΔP	Υ ₁	۲ ₂	۸GE	CE
0.1055	-0.0006	0.13	1.2510	1.0040	0.59	78.91
0.1444	0.0002	0.13	1.2245	1.0270	0.93	102.04
0.1818	-C.0005	0.17	1.2018	1.0107	0.84	121.99
0.2218	0.0005	-0.24	1.1803	1.0153	-1.33	14C.71
0.2588	0.0009	-0.17	1.1625	1.0202	-0.55	155.75
0.2835	C. 0006	0.01	1.1515	1.0238	0.45	164.62
0.3073	0.0008	-0.04	1.1416	1.0276	C. 27	172.29
0.3314	0.000	0.01	1.1320	1.0316	0.07	179.19
0.3530	c. ecoo	0.05	1.1239	1.0355	0.39	184.65
0.3750	-0.0001	-0.15	1.1160	1.0397	-1.03	185.51
C. 4072	-0.0006	-0.09	1.1059	1.0463	-1.08	195.35
0.4567	-0.0012	0.14	1.0893	1.0578	-0.16	201.36
C. 5036	-0.0019	0.10	1.0756	1.0702	-1.12	203.70
r.5291	-0.0007	-0.08	1.0696	1.0777	-1.17	203.58
0.5563	-0.0007	-0.01	1.0615	1.0862	-0.77	202.34
0.5885	-0.0005	0.13	1.0534	1.0974	0.36	199.33
0.6376	-0.0013	0.23	1.0438	1.1133	0.20	192.99
0.6602	-0.0013	0.11	1.0375	1.1257	-0.67	186.73
0.6854	-0.0010	-0.08	1.0324	1.1371	-1.81	180.24
0.7062	-0.0011	-0.16	1.0285	1.1471	-2.52	174.05
0.7371	0.0002	-0.20	1.0230	1.1629	-1.25	163.44
0.7643	-0.0006	-0.21	1.0187	1.1780	-2.40	152.68
0.7984	-0.0003	0.21	1.0138	1.1984	1.18	▲ 37 • 27
0.8296	-0.0003	. 0.04	1.0099	1.2186	-0.06	121.24
0.8647	0.0004	-0.20	1.0063	1.2431	-1.09	100.98
0.8981	0.0006	0.25	1.0036	1.2683	2.81	79.45
0.9351	0.0001	-0.02	1.0015	1.2984	0.04	53.02
σ	0.0008	0.15			1.19	

4.6.7.- Resultados experimentales del sistema o-Xileno(1)+ Metil-ciclohexano(2) 75°C.

•

N°	×1	x ₂	n	n ^E	ⁿ exp ⁻ⁿ cal
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 14 5 6 7 8 9 10 11 12 14 5 6 7 8 9 10 11 12 14 5 16 7 10 11 12 10 11 10 10 10 10 10 10 10 10 10 10 10	0,0000 0,0459 0,1005 0,1545 0,2100 0,2513 0,3170 0,3688 0,4181 0,4666 0,5027 0,5689 0,6144 0,6712 0,7015 0,7562 0,8019 0,8563 0,9024 0,9409 1,0000	1,0000 0,9541 0,8995 0,8455 0,7900 0,7487 0,6830 0,6312 0,5819 0,5334 0,4973 0,4311 0,3856 0,3288 0,2985 0,2438 0,1981 0,1437 0,0976 0,0591 0,0000	1,41800 1,42119 1,42515 1,42903 1,4332 1,43642 1,44151 1,44557 1,44951 1,45345 1,45639 1,46185 1,46568 1,47054 1,47314 1,47794 1,48195 1,48683 1,49100 1,49452 1,49988	$\begin{array}{c} -0,00057\\ -0,00108\\ -0,00162\\ -0,00187\\ -0,00216\\ -0,00245\\ -0,00272\\ -0,00272\\ -0,00277\\ -0,00277\\ -0,00273\\ -0,00273\\ -0,00242\\ -0,00230\\ -0,00198\\ -0,00171\\ -0,00128\\ -0,00089\\ -0,00052\end{array}$	$\begin{array}{c} 0,00003\\ -0,00003\\ -0,00009\\ 0,00009\\ 0,00005\\ 0,00001\\ 0,00003\\ 0,00001\\ 0,00002\\ 0,00002\\ 0,00002\\ -0,00002\\ -0,00002\\ -0,00002\\ -0,00003\\ 0,00002\\ -0,00003\\ 0,00000\\ -0,00002\\ 0,00001\\ 0,00002\\ 0,00001\\ 0,00002\\ 0,00004\\ -0,00003\end{array}$

MEZCLAS DE COMPOSICION CONOCIDA À 30,0°C DEL SISTEMA o-XILENO(1) + METIL-CICLOHEXANO(2)

VALORES CALCULADOS DEL AJUSTE

COEFICIENTES

	$A_{0} = 1,41797$ $A_{1} = 0,07017$ $A_{2} = 0,01301$ $A_{3} = -0,00124$ $\sigma = 0,00003$	$A_{0} = -0,01114$ $A_{1} = 0,00001$ $A_{2} = -0,00002$ $A_{3} = 0,00228$ $\sigma = 0,00002$
× ₁	n	n ^E
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,60 0,70 0,80 0,90 1,00	1,41797 1,42511 1,43251 1,44016 1,44804 1,45615 1,46449 1,47304 1,48180 1,49076 1,49991	-0,00111 -0,00186 -0,00237 -0,00268 -0,00278 -0,00267 -0,00231 -0,00170 -0,00090

- 123 -

.

SISTEMA

1.1

o-XILENO(1) + METIL-CICLOHEXANO(2)

PRESICNES DE VAPOR (hPa)

× 1	۲ ₁	Ρ	P 1	۹ ₂
x 1 0.1077 0.1502 0.1779 0.2082 0.2431 0.2767 0.3179 0.3485 0.3765 0.3542 0.4191 0.4324 0.4757 0.5205 0.5461 0.5550 0.5813 0.6116 0.6404 0.6727 0.7056 0.7429 0.7799 0.8124	Y 1 0.0341 0.0479 0.0571 0.0673 0.0796 0.0918 0.1072 0.1194 0.1310 0.1384 0.1494 0.1553 0.1767 0.2002 0.2147 0.2198 0.2360 0.2561 0.2774 0.3036 0.3325 0.3701 0.4147 0.4593	P 423.51 410.69 402.23 392.71 382.24 371.36 358.56 349.01 340.04 334.53 326.61 322.33 308.15 293.40 284.78 281.80 272.91 262.43 252.30 240.77 228.58 214.69 20C.29 187.66	P ₁ 14.47 19.66 22.98 26.42 30.44 34.09 38.43 41.66 44.53 46.31 48.80 50.07 54.46 58.74 61.13 61.94 64.41 67.20 69.99 73.10 75.99 79.46 83.07 85.51	P 2 409.45 391.02 379.26 366.29 351.80 337.27 320.12 307.35 295.51 288.22 277.81 272.26 253.69 234.66 223.65 219.86 208.50 195.23 182.31 167.67 152.59 135.23 117.22 101.15
0.8124 0.8477 0.8749 0.9110 0.9382 C.5682	0.4593 0.5167 0.5698 0.6560 0.7366 0.8464	187.06 172.64 161.17 145.43 133.00 119.30	85.51 89.20 91.84 95.40 97.97 100.97	101.15 83.44 69.33 50.03 35.04 18.32

Figura 4.32

Figura 4.33

160

SISTEMA

o-XILENO(1) + METIL-CICLOHEXANO(2)

V 1	*	127.493	811		-2845.9
٧2	=	136.234	822 =	B	-1463.8
			B12 =		-2078.9

VALORES EXPERIMENTALES (J.mol⁻¹)

×	Y ₁	Р	μ μ 1	μ ^Ε μ2	$\mu_1^E - \mu_2^E$	GE
0.0000		457.28				
0.1077	0.0341	423.91	649.41	15.42	633.99	83.70
0.1502	0.0479	410.69	582.09	25.40	556.69	109.02
0.1779	0.0571	402.23	542.82	34.38	508.43	124.83
0.2082	0.0673	392.71	496.57	43.80	452.77	138.07
0.2431	0.(796	382.23	458.41	59.25	399.16	156.29
0.2767	0.0918	371.36	415.83	70.23	345.60	165.86
0.3179	0.1072	358.56	364.94	91.03	273.91	178.10
0.3485	0.1194	349.01	335.41	107.49	227.92	186.92
0.3765	0.1310	340.04	307.17	122.32	184.85	191.92
0.3942	0.1384	334.53	287.51	134.56	152.95	194.85
0.4191	0.1494	326.61	264.42	150.79	113.63	·198.41.
0.4324	0.1553	322.33	249.09	160.20	88.9J	198.64
0.4757	0.1767	308.15	220.14	187.63	32.51	203.10
0.5205	0.2002	293.40	183.18	222.80	-39.62	202.18
0.5461	0.2147	284.78	162.62	243.68	-81.00	199.42
0.5550	0.2198	281.80	154.23	252.25	-98.02	197.85
0.5813	0.2360	272.91	135.70	276.48	-140.78	194.64
0.6116	C•2561	262.43	114.78	305.11	-190.33	188.71
0.6404	0.2774	252.30	101.68	331.71	-230.03	184.40
0.6727	0.3036	240.77	88.26	363.69	-275.43	178.41
0.7056	0.3325	228.58	66.31	399.30	-332.99	164.34
0.7429	C. 3701	214.69	49.70	444.41	-394.71	151.18
0.7799	0.4147	200.29	41-44	483.03	-441.60	138.63
0.8124	0.4593	187.06	24.92	520.53	-495.61	117.90
0.8477	0.5167	172.64	14.44	569.19	-554.75	98.93
0.8749	0.5698	161.17	10.51	604.78	-594.27	84.85
0.9110	0.6560	145.43	8.17	648.17	-640.0J	65.13
0.9382	0.7366	133.00	3.50	674.77	-671.27	44.98
0.9682	0.8464	119.30	3.77	724.52	-720.75	26.69
1.0000		103.99				
			1	1	I	

SISTEMA

O-XILENO(1) + METIL-CICLOHEXAND(2)

TEMPERATURA = 75.0 C

AJUSTE POR MINIMOS CUADRADOS DE DATOS EXPERIMENTALES DE G^E

COEF	GRADO DEL POLINOMIO						
	UNO	DOS	TRES	CUATRO	C INCO		
A 0 A 1 A 2 A 3 A 4 5	816.00 -35.59	803.99 -44.24 49.23	805.20 -61.40 40.37 37.65	812.92 -44,24 -68.14 -15.48 171.51	809.61 -2.30 -2.58 -281.03 42.23 329.62		
. 0	2.02	1.63	1.77	1.69	1.52		

