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Abstract. In this paper we deal with the problem of obtaining the set of
k-additive measures dominating a fuzzy measure. This problem extends
the problem of deriving the set of probabilities dominating a fuzzy mea-
sure, an important problem appearing in Decision Making and Game
Theory. The solution proposed in the paper follows the line developed
by Chateauneuf and Jaffray for dominating probabilities and continued
by Miranda et al. for dominating k-additive belief functions. Here, we
address the general case transforming the problem into a similar one
such that the involved set functions have non-negative Mobius trans-
form; this simplifies the problem and allows a result similar to the one
developed for belief functions. Although the set obtained is very large,
we show that the conditions cannot be sharpened. On the other hand, we
also show that it is possible to define a more restrictive subset, providing
a more natural extension of the result for probabilities, such that it is
possible to derive any k-additive dominating measure from it.
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1 Introduction

Fuzzy measures, also called capacities, nonadditive measures, are widely used in
the representation of uncertainty, decision making and cooperative game theory.
A particular class of fuzzy measures which is of interest in this paper can be
found in the Theory of Evidence developed by Dempster [4] and Shafer [22]. In
this theory, uncertainty is represented by a pair of “lower probability” (or “degree
of belief”) and “upper probability” (or “degree of plausibility”) assigned to
every event. These upper and lower probabilities have been well studied [25,26];
they are not additive in general, and are called by Shafer belief and plausibility
functions.

The problem of finding the set of probability measures dominating a given
fuzzy measure appears in many situations, especially in decision theory and in
cooperative game theory. In decision theory, it may happen that the available
information is not sufficient to assign an exact probability to events, but it only
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allows an interval of compatible probability values. In this case, we obtain a set
of possible probabilities, denoted by P. If we consider p := infpcp P, then p is
a fuzzy measure (but not necessarily a belief function [24]), called the “coherent
lower probability”. As a consequence, for any probability P’ dominating pu, it
follows that Ep/(f) > C.(f), for any function f, where C,, denotes the Choquet
integral [3]. In [2], Chateauneuf and Jaffray use this result and the fact that
1< P, VP € P to obtain an easy method to compute infpep Ep(f). Note that
this method is based on the knowledge of the set of all probability distributions
dominating p. The same can be applied for obtaining an upper bound.

In cooperative game theory, a TU-game is a set function p vanishing on the
empty set (it is not necessarily a fuzzy measure, however). One of the most
important problems in this field is to obtain a sharing function for the game,
that is, assuming that the grand coalition X is formed and the benefit p(X) is
obtained, we are looking for a rational and equitable way to divide p(X) among
all players. Any possible sharing function is called a solution of the game. Among
the many concepts of solutions in the literature (see, e.g., [5]), one of the most
popular is the core of the game [23], which is defined as the set of additive
games dominating p and coinciding with g on the grand coalition X. The core
is a bounded polyhedron, possibly empty, and much research has been devoted
to its study (see a survey in [10]).

On the other hand, a natural extension of probabilities or additive measures is
the concept of k-additive measure [7,8]. They constitute a mid-term between prob-
ability measures (which are too restrictive in many situations) and general fuzzy
measures (whose complexity is too high to deal with in practice). Thus, a natural
extension of the previous dominance problem is to look for the set of k-additive
measures dominating a given fuzzy measure. There are some cases where this
could be useful. First, suppose a situation that can be modelled via a k-additive
measure (an axiomatic characterization to this situation can be found in [19]),
but where our information is not enough to completely determine the measure.
Then, we have to work with a set of compatible k-additive measures (let us call it
Uy). A second example is the identification of a capacity in a practical situation.
It can be proved that the available information may not be sufficient to determine
a single solution, but there exists a set of k-additive measures, all equally suitable
[16]. Moreover, the set of all these measures is a convex set and consequently, the
measure for an event A C X lies in an interval of possible values (a deeper study
about the uniqueness of the solution and the structure of the set of solutions can
be found in [18]). As for probabilities, if 4 = inf,,, cu, f1r, then p is a fuzzy mea-
sure and Cyy (f) > Cu(f), for any k-additive measure p1j dominating p. Therefore,
it seems interesting to find the set of all k-additive fuzzy measures dominating u,
thus extending the results in [2].

