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ABSTRACT

We obtain in the closed-form the optimal policy for a class of learning by doing
models, in which a monopolist operating in a market with linear demand and
finite time horizon, faces a lower bound in the cost reduction that can be achived
through production, By using Dynamic Programming principles we show that the
existence of a lower bound in the unit preduction cost implies that the optimal
decision for output is a fanction which is indexed by initial unit cost. There is an
optimal set of threshold values beyond wich the parameters of the production rule
change. Some examples with specific parameter values are provided.

RESUMEN

T este articulo se obtiene la solucidn analitica para una familia de problemas de
Learning by Doing, en los que un monopolista opera en un mercado con demanda
lineal y horizonte temporal finito, teniendo un Titnite inferior en la reduccidn de
costes, via produccién. El método de solucién, basado en la Programacion
Dindmica, permite obtener la solucién Optima, asi como una particion del
intervalo de posibles valores del coste inicial, de modo que la regla de decision
dptima cambia dependiendo del subintervalo al que pertenezca el coste inicial, Se
presentan ejemplos con valores especificos para los pardmetros.
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I Introduction
A phenomenon widely observed in industries which are in an early stage of their productive iife

is that they reduce their cost as a result of accumutating experience, that is, they reduce their cost with
their output. This is known in the economic literature as learning by doing, and it was studied for the
first time by Arrow (1962). Other authors studied the relationship between industry structure and learning
by doing (Fudenberg and Tirole(1983), Stokey (1986), Dasgupta and Stiglitz (1988}, and Parente (1994)).
They analyzed the differences in the learning process if the industry structure is a monopoly or a
nationalized industry. In general, the results available in the literature give properties of the optimal

policy, but they do not present the optimal policy in the closed-form.

In this paper we obtain in closed-form the optimal policy for a class of learnting by doing models.
We consider a monopoly, without possible competition. The demand function is Iinear. The problem is
deterministic, dynamic, with a finite time horizon and it is formulated in discrete time. The state variable
is the unitary cost (c(t)) and the control variable is the quantity to be produced (qg(1)). The objective

function is to maximize the discounted benefit flow and the state equation is: c(t+1}=max{r,c(t)-Bq(D},

with (0} > 7 given.

The problem is solved by vsing dynamic programming (Bellman(1957)). The key of the method
is to identify the role of , the lower bound of the unit cost, as a binding constraint. We obtain a partition
of the set of possible values for (D). Depending on the value of ¢(0) in the partition, an equivalent
problem is formulated for which we obtain the optimal solution. It is shown that there is an optimal set
of threshold values of ¢(0) beyond which the parameters of the production rule change. The method to

abtain the closed-form optimal policy is formally presented in five theorems and two corollaries.

In Section I we formutate the problem, and in Section I we present the solution. Section IV

gives some examples with specific parameter values. Finally, in Section V we present the conclusions

and some ideas for further reseazch.

II The model

We consider the problem of a monopolist, without possible competition, who maximizes the

discounted profit flow along T periods, where T is known. The discount parameter is h. The first period



is 0, so the last is T-1. The moneopolist faces a demand which is constant over time, and such that, the
price in period i, p(t), is a linear function of the produced output in that period, g(t). Specifically, the

inverse demand funetion is:

pity = a-bgly 1t =0,..T-1 53]

where a,b>>0.

In the period t, the firm chooses g(t}, the output o be produced at a unitary cost e(f); that output
is sold at price p(i). There are no fixed costs. In next period, t+ 1, the unitary cost is c(t+1). The change
in the vnitary cost from period t to t+1 is given by:
c(t+1)=max{r,c{t)-Aq{t)}. This equation is used by Dasgupta and Stiglitz (1988). In this equation, the
unitary cost is a linear function on the output produced in the last period, while the cost remains above
a certain vahe 7, and if the cost takes that value, remains in it forever. Furthermore, 8 determines the

abilitity of present output to reduce future cost,

Given (1), the profit of the monopolist in peried t is: (a-bq(t)-c(t))q(t). Since the monopolist
maximizes the profit flow discounted by A, subject to the evolution of the costs given above, the problem

can be expressed, in mathematical terms, as follows:

Problem I

=1
MAX {32 Na-bglh-c(tDa(® } @
GO, gf{(T-1)

subject to:

c@+1) = max{z,c()-Bg(H)} t=0,.,7T-2 (&)

, q(t) =0 for every t& {0,...,T-1}.
c{0) is given. The pax;jgmete{s a,b,\,8,7,T are known.