VALORES CALCULADOS DEL AJUSTE

~1	GRADO DEL POLINOMIO						
XI	UND	DOS	TRES	CUATRO	C INCO		
0.05	40.28	41.98	41.12	43.76	40.26		
0.10	76.00	78.38	77.48	79.46	77.67		
0.15	107.22	109.53	109.02	109.27	109.79		
0.20	133.98	135.72	135.75	134.48	136.10		
0.25	156.34	157.20	157.74	155.75	157.05		
0.30	174.35	174.21	175.10	173.27	173.42		
0.35	188.07	186.94	187.97	186.97	185.91		
0.40	197.55	195.55	196.51	196.67	194.92		
0.45	202.84	200.20	200.90	202.13	200.50		
0.50	204.00	201.00	201.30	203.23	202.40		
0.55	201.08	198.01	197.88	199.93	200.25		
0.60	194.13	191.31	190.76	192.36	193.67		
0.65	183.21	180.90	180.05	180.75	182.51		
0.70	168.37	166.78	165.80	165,42	166.90		
0.75	149.66	148.91	147.99	146.73	147.31		
0.80	127.14	127.23	126.56	124.92	124.43		
0.85	100.86	101.64	101.35	100.02	98.93		
0.90	70.88	72.01	72.11	71.66	70.88		
0.95	37.24	38.19	38.48	38.91	39.09		

CALCULC DE G^E POR EL METODO DE BARKER

POLINCMIO DE GRADO = 2

COEFICIENTES

A 1	-	801.87
A 2	z	-39.05
A 3	Ŧ	40.63

× ₁	Δ۲	ΔΡ	Υı	Υ ₂	۵GE	GE
0.1077	-0-0002	0.39	1.2584	1.0042	1.30	82.41
0.1502	-0-0002	0.28	1.2271	1.0079	0.64	108.38
0.1775	-0.0002	0.34	1.2086	1.0109	1.41	123.42
0.2082	-0.0002	0.13	1.1899	1.0147	-0.16	138.23
0.2431	C. 0000	0.38	1.1700	1.0197	3.08	153.21
0.2767	0.0002	-0.12	1.1526	1.0251	0.26	165.60
0.3179	0.0002	-0.12	1.1332	1.0325	-0.03	178.13
0.3485	C. 0003	-0.10	1.1200	1.0385	1.32	185.60
0.3765	0.0005	-0.24	1.1089	1.0445	0.83	191.08
0.3942	0.0003	-0.13	1.1022	1.0484	0.95	193.50
0.4191	C.0004	-0.09	1.0933	1.0542	1.40	197.02
0.4324	0.0002	-0.09	1.0888	1.0575	0.35	198. 28
0.4757	0.0008	-0.20	1.0751	1.0686	2.61	200.49
0.5205	0.0006	-0.11	1.0625	1.0813	2.44	199.75
0.5461	0.0005	-0.13	1.0559	1.0890	1.46	197.96
0.5550	0.0003	-0.08	1.0537	1.0918	0.74	197.10
0.5813	0.0001	0.03	1.0475	1.1003	0.76	193.88
0.6116	-0.0002	0.08	1.0409	1.1106	-0.18	188.89
0.6404	C.COOO	0.12	1.0352	1.1210	1.53	182.87
0.6727	0.0003	0.21	1.0292	1.1333	3.76	174.65
C. 7056	-0.0004	0.11	1.0238	1.1468	-0.32	164.66
0.7429	-0.0008	0.26	1.0183	1.1631	-0.19	151.36
0.7799	-0.0000	0.18	1.0135	1.1806	2.55	136.08
0.8124	-0.0003	-0.11	1.0099	1.1971	-3.01	120.91
0.8477	-0.0006	-0.08	1.0066	1.2164	-3.62	102.56
0.8749	-0.0002	-0.08	1.0045	1.2323	-2.21	87.06
0.9110	0.0008	-0.11	1.0023	1.2551	0.49	64.64
0.9382	0.0017	-0.30	1.0011	1.2735	-1.34	46.32
0.9682	0.0012	-0.05	1.0003	1.2952	2.03	24.66
σ	0.0005	0.19			1.78	

.

4.6.8.- Resultados experimentales del sistema m-Xileno(1)+ Metil-ciclohexano(2) 75°C.

- 134 -

Tabla 4.38

N°	x ₁	×2	n	n ^E	ⁿ exp ⁻ⁿ cal
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0,0000 0,0592 0,1088 0,1636 0,2224 0,2671 0,3122 0,3628 0,4050 0,4704 0,5202 0,5666 0,6281 0,6645 0,7194 0,7663 0,8162 0,8813 0,9037 0,9440 1,0000	1,0000 0,9408 0,8912 0,8364 0,7776 0,7329 0,6878 0,6372 0,5959 0,5296 0,4798 0,3355 0,3719 0,3355 0,2806 0,2337 0,1838 0,1187 0,0963 0,0560 0,0000	1,41800 1,42170 1,42492 1,42861 1,43260 1,43573 1,43891 1,44252 1,44556 1,45409 1,46510 1,46510 1,46510 1,46510 1,46938 1,47309 1,47708 1,47708 1,48232 1,48415 1,48744 1,49204	$\begin{array}{c} -0,00068\\ -0,00114\\ -0,00150\\ -0,00187\\ -0,00205\\ -0,00221\\ -0,00234\\ -0,00243\\ -0,00243\\ -0,00243\\ -0,00245\\ -0,00245\\ -0,00220\\ -0,00210\\ -0,00210\\ -0,00188\\ -0,00165\\ -0,00135\\ -0,00093\\ -0,00076\\ -0,00045\end{array}$	0,00005 -0,00003 -0,00005 -0,00002 0,00002 0,00002 0,00002 0,00002 0,00001 0,00002 0,00001 0,00002 0,00001 -0,00002 -0,00000 -0,00001 0,00001 0,00001 0,00001 0,00001

MEZCLAS DE COMPOSICION CONOCIDA A 30,0°C DEL SÍSTEMA m-XILENO(1) + METIL-CICLOHEXANO(2)

VALORES CALCULADOS DEL AJUSTE

COEFICIENTES

$A_0 = 1,41795$	$A_0 = -0,00972$
$A_1 = 0,06305$	$A_1 = 0,00101$
$A_2 = 0,01370$	$A_2 = -0,00084$
$A_3 = -0,00267$	$A_3 = 0,00134$
σ = 0,00002	σ = 0,00001

x ₁	n	n ^E
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00	1,41795 1,42439 1,43108 1,43802 1,44519 1,45256 1,46013 1,46788 1,47579 1,48384 1,49203	-0,00106 -0,00175 -0,00217 -0,00239 -0,00243 -0,00229 -0,00197 -0,00146 -0,00079

SISTEMA

m-XILENO(1) + METIL-CICLOHEXANO(2)

PRESICNES DE VAPOR (hPa)

X	Y 1	е обр е	P ₁	P ₂
0.0584	0.0208	440.35	9.18	431.17
0.1074	0.0561	423.09		409.10
0 1 5 3 3	0.0501	400 54	23.53	372.01
0 2320	0.0869	388.49	33.76	354.73
0.2592	0.0380	380.66	37.32	343.35
0.2595	0,1150	368-49	42.39	326.10
0.3204	0.1242	362.21	45.00	317.21
0.3459	0.1357	354.54	48.10	306.44
0.3661	0.1453	348.42	50.61	297.81
0.4(63	0.1643	336.35	55.28	281.07
C.4403	0.1825	325.65	59.45	266.21
0.4693	0.1987	316.45	62.89	253.56
0.4954	0.2141	307.96	65.93	242.03
0.5389	0.2423	293.75	71.16	222.59
0.5702	0.2626	283.99	74.56	209.43
0.5858	0.2740	278.95	76.44	202.52
0.6(91	0.2914	271.14	79.01	192.13
0.6375	0.3139	261.80	82.18	179.62
0.6718	0.3443	250.02	86.07	103.95
0.7117	0.3841	236.11	90.12	17647
0.1550	0.4343	220.90	77.77	129.09
0.8014	0.5043	201.02	101.00	77074
0.0023	0.6014	100.03	112 62	52.62
0.9023	0.7690	161.75	116.52	35.21
0.7337	0.1000	7770 47	1146 33	32064

Figura 4.37

- 133 -

SISTEMA

m-XILENG(1) + METIL-CICLOHEXANO(2)

TEMPERATURA = 75.0 C

V1 = 130.159 V2 = 136.234	$\begin{array}{r} 811 = -2768.0 \\ 822 = -1463.8 \\ 812 = -2047.1 \end{array}$

VALORES EXPERIMENTALES (J.mol⁻¹)

× ₁	۲ ₁	Р	E 1 لا	μ ^Ε 2	$\mu_1^E - \mu_2^E$	GE
0.0000		457.28				
0.0584	0. 0208	440.35	592.16	6.83	585.32	41.02
0.1074	0.0387	425.64	531.41	12.16	519.25	67.93
0.1536	0.0561	412.13	480.64	21.88	458.76	92.34
0.1933	0.0712	400.54	425.67	33.58	392 . 10	109.37
0.2320	0.0869	388.49	388.98	40.03	348.95	120.99
0.2592	0.0980	380.66	359.21	51.36	307.84	131.16
0.2995	0.1150	368.49	313.10	66.09	247.01	140.07
0.3204	0.1242	362.21	292.53	74.78	217.75	144.55
0.3459	0.1357	354.54	267.32	86.54	180.70	149.07
0.3661	0.1453	348.42	252.12	95.60	156.52	152.90
0.4063	0.1643	336.35	207.38	120.00	87.38	155.50
0.4403	0.1825	325.65	188.20	135.18	53.02	158.53
0.4693	0.1987	316.45	169.27	149.80	19.47	158.94
0-4954	0.2141	367.96	152.22	162.24	-10.02	157.28
0.5389	0.2423	293.75	133.82	182.97	-49.15	156.48
0.5702	0.2626	283.99	108.12	211.62	-103.51	152.60
0.5858	0.2740	278.95	102.53	222.54	-120.01	152.24
0.6051	0.2914	271.14	87.73	238.96	-151.23	146.85
0.6375	0.3139	261.80	72.26	264.03	-191.77	141.77
0.6718	0.3443	250.02	58.01	289.18	-231.17	133.88
0.7117	0.3841	236.17	46.42	320.42	-274.00	125.41
0.7550	0.4345	220.40	36.59	346.92	-310.33	112.62
0.8074	0.5043	201.62	21.05	407.60	-386.55	95.50
0.8646	0.6014	180.03	10.63	472.21	-461.58	73.13
0.9023	0.6815	165.24	5.07	521.90	-516.83	55.57
0.9359	0.7680	151.75	2.36	580.37	-578.0Ŭ	39.41
1.0000		124.08				

SISTEMA

m-XILENO(1) + METIL-CICLOHEXAND(2)

TEMPERATURA = 75.0 C

AJUSTE POR MINIMOS CUADRACOS DE DATOS EXPERIMENTALES DE GE

0055		GRADO DE	L POLINCHIC		
LUEF	UNO	DOS	TRES	CUATRO	C INCO
Δ 0 Δ 1 Δ 2 Δ 3 Δ 4 Δ 5	648.64 -59.91	629.52 -60.54 78.43	629.32 -79.26 78.16 38.21	633.25 -81.45 25.43 41.62 74.52	633.27 -77.70 24.79 18.56 75.59 25.70
σ	2.93	1.12	0.88	0.71	C. 70