Another interest in finding the set of dominating k-additive measures can
be found in game theory. As we have said above, the core of a game u may be
empty [1]. Considering instead the set of its k-additive dominating games, called
the k-additive core, it is shown in [17] that the k-additive core is never empty,
as soon as k > 2.
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In this paper we deal with the problem of characterizing the set of all
k-additive measures dominating a given fuzzy measure p. Previous attempts
in this direction appear in [9,20]. As it will become apparent below, we have
to face many difficulties that do not arise in the case of probabilities, except
in very restrictive situations. One of these situations is the case of k-additive
belief functions dominating a belief function. We will use the results in this case
to derive a general result for any fuzzy measure and any dominating k-additive
measure.

The rest of the paper is organized as follows: in the next section, we explain
the basic facts and results in order to fix notation and to be self-contained;
then, we derive the results for characterizing the set of dominating k-additive
measures. We end the paper with concluding remarks and open problems.

2 Basic Results

Consider a finite referential set of n elements, X = {1,...,n}. The set of subsets
of X is denoted by P(X) and we denote P*(X) = P(X)\{0}; the set of subsets
whose cardinality is less or equal than k is denoted by P*(X), or PF(X) if the
emptyset is not included. Subsets of X are denoted A, B, ...; we will sometimes
write 47 - - - i) instead of {i1,...,4x} in order to avoid a heavy notation; braces
are usually omitted for singletons and subsets of two elements.

We define a fuzzy measure as a set function p : P(X) — [0, 1] satisfying
the boundary conditions p(@) = 0, 4(X) = 1 and monotonicity (u(4) < w(B)
whenever A C B). Fuzzy measures are denoted by u, u* and so on, and the set
of all fuzzy measures on X is denoted FM(X).

Given a set function p (not necessarily a fuzzy measure), an equivalent rep-
resentation of p can be obtained via the Mobius transform [21], given by

m(A):= > (-1)"Flu(B), VA C X.
BCA

The Mobius transform is also widely used in the field of Game Theory, where
it is known as dividends [13]. It is worth noting that m(A) can attain nega-
tive values. The set of fuzzy measures p such that the corresponding Mobius
transform satisfies m(A) > 0, VA C X is known as the set of belief functions,
denoted BEL(X). Belief functions come from the Theory of Evidence developed
by Dempster [4] and Shafer [22]. Given the Mdébius transform, it is possible to
recover the original fuzzy measure through the Zeta transform:

BCA

Contrarily to fuzzy measures, for which it holds 0 < u(A) <1, VA C X, the
upper and lower bounds for the Mobius transform are not trivial. These bounds
are given in the next result.
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Theorem 1. [12] For any fuzzy measure u, its Mobius transform satisfies for
any AC N, |A| > 1:

Al -1 Al -1
lja) = —(I |, ) <m(A) < (' | ) = u)ap
€la) ClA|

Al Al -1
C|A|_2\‘4 B CIA|:2 4 +].,

and for |[A] =1 < n:

with

0<m(4) <1,

and m(A) = 1 if |A] = n = 1. These upper and lower bounds are attained by the
fuzzy measures p, s, respectively:

o [ A~ U <1BOA
pa(B) = {O, otherwise ’

1, if |A| =1, < |BNA|
J(B)=<" LAl =
ta«(B) {0, otherwise ’
for any B C N.

We give in Table 1 the first values of the bounds.

