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ABSTRACT 

We obtain in the closed-form the optimal paliey for a class of learning by doing 
models, in which a monopolist operating in a market with linear demand and 
fmite time horizon, faces a lower bound in the cost reduction that can be achived 
through production. By using Dynamic Prograrnming principIes we show that the 
existence oí a lower bound in the unit production cost implies that the optimal 
decision fOI output is a function which is indexed by ¡nidal unít cost. There is an 
optimal set of threshold values beyond wich the parameters of the production rule 
change. Sorne examples with specific parameter values are provided. 

RESUMEN 

En este artículo se obtiene la solución analítica para una familia de problemas de 
Leaming by Doing, en los que un monopolista opera en un mercado con demanda 
lineal y horizonte temporal fmito, teniendo un límite inferior en la reducción de 
costes, vía producción. El método de solución, basado en la Programación 
Dinámica, pennite obtener la solución óptima, así como una partición del 
intervalo de posibles valores del coste inicial, de modo que la regla de decisión 
óptima cambia dependiendo del subintervalo al que pertenezca el coste inicial. Se 
presentan ejemplos con valores específicos para los parámetros. 
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1 Introduction 

A phenomenon widely ohserved in industries which are in an early stage of their productive life 

is that they reduce their cost as a result of accumulating experience, that is, they reduce their cost with 

their output. This ls known in the economic literature as learning by doíng, and it was studied for the 

first time by Arrow (1962). Other authors studied the relationship between industry structure and learning 

by doing (Fudenberg and Tirole(1983), Stokey (1986), Dasgupta and Stiglitz (1988), and Parente (1994)). 

They analyzed the differences in the learning process if the industry structure is a monopoly or a 

nationalized industry. In general, the results available in the literature give properties of the optimal 

poliey, but they do not present the optimal poliey in the closed-fonn. 

In this paper we obtain in closed-form the optimal policy for a class of learning l:ry doing models. 

We consider a monopoly, without possible competition. The demand function is linear. The problem is 

deterministic, dynamie, with a finite time horizon and it is fonnulated in discrete time. The state variable 

1S the unitary cost (c(t» and the control variable is the quantity to be produced (q(t». The objeetive 

function is to rnaximize the discounted benefit flow and the state equation is: e(t+ 1)=max{'1,e(t)-.Bq(t)}, 

with e(O) > 7 given. 

The problem is solved by using dynamic programming (Bellman(l957». The key of the method 

is to identify the role of 7, the lower bound of the unit cost, as a binding constraint. We obtatn a partition 

of the set of possible values for c(O). Depending on the value of c(O) in the partition, an equivalent 

problem is forrnulated for which we obtain the optimal solution. It is shown that there is an optimal set 

of threshold values of e(O) beyond whieh the parameters of the produetion rule change. The method to 

obtain the elosed-fonn optimal poliey is formally presented in five theorems and two eorollaries. 

In Section 11 we formulate the problem, and in Section III we present the solution. Section IV 

gives sorne examples with specifie parameter values. Finally, in Seetion V we present the conclusions 

and sorne ideas for further research. 

II The model 

We consider the problem of a rnonopolist, without possible competition, who maximizes the 

discounted profit flow along T periods, where T is known. The discountparameter is A. The first period 



i8 0, so the last is T-l The monopolist faces a demand which IS constant over time, and such that, the 

price in perlad t, p(t), is a linear function of the produced output in that period, q(t). Specifically, the 

inverse demand function is: 

p(t) "a-bq(t) t" O, ... ,T-I (1) 

where a,b > O. 

In the period t, the finn chooses q(t), the output to be produced at a unitary cost c(t); that output 

is sold at price p(t). There are no fixed costs. In next period, t+ 1, the unitary cost is c(t+ 1). The change 

in the unitary cost froro period t to t+ 1 is given by: 

c(t+ 1)=max{T,c(t)-¡3q(t)}. This equation is used by Dasgupta and Stiglitz (1988). In this equation, the 

unitary cost is a linear function on the outpnt produced in the last period, while the cost remains aboye 

a certain value T, and if the cost takes that vaIue, remains in it forever. Furthermore, ¡3 detennines the 

abilitity of present output to reduce future cost. 

Given (1), the profit of the monopolist in period t is: (a-bq(t)-c(t»q(t). Since the monopolist 

maximlzes the profit flow discounted by A, subject to the evolution of the costs given aboye, the problem 

can be expressed, in mathematicaI tenns, as follows: 

Problem 1 

T-' 
MAX { L A'(a-bq(t)-c(t)q(t) } 

1=0 
(2) 

q(O), ... ,q(T-l) 

subject to: 

c(t+l) ~ max{T,c(t)-Pq(t)) t" 0, ... ,T-2 (3) 

, q(t);,O for every tE{O, ... ,T-I}. 

c(O) ls given. The pa4meters a,b,A,¡3,7,T are known. , 
Other additional assumptioms are: 

e(O) > T (4) 

2 

Q 

a > c(O) 
(5) 

T > O; P > O; b > O; A E (0,1) 
(6) 

The assumption given in (4) ensures that in problem 1 there can be cost reduction. The 

asswnption given in (5) is normaUy used in the economic literature, along with other conditions which 

are shown later (related to the concavity of the objective function) to ensure that the autput is positive. 

We must note that in a static problem without learning by doing, the condition (5) is necessary far a 

positive output. However it can be shown that in problem 1 the output can be positive although (5) does 

not hold. In (6) there are other assumptions which are widely used in economics: the lower bound on the 

costs must be positive (7)0), to raise the output reduces future costs (f3>0), the demand firnction is 

decreasing (b > O) and the discount factor is between O and 1. 