VALORES CALCULADOS DEL AJUSTE

~ 1		GRADO DE	L POLINCMIO	·. ·	
~1	UNO	DOS	TRES	CUATRO	CINCO
0.05	33.37	35.51	34.97	35.42	35.35
0.10	62.69	65.53	65.09	65.15	65.19
0.15	88.05	90.57	90.52	90.06	90.18
0.20	109.53	111.05	111.48	110.71	110.82
0.25	127.24	127.39	128.20	127.46	127.48
0.30	141.25	139.52	140.93	140.52	140.45
0.35	151.65	148.95	149.95	150.02	149.89
0.40	158.55	154.74	155.52	156.08	155.94
0.45	162.02	157.50	157.90	158.80	158.72
0.50	162.16	157.28	157.33	158.31	158.32
0.55	159.06	154.50	154.00	154.79	154.88
0.60	152.80	148.93	148.06	148.42	148.56
0.65	143.48	140.69	139.60	139.42	139.54
0.70	131.18	125.75	128.64	127.95	128.00
0.75	116.00	116.04	115.13	114.14	114.09
0.80	98-03	99.43	98.50	97.95	97.82
0.85	77.35	79.76	79.72	79.16	75.03
0.90	54-06	56.82	57.19	57.26	57.23
0.95	28.25	30.33	30.83	31.34	. 31.43

and the second second

- 140 -

CALCULO DE G^E POR EL METODO DE BARKER

POLINCMIO DE GRADO = 3

CCEFICIENTES

A1	Ξ	633.12
A 2	3	-31.77
A3	*	62.99
A4	×	-9.16

×1	Δ۲	ΔΡ	۲ ₁	Υ ₂	۵GE	G ^E
0.0584	-0.0002	0.41	1.2383	1.0012	1.61	35.41
C-1074	-0.0000	0.13	1.2025	1.0039	0.70	67.23
0.1536	0.0003	0.18	1.1739	1.0075	2.84	89.50
C-1933	C.0003	0.27	1.1528	1.0113	3.58	105.79
0.2320	0.0008	-0.33	1.1347	1.0156	1.67	119.32
0.2592	0.0008	-0.08	1.1232	1.0190	3.65	127.51
0.2995	C. 0007	-0.18	1.1079	1.0244	2.32	137.75
C. 3204	0.0007	-0.16	1.1007	1.0274	2.34	142.21
0.3459	0.0006	-0.09	1.0925	1.0313	2.2)	146.88
C.3661	0.0006	-0.05	1.0864	1.0345	2.91	145.59
0.4063	-0.0003	0.25	1.0752	1.0412	0.80	154.71
C. 4403	C.0000	0.15	1.0667	1.0474	1.35	157.18
0.4693	0.0000	0.07	1.0599	1.0529	0.71	158.23
C.4954	0.0000	-0.13	1.0543	1.0582	-1.06	158-34
0.5385	C. 0007	-0.36	1.0456	1.0676	-0.32	156.80
C.5702	-0.0005	0.06	1.0399	1.0748	-1.76	154.37
0.5858	-0.0005	0.15	1.0372	1.0787	-0.50	152.74
0.6091	-0.0008	0.06	1.0334	1.0846	-2.94	145.79
0.6375	-C. CO14	0.24	1.0290	1.0922	-3.57	145.35
C.6718	-0.0015	0.10	1.0241	1.1022	-4.87	138.74
0.7117	-0.0011	0.05	1.0190	1.1147	-3.91	▲29.32
0.7550	0.0002	-0.39	1.0140	1.1298	-4.30	116.92
C. 8074	-0.0006	-0.08	1.0089	1.1503	-3.29	98.79
0.8646	-0.0005	-0.02	1.0046	1.1760	-1.78	74.91
0.9023	-0.0006	0.04	1.0024	1.1951	-1.17	56.73
0.9359	-0.0013	0.21	1.0011	1.2137	0.58	38.83
σ	0.0007	0.20	2. 1999 		2.53	

4.6.9.- Resultados experimentales del sistema p-Xileno(1)+ Metil-ciclohexano(2) 75°C.

	1	()			-
N°	x ₁	x ₂	n	n ^E	ⁿ exp ⁻ⁿ cal
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0,0000 0,0544 0,0695 0,1716 0,2135 0,2635 0,3094 0,3631 0,4144 0,4692 0,5200 0,5720 0,6313 0,6611 0,7141 0,7742 0,8142 0,8631 0,8982 0,9464 1,0000	1,0000 0,9456 0,9305 0,8284 0,7865 0,7365 0,6906 0,6369 0,5856 0,5308 0,5308 0,4800 0,4280 0,3687 0,3389 0,2859 0,2258 0,1858 0,1369 0,1018 0,0536 0,0000	1,41800 1,42126 1,42222 1,42884 1,43164 1,43504 1,43820 1,44159 1,44559 1,44952 1,45324 1,45709 1,46153 1,46785 1,47252 1,47565 1,47953 1,48236 1,48626 1,49056	-0,00069 -0,00082 -0,00161 -0,00185 -0,00208 -0,00225 -0,00240 -0,00248 -0,00248 -0,00248 -0,00241 -0,00241 -0,00228 -0,00218 -0,00196 -0,00143 -0,00110 -0,00081 -0,00041	$\begin{array}{c} 0,00008\\ -0,00005\\ -0,00004\\ -0,00003\\ -0,00001\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00002\\ 0,00001\\ -0,00000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,0000\\ -0,00\\ -0,000\\ -0,000\\ -0,00\\ -0,00\\ -0,000\\ -0,000\\ -0,00\\ -$
1		1	1	1	1

MEZCLAS DE COMPOSICION CONOCIDA A 30,0°C DEL SISTEMA p-XILENO(1) + METIL-CICLOHEXANO(2)

VALORES CALCULADOS DEL AJUSTE

COEFICIENTES

$A_0 = 1,41792$	$A_0 = -0,00999$
$A_1 = 0,06160$	$A_1 = 0,00049$
$A_2 = 0,01325$	$A_2 = -0,00091$
$A_3 = -0,00220$	$A_3 = 0,00278$
$\sigma = 0,00003$	$\sigma = 0,00002$

x ₁	n	n ^E
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00	1,41792 1,42421 1,43075 1,43753 1,44454 1,45176 1,45917 1,46678 1,47455 1,48249 1,49057	-0,00112 -0,00179 -0,00221 -0,00244 -0,00250 -0,00238 -0,00205 -0,00151 -0,00079

SISTEMA

P-XILENO(1) + METIL-CICLCHEXANO(2)

PRESIGNES DE VAPOR (hPa)

TEMPERATURA = 75.0 C

× 1	۲ ₁	Р	P P ₁	
0.0586	0.0371	429.22	15.91	413.31
0.1347	0.0511	418.74	21.39	397.35
0.2161	0.0825	395.42	32.62	362.80
0.2876	0.1123	374.68	42.07	332.61
0.3447	0.1388	357.28	49.60	307.68
0.3885	0.1604	344.10	55.18	288.92
C.43C4	0.1827	331.27	60.51	270.76
0.4612	0.2000	321.71	64.33	257.37
0.4949	0.2203	311.07	68.53	242.54
0.5183	0.2352	303.64	71.40	232.24
0.5523	0.2569	293.26	75.33	217.93
0.5508	0.2845	280.91	79.93	200.98
0.6330	0.3185	267.07	85.05	182.02
0.6679	0.3494	255.30	89.21	166.08
0.6550	0.3755	246.15	92.42	153.73
0.7266	0.4093	235.01	96.19	138.82
0.7820 0.7528 0.8182 0.8409 0.8696 0.8570	0.4498 0.4921 0.5297 0.5669 0.6185 0.6763	222.58 211.18 201.80 193.29 182.26 171.53	100.13 103.92 106.89 109.58 112.74 116.01	107.26 94.90 83.71 69.53 55.52
0.9295	0.7561	158.64	119.95	38.69
0.9643	0.8613	144.07	124.09 ·	19.98

Figura 4.42

Figura 4.43

SISTEMA

P-XILEND(1) + METIL-CICLOHEXAND(2)

TEMPERATURA = 75.0 C

۷1	Ħ	130.793	811 =	-2704.0
٧2	#	136.234	822 =	-1463.8
			812 =	-2020.9

.

VALORES EXPERIMENTALES (J.mol⁻¹)

× ₁	۲ ₁	Ρ	μ <mark>Ε</mark> μ1	μ ^Ε 2	$\mu_1^E - \mu_2^E$	GE
0.0000		457.28				
0.0986	0.0371	429.22	576.70	12.21	564. 5J	67.87
0.1347	0.0511	418.74	531.57	18.26	513.31	87.40
0.2162	0.0825	395.42	388.75	45.09	343.60	119.39
0.2877	0.1123	374.68	303.77	73.75	230.02	139.92
0.3448	0.1388	357.28	259.89	93.07	166.82	150.59
0.3886	0.1604	344.10	227.12	113.20	113.91	157.47
0.4305	C. 1827	331.27	200.83	132.79	68.04	162.08
0.4612	0.2000	321.71	181.08	148.06	33.02	163.29
0.4949	0.2203	311.07	162.23	165.00	-2.77	163.63
0.5183	0.2352	3C3.64	149.97	177.72	-27.76	163.34
0.5523	0.2569	293.26	123.51	207.23	-83.72	160.99
0.5908	0.2845	280.91	102.61	235.47	-132.86	156.98
0.6329	0.3185	267.07	87.58	264.85	-177.27	152.65
0.6679	0.3494	255.30	72.44	292.01	-219.57	145.36
0.6949	0.3755	246.15	63.10	314.85	-251.75	139.91
0.7266	0.4093	235.01	52.33	339.05	-286.72	130.72
0.7620	0.4498	222.58	33.84	379.65	-345.81	116.15
0.7928	0.4921	211.18	30.21	398.97	-368.70	106.61
0.8182	0.5297	201.80	22.99	424.85	-401.86	96.05
0.8408	0.5669	153.29	18.23	447.35	-429.11	86.55
0.8695	0.6185	182.26	6.23	487.40	-481.17	69.02
0.8970	0.6763	171.53	1.97	522.98	-521.01	55.63
0.9295	0.7561	158.64	-0.81	577.07	-577.89	39.93
0.9643	0.8613	144.07	-4.98	636.52	-641.50	17.92
1.0000		128.71				1
						1

*1***

SISTEMA

P-XILENO(1) + METIL-CICLOHEXANO(2)

TEMPERATURA = 75.0 C

AJUSTE POR MINIMOS CUACRACCS DE DATOS EXPERIMENTALES DE GE

COEF	GRADO DEL POLINOMIO							
	UNO	DOS	TRES	CUATRO	C INCO			
A 0 A 1 A 2 A 3 A 4 A 5	668.24 -77.55	666.68 -78.69 6.32	657.89 15.07 44.08 -193.92	651.64 -4.46 137.00 -150.00 -140.25	653.54 -24.59 101.19 -18.20 -78.79 -158.65			
σ	3.44	3.37	1.34	1.02	0.93			

VALORES CALCULADOS DEL AJUSTE

X1	GRADO DEL POLINOMIO							
	UNO	DOS	TRES	CUATRO	C INCO			
0.05	35.06	35.27	39.02	37.24	38.61			
0.10	65.73	66.03	69.60	68.60	69.03			
0.15	92.12	92.42	93.77	94.31	93.63			
0.20	114.36	114.59	113.06	114.86	113.72			
0.25	132.57	132.68	128.55	130.89	130.02			
0.30	146.84	146.83	140.98	143.08	142.87			
0.35	157.32	157.17	150.74	152.02	152.48			
0.40	164.10 .	163.64	157.97	158.16	159.02			
0.45	167.31	166.97	162.61	161.76	162.61			
0.50	167.06	166.67	164.47	162.91	163.39			
0.55	163.47	163.07	163.26	161.47	161.39			
0.60	156.66	156.29	158.67	157.15	156.56			
0.65	146.73	146.43	150.41	149.57	148.73			
0.70	133.82	133.60	138.30	138.30	137.57			
0.75	118.03	117.92	122.29	123.03	122.70			
0.80	99.47	99.48	102.55	103.63	103.80			
0.85	78.28	78.37	79.50	80.39	80.85			
0.90	54.56	54.70	53.90	54.14	54.45			
0.95	28.43	28.55	26.88	26.47	· 26.35			

- 151 -

. . .