Table 1. Lower and upper bounds for the Mobius transform of a fuzzy measure

|A| 1 |2 3 4 5 6 |7 (8 9 |10 |11 |12
wb.ofm(A)'1 |1 |1 |3 6 10 (15 35 |70 126 210 | 462
Lb. of m(A) ' 1(0) —1 —2| -3 —4 —10 —20 —35 —56 —126 —252 —462

Let us now introduce the concept of k-additivity. A problem appearing in
the practical use of fuzzy measures is their complexity. Contrary to the case of
probabilities, where just n—1 values suffice to completely determine a probability
on a set of cardinality n, in order to determine a fuzzy measure 2 — 2 values
are necessary. As a consequence, complexity grows exponentially with n. In an
attempt to reduce this complexity, Grabisch has defined the concept of k-additive
measure [7].

A fuzzy measure p is said to be k-additive if its Mobius transform vanishes
for any A C X such that |A| > k and there exists at least one subset A with
exactly k elements such that m(A) # 0.

Thus, it can be seen that probabilities are just 1-additive measures (and also
1-additive belief functions). As a consequence, k-additive measures generalize
probability measures and they fill the gap between probability measures and
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general fuzzy measures. For a k-additive measure, the number of coefficients is

reduced to
z’“: n
;)

i=1
More about k-additive measures can be found, e.g., in [8]. We define the set
FMF(X) (resp. BELF(X)) as the set of fuzzy measures (resp. belief functions)
1 whose corresponding Mébius transform m satisfies m(A) = 0 if |A| > k.
Finally, we say that a fuzzy measure u* dominates u, and we denote it by
W >y if
1 (4) > p(4), VA C X.

For general set functions, dominance is defined by

1 (A) = p(A), VA C X, p*(X) = p(X).

Given a fuzzy measure p, we define the set f./\/lg(u) (or BEE; () if we
restrict to dominating k-additive belief functions) as the set of fuzzy measures
(resp. belief functions) in FM*(X) (resp. BEL"(X)) dominating .

3 Characterizing the Set of Dominating Fuzzy Measures

Consider a fuzzy measure p and let us turn to the problem of obtaining the set
fMg(,u). In [2], the following result is proved.

Theorem 2. Let v be a fuzzy measure on X, m its Mébius transform, and
suppose P € .7:/\/112(;4). Then, P can be put under the following form:

P({i}) =Y (B, i)m(B), Vi € X.

B>i

The function A : Pu(X) x X — [0,1] is a weight function satisfying:

> AB,i)=1,¥#BCX.

i€B
A(B,i) = 0 whenever i € B.

Dempster has shown the same result in [4] and also Shapley in [23], but both
of them only for belief functions.

If we restrict our attention to the case of the set of k-additive belief functions
dominating a belief function, the following result appears in [20].

Theorem 3. Let p,m,u* : P(X) — R, where p is a fuzzy measure, m its
Mobius inverse, and p* € BEC; (). Then, necessarily the Mébius transform m*
of p* can be put under the following form:

m*(A)= Y A(B,A)m(B), VA € PE(X),
B|ANB#0
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where function \ : Po(X) x PF(X) — [0,1] is such that

> MB,A)=1,VB € P.(X). (1)
A|BNA#D
MB,A) =0, if ANB=10. (2)

We have to keep in mind that Eqgs. 1 and 2 lead to a non-empty intersection
condition; from a mathematical point of view, another possibility (with better
properties) of generalizing Theorem 2 could be a more restrictive inclusion con-
dition, i.e. satisfying A\(B, A) = 0 whenever A ¢ B. However, this condition
fails to obtain all dominating k-additive belief functions, as it is shown in [20].
When dealing with general fuzzy measures, it happens that we have to permit
functions A attaining negative values [9]. Thus, we obtain a very wide set of
functions, many of them failing to satisfy monotonicity or dominance.

In this paper, we are going to apply the result for belief functions to obtain
a more handy result for the general case.