4
@

Other additional assumptioms are:

o0 > 7 @

a > o) (53]
r>0; 8>0; b>0; €@ (6}

The assumption given in (4) ensures that in problem I there can be cost reduction. The
assumption given in (5} is normally used in the economic Nterature, along with other conditions which
are shown later (related to the concavity of the cbjective function) to ensure that the output is positive,
We must note that in a static problem without learning by doing, the condition (5) is necessary for a
positive output. However it can be shown that in problem 1 the output can be positive although (5) does
not hold. In (6) there are other assumptions which are widely used in economics: the lower bound on the
costs must be positive (r>0), to raise the output reduces future costs (3>>0), the demand function is

decreasing (b>0) and the discount factor is between 0 and 1.

111 Solution method for problem I

The problem stated above is a dynamic optimization probiem, with a finite time horizon and in
discrete time, and it is solved by using the well-known methodology proposed by Bellman. The state
variable is unit cost and the control variable s output. The interest of the solution method that we present
is that it finds the analytical solution for Bellman’s functional equation associated with problem I. The
key idea is to identify the role of r as a binding constraint. For example, given all the parameters, it is
possible that, under the optimal policy, 7 is not reached after T periods, if so, 7 docs not represent a
constraint, in the sense that if the bound for the cost reduction did not exist, the cost would not take a
lower value after T periods. A different case is that in which 7 is reached in the last period, if so, 7 may
represent a constraint, because if it did not exist, the cost could take a lower value. A third case occurs
if 7 is reached in the period T-2, and in this case 7 represents a stronger constraint than in the previous
examples, We can continue and so, we can consider all possible cases. Of course only one will occur,
that is, or the cost reaches 7 in a specific period, or it never reaches v. The solution method identifies
in which period the cost reaches 7 (if 7 is reached), for the first time, by succesive resolution of linear
quadratic problems. Once we have identified that period, the problem is already analytically soived, since

for every case to be considered, the remaining problem is linear quadratic, if we can be certain that the

output is positive.

Next, we present formally the solution. The following definitions will be used.




Definition 1 For every t€{0,...,T-1}, w{t}={q(1),...,q(T-1)} where g{j) =0 for every
i€ {L,...,T-1} is a feasible sub-policy that begins in period t. Furthermore, if t=0, then (0} is called
feasible pelicy.

Definition 2 For every t€{0,...,T-1}, we denote by S() the set of all the feasible subpolicies which

begin in period t.
Definition 3 For every t€{0,...,T-1}, given a feasible sub-policy w(t) and c(t) we define:

71

T, x 0.0 = Y Ma-ba(f)-c(iNali)

Where, for every j€ {t+1,...,T-1}, c(j) is given by (3). Furthermore, for any integer s which verifies
t=g=T-1 we write either F{c{t), x(t),t) or J(c(t),q(t),...q(s-1),»{s).1).

For any period t, the definitions given above characterize the set of all the possible decisions the
monopolist can make, S(t), and for any of them, the discounted profit that they produce. The definitions

that follow are used for the optimal decisions.

Definition 4 For every t€ {0,...,T-1}, given c(t), we say that 7 (t1}={q{(0),...,q (T-1)} (with z" (D E S@)}
is an optimal sub-policy (or policy if t==0}, f: J(c(t),x(t),0) < J(c(t), 7" (1),0) for every a(t) € S(t).

Definition 5 For every t€ {0,...,T-1} we define the value function as: I'(c(),1) = Mc(®),7"(1),1).

Theorem 1 states when it is optimal not to reach r after T periods. As we have indicated
previously in an intuitive way, this is expected to occur, given afl the parameters, when there is enough