CALCULO DE G^E POR EL METODO DE BARKER

PCLINCHIO DE GRADO = 3

COEFICIENTES

A1	*	651.06
A2	3	-37.19
A3	Ŧ	57.37
Δ4	=	-65.07

×	٨٢	ΔΡ	Y ₁	Υ ₂	∆G ^E	GE
0.0986	0.0001	0.10	1.2177	1.0041	1.07	66.80
0.1347	0.0005	-0.10	1.1904	1.0071	1.82	85.58
0.2162	0.0000	0.02	1.1434	1.0157	0.33	115.65
0.2877	-0.0003	0.24	1.1133	1.0248	0.13	139.80
0.3448	C.0000	-0.11	1.0942	1.0330	-0.79	151.38
C-3886	0.0000	-0.03	1.0815	1.0400	-0.03	157.50
0.4305	C. 0002	-0.03	1.0706	1.0474	0.88	161.20
0.4612	0.0003	-0.09	1.0632	1.0532	0.69	162.60
0.4945	0.0006	-0.21	1.0556	1.0602	0.78	162.85
0.5183	0.0008	-0.26	1.0506	1.0653	1.11	162.23
0.5527	-0.0002	0-16	1.0437	1.0734	0.83	160.16
0.5908	-0.0003	0,22	1.0365	1.0834	0.85	.56.13
0.6325	0.0003	0.18	1.0292	1.0955	3.03	149.63
0.6675	0.0004	0.10	1.0237	1.1065	2.83	142.53
0.6949	0.0006	0.12	1.0198	1.1155	3.92	135.99
0.7266	0.0011	-0.05	1.0157	1.1267	3.59	127.12
0.7620	-0.0000	0.04	1.0116	1.1399	0.45	115.70
0.7928	0.0014	-0.19	1.0086	1,1519	2.16	104-46
C. 9192	0.0012	-0.17	1.0065	1.1621	1.76	94.29
0 9404	0.0012	-0.14	1.0048	1.1714	1.98	84.56
0 040C		-0.10	1.0031	1.1832	-2.31	71.33
0 0070			1.0019	1.1945	-2.12	57.76
0.0710			1.0004	1.2076	-0.72	40.64
0.7275		0.17	1.0002	1.2208	-3.22	21,13
0.7043	-0.0078	0.17	1.0002	102200		
σ	0.0009	0.15			1.91	

CAPITULO V

TEORIA DE FLORY

5.1.- INTRODUCCION

La teoría de disoluciones fundamentalmente pre dice las propiedades macroscópicas observables a partir de las propiedades estructurales de las moléculas que constituyen la mezcla. A pesar del gran avance que se viene desarrollando en la teoría rigurosa del estado líquido, harto complicada, en la actualidad existen teorías de tipo semiempíri co, que pueden predecir las propiedades de la mezcla a partir de las que poseen sus sustancias puras. Podemos incluir la teoría de disoluciones regulares⁴⁰, teoría de red⁴¹, teoría del potencial medio⁴² y teoría de la estructura significante⁴³, todas ellas más o menos satisfactorias, según que los valores absolutos de las propiedades termodinámicas y el cambio en dichas propiedades debido a la mezcla vengan afectados de un error no demasiado significativo.

Recientemente Flory y sus colaboradores^{44,45,} 46,47,48 y 49 recogiendo ideas de las teorías anteriores han realizado una muy valiosa aportación en la teoría de las disoluciones líquidas. Dado que es la más reciente y completa de las existentes sólo aplicaremos nuestros resultados a dicha teoría. Vamos a proceder a continuación a su exposición, comenzando con una función de partición lo suficientemente amplia para poder tener en cuenta diversos tipos de moléculas y poder adaptarla con relativa facilidad a mezclas; procurando que el número de parámetros sea mínimo para lo que se calculan alguno de ellos partiendo de la ecuación de est<u>a</u> do de los componentes puros, llevando consigo una reducción del número de parámetros a determinar. Flory⁵⁰ ha evitado la teoría de celda, en pri<u>n</u> cipio, como base para el cálculo de la función de partición, sin embargo, como veremos más adelante, esta función puede obtenerse a partir de las ideas del modelo de celda del est<u>a</u> do líquido. La obtención de la función de partición por ----Flory y colaboradores está basado en el tratamiento de ----Tonks⁵¹ para un líquido de esferas rígidas en una dimensión, cubicando los resultados de este, para llegar a la expresión en tres dimensiones.

Las ideas fundamentales en que se basa esta -teoría son:

- 1.- La teoría de Eyring y Hirschfelder, basada en el modelo de celda.
- 2.- Utiliza la idea de los grados de libertad externos de Prigogine.
- 3.- Cuando se aplica a mezclas, toma la idea del potencial medio de Prigogine.
- 4.- Sustituye la constante de van der Waals -por sn, donde s es la superficie de un ele mento y n la energía por unidad de superficie, respectivamente.

5.2.- ECUACION DE ESTADO DE EYRING Y HIRSCHFELDER⁵² MODELO DE CELDA

El modelo de celda fundamentado en la idea de que cada molécula de un líquido o gas comprimido, está rode<u>a</u> da la mayor parte del tiempo de las moléculas más próximas, en una región del espacio muy limitada. Se pueden represen-tar las moléculas vecinas a una dada, simulando una celda -dentro de la cual se mueve la molécula central. Desde este punto de vista, un líquido se asemeja a un sólido, aunque no

- 1.- Las moléculas se mueven en sus celdas ind<u>e</u> pendientemente unas de otras.
- 2.- Se puede considerar a las moléculas que -forman la celda, fijas en el centro de sus respectivas celdas, aunque hay una contradición, ya que, simultáneamente, estas moléculas se están moviendo en sus propias celdas.
- 3.- Todas las celdas son iguales.
- 4.- Cada celda contiene una molécula. Si se ti<u>e</u> ne en cuenta que algunas celdas pueden estar vacías, conduce a la teoría de celdas con huecos.

La integral de configuración de un sistema de N moléculas viene dada según la termodinámica estadística, por:

$$Q = \int \dots \int e^{-U/kT} - \frac{N}{|i|} d\tau_i$$
 (5.1)

donde:

U = Energía potencial total del sistema. $d\tau_i$ = Elemento de volúmen de la partícula i.

En coordenadas cartesianas:

$$d\tau_{i} = dx_{i} dy_{i} dz_{i}$$
 (5.2)

La ecuación de estado, obtenida a partir de la presión viene dada en función de la integral de configuración

$$p = kT \left(\frac{\partial \ln Q}{\partial V} \right)_{T,N}$$
 (5.3)

La energia potencial de todas las moléculas -que constituyen el sistema, definida por:

$$U = U_0 + \sum_{i=0}^{N} u(r_i)$$
 (5.4)

siendo:

$$u(r_i) = w(r) - w(0)$$
 (5.5)

donde:

U₀ = Energía del sistema cuando todas las mo léculas están en el centro de sus cel-das.

$$U_0 = \frac{1}{2} Nw(0)$$

- w (0) = Energía de interacción de dos moléculas, ambas, en el centro de sus celdas. El -1/2 aparece para no contar la energía de interacción dos veces.
- w (r)= Energía de interacción de dos moléculas a una distancia r del centro de la celda.

Sustituyendo estas expresiones en la integral de configuración, se obtiene:

$$Q = \exp(-N \ w(0) \ / \ 2KT) v_1^N$$
 (5.6)

donde V₁ es el volumen libre definido por:

por:

$$v_{1} = \int_{\text{celda}}^{e^{-(w(r)-w(0))/KT} d\tau} (5.7)$$

si se expresa da en coordenadas esféricas

$$v_1 = 4\pi \int_0^{rm} \exp\{-(w(r) - w(0))/KT\}r^2 dr$$
 (5.8)

En términos de este volumen libre, se puede calcular la ecuación de estado que es:

$$p = -1/2 (aw(0)/av)_{T} + KT(alnv_{1}/av)_{T}$$
 (5.9)

Para poder calcular el valor del volumen li-bre, de la ecuación (5.8), es necesario conocer el potencial dentro del modelo de celda. El potencial más sencillo que pu<u>e</u> de usarse para calcular dicho volumen es el de esferas rígidas. Se suponen moléculas-esféricas de diámetro σ , ocupando un volumen V y distribuídas en forma de una red cúbica cen-trada en las caras, por tanto, cada molécula estará rodeada de otras doce a una distancia <u>a</u>. El volumen por molécula es v = V/N. La celda correspondiente es un dodecaedro.

El volumen libre disponible depende de lo pr<u>ó</u> ximas que estén las moléculas. Debido a la complejidad de -calcularlo exactamente, se suele sustituir por lo que se conoce como volumen libre esfericalizado. En el caso de esfe-ras rígidas, se calcula la esfera de mayor diámetro que cae dentro del volumen libre exacto. En este caso el volumen libre es una esfera de radio (a - σ).

Eyring y Hirschfelder⁵² suponen un potencial de esferas rígidas con una interacción del tipo de van der Waals, es decir:

Las dos primeras ecuaciones representan el potencial de esferas rígidas, y la tercera la energía de inter acción del tipo empleada por van der Waals en su ecuación de estado.

Por sustitución de estos valores en la expre-sión del volumen libre, ecuación (5.8) y haciendo uso de las magnitudes reducidas, definidas como:

$$\tilde{p} = p/p^*$$
 $\tilde{v} = v/v^*$ $T = T/T^*$ (5.11)

siendo

$$p^* = a/2v^{*2}$$
 $v^* = \gamma \sigma^3$ $T^* = a/2v^* K$ (5.12)

y teniendo en cuenta que el exponente de la ecuación (5.6) es igual a

$$\frac{Nw(0)}{2kT} = \frac{Na}{2vkT} = \frac{N}{\sqrt{T}}$$
(5.13)

Se obtiene para la integral de configuración la expresión:

$$Q = (g v^*)^N (\tilde{v}^{1/3} - 1)^{3NeN/\tilde{v}T}$$
(5.14)

donde g es el factor geométrico igual a $4\pi\gamma/3$, v* es el vo-lumen neto de la molécula y γ es un parámetro que define el tipo de red.