Theorem 4. Let p,p* : P(X) — R, where p € FM"(X) and p* € FME (),
for k =1,...,n, and let us denote by m and m* their respective Mébius trans-
forms. Let us define:

mauw(A) = m(A) - l\Alr m;ux(A) = m*(A) - l|A|’

where l; denotes the lower bound for the Mébius transform of subsets of car-

dinality i,71 = 1,...,k. Then, necessarily m,. can be put under the following
form:

Mie(A) = D AB, A)maus(B), VA € PE(X),
B|ANB#0)

where function \ : P¥(X) x P¥(X) — [0,1] is such that

> MB,A)=1,VB e PEX). (3)
A|ANB#0
ANB,A)=0, if ANB=40. (4)

Indeed, in this result, function A is a sharing function of Mgy, (B) among
any subset A such that A N B # (. Thus, this problem can be turned into a
transshipment problem in a flow network. Figure 1 shows the corresponding flow
network for k = 2.

The proof of the result is based on Gale’s Theorem for a transshipment
network [6], where subset A offers m(A) —l4) to be shared among subsets
intersecting with A. However, the underlying idea of the result relies on the
result for k-additive dominating belief functions. For belief functions, Theorem 3
is an extension of Theorem 2; on the other hand, this result cannot be applied
for general k—additive dominating measures, as shown in [9]. The idea then
is to transform g and p* into other set functions gy, and . resp., having
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Fig. 1. Example of flow network for k = 2

properties similar to belief functions. More concretely, the corresponding M6bius
transform is non-negative (but these set functions are not normalized!). In this
sense, we can add other constraints instead of /)4, or even the same constant
regardless the cardinality, but these are the more accurate [12].

Remark that the condition allowing positive weights for non-empty intersec-
tions in Egs. 3 and 4 cannot be turned into an inclusion condition, as the next
example shows.

Ezample 1. Consider | X| = 3 and the 2-additive fuzzy measure p whose Mobius
transform m, and whose corresponding mg,, are given in next table

A {1 {2) 3 {12} {1,3} {2,3}
g 04030404 |1 0.7
m 04 03 04 -03 02 |0
Maue 04 0.3 04 07 1.2 |1

Now, consider p* the 2-additive measure, with m*, mJ . given by

A {1} {2} {3} {1,2} {1,3} {2,3}
p* 10403 0505 |1 0.7
m* 04030502 01 |-0.1
Mie 04030508 1.1 |09

Then, mZ,, . (12) > Mgy, (12), while the only subset containing {1, 2} is {1,2}
itself.

The previous result can be extended when we are looking for k’-additive
measures dominating k-additive measures when k # k’. For this, it suffices to
notice that FM" (X) ¢ FM®(X) if ¥ < k. Consequently, any measure in
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f./\/lg(ﬂ) can be derived from the previous theorem considering k. Similarly, if
k' > k, any k’-additive measure dominating p can be derived from the previous
theorem just taking into account that p € FMF (X).

Corollary 1. Let p, pu* : P(X) — R, where p € FMF(X) and p* € .7:/\/11;(/1),
fork, k' =1,...,n, and let us denote by m and m* their respective Mobius trans-
forms. Assume k > k' and let us define:

mauoc(A) = m(A) - l\Alr m;ux(A) = m*(A> - l|A|’

where l; denotes the lower bound for the Mdbius transform of subsets of car-
dinality i,7 = 1,...,k. Then, necessarily m},. can be put under the following
form:

m

(A= Y NB, A)maus(B), YA € PF(X),
B|ANB#0

where function X : PE(X) x PF(X) — [0,1] is such that

> AB,A)=1,VB e PiX).
A|ANB#D

AB,A) =0, if AN B = .

Corollary 2. Let p,p* : P(X) — R, where p € FM*(X) and p* € f/\/lg(,u),
fork, k' =1,...,n, and let us denote by m and m* their respective Mobius trans-
forms. Assume k < k' and let us define:

Mauz(A) = m(A) — 4], My (A) =m"(A) =14,

*
auz(
where l; denotes the lower bound for the Mdbius transform of subsets of car-

dinality i,i = 1,...,k’. Then, necessarily m?,.. can be put under the following
form:

Mae(A) = D MB, A)maus(B), VA € P (X),
B|ANB#0
where function X : PE(X) x PF (X)) — [0,1] is such that

> AB,A)=1,VB e PiX).
A|ANB#D

A(B,A) =0, if AN B = .