III Solution method for problem 1 

The problem stated aboye is a dynamic optimization problem, with a finite time horizon and in 

discrete time, and it is solved by using the well-known methodology proposed by Bellman. The state 

variable is unit cost and the control variable is output. The interest of the solution method that we present 

is that it finds the analyticaI solution for Bellman's functional equation associated with problem 1. The 

key idea is to identify the role of 7 as a binding constraint. For example, given a11 the parameters, it is 

possible that, under the optima! policy, T is not reached afier T periods, if so, T does not represent a 

constraint, in the sense that if the bound for the cost reduction did not exist, the cost would not take a 

lower value afier T periods. A different case is that in which 7 lS reached in the last period, if so, T may 

represent a constraint, because if it did not exist, the cost coutd take a lower value. A third case occurs 

if T is reached in the pefiod T-2, and in tbis case 7 represents a stronger constraint than in the previous 

examples. We can continue and so, we can consider all possible cases. Of course only one will occur, 

that is, or the cost reaches 7 in a specific period, or it never reaches T. The solution method identifies 

in which period the cost reaches 7 (if 7 is reached), for the first time, by succesive resolution of linear 

quadratic problems. Once we have identified tbat period, the prob1em ls already analytically solved, since 

for every case to be considered, the remaining problem is linear quadratic, if we can be certain that the 

output is positive. 

Next, we present formally the solutioo. The following definitions will be used. 
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Definition 1 For every tE {O, ... ,T.l), ~(t)~{q(t), ... ,q(T·l)} where qG);"O for every 

jE {t, ... ,T-l} is a feasible sub-paliey tbat begins in period t. Furthennore, if t=O, then 11"(0) is called 

feasible paliey. 

DefInition 2 For every tE {O, ... ,T-l}, we denote by S(t) the set of aH the feasible subpolicies which 

begin in period t. 

Definition 3 For every tE {O,. .. ,T-l}, given a feasible sub-paliey ?f(t) and c(t) we define: 

T·' 
!(e(t), ~(I),I) " E N(a-bq(¡)-c(}»q(¡) 

j~1 

Where, for every jE{t+l, ... ,T-l}, cG) is given by (3). Furthennore, for any integer s which verifies 

t:5s=:;T-l we wrÍte either J(c(t),1I"(t),t) or J(c(t),q(t), ... q(s-l),ll'(s),t). 

Por any period t, the defioitioos given aboye characterize the set of all the possible decisions the 

monopolist can make, S(t), and for any of them, the discounted profit that they produce. The definitions 

that follow are used for fue optimal decisions. 

Definition 4 Por every tE {0, ... ,T-1}, given c(t), we say that '/f*(t) = {q~(t), ... ,q~(T-1)} (with '/f"(t) E S(t» 

is an optimal sub-policy (or policy if t=O), if: J(c(t),'I/'(t),t)~J(c(t), 7(t),t) for every 'I/'(t)ES(t). 

Dermition 5 For every tE {O, ... ,T-l} we define the value function as: r(c(t),t) = J(c(t)'II'"(t),t). 

Theorem 1 states when it is optimal not to reach 7 after T periods. As we have indicated 

previously in an intuitive way, this is expected to occur, giveo al! the parameters, when there is enough 

differeoce between c(O) and 7'. So the theorem formalizes what is enough. Next notatioo will be used Jater 

io the theorem. 

Let: 

K(T,1) " O; R(T-l,T-2) " T 

</>(1,1) 
1+2A~K(t+l,1) t = O, ... ,T-l 

2b 2A~'K(I+l,1) 

4 

(7) 

(8) 

Theorem 1 

11, 

R(t T-2) "R(t+l,T-2)+~</>(t,1)a t" 0, ... ,T-2 
, 1 +~</>(t,1) 

K(t,1) "AK(I+l,1)+±(l+2A,BK(I+l,1)</>(t,1) 1" O, ...• T-l 

erO) > R(O,T -2) 

b > A~'K(I,1) 1" l, ... ,T-l 

where R(O,T-2) and K(t,T} for every tE{l, ... ,T-l} are defined in (7) to (10), then: 

(9) 

(lO) 

(11) 

(12) 

i) q·(t)~</>(t,T)(a·c(t); J"(c(t),t)~K(t,T)(a·c(t»'; t~O, ... ,T·l; where </>(t.T) for every 

tE {O, ... ,T-l} is defined in (8). 

ii) In problem 1, under '/f~(0), c(T-1) > í holds. 

• 
The proofs of a11 theorems and corollaries are ínc1uded io appendix 1. 

The oext corollary, and the fonowiog theorem and corollary, state when, under the optimal 

policy, í is reached in period sE {2, ... ,T-l}. Intuitively, ¡fthere must be enough differeoce betweeo eCO) 

aod 7' (given a11 the other parameters) Dot to reach 7 in T periods, then, to reach 7 in a perlod different 

froro period 1, c(O) must be betweeo two values. Firstly, eCO) must be sufficiently greater than í so as 

not to reach 7' before. On tbe other hand, c(O) must be close enough to 7' so as not to reach (for the first 

time) 7' later. Fonnally, we can establish a partition in the set of all possible values for c(O) (the open 

¡nterval (7,a» such that, depending 00 the value of c(O) in the partition, we know when (if so) the cost 

reaches 7' for the frrst time. Furthermore, we show that, depending 00 the value of c(O) in the partition, 

the parameters of the production rule change. 