Por sustitución de este valor en la ecuación - (5.3), se llega para la ecuación de estado a la expresión:

$$\frac{\tilde{p} \, \tilde{v}}{\tilde{T}} = \frac{\tilde{v}^{1/3}}{\tilde{v}^{1/3} - 1} - \frac{1}{\tilde{v} \, \tilde{T}}$$
(5.15)

Esta es la ecuación de estado de Eyring y ----Hirschfelder para un líquido de esferas rígidas con una ene<u>r</u> gía de interacción del tipo de van der Waals, coincidente -con la dada por Flory, como se verá a continuación.

5.3.- ECUACION DE ESTADO EN LA TEORIA DE FLORY

Flory considera cada molécula dividida en <u>r</u> -segmentos, cuya naturaleza se puede adaptar a cualquier tipo de sustancia. En general, no tiene que coincidir con el grupo -CH₂- en los n-alcanos, sin embargo, r depende de <u>n</u>, donde n es el número de átomos de carbono. En particular, r se hace proporcional al volumen neto de la molécula, V*, siendo este volumen lineal en n, es decir: V*=rv*. Por tanto, v* s<u>e</u> rá el volumen neto de un segmento.

Otras variables que intervienen en la teoría de Flory son lasssiguientes:

- N = número de moléculas del sistema.
- V = volumen del sistema.
- v = volumen ocupado por un segmento e igual a V/rN.

Para lograr una expresión de la energía de interacción entre las moléculas, es preciso considerar las --constantes entre segmentos de moléculas vecinas. LLamando <u>s</u> al número medio de contacto externo por segmento de una molé cula, el número de contactos externos por segmento será:

$$rs = rs_m + s_p \qquad (5.16)$$

101 -

donde

- s_m = número de contactos para un segmento in-terno.
- s_e = número de contactos de los dos segmentos finales en el caso de una molécula de n-alcano.

En cuanto a los grados de libertad de los segmentos en que se subdivide la molécula, la teoría de Flory adopta la ampliación de Prigogine^{42,53} a la teoría de celda.

- 162 -

Los 3r grados de libertad de la molécula se -pueden dividir en grados de libertad <u>internos</u> y <u>externos</u>. ----Los primeros dependen de las fuerzas de valencia y los segu<u>n</u> dos de las fuerzas intermoleculares, por lo tanto, sólo es-tos últimos entraran en la función de partición. Dichos grados son:

- Externos : Tres traslaciones alrededor del ce<u>n</u> tro de gravedad. Tres rotacionales Rotaciones internas de la mol**éc**ula
- Internos : Vibraciones de la molécula Posiciones trans en el giro interno de la molécula.

El criterio seguido para decidir si una coord<u>e</u> nada es interna o externa, ha sido si un cambio de la misma da o no lugar a una distribución diferente de la molécula. -En todo lo siguiente, se representará por <u>3c</u> el número de -grados de libertad externos por segmento, por tanto

$$3rc = 3 (rc_m + c_o)$$
 (5.17)

donde c_m son los grados de libertad correspondientes a los segmentos internos de la molécula y c_e a los terminales. Se supone que <u>c</u> no depende de la temperatura ni del volumen.

La interacción media de un par de segmentos -viene representada por el parámetro energético n, siendo la energía intermolecular por contacto igual a - n/v.

Con estas definiciones previas, la energía total de interacción cuando los Nr elementos se encuentran en el centro de sus celdas, será:

$$E_0 = -Nrsn/2v$$
 (5.18)

Para la energía intermolecular obtenemos una expresión análoga.

$$E_{o} = -a/V^{m}$$
 (5.19)

donde a es una constante y m un número próximo a la unidad, que anteriormente había sido propuesto por Hildebrand 40,54 y Frank⁵⁵. Flory, toma para m el valor 1, con lo que la energía es del tipo de la de van der Waals.

La función de partición a la que llegan Flory y colaboradores, cuando generalizan los resultados de Tonks a tres dimensiones es la siguiente:

$$Z = Z_{\text{comb}} \left(g \left(v^{1/3} - v^{*1/3} \right)^3 \right)^{\text{Nrc}} \exp \left(-E_0 / kT \right) \quad (5.20)$$

donde Z_{comb} es un factor combinatorial que tiene en cuenta el número de formas de colocar los Nr elementos entre sí, -sin tener en cuenta la localización precisa de uno en rela-ción con los restantes.

Esta ecuación tiene una forma idéntica a la da da por Prigogine⁵³ y, en particular, si se hace c = 1, se r<u>e</u> duce a la de Eyring y Hirschfelder⁵². La diferencia radica en el tratamiento de la energía de interacción, E_0 .

Sustituyendo el valor de E_0 de la (5.18) en la (5.20) y pasando la ecuación a forma reducida, llegamos a

$$Z = Z_{comb} (gv^*)^{Nrc} exp (\frac{Nrc}{\tilde{v} \tilde{T}}) (\tilde{v}^{1/3} - 1)^{3Nrc} (5.21)$$

Las variables reducidas vienen definidas por las expresiones:

$$\tilde{v} = v/v^{\pm}$$
 $v^{\pm} = \sigma^{3}/\gamma$ (5.22)

 $\tilde{T} = T/T^* = 2v^*cKT/s_P$ $T^* = s_N/2v^*cK$ (5.23)

$$\tilde{p} = p/p^* = pv^*/cKT^* = 2pv^{*2}/sn ; p^*=sn/2v^{*2}=cKT^*/v^*$$
 (5.24)

Usando la ecuación (5.21) es fácil obtener la ecuación de estado en la teoría de Flory:

$$\frac{\tilde{p} \, \tilde{v}}{\tilde{T}} = \frac{\tilde{v}^{1/3}}{\tilde{v}^{1/3} - 1} - \frac{1}{\tilde{v} \, \tilde{T}}$$
(5.25)

Como ya se había señalado, esta ecuación es idéntica a la de Eyring y Hirschfelder. La diferencia estriba en las definiciones de p*, v* y T*. Sin embargo, ambas -coinciden haciendo c= 1, r = 1 y a = s_n .

5.4.- MEZCLAS BINARIAS

La teoría de Flory puede ampliarse fácilmente al caso de una mezcla de dos componentes, usando valores medios de las magnitudes que definen la función de partición,ecuación (5.20), como hace Prigogine⁴², con objeto de mantener la forma de la ecuación. Es preciso, primeramente, definir las siguientes variables de mezcla:

x; = fracción molar que nos viene dada por $x_{i} = N_{i} / (N_{1} + N_{2})$ (5.26)<r>>= número medio de segmentos por molécula $<r > = x_1 r_1 + x_2 r_2$ (5.27)• = fracción de segmentos, cuyo valor es (5.28) $\phi_i = x_i r_i / \langle r \rangle$ «c>= número medio de grados de libertad externos por segmento $<\mathbf{rc} = <\mathbf{r} > <\mathbf{c} = \mathbf{x}_1 \mathbf{c}_1 \mathbf{r}_1 + \mathbf{x}_2 \mathbf{c}_2 \mathbf{r}_2$ $<c> = (x_1 r_1 c_1 + x_2 r_2 c_2) / <r>$ $\langle c \rangle = \phi_1 c_1 + \phi_2 c_2$ (5.29)<s>= número medio de sitios por segmento. Su-perficie media por segmento. $(rs) = x_1 r_1 s_1 + x_2 r_2 s_2 = (r) (s)$ $\langle s \rangle = (x_1 r_1 s_1 + x_2 r_2 s_2) / \langle r \rangle$ (5.30) $\langle s \rangle = \phi_1 s_1 + \phi_2 s_2$ θ_i = fracción de sittos o fracción de superficie $\theta_i = \phi_i s_i / \langle s \rangle$ (5.31)

Para una mezcla binaria, si se hace la suposición de mezclas al azar, se obtiene la siguiente función de partición:

$$Z=Z_{comb}(gv^*)^{} N(v^{1/3}-1)^{3N} exp(-E_0/RT)$$
 (5.32)

los segmentos han de elegirse de tal forma que v* sea igual en las dos moléculas.

La energía de la mezcla viene dada por:

$$E_0 = -\frac{1}{v} (A_{11} \eta_{11} + A_{22} \eta_{22} + A_{12} \eta_{12})$$
 (5.33)

donde A_{12} es el número de contactos 1,2 o, dicho de otra for ma, es la superficie de contacto de una molécula 1 contra -otra 2, entonces, la energía por contacto es $-n_{12}/v$. Puesto

$$N_{1} r_{1} s_{1} = 2A_{11} + A_{12}$$

$$N_{2} r_{2} s_{2} = 2A_{22} + A_{12}$$
(5.34)

Despejando A_{11} y A_{22} de estas ecuaciones y sus tituyendo en (5.33).

$$E_0 = -\frac{1}{2v} \left(N_1 r_1 s_1 n_{11} + N_2 r_2 s_2 n_{22} - A_{12} \Delta n \right)$$
 (5.35)

donde

$$\Delta \eta = \eta_{11} + \eta_{22} - \eta_{12}$$
 (5.36)

Para una mezcla al azar, se obtiene:

$$A_{11} = \theta_1 N_2 s_2 r_2 = \theta_2 N_1 s_1 r_1$$
 (5.37)

con lo que la energía debida a la mezcla es igual:

$$-\frac{E_0^M}{\langle r \rangle N} = \frac{v^* p^*}{\tilde{v}} = \frac{\langle c \rangle KT^*}{\tilde{v}}$$
(5.38)

donde p* viene definido por

$$p^{*} = \phi_{1} p_{1}^{*} + \phi_{2} p_{2}^{*} - \phi_{1} \theta_{2} X_{12}$$
 (5.39)

y X₁₂ por

$$X_{12} = s_1 \Delta n / 2v^{*2}$$
 (5.40)

En resumen, se obtiene para mezclas binarias una ecuación de estado:

$$\frac{\tilde{p} \ \tilde{v}}{\tilde{T}} = \frac{\tilde{v}^{1/3}}{\tilde{v}^{1/3} - 1} - \frac{1}{\tilde{v} \ \tilde{T}}$$
(5.41)

análoga a la obtenida para líquidos puros, aunque ahora las variables reducidas dependen de la composición a través de p* y T*:

$$\tilde{p} = p/p^*$$

 $\tilde{T} = T/T^*$
 $T^* = p^* (\phi_1 p_1^* / T_1^* + \phi_2 p_2^* / T_2^*)^{-1}$
(5.42)
 $\tilde{v} = v/v^*$

5.5.- ENERGIA LIBRE DE GIBBS DE EXCESO

Para moléculas de parecido tamaño y sobre la base de una entropía combinatorial ideal, la teoría de Flory conduce a la siguiente expresión para G^E :

$$G^{E} = 3T \left\{ x_{1} - \frac{P_{1}^{*}V_{1}^{*}}{T_{1}^{*}} - \frac{\tilde{v}_{1}^{1/3} - 1}{\tilde{v}_{1}^{*} - 1} + x_{2} - \frac{P_{2}^{*}V_{2}^{*}}{T_{2}^{*}} - \ln \frac{\tilde{v}_{2}^{1/3} - 1}{\tilde{v}_{1}^{*} - 1} \right\} + x_{1}p_{1}^{*}V_{1}^{*} \left(\frac{1}{\tilde{v}_{1}} - \frac{1}{\tilde{v}} \right) + x_{2}p_{2}^{*}V_{2}^{*} \left(\frac{1}{\tilde{v}_{2}} - \frac{1}{\tilde{v}} \right) + x_{1}V_{1}^{*}\theta_{2} \frac{x_{12}}{\tilde{v}}$$

donde todos los símbolos tienen el significado dado anterio<u>r</u> mente.