As we have seen in Example 1, a non-empty intersection condition is needed.
However, it is possible to obtain all dominating k-additive dominating measures
from set functions that can be derived via an inclusion condition. This is stated
in next result.
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Theorem 5. Let p,m,p*,m* : P(X) — R, where p € FME(X), p* e
]'“Mé(,u) and m,m* their corresponding Mobius inverses. Let us define

mauw(A) = m(A) — l‘A|, m (A) = m*(A) — l‘A|,

auxr
where I; denotes the lower bound for the Mdbius transform of subsets of cardi-
nality i, = 1,...,k. Then, there exists a set function (not necessarily a fuzzy
measure) p' dominating p whose Mébius transform m’ is such that the corre-

sponding ml,,.. can be written as

M (B) = Y N(A, B)maus(A), VB € PF(X),

A|BCA

where X' : PF(X) x P¥(X) — [0,1] is such that

> N(A,B) =1, VA e PE(X). (5)
B|BCA

N(A,B)=0if B¢ A, (6)

and m?, . can be derived from ml,, . through

X

Mo (C) = D N (B,C)ml,,,(B), VC € P(X),
B|BCC

where \* : PE(X) x PF(X) — [0,1] is such that

> XN(B,C)=1,VB e P¥(X).
Cc|BccC

AN (B,C)=0if B¢ C.

This result is explained in Fig. 2 for | X| =3 and k = 2.

It is worthnoting the differences with a similar result appearing in [20]; in
that result, applying for dominating k-additive belief functions, any set function
obtained using Egs. 5 and 6 is a k-additive dominating belief function. However,
in this more general situation, we cannot ensure monotonicity, as next example
shows.

Ezample 2. Consider |X| = 3 and let p be the {0, 1}-fuzzy measure such that
u(A) = 1 if and only if {1,2} C A. Then, the corresponding m is given by
m(1,2) = 1 and m(A) = 0 otherwise. Then, p € FM?*(X) and maye(1,2) =
2, Mauz(i,7) = 1 for any other pair and Mgy, (i) = 0 for any singleton. Now, if
we define

AMA,B) = { , it A#{1,2}, M{1,2},B) = {

Then, m,,.(1) = 2,m,,.(1,2) = 0,m/,, . (2) = 0, whence it follows m’(1) =

2,m'(1,2) = —=1,m/(2) = 0 and thus, x'(1) = 2 > u/(1,2) = 1, violating
monotonicity.

1ifA=1B
0 otherwise

1if B={1}
0 otherwise
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() (2] (3] [ 13 23

Fig. 2. Example of flow network for k = 2.

4 Conclusions and Open Problems

In this paper we have dealt with the problem of obtaining the set of k-additive
dominating measures of a k-additive measure. For this, we have used a previous
result valid for the special case of belief functions. The result follows the same
philosophy of other results derived by Chateauneuf and Jaffray [2] and Miranda
et al. [18]; along this line, we have obtained a superset of the set FME (1).
A natural question is whether .7-'/\/1];(;1) is strictly contained into that set.

We have proved that in general, the non-empty intersection condition can-
not be removed, but it seems interesting to search for special cases for which
non-empty intersection can be turned into an inclusion condition because this
condition seems easier to handle.

However, we feel that the most interesting open problem is to apply these
results in a procedure for obtaining the set of vertices of F. ./\/lli(,u) As it can be
easily found, .TM];(M) is a polytope and thus, it is completely determined by
its vertices. There are several results concerning the vertices of the core and the
set of dominating probabilities, i.e. FMYL (1) [14,23]. For k > 2, several results
have been obtained in [11]. The problem is particularly difficult for 2 < k < n
because the set of vertices of FM"¥(X) is not the set of {0, 1}-valued measures
in FM"(X) [15] and the general form of these vertices is not known. Even for
a seemingly simple situation, the set .7:M2>(u), up to our knowledge, the set of
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vertices is not known for any p. The results in the paper could shed light on
these problems, as they provide bounds for these sets.
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