Corollary 1 

1f (12) holds and furthermore (11) does not verify theo, under 7f~(O), we have c(T-1)=í 

• 
The followiog notatioo is used in the next theorem. 
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Lel sE{2, .. ,T-I}; let: 

Theoeem 2 

K(t,s) '" O; t '" s, .. ,r R(s-1,s-2) '" Q(s,s-ll '" 1" 

1 l_AT- 1 

KoCt,s) ;; 4b(a-7)2~; t '" s, ... ,T-l 

1>(/,s) = 1+2A~K(/+I,s) ; t = O, ... ,T-I 
2b-2A~'K(t+l,s) 

R(t,s-2) = R(t+ l,s-2)+M(/,s)a O 2 
I+M(t,s) ; 1 = , ... ,s-

Q(t,s-I) = Q(t+l,s-I)+~1>(t,s)a O 
1+~1>(t,s) 1 = , ... ,s-I 

K(t,s) '" AK(t+l,S)+~(1+2A.BK(t+l,S»<P(t,S); t '" O, ... ,s-1 

KoCt,s) '" AKo(t+l,s); t '" O, ... ,s-1 

Lel sE {2, ... ,T-I}. If; 

R(0,s-2) < erO) " Q(O,s-l) 

b > },,(32K(t,s) t'" 1, ... ,5-1 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

where R(O,s-2), Q(O,s-l) and K(t,s) for every tE {1, ... ,s-l} are defmed in (13) to (18), and furthennore , 
c(s) =7 under 'Ir~(O); t!fen: 

i) q'(t)~f(l,s)\a-c(I»; r(e(I),I)~K,,(I,S)+K(I,s)(a-e(I»'; t~O, ... ,T-I; where f(l,s) and K,,(I,s) 

for every tE {O, ... ,T-l} are defined in (15) and (19). 

ii) In problem 1, the unitary cost, under 'Ir'(O), reaches r, for the first time, in period s. 

• 
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Corollary 2 

Let sE {2, . ,T-l}; if (21) holds, cCO) ~R(O,s-2) and furthermore c(s)=,-under 1/"*(0), then, under 

1/""(0), we have c(s-l)=r, 

• 
If the hyphotesis of the last corollary hold for s> 2, theorem 2 defines a optimal solution if 

c(s-l) = 1" and c(s-2) > T. lf the hyphotesis of the last corolIary hald for s =2 then, under 7r *(0), we have 

c(l)=T, in this case, the next theorem defines a optimal salution. The foUowing notation is used in the 

theorern bellow. 

Let' 

Theorem 3 

11; 

K(t,!) = O ; t = 1, .. ,T 

1 21-).,T-¡ 
K,(t,l) = 4b(a-T) -¡::¡;- . t = I, ... ,T-I 

1 
1>(t,l) = 2b; t = O, ... ,T-I 

Q(O O) = T+M(O,I)a 
, 1 +M(O,I) 

1 
K(O,I) = 4b 

K,(O,I) = AK;,(l,I) 

erO) ,;; Q(O,O) 

where Q(O,O) is defined in (24) and (25), and furthermore c(2)=runder 'Ir'(O) and b>O; then: 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

i) q'(I) ~1>(I,l)(a-e(t»; r(e(I),I)~ K,(t, 1) + K(I, 1)(a-e(I»'; ,~O, .... T -1; where 1>(1,1) and K,,(I, 1) 
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for every tE {O, ... ,T-l} are defined in (23), (24) and (27). 

ii) In problem 1, fue unitary cost, under K*(O), reaches 7 in the period 1 for the first time . 

• 
Next, we prove that, srnce the monopolist solves a strictly concave problem in every period, 

then, there cannot exist a value of c(O) such that it satisfies the conditions to reach 7, for the first time, 

in two different periods. This is shown formally in the next theorem. Befare, we must note that, in view 

of theorems 1, 2 and 3, we can interpret R(j,t) as the minimum value that c(j) can take that, under the 

optima! policy for problem 1, c(t+ 1» T holds (for j ~t, furthermore R(t+ 1 ,t)=7). It is also possible 

to make a similar interpretation for QO,t): it can be interpreted as the maximum value that cO) can take 

that, under the optima) policy of the problem I with c(O)=cO) and T=t+ 1, c(t+ 1)=7 holds (for j ~t. 

furthennore Q(t+ 1,t)=1'). 

Theorem 4 

JI (12) and (21) hold, ,hen: 

Q(O,t) < R(O,t) t = 0, ... ,T-2 (29) 

where R(O,t) and Q(O,t) for every tE {O, ... ,T-2} are defined in (7) to (10), (13) to (18), (24) and (25). 

• 
In the view of the last theorem, for example, we can have Q(O,T-2)<c(O)sR(O,T-2). The 

theorems presented up to this point do not define the optimal policy if, in a general way for 

sE {O, ... ,T-2}, Q(O,s) <e(O)sR(O,s) holds. The next theorem states the optimal poliey for this case, and 

so the problem 1 is solved for any c(O) E (1',a). 

The idea is very simple. Let, for example: Q(O,T-2) <e(O) sR(O,T-2), In this ease e(O) is too low 

not to reach l' (under the optimal poliey) in T periods (c(O) s R(O, T -2», so c(T -1) = 7 holds. But if we 

have c(T-l)=1', then, for c(T-2) given, the problem to be solved is to maximize present benefit subject 

to the faet that the cost must be l' in T-l. By making s=T-l in tbeorem 2 we have: if 

e(O) s Q(O, T -2), then, lar c(T -2) given, the output that maximizes the present benefit already satisfies the 

eonstraint that cost in:T-l must be 1', So, ifQ(O,T -2) < c(O) holds, then, for c(T-2) given, under eoncavity 

of the present profit function, the best q(T-2) to be taken is not the one that maximizes that function (it 

does not satisfy the eonstraint c(T-l)=T since Q(O,T-2)<c(O», but the nearest to the maximum which 

satisfies the constraint, that is, the point which exaetly satisfies the eonstraint, which is: 13·1(c(T-2)-1'). 

We calculate for this value of q(T-2) the present profit in T-2, and the remaining problem from T-2 to 
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° is linear quadratic, so we can solve Bellman's equation. 