Hay que hacer notar que, puesto que la entalpía de mezcla, según dicha teoría, viene dada por

$$H^{E} = x_{1}p_{1}^{*}V_{1}^{*} \left(\frac{1}{\tilde{v}_{1}} - \frac{1}{\tilde{v}}\right) + x_{2}p_{2}^{*}V_{2}^{*} \left(\frac{1}{\tilde{v}_{2}} - \frac{1}{\tilde{v}}\right) + x_{1}V_{1}^{*}\theta_{2}\frac{x_{12}}{\tilde{v}}$$
(5.44)

la energía libre de Gibbs de exceso puede expresarse en función de H^E mediante:

$$G^{E} = \{3T \ x_{1} - \frac{P_{1}^{*} \ V_{1}^{*}}{T_{1}^{*}} \ 1n \ \frac{\tilde{v}_{1}^{1/3} - 1}{\tilde{v}_{1}^{1/3} - 1} + x_{2} - \frac{P_{2}^{*} \ V_{2}^{*}}{T_{2}^{*}} \ 1n - \frac{\tilde{v}_{2}^{1/3} - 1}{\tilde{v}_{1}^{1/3} - 1} + H^{E}$$
(5.45)

La expresión resultante a la ecuación original de la energía libre es:

$$G^{E}(X_{12},Q_{12}) = G^{E}(X_{12}) - x_{1}V_{1}^{*}\theta_{2}TQ_{12}$$
 (5.46)

donde $G^{E}(X_{12})$ viene dado por la ecuación (5.43).

En las ecuaciones anteriores X_{12} representa la contribución de interacciones entre contactos 1,2 y la media de los pares 1,1 y 2,2. El término en el que aparece se deno mina términa de interacción de contactos, mientras que los - otros se denominan términos de la ecuación de estado.

5.6.- CALCULO DE X₁₂ Y
$$\tilde{v}$$
 EN LA MEZCLA

De la ecuación de estado (5.25) se obtiene a presión cero:

$$\tilde{T} = (\tilde{v}^{1/3} - 1) / \tilde{v}^{4/3}$$
 (5.47)

y de aquí derivando con respecto a 7 y despejando:

$$\tilde{v}^{1/3} = (\alpha T/3 \ (1 + \alpha T) + 1 \ (5.48)$$

La derivada con respecto a la temperatura de la ecuación (5.25) evaluada a p = 0, da:

$$p^* = \gamma T \tilde{v}^2 \qquad (5.49)$$

!

donde $\alpha = (1/v) (\partial v/\partial T)_p$, es el coeficiente de expansión y --- $\gamma = (\partial p/\partial T)_v$, el coeficiente de presión térmica, por lo que -las cantidades T*, P* y v* para las sustancias puras se pueden evaluar a partir de α , γ y \tilde{v} .

Generalmente el parámetro X_{12} se calcula ajustando los valores experimentales a la ecuación teórica y de<u>s</u> pejando de ella X_{12} . Esto es posible hacerlo en el caso de - H^E y V^E , pero en el caso de G^E , no es posible despejar X_{12} de (5.43), ya que \tilde{v} es también función de este parámetro. Pa ra ello hay que recurrir a un método iterativo en el que se dan unos valores iniciales de \tilde{v} , y se itera hasta que la diferencia entre dos etapas sucesivas sea tan pequeña como se quiera.

Según (5.42):

$$T^{*} = p^{*} / (\phi_{1} \frac{P_{1}^{*}}{T_{1}^{*}} + \phi_{2} \frac{P_{2}^{*}}{T_{2}^{*}})$$
(5.50)

y (5.39)

$$p^{*} = \phi_{1} p_{1}^{*} + \phi_{2} p_{2}^{*} - \phi_{1} \theta_{2} X_{12}$$
 (5.51)

Despejando el valor de X_{12} de la ecuación (5.51):

$$X_{12} = (\phi_1 p_1^* + \phi_2 p_2^* - p^*) / \phi_1 \theta_2$$
 (5.52)

Teniendo en cuenta (5.47):

$$T^* = T \tilde{v}^{4/3} / (\tilde{v}^{1/3} - 1)$$
 (5.53)

y sustituyendo T* en (5.50) obtenemos un valor para p* de:

$$p^{*} = \frac{T \tilde{v}^{4/3}}{\tilde{v}^{1/3} - 1} \begin{pmatrix} \phi_{1} & \frac{P^{*}}{1} + \phi_{2} & \frac{P^{*}}{2} \\ T^{*}_{1} & T^{*}_{2} & T^{*}_{2} \end{pmatrix} (5.54)$$

El procedimiento a seguir es fijar un valor -inicial de \tilde{v} . Se calcula con este valor p*, mediante (5.54) y X₁₂ mediante (5.52). Con estos valores de \tilde{v} y X₁₂ se va a la ecuación (5.43) y se compara G^E (teórica) con G^E (experimental). Se incrementa \tilde{v} en una cierta cantidad y se calcula nuevamente la ecuación (5.43), hasta que haya un cambio de signo. A partir de ahí y en cada cambio de signo se reduce el incremento de \tilde{v} en 1/2, y así hasta que la diferencia entre G^E (experimental) y G^E (teórica) sea menor que 0,05, en cuyo caso se da por terminada la iteración.

Es evidente que este método fija automáticamen te X_{12} y \tilde{v} . Otro procedimiento seguido en la práctica es ut<u>i</u> lizar el parámetro X_{12} obtenido a partir de calores de mezcla o \tilde{v} obtenido a partir de V^E. En este caso no ha sido posible ya que no existen medidas experimentales ni de H^E ni de V^E a las temperaturas que se han efectuado las medidas de G^E. En el caso de existir medidas de H^E, se puede utilizar el pafametro X_{12} obtenido a partir de ellas y forzar la concordan-cia entre teoría y experiencia, haciendo uso del segundo parámetro ajustable Q₁₂, ecuación (5.46). Boublik y Benson⁵⁶ han encontrado para el sistema benceno + ciclohexano a 25°C el valor 0,04807 J.cm⁻³.grad⁻¹.

5.7. - CALCULO DE r, v* y s

De la definición de V* = M / $\tilde{v} \rho$, donde ρ es la densidad, M el peso molecular y \tilde{v} que se calcula mediante (5.48) a partir de los coeficientes de expansión, se puede obtener V* para los n-alcanos. Flory⁴⁵ encontró que V* para los n-alcanos puede representarse por la ecuación lineal, --V* = 14,15 (n+1,05), donde n es el número de átomos de carbo no, que identificada con la definición de V* =v* r, y aproxi mando la constante 1,05=1 se obtiene v*=14,20 que es el va-lor utilizado en este trabajo para todas las sustancias, ya que una de las hipótesis de la teoría es suponer que v*, el volumen neto, es igual en ambas moléculas.

En realidad no es necesario conocer por separa do las superfícies de las dos sustancias, sino sólo su rela ción, ya que se utilizan en el cálculo de θ_2 y ésta se puede expresar mediante

$$\theta_2 = \phi_2 / (\phi_2 + \phi_1 s_1/s_2)$$
 (5.55)

Análogamente sucede con r_1 y r_2 , necesarios para el cálculo de ϕ_2

$$\phi_2 = 1 - \phi_1 = x_2 / (x_2 + x_1 r_1 / r_2)$$
 (5.56)

Si r_i es el número de segmentos de una molécula y S_i la superficie de la misma

$$s_{i} = \frac{S_{i}}{r_{i}}$$
(5.57)

donde s_i es la superficie por segmento. Supuesta la molécu-la con simetría esférica de radio R_i, queda

$$s_{i} = \frac{4\pi R_{i}^{2} v^{*}}{V_{i}^{*}} = \frac{4\pi R_{i}^{2} v^{*}}{4\pi R_{i}^{3} / 3} = \frac{3v^{*}}{R_{i}}$$
(5.58)

de donde

$$\frac{s_1}{s_2} = \frac{R_2}{R_1} = \left(\frac{V_2^*}{V_1^*}\right)^{1/3}$$
(5.59)

es decir, s_1/s_2 se calcula con V_1^* y V_2^* mediante la ecuación (5.59).

5.8.- PARAMETROS PARA LIQUIDOS PUROS

En el cálculo de los parámetros de las sustancias puras son necesarios los valores de los coeficientes de expansión, α , y de presión térmica, γ . Conocido el primero de éstos se calcula \tilde{v} mediante la ecuación (5.48) y \tilde{T} por la (5.47). Con el valor de γ determinamos p* teniendo en cuenta (5.49).

Los coeficientes de expansión de todas las sus tancias estudiadas se han deducido de las ecuaciones que figuran en el apartado 3.2. Los valores obtenidos se muestran en la Tabla 5.1 a la temperatura de medida de cada sistema.

El coeficiente de presión térmica se ha obteni do a partir del coeficiente de compresibilidad, k, relacion<u>a</u> do con γ mediante.

$$\gamma = \frac{\alpha}{\kappa}$$
 (5.60)

Para el m-xileno, p-xileno y metil-ciclohexano se han calculado teóricamente sus coeficientes de compresib<u>i</u> lidad por el método de Wada⁵⁷. Los valores así obtenidos se recogen en la Tabla 5.1, habiéndoles aplicado un factor de corrección. Asimismo se dan los valores de κ para las resta<u>n</u> tes sustancias estudiadas³².

Teniendo en cuenta la ecuación (5.60) se evalúan los coeficientes de presión térmica que hemos recogido también en la Tabla 5.1.

Tabla 5.1

	•		·	
Sustancia	t°C	$a.10^{3} K^{-1}$	*.10 ⁶ atm ⁻¹	$Y (J.cm^{-3}K^{-1})$
Paraona	70	1,344	141	0,966
Denceno	75	1,361	146	0,945
Tolueno	75	1,216	135	0,913
Ciclohexano	70	1,366	166	0,834
n-Heptano	75	1,424	228	0,633
Metil-ciclohexano	75	1,251	180	0,704
o-Xileno	75	1,055	123	0,868
m-Xileno	75	1,083	127	0,864
p-Xileno	75	1,106	132	0,849

Coeficientes de expansión, u, compresibilidad isotérmica, κ , y presión térmica, γ

En la Tabla 5.2 se dan los valores de V*, T*, p*, \tilde{T} , \tilde{v} y r para las sustancias puras, calculados según se ha dicho anteriormente.