Next notation is used in the theorem. 

LetsE{l, .,T-l}: let: 

p,(s-l) = _ l' 
73 

1 
p,(s-l) = -73 

and, if s> 1, then, for every tE {O, ... ,s-2}: 

Theorem 5 

; pit) 
1 +2A{JK2it+ 1) 

2b-2NJ'K,j,t+ 1) 

K ft) = AK, ft+l)+.!.(a-AffK,,ft+l»p,(t) 
0,10 ,fl'. 2 ' 

K,it) = AK .. ,ft+ 1)-(1 +2AffK,it+ 1»p,(t) 

K ft) = AK, ft+l)+.!.(1+2AffK,,(t+l»p,(t) 
2~ ~ 2 . 

Le' sE {1, ... ,T-l}; il (12) and (21) hold and furtherrnore: 

Q(O,s-l) < c(O) '" R(O,s-l) 

b> A!f'K,,.!t); t = 1, ... ,s-2 (Ior s>l) 

9 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 



where K2,E(t). Q(O,s-l) and R(O,s-l) for every tE {l, .. ,s-2} are defined in (7) to (10), (13) to (18), (24), 

(25), (33) and (37); then: 

i) Por t~s: q~(t)=<J¡(s,s)(a-c(t»; and nc(t),t)=:K¡¡(t,s). Furthermore, for t<s: q"(t)=Po(t)­

p¡(t)c(t); and nc(t),t)=:K¡¡,E(t)+K¡,E(t)C(t)+K2,E(t)C(t)2. Where <J¡(s,s) and K¡¡(t,s) for t<s are 

defined in (13), (14) and (15). 

ii) In problem 1, the unitary cost reaches 7, under 1{"-(0), for the first time, in the period s. 

• 
This theorern completes the solution method. It is important to observe that in view of the last 

theorem, we have established a partition in (T,a), such that, depending on the specific value of eCO) the 

pararneters of the production rule change. 

IV Sorne examples 

In this section, we ilIustrate the solution rnethod with sorne examples with specific parameter 

values. 

We fix, arbitrarily, T=60, A=.9 and b=lO for all the problems solved (one problem tor every 

set of parameters). We consider two possible values for a, which are: 10 (small in terms of b) and 40 

(large in terros of b). Furthermore we consider two different values for the paír (C(O),T): a) (8,1), that 

¡s, a large dífference from the ioítial to the fmal cost, aod b) (5,4), which represeots a smaller difference. 

Fioally we consider two different values for {3: .5 and .1. 

The results for every combination of the parameters given aboye are presented in tabIe l. Eaeh 

row represents a different problem. In appendix JI we pIot a graph with the optimaI poliey, and in the 

fírst column of the tabIe we put the number of the graph in appendix 11 corresponding to this problem. 

Columns two to five contain values of the parameter for each problem, and the last two eolrunns have 

the value of the diseounted benefit flow (J"{e(O),O» and the first period of cost T (a blank appears if 7 

is not reaehed), under the optima! paliey. 

10 

graph a c(O) T ~ 1"(c(O),O) first time T 

1 10 8 1 .5 2.05 48 

2 10 5 4 .5 8.03 8 

3 10 8 1 .1 1.10 

4 10 5 4 .1 6.85 37 

5 40 8 1 .5 334.14 9 

6 40 5 4 .5 321.46 3 

7 40 8 1 .1 280.70 40 

8 40 5 4 .1 318.32 7 

Table 1 

The results preseoted in tabIe 1 are reasonable. First, for every combination (C(O),T,(3) we have: 

the higher a, the higher nc(O),O) and the sooner the cost reaches T (compare rows 1 to 5, 2 to 6, 3 to 

7 and 4 to 8). Second, for every eombination (a,e(O),T) we have: the hígher (3, the higher J*(c(O),O) and 

the sooner the cost reaches 7 (compare rows 1 to 3, 2 to 4, 5 to 7 and 6 to 8). Third, for every 

combination (a,(3) we have: the shorter distance between c(O) and 7, the sooner the cost reaches T 

(compare rows 1 to 2,3 to 4, 5 to 6 and 7 to 8). Finally, also for every combination (a,(3), in three cases 

we have that, the shorter distance between c(O) and T, the higher J*(c(O),O) (compare rows 1 to 2, 3 to 

4 and 7 to 8) and in one case the reverse holds (compare rows 5 to 6). 

V Conclusions and further research 

We obtain in closed-fonn the optimal policy for a class of models with learning by doing. The 

models consider an ¡ndustry with a single agent, and are detenninistic, witb a finite time horizon and in 

discrete time. The demand funetion is linear. The cost evolution equation is taken from Dasgupta and 

Stiglitz (1988), in this equation the unitary cost of the next period is reduced linearly with the present 

output, but if the cost reaehes a lower bound (T), it remains in that value until the end of the decision 

problem. 

The interest of the method presented is that, for the models described here, it finds the 

closed-fonn optimal poliey. The key idea is to identify the role of 7 as binding constraint. To do that, 
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we construct a partition in the set of a11 possible values for the ¡oitial cost, such that, depending on fue 

value of c(O) in the partition, an equivalent problem is forrnulated. We show that the optimal decision 

is a linear function indexed by ioitial cost, that is, depending on the value of the initial cost, the 

parameters of the decision rule change. The solution method is fonnally presented, and sorne examples 

with specific parameter values are also given. 