Tabla	5.2
-------	-----

Parámetros para líquidos puros								
		V*	T*	p *				
Sustancia	t°C	$(cm^{3}mo1^{-1})$	K	$(J.cm^{-3})$	Ť	v	r	
Poncono	70	70,14	4866	604	0,071	1,3500	4,96	
Benceno	75	70,25	4882	606	0,071	1,3572	4,96	
Tolueno	75	85,36	5125	560	0,068	1,3279	6,03	
Ciclohexano	70	79,65	4833	525	0,071	1,3543	5,63	
n-Heptano	75	115,11	4792	413	0,073	1,3694	8,13	
Metil ciclohexano	75	102,04	5061	437	0,069	1,3351	7,21	
o-Xileno	75	98,75	5479	506	0,064	1,2934	6,98	
m-Xileno	75	100,16	5410	508	0,064	1,2996	7,08	
p-Xileno	75	100,26	5355	503	0,065	1,3046	7,09	

En las tablas 5.3 - 5.11 se indican los valores obtenidos para las distintas mezclas. Como puede observarse, el parámetro X_{12} depende de la composición, hecho que según la teoría no debía suceder. En las tres últimas columnas de dichas tablas se reseñan los valores de G^Eexp, G^Ecal y su d<u>i</u> ferencia, utilizando el valor X_{12} para $x_1=0,5$ y los valores de \tilde{v} correspondientes a cada fracción molar.
Tabla 5.3

Ciclohexano(1) + Benceno(2)

 $t = 70^{\circ}C$ $s_1/s_2 = 0,959$

	T*	p*	~	~	x ₁₂	G ^E exp.	G ^E cal.	Δ
x ₁	K	$J.cm^{-3}$	T	v	J.cm ⁻³	J.	mo1 ⁻¹	
0,1	4467	547	0,0768	1,4108	485,4	98,6	83,2	15,47
0,2	4314	521	0,0795	1,4407	379,0	172,4	161,4	10,47
0,3	4232	504	0.0811	1,4589	333,0	222,1	216,8	5,36
0,4	4191	492	0,0819	1,4686	311,4	249,2	247,8	1,40
0,5	4180	484	0,0821	1,4714	304,9	255,3	255,3	0,03
0,6	4195	480	0,0818	1,4677	311,3	242,0	240,6	1,37
0,7	4238	478	0,0810	1,4576	333,1	210,2	205,0	5,21
0,8	4317	481	0,0795	1,4400	380,7	160,3	149,5	10,82
0,9	4460	490	0,0769	1,4121	491,5	91,1	76,2	14,93

- 175 -

- 176 -

Tab1a 5.4

o-Xileno(1) + n-Heptano(2)

t≠ 75°C

s₁/s₂=1,052

× ₁	T* K	р* J.ст ⁻³	Ť	v	X ₁₂ J.cm ⁻³	G ^E exp.	G ^E cal. .mo1 ⁻¹	Δ
0,1	4502	391	0,0773	1,4162	388,3	97,2	85,2	12,09
0,2	4429	387	0,0786	1,4301	297,6	168,4	160,4	8,02
0,3	4410	387	0,0789	1,4340	261,2	219,0	215,6	-3-,42
0,4	4421	391	0,0788	1,4318	245,1	251,3	250,8	0,55
0,5	4456	397	0,0781	1,4248	243,7	265,4	265,4	0,02
0,6	4518	405	0,0771	1,4132	251,9	259,6	257,7	1,92
0,7	4613	416	0,0755	1,3968	272,1	231,7	225,8	5,94
0,8	4756	432	0,0732	1,3747	312,1	179,6	168,5	11,16
0,9	4975	458	0,0700	1,3418	384,8	102,2	90,1	12,10

Tabla 5.5

m-Xileno(1) + n-Heptano(2)

$t = 75^{\circ}C$ $s_1/s_2 = 1,047$

x ₁	T*	p*	Ĩ	v	×12	G ^E exp.	G ^E cal.	Δ
	K	J.cm ⁻³			J.cm ⁻³	J	.mol ⁻¹	
0,1	4551	396	0,0765	1,4074	326,0	75,0	66,1	8,96
0,2	4480	392	0,0777	1,4203	259,1	134,6	128,7	5,82
0,3	4458	394	0,0781	1,4245	231,9	179,0	176,6	2,32
0,4	4465	398	0,0780	1,4230	221,0	208,2	207,5	0,63
0,5	4496	404	0,0774	1,4174	220,3	221,6	221,5	0,09
0,6	4551	412	0,0765	1,4075	228,7	218,3	216,3	1,98
0,7	4635	424	0,0751	1,3932	248,4	196,6	190,5	6,12
0,8	4760	439	0,0731	1,3739	286,9	154,7	143,9	10,86
0,9	4992	466	0,0697	1,3453	324,1	90,2	79,0	11,20

Tabla 5.6

p-Xileno(1) + n-Heptano(2)

t= 75°C

$s_1/s_2 = 1,047$

.	Т*	p *	~ T	, îr	x ₁₂	G ^E exp.	$G_{cal.}^{E}$	Δ
^1	К	$J.cm^{-3}$	•	v	$J.cm^{-3}$	J	J.mol ⁻¹	
0,1	4531	393	0,0768	1,4109	346,2	80,3	67,8	12,45
0,2	4459	391	0,0781	1,4242	265,2	137,3	129,3	8,01
0,3	4444	393	0,0783	1,4271	231,1	175,4	171,4	4,02
0,4	4457	397	0,0781	1,4246	215,6	197,5	196,6	0,97
0,5	4492	404	0,0775	1,4180	211,7	205,4	205,4	0,03
0,6	4548	412	0,0765	1,4079	217,6	199,4	198,0	1,43
0,7	4629	423	0,0752	1,3942	235,1	178,8	173,9	4,90
0,8	4746	438	0,0734	1,3761	271,4	141,2	131,4	9,75
0,9	4931	459	0,0705	1,3508	353,2	83,2	69,8	13,39

Tabla 5.7

Metil-ciclohexano(1) + Benceno(2)

$t = 75^{\circ}C$

s1/s2	8	0,883
-------	---	-------

v	Т*	p *	~ T	ŷ	x ₁₂	G ^E exp.	G ^E cal.	Δ
^1	К	$J.cm^{-3}$	•	v	$J.cm^{-3}$	J	.mo1 ⁻¹	
0,1	4484	533	0,0777	1,4196	407,0	98,5	87,3	11,11
0,2	4353	497	0,0800	1,4457	319,2	171,3	164,7	6,59
0,3	4294	471	0,0811	1,4590	284,4	218,9	216,8	2,10
0,4	4278	451	0,0814	1,4625	271,5	245,1	241,1	3,99
0,5	4276	435	0,0814	1,4629	272,6	252,6	252,6	0,03
0,6	4307	423	0,0808	1,4558	285,9	241,1	238,6	2,51
0,7	4372	415	0,0796	1,4418	312,2	207,9	201,3	6,56
0,8	4485	412	0,0776	1,4193	356,7	151,1	140,8	10,34
0,9	4678	416	0,0744	1,3863	438,9	75,4	63,9	11,53

Tabla 5.8

Tolueno(1) + Metil-ciclohexano(2)

$t = 75^{\circ}C$

$$s_1/s_2 = 1,061$$

	Т*	p*	L †	ž	× ₁₂	G ^E exp	G ^E cal.	Δ
x ₁	K	$J.cm^{-3}$	1	v	$J.cm^{-3}$	J.n	no1 ⁻¹	
0,1	4717	416	0,0738	1,3803	399,6	75,2	61,9	13,33
0,2	4587	414	0,0759	1,4013	311,5	131,3	121,3	9,97
0,3	4517	417	0,0771	1,4134	272,6	170,4	165,2	5,24
0,4	4484	424	0,0776	1,4195	253,9	193,9	192,4	1,57
0,5	4477	433	0,0778	1,4208	247,6	202,6	202,6	0,02
0,6	4495	446	0,0775	1,4175	251,6	196,4	195,4	0,99
0,7	4540	461	0,0767	1,4094	267,7	174,7	170,1	4,57
0,8	4621	481	0,0753	1,3955	303,0	136,2	126,7	9,49
0,9	4766	508	0,0731	1,3732	384,0	78,9	65,6	13,24

Tabla 5.9

o-Xileno(1) + Metil-ciclohexano(2)

 $t = 75^{\circ}C$ $s_1/s_2 = 1,011$

		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					·····
x ₁	T*	p*	Ť	v	×12	G ^E exp.	G ^E cal.	Δ
	K	J.cm			J.cm ³	J.1	mo1 '	
0,1	4737	412	0,0735	1,3773	364,3	78,4	66,9	11,45
0,2	4639	406	0,0750	1,3925	283,8	135,7	127,7	8,00
0,3	4613	405	0,0755	1,3969	249,9	174,2	166,3	7,86
0,4	4605	408	0,0756	1,3982	234,5	195,6	194,3	1,21
0,5	4632	413	0,0752	1,3936	230,3	201,0	200,8	0,17
0,6	4686	421	0,0743	1,3851	235,6	191,3	190,1	1,23
0,7	4769	431	0,0730	1,3728	252,0	166,8	162,3	4,48
0,8	4889	445	0,0712	1,3561	286,2	127,2	118,5	8,72
0,9	5090	471	0,0684	1,3314	304,9	72,0	62,4	9,60

Tab1a 5.10

m-Xileno(1) + Metil-ciclohexano(2)

 $t = 75^{\circ}C$

S ₁	1	S	2	*	1	,	0	0	6	
----------------	---	---	---	---	---	---	---	---	---	--

			^s 1 [/]	$s_2 = 1,0$	00	a 11		
	T*	p*	ĩ	~	x ₁₂	G ^E exp.	G ^E cal.	Δ
x ₁	K	Jicm ⁻³	Т	v	J.cm ⁻³	J.mo1 ⁻¹		
0,1	4769	415	0,0730	1,3727	323,2	65,1	54,6	10,53
0,2	4681	411	0,0744	1,3860	252,3	111,5	103,7	7,76
0,3	4651	412	0,0749	1,3907	221,2	140,9	136,9	4,04
0,4	4656	416	0,0748	1,3898	206,2	155,5	154,2	1,36
0,5	4685	422	0,0743	1,3853	200,9	157,3	157,3	0,02
0,6	4737	430	0,0735	1,3774	204,1	148,1	147,3	0,80
0,7	4811	441	0,0724	1,3668	217,4	128,6	125,1	3,50
0,8	4914	454	0,0708	1,3529	246,7	98,9	91,6	7,29
0,9	5096	475	0,0683	1,3301	283,9	57,2	49,8	7,90

Tabla 5.11

p-Xileno(1) + Metil-ciclohexano(2)