Many extensions are being studied now. We outline here sorne of them. The solution method is 

developed for the case of a monopolist, but it is equalIy valid for the case of a nationalized industry. So, 

an extension to this paper is to apply this solution method to a nationalized industry and to study the 

differences betweeo both structures in the view of the closed-fonn optimal poliey. Furtherrnore, it is 

possible to extend this ~olution method for sorne simple stochastic problems, and to find the closed-form 

optimal poliey for those problems. So, for sorne stochastic models, it is also possible to compare the 

behaviour of a rnonopoly to tbe bebaviour of a nationalized industry, and to compare their behaviour in 

the stochastic and the deterministic case. 
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APPENDIX I 

In tbis appendix we present the proofs of all theorerns and corollaries. Previously we present a 

lernma, which will be used later in the proofs. 

Lemmal 

Given the problem: 

Max {f(q) '" (a-bq-c)q+AK(a-c+{Jq)2} 
q~O 

with A>O, (3>0, K2:0, and a>c 

If b > A.82K; then the optimal solution is; 

where: 

Furthennore: 

where: 

Proof 

q' = ~(a-e) 

1+2"'A(3K 
~ = 2b 2A~'K 

f(q ') = K'(a-e)' 

K' = AK+.!.(1+2~K)~ 
2 

(40) 

(41) 

(42) 

(43) 

(44) 

• 

The problern is a maximization problem subject to a inequality constraint. We denote by 1"" the 

Lagrange multiplier associated with the constraint q~O, and by q" tbe value which solves the prob1em. 

The necessary Kuhn-Tucker optimality conditions are: (i) f'(qj+I""=O; (H) 1""2:0; (in) q*~O and (iv) 

,uq" =0 (where the prime denotes derivative). If 1""> O then it must be that q"=O, and so f'(0) + 1""=0. Prom 

(40) we have: f'(0)=(1 +Z}..{3K)(a-c), and under the hypothesis of the lemma tbis is strictly positive, so 

it cannot be f'(0) +1""=0 with ,u>0, so it must be 1""=0. By taking 1""=0, fram (i) we have: f'(q')=O , and 
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solving for q" we have q" =¡f.¡(a-c); where: ¡f.¡=(1 +2A.6K)(2b-2A.62Kyl. Furthermore: f'(q)=-2b+2AK.6
2
, 

for every qER. So, if b> A¡32K, then f"(q)<O, for every qER, f(q) is concave in q, the program is 

convex and hence q* is a global maximum. FinalIy. by substituting q" in f(q) we have: f(q)=K'(a-cl; 

where: K'=AK+!h(l+2A.6K)cf.l. 

Proof of tbeorem I 

We define the auxiliary problem: 

subjeet to: 

,-, 
MAX {E A'(a-bq(t)-c(t))q(t) } 

,~ 

q(O), .. ,q(T-l) 

c(t+ 1) "c(t)-~q(t) t" 0, .. ,T-2 

q(t)20 fo"very tE {O"T-l} 

c(O) given 

If the optimal poliey of this auxiliary problem satisfies the next additional eonstraint: 

c(t)~ T,for every tE {l, ... ,T-1} 

then, it it also the optimal poliey for problem l. 

• 

(45) 

(46) 

The proof of the theorem has two steps. In the first step we solve the auxiliary problem and we 

prove that the optimal poliey for this problem is the one that appears in the thesis i of the theorem. In 

the second step we prove that under the eonditions given in the hypothesis and under the optima! policy 

of the auxiliary problem c(T-l) > T holds. 

First step. We denote by J,"(c(t),t) the value functíon in the period t, and by 

1r
a
"(O)={q.-(O),,,.,CL"q-l)} the optimal policy for the auxiliary problem. Bellman's equation associated 

·w 
with the auxiliary prci1Jlem is: 

J; (c(t),t) " MAX{(a-bq(t)-c(t))q(t)+AJo' (c(t+ 1),t+ 1)} t" O, ... ,T-l 

q(t) 20 
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(47) 

subject to (46), and taking J.*(c(T),T)=O. Next we prove, by finite induction on t, that q."(t)=q"Ct) and 

J;(c(t),t)=r(cCt),t) for every tE {O,. ",T-l}. In effect: let t=T-l, that ¡s, c(T-l) given, then the problem 

to be solved is static, in faet is the problem ofIemma 1 taking e=c(T-l), q=q(T-l) and K=O. Prom that 

lemma we obtain: q."(T-l)=cf.l(T-l,T)(a-c(T-l». The sufficient condition for maximum is b>O, and if 

it holds, then (S) assures that the output is positive. From the lemma we also obtain 

J:(c(T-l),T-l)=K(T-l,T)(a-c(T-1)?, Let it now be the induction hypothesis for t+l: 

q.·(t+ l)=¡f.¡(t+ 1,T)(a-c(t+ 1» and Ja*(c(t+ 1),t+ 1)=K(t+ l,T)(a-c(t+ 1»2. Let c(t) given, we must solve 

the functional equation (47), but tbis 1S the problem of lenuna 1 taking: c=c(t), q=q(t) and 

K=K(t+ I,T). From that lemma we obtain: q.*(t)=cp(t,T)(a-c(t». The sufficient condition for maximum 

is b> A.62K(t+ 1,T), and if it holds, then (5) and (6) assure that the output is positive. From the lemma 

we also have: J,:(c(t),t)=K(t,T)(a-c(t»2. This eonc1udes the first step. 

Second step. We prove, under '1Ta"(O), that e(O»R(O,T-2)#c(T-l»T. We demonstrate that, 

under 1r.·(0), the next chain of equivalences holds: 

c(T-l) > 7#c(T-2) > R(T-2,T-2)#" .#c(t) > R(t,T-2)# .#c(O)> R(O, T-2). Note that, for t=T-2, wehave 

c(T-l) > 7#e(T-2)-.6Q..*(T-2) > 7#c(T-2) > R(T-2,T-2), where the last implication is obtained by 

considering that q;(T-2)=cp(T-2,T)(a-c(T-2». The induction hypothesis for t+ 1 is: 

c(T-l»7#c(t+ l»R(t+ l,T-2). Now it must be proved for t. In effeet, let be c(t) given: 

c(T-l» 7#C(t+ 1» R(t+ 1 ,T -2)#c(t)-.6q."(t) > R(t+ 1,T-2)#c(t) > R(t,T-2), where the last implication 

comes from the fact that q."(t)=¡f.¡(t,T)(a-c(t». This demonstrates the chain of equivalences, and so 

concludes the second step. 

• 
Proof of corollary 1 

If c(T-l) > T, then problem 1 is equivalent to the auxiliary problem defined in the demonstration 

of tbeorem 1, but the optimal policy of tbis auxiliary problem, which is defined under (12), verifies 

c(T-l) > T iff c(O) > R(O,T -2), as we have seen in the second step of the proof of the tbeorem 1. So if 

c(0);S;R(O,T-2) then e(T-l)=T holds, since for hypothesis it is C(T-l)~T 

• 
Proof of theorem 2 

Let the auxiliary problem: 
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----------------------------------------~ .. ------------------------------------------- -

subject to: 

,-, 
MAX { r; )I(a-bq(')-c('»q(') } 

,~ 

q(O), ... ,q(T-I) 

e('+ 1) "e(t)-~q(t) '" 0, . ,,-2 

c(t) '" 1" t '" s ... ]-1 

q(t);:;:O for every tE{O, .. ,T-l}. 

e(O) given 

(48) 

(49) 

(50) 

If, under 11"-(0), it holds C(S)=7, and if the optimal poliey of tbis auxiliary problem satisfies the 

additional constraints: 

c(t)~1", for every tE{I, ... ,s-l} 

c(t)-¡3q(t):ST, for every tE{s-l, .. ,T-2} (in faet, it is sufficient that c(s-l)-¡3q(s-l):::;r) 

then this aptimal paliey is also the aptimal poliey fOf problem l. 

The proof is similar to the prcof of theorem 1 and it has two steps. In the first step we salve the 

auxiliary problem, and we show that the optimal poliey for this problem is the ane given in the thesis 

of the theorem. In the second step we prove that, under the hypothesis of the theorem, the optimal paliey 

of the auxiliary problem satisfies the additional constraints given aboye. 

First step. We denote by J;(c(t),t) the value function in the pedod t, and by 

lI'a~(O)={q:(O), ... ,<laM(T-1)} the optimal poliey for the auxiliary problem. The Bellman's equation 

associated with the auxiliary problem is: 

J,'(e('),t) "MAX{(a-bq(,)-e('»q(,)+),J,'(e(t+I),t+l)} '" O, ... ,T-l (51) 

i q(t);:::O 
• J,! 

subject to (49) and (50), and taking Ja"(c(T),T)=O. Let t=T-l, tbat is c(T-l) given, then the problem to 

be solved is static, indeed it is the problem oflemma 1 taking c=c(T-1), q=q(T-1) and K=O. Prom that 

lemma we have: q;(T-1)=4>(T-1,s)(a-c(T-l». The sufficient condition for maximum is b>O, and if it 

holds, then (5) ensures that the output is positive. From the lemma we also have 

Ja"(c(T-1),T-l)=~(T-l,s). Now let the next induction hypothesis for t;::::s; 
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Ja~(c(t+ 1),t+ l)=~(t+ 1,s) and q;(t+ 1)=~(t+ 1,s)(a-c(t+ 1». Let be c(t) given, then the function to be 

maximized is again the funetion oflemma 1 taking c=c(t), q=q{t) and K=O, plus the constant 

AKo(t+l,s). Prom that lerruna we have: q:(t)=cj>(t,s){a-c(t), with c(t)=1'. The sufficient condition for 

maximum holds jf b>O. We also have, from lemma 1: J;(c(t),t)=Ko(t,s). Thus, by following the 

induction until t=s we obtain: Ja~(c(s),s)=Ko(s,s) and qa"Cs)=cj>(s,s)(a-c(s». Let t=s-l, that is c(s-l) 

given, then the function to be maximized obtained from Bellman's equation is the function of the lemrna 

1 taking: c=c(s-l), q=q(s-l) y K=O, plus the constant AKo(s,s). Prom lemma 1 we have: 

q:(s-I)=q,(s-l,s)(a-c(s-I». The sufficient condition for maximum is b>O. From lemma 1 we also have: 

J;(c(s-l),s-l)=Ko(s-l,s)+K(s-l,s)(a-c(s-l)p. Let it now the induetion hypothesis for tss-l: 

q."(t+ 1)=q,(t+ l,s)(a-c(t+ 1» and J2~(C(t+ 1),t+ 1)=Ko(t+ l,s)+ K(t+ l,s)(a-c(t+ 1»2. Let c(t) be given 

(with tss-l), then we must solve Bellman's equation, and to do so, the function to be maximized is the 

function of the lemma 1 taking c=c(t), q=q(t) and K=K(t+ 1,s), plus the constant AKo(t+ l,s). From 

fuat lemma we obtain: qaX(t)=q.,(t,s)(a-e(t». The sufficient condition for maximum is b> J..¡S2K(t+ 1 ,s) 

If the last inequality holds, then (5) and (6) ensure that output is positive. We also obtain from lemma 

1, ¡;(e('),1) ~ I(,,(t,s) + K(t,s)(a-c(t»'. 

Second step. Note first that: c(s-l)-,Bqa-(s-l) S r#c(s-l) sQ(s-l,s-l). Next we prove, by induction 

on t, that, under 1fa*(O), it verifies: 

1'< c(s-l) s Q(s-l ,s-l)~R(s-2,s-2) < c(s-2) s Q(s-2,s-1)<* .. **R(t,s-2) < c(t) ~ Q(t,s-l)** ... 