 $t = 75^{\circ}C$

 $s_1/s_2 = 1,006$

	T*	p *	~	~	x ₁₂	G ^E exp.	G ^E cal.	Δ
^x 1	K	$J.cm^{-3}$	Т	v	J.cm ⁻³	J	.mo1 ⁻¹	
0,1	4747	413	0,0733	1,3759	339,2	69,6	58,6	11,41
0,2	4663	4.10	0,0747	1,3887	255,7	113,1	105,5	7,58
0,3	4632	410	0,0752	1,3937	222,0	141,0	137,8	3,14
0,4	4627	413	0,0752	1,3945	208,5	158,0	157,4	0,55
0,5	4643	418	0,0750	1,3920	206,3	164,5	164,3	0,15
0,6	4681	425	0,0744	1,3859	212,5	158,7	157,2	1,50
0,7	4750	435	0,0733	1,3755	226,7	138,3	134,2	4,13
0,8	4 8 60	449	0,0716	1,3600	252,1	102,5	95,4	7,13
0,9	5045	471	0,0690	1,3375	278,5	53,9	45,2	8,7

Figura 5.1

Figura 5.2

RESUMEN Y CONCLUSIONES

El trabajo desarrollado en esta Memoria se pu<u>e</u> de resumir en los siguientes apartados:

- 1.-Se ha comprobado el correcto funcionamiento de la técnica experimental para medidas de presiones de vapor, de mezclas binarias, a temperatura constante, con los datos ob tenidos del sistema ciclohexano(1) + benceno(2) a 70°C. Con dichas medidas experimentales se ha calculado la --energía libre de Gibbs de exceso, G^E, comparándose sus valores con los existentes en la Bibliografía, verificán dose una perfecta concordancia.
- 2.- Mediante la técnica de refractometría se han determinado a 30,0°C, los índices de refracción para todo el interva lo de fracciones molares de los sistemas estudiados:

```
o-Xileno(1) + n-Heptano(2)
m-Xileno(1) + n-Heptano(2)
p-Xileno(1) + n-Heptano(2)
Metil-ciclohexano(1) + Benceno(2)
Tolueno(1) + Metil-ciclohexano(2)
o-Xileno(1) + Metil-ciclohexano(2)
m-Xileno(1) + Metil-ciclohexano(2)
p-Xileno(1) + Metil-ciclohexano(2)
```

- 3.- A partir de las medidas de índice de refracción de todos los sistemas analizados se han calculado las correspondientes expresiones analíticas de n y n^E en función de sus fracciones molares.
- 4.- Se han medido las presiones de vapor de las siguientes sustancias puras: benceno, tolueno, ciclohexano, metil-ciclohexano, n-heptano, o-xileno, m-xileno y p-xileno en un amplio intervalo de temperaturas.

- 5.- A la temperatura de 75,0°C se han medido las presiones de vapor de todos los sistemas mencionados en el apartado 2, calculándose, posteriormente, su función de Gibbs de exceso, G^E.
- 6.- Los valores de G^E de los distintos sistemas han sido --ajustados a una ecuación del tipo $G^E = x_1 x_2 \sum_{i=0}^{\infty} A_i (x_1 - x_2)^i$ obteniéndose una expresión analítica de la ⁱ⁼⁰ energía <u>1</u><u>i</u> bre de Gibbs de exceso en función de las fraccciones mon lares para cada sistema.
- 7.- La consistencia termodinámica de todos los resultados ob tenidos ha sido comprobada doblemente por el método gráfico y el analítico de Barker.
- 8.- Se ha aplicado la teoría de Flory a todos los sistemas, comparándose nuestros datos con los resultados teóricos. El parámetro de interacción, X₁₂, de esta teoría se ha calculado mediante un método iterativo, por carecer de datos de calor de mezcla o de volumen de exceso en las condiciones experimentales para la determinación de G^E.
- 9.- Y por último, el parámetro de interacción, contrariamente a lo que cabe esperar, varía con la fracción molar, de ahí la falta de rigor de la teoría, que puede consid<u>e</u> rarse como una buena aproximación a la estructura del e<u>s</u> tado líquido.

- 183 -

BIBLIOGRAFIA

1 BROWN, I; Aust. J. Sci. Res., <u>A5</u> , 530 (1952).	
2 "Handbook of Chemistry and Physics". (The Chemical R bber Co., Cleveland, Ohio 1964).	1
3 "International Critical Tables". (McGraw-Hill, New Y London 1928).	ork,
4 BROWN, I. y SMITH, F.; Aust. J. Chem., $8, 62$ (1955).	
5 WOOD, S.E. y MASLAND, C. M.; J. Chem. Phys., <u>32</u> , 1385 (1960).	- •
6 FORTZIATI, A. F. y ROSSINI, F. D.; J. Res.Natt. Bur. Stand., <u>43</u> , 473 (1949).	
7 KYLE, B.G. y REED, T.M.; J. Am. Chem. Soc., <u>80</u> , 6170 (1958).	- •
8 SCATCHARD, G., WOOD, S.E. y MOCHEL, J.M.; J. Am. Che Soc., <u>61</u> , 3206 (1939).	n .
9 BROWN, I. y EWALD, A.H.; <i>Aust. J. Sci. Res.</i> , <u>A3</u> , 306 (1950).	, -
10 BROWN, I y EWALD, A.H.; Aust. J. Sci. Res., <u>A4</u> , 198, (1951).	
11 HARKINS, W.D. et. al.; J. Chem. Phys., <u>13</u> , 534 (1945).
12 WIBAUT, J.P., HOOG, H., LANGEDYK, S.L., OVERHOFF, J. SMITTENBERG, J.; <i>Rec. Trav. Chim.</i> , <u>58</u> , 3 (1939).	y 29

ţ

- 13 FORZIATI, A.F., GLASGOW Jr., A.R., WILLINGHAM, C.B. y ROSSINI, F.D.; J. Reg.Natt. Bur. Stand., <u>36</u>, 129 (1946).
- 14 PERKIN, W.H.; J. Chem. Soc., 69, 1025 (1896).
- 15 HAMMOND, P.D. y MCARDLE, E.H.; Ind. Eng. Chem., <u>35</u>, --809 (1943).
- 16 WILLIAMS, J.W. y KRCHMA, I.J.; J. Am. Chem. Soc., <u>49</u>,-1676 (1927).
- 17 FORTZIATI, A.F., NORRIS, W.R. y ROSSINI, F.D.; J. Res. Natt. Bur. Stand., <u>43</u>, 555 (1949).
- 18 FORTZIATI, A.F.; J. Res. Natt. Bur. Stand., <u>44</u>, 373 --(1950).
- 19 KURMANADHARAO, K.V., KRISHNAMURTY, V.G. y VENKATARAO, C.; Rec. Trav. Chim., 76 769 (1957).
- 20 RICHARDS, A.R. y HARGREAVES, E.; Ind. Eng. Chem., <u>36</u> -805 (1944).
- 21 ROSSINI, F.D. et. al.; "Selected Values of Physical -and Thermodynamics Properties of Hidrocar-bons and Related Compounds". API Res. Pro-ject 44 (1953).
- 22 JORDAN, T.E.; "Vapour Pressure of Pure Organic Solvents" (Interscience, New York, 1954).
- 23 WILLINGHAM, C.J., TAYLOR, W.J., PIGNOCCO, J.M. y ROSSI NI, F.D.; J. Rest. Natl. Bur. Stand., <u>35</u>, -219 (1945).

24	CHU, J.C. et al.; Ind. Eng. Chem., <u>46</u> , 754 (1954).
25	TIMMERMAN, J.; "Physical Constants of Pure Organic Com pounds". (Elsevier, New York, 1950).
26	WOOD, S.E. y AUSTIN, A.E.; J. Am. Chem. Soc., <u>67</u> , 480 (1945).
27	EGLOFF, G. "Physical constants of hidrocarbons".(Rein- hold, New York, 1946).
28	WOOD, S.E. y GRAY, J.A.; J. Am. Chem. Soc.; <u>89</u> , 6814 - (1967).
29	YOUNG, S.; Sci. Proc. Soc. Dublin, N.S. XII, 374 (1910).
30	RODRIGUEZ CHEDA, D.; Tesis_doctoral, Madrid 1969.
31	DIAZ PEÑA, M., SOTOMAYOR, C.P. y R. RENUNCIO, J.A.; Anales Real Soc. Españ. Fis. Quim., <u>69</u> , 275 (1973).
32	SAEZ DIAZ, C.; Tesis doctoral, Madrid 1973.
33	COX, J.D. y ANDON, J.L.; Trans. Faraday Soo., <u>54</u> , 1622 (1958).
34	ANDON, R.J.L., COX, J.D., HERINGTON, E.F.G. y MARTIN - J.F.; Trans. Faraday Soc., <u>53</u> , 1074 (1957).
35	KUDCHADKER, A.P., ALANI, G.H. y ZWOLINSKI, B.J.; Chem. Rev., <u>68</u> 659 (1968).
3 6	GUGGENHEIM, E.A. "Termodinámica". (Tecnos, Madrid 1970)
_37	SCATCHARD, G, WOOD, S.E. y MOCHEL, J.M.; J. Phys. Chem. 43, 119 (1939).

- 186 -

39 BARKER, J.A.; Aust. J. Chem., 6, 207 (1953).

40 HILDEBRAND, J.H. y SCOTT, R.L.; "Regular solutions". -(Prentice-Hall, Englewood Cliffs, New Jersey 1962).

41 GUGGENHEIM, E.A.; "Mixtures". (Oxford Press. 1952).

42 PRIGOGINE, J.; "The Molecular Theory of Solutions". --(North Holland, Amsterdam 1957).

43 EYRING, H. y JHON, M.S.; "Significant Liquid Structu-res". (Wiley New York 1969).

44 FLORY, P.J., ORWOLL, R.A. y VRIJ, A.; J. Am. Chem. Soc, 86, 3507 (1964).

45 FLORY, P.J., ORWOLL, R.A. y VRIJ, A.; J. Am. Chem. Soc., 86, 3515 (1964).

46 FLORY, P.J. y ABE, A.; J. Am. Chem. Soc., <u>86</u> 3563 ----(1964).

47 FLORY, P.J.; J. Am. Chem. Soc., 87, 1833 (1965).

48 ABE, A. y FLORY, P.J.; J. Am. Chem. Soc., <u>87</u>, 1838 (1965).

49 ORWOLL, R.A. y FLORY, P.J.; J. Am. Chem. Soc., <u>89</u>, ---6814 (1967).

50 FLORY, P.J.; Dis. Faraday Soc., <u>49</u>, 7 (1970).

- 187 -

51 TONKS, L.; Phys. Rev., 50, 955 (1936).

- 52 EYRING, H. y HIRSCHFELDER, J.O.; J. Phys. Chem., <u>41</u>, 249 (1937).
- 53 PRIGOGINE, I., TRAPPENIERS, N. y MATHOT, V.; Dis. Fara day Soc., <u>15</u>, 93 (1953); J. Chem. Phys., <u>21</u> 559 (1953).
- 54 HILDEBRAND, J.H. y SCOTT, R.L.; "Solubility of non-elec trolytes". (Reinhold, New York 1950).
- 55 FRANK, H.S.; J. Chem. Phys., 13, 995 (1945).
- 56 BOUBLIK, T. y BENSON, G.B.; Canadian J. Chem., <u>47</u>, 539 (1969).
- 57 WADA, Y.; J. Phys. Soc. Japan, 4, 280 (1949).