"R(0,s-2) < erO) ';Q(O,s-I). In effeet, let t~s-2, 

,< e(s-l)'; Q(s-I ,s-l )"r < e(s-2)-~q;(s-2)'; Q(,-l ,s-1) .. R(s-2,s-2) < e(s-2)'; Q(s-2,s-I). lnduetion 

hypothesis for t+ 1: 1'< c(s-l)sQ(s-l,s-l)**R(t+ l,s-2) < c(t+ 1) sQ(t+ l,s-I). Let c(t) be given: 

r< e(,-1) ';Q(s-l,s-l)"R(t+ l,s-2) <c(t+ 1)';Q(t+ 1,s-I) .. R(t+ 1,,-2) < c(t)-~q;(t)';Q(t+ 1,s-1)" 

**R(t,s-2) < c(t) ~Q(t,s-l). Thus the chain of equivalences we wanted to prove is proved, so in particular: 

l' < c(s-l) s Q(s-1 ,s-I)~R(O,s-2) < c(O) s Q(O,s-I); and this concludes the second step. 

• 
Proof of corollary 2 

lf c(s-l»l' and e(s)=r, then problem 1 is equivalent to the auxiliary problem defined in the 

proof of theorem 2. The optimal poliey for that problem is defined under (21). Under the optimal policy 

for that auxiliary problem e(s-l» l' holds ift: c(O) > R(O,s-2), as we have proved in fue second step of 

the proof oftheorem 2, but we have c(O)sR(O,s-2), so it must be that c(s-l)=r, since by definition 

c(s-I);;:=1'. 

• 
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Proof of theorem 3 

Let the auxiliary problem: 

,-, 
MAX { L A'(a-bq(t)-c(t»q(t) } (52) 

,~ 

q(O),.,q(T-l) 

subject to: 

c(t) == T t == 1,_ .. ,T-1 
(53) 

c(O) given 

q(t);:;:O for every tE{O, ... ,T-1}. 

If under '/f"CO) verifies c(I)=T and the optimal solution for this auxiliary problem satisfies the 

additional constraint: 

o(O)-~q(O) '" T 

then this optimal policy is also the optimal for problem l. 

The proof has two steps. In the first step we solve the auxiliary problem, and we prove that the 

optimal policy for this problem is the one given in the thesis of the theorem. In the second step we prove 

that, under the hypothesis of the theorem, the optimal poliey of the auxiliary problem satifies the 

additional constraints given aboye. 

First step. We denote by J;(c(t),t) the value function in the period t, and by 

1f:(O)={(b"(O), . ."q:(T-l)} the optimal policy for the auxiliary problem. Bellman's equation associated 

with the auxiliary problem is: 

J; (c(t),t) = MAX{(a-bq(t)-c(t))q(t)+AJ: (c(t+ 1),t+ 1)} 
q(t) ",-O 

t == O, ... ,T-1 (54) 

subject to (53), and taking Ja"(c(T),T)=O. Let t=T-1, that is c(T-l) given, then the problem to be solved 

is static, indeed it is the problem of lenuna 1 taking c=c(T-l), q=q(T-1) and K=O. From that lemma 

we have: q.~(T-l)=q,(T-l,I)Ca-c(T-l», with c(T-l)=7. The sufficient condition for maximum is b>O, 

and if it holds, then (5) ensures that the output is positive. From the lemma we also ohtain 

Ja"Cc(T-l),T-l)=KiT-1,1). Next, let the next induction hypothesis on t+ 1~ for t> 1: 
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Ja~Cc(t+l),t+l)=Ko(t+l,l) and (b"(t+l)=1>(t+l,l)(a-c(t+l». Let c(t) be given, the function to be 

maximized, obtained from (51), is the function oflenuna 1 taking: c=c(t), q=q(t) and K=O; plus the 

constant AKo(t+ 1, 1). From the equations of that lemma we have: (b*(t)=1>(t,l)(a-c(t), with C(t)=7. The 

sufficient condition for maxirnum is b>O. From lemma 1 we have J;(c(t),t)=Ko(t,l). Thus, by 

continuing the induction we obtainJa
X

(c(I),l)=Ko(1,1) and (b·(1)=I/.l(1,l)(a-c(I». Let t=O, that is, c(O) 

is given, then, the function to be maxirnized, obtained from the Bellman's equation, is the function of 

the lemma 1 taking c=c(O), q=q(O) and K=O; plus the constant AKo(I,I). Hence, we obtain: 

q;(O)=cjl(O,I)(a-c(O». The sufficient condition for maximum is b > O. Furthennore, from the lemma 1, 

we have: J;(o(O),O)~K,,(O,l)+ K(O,I)(a-o(O))'. 

Second step. Note that, under 1f;(O), we have: c(l)=T*>c(O)-,I3q;(O)::;7#C(O)::;Q(O,O). 

• 
Proof oí theorem 4 

Let tE {O, .. ,T~2}. Indeed we prove that· 

QU,t) < RU,t): j = O, ... ,t (55) 

We define: h(x,y)=(x+,I3ya)(l +,I3y)"l; n(x}=(l +2X,13x)(2b-2i\¡32X)"I: 

Z(X)~AX +(1 +2~x)'(4b-4A~'x)'. 

We have Q(t,t)=h(7,cjl(t,t+ 1» and on other hand R(t,t)=h(7,I/.l(t,t+2», where 1>(t,t+ l)=n(O) 

and q,(t,t+2)=n(K(t+ 1 ,t+2» with K(t+ l,t+2)=z(O). Hence: 1>(t,t+ 1)< 1>(t,t+2), and so 

h(7,q,(t,t+ 1»<h(7,1>(t,t+2». Thus (SS) is true for j =t. Furthennore, for the period t, associated with 

cjl(t,t+ 1) we have K(t,t+ l)=z(O); and associated with l/.l(t,t+2) we have K(t,t+2)=z(K(t+ 1,t+2». With 

simple algebra, and assuming the concavity condition it can be proved tbat K(t,t+2»K(t,t+l). 

To prove (SS) for any j, it is enough to establish the last result as an induction hypothesis that 

holds for j+l and to prove that it also holds for j. So, let (55) be troe for j+l, and let also 

KG+ I,H2»KG+ l,t+ 1). By definition: .G,H l)~n(KG+ l,t+ 1)) and.G,H2)~n(KG+ l,t+2)), but 

since n'(x) > O for all x, ir verifies 1>(j,t+2) > cjl(j,t+ 1). On other hand, since (55) is true for j+ 1 we 

have QG+ l,t)<RG + l,t). Thus, sinoe: QG,t)~h(QG + Ul.<'G,t+ 1)) and RG,t)~h(RG + l,t),.G,t+2)); 

we have Q(j,t) <RU,t). Furthennore, z'(x) > O for all x, and so we have K(j,t+2» K(j,t+ 1). 

• 
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Proof of theorem 5 

The corollarles 1 and 2, indicate that if c(O) :S:R(O,s-l) and (12) and (21) hold, then, under -¡r'(O), 

c(s)=. must occur. In this case, -¡r"(0) ís also the optimal policy of the auxiliary problem defined in the 

proof of theorem 2 for s> 1 or theorem 3 for 5=1 if, the optimal policies of those auxiliary problems 

satisfy the additional constraints: 

c(t);;:::. for every tE {l , ... ,s-l} (if s> 1) 

c(s-I)-.fiq(s-l):::;; • 

Since c(O) > Q(O,s-l), then it also verifies c(O) > R(O,s-2) (for s> 1) so, under the optimal policy 

of the auxiliary problems mentioned before, we have c(s-l»;, and so the first of the additional 

constraíuts given above holds. However, the seeond eonstraint does not hold for those optimal policies 

Since, under 11'"(0), this constraint must hold, then :Ir"(O) is obtained from solving the auxiliary problem 

defined in the proof of tbeorem 2 if s> 1, and the oue defined in the proof of theorem 3 if s = 1, and 

impossing: 

c(s-I)-~q(s-I)" T. 

For t~s, the optimal poliey of the auxiliary problems satisfies both auxiliary constraints, so it 

is also the optimal poliey for problem l. Thus, we obtain, for t~s, q*(t)=cb(s,s)(a-c(t), with e(t)=r and 

r(c(t),t)=K¡¡(t,s). For t=s-l, from Bellman's equatíon associated with the auxiliary problems, we obtain 

the next problem to be solved: MllXq('.l) {(a_bq(s_l)_c(s_l»q(s_l)+AJ"(c(s),s)} subject to 

q(s-l) ;;:::.fi-l(c(s-l)-r). The optimum of this problem without taking into aecount the constraint is: 

(2byl(a-c(s-l». From the seeond step of the theorems 2 and 3 we obtain: 

(2b )"l(a-c(s-l» ~ ¡3.1(c(s-1)-.)<=1e(s-1):::;; Q(s-l ,s-l)<=1e(O):::;; Q(O,s-l). Since the last inequality does not hold, 

and (a_bq(s_l)_c(s_l»q(s_l)+AJ*(e(s),s) is globally concave in q(s-l), then q"(s-l) is the lowest value of 

q(s-l) such that it verifies the constraint, that is: 

q*(s-1)=¡3-1(C{s-1)-.), or q*{s-l)=Po(s-l)-PI{s-l)c(s-l). By substituting in the last objetive funetion we 

obtain: t(c(s-l),s-l)=Ko.E(s-l)+K1.E(s-l)c(s-l)+ K2.E(s~1)c(s-lp. Ifs > 1, letthenextinductionhypothesis 

lor t+ 1, with t< sol: ,f(t+ l)~p,,(t+ l)-p,(H l)c(t+1) and 

" J"(c(t+l),t+l)=Ko,E(l+I)+K1.E(t+l)c(t+l)+K2,E(t+l)c(t+1P. Let e(t) be given, the problem to be 

solved ¡s: Max.",,, ((a-bq(t)-c(t))q(t)+ AK".,(t+ 1)+)..I(,.,(H l)(c(t)-~q(t))+ )..I(,.,(t+ 1)(c(t)-~q(t))'}. The 

solution is 

q'(t)=Po(t)-p¡(t)c(t), and sufficient condition for maximum is b> >"¡32J(2,E(t). Furthennore, by substituting 

in tbe objetive function we obtain: J"(c(t),t)=Ko.E(t)+K1.E(t)C(t)+K2•E(t)C(t? 

• 
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APPENDIX II 

Horizontal axis represents time, and for every period we pIot the optimal level of output. 

-1 l·· 
iO.», 
-1 

l'" 
1"" 
"", 

Grapb 1 

l·,,· 
1"· 

1"" ~,,' / 

1:::/ 
Grapb 3 

) 
I 

... I 

:! 
Grapb 5 

1" .. 
1:: 
l·" ... 
lo,,, I 

oo. 

Graph 7 

21 

1:: ] 'lOO 

I 

l "" 

"Oo. " 

Graph 2 

Ij 
1"" .,,, 

l'''' "" / 
"" 

Grapb 4 

~II 1"" 
:::: 1 

""1 "', ... 
Grapb 6 

'm. I 
""1 

1'''' "" 

) 
1:::1 , 

Graph 8 

/ 
/ 

li 
J.I 

1I 

", 

I 

,,1 

1I 

, 

I i 

ji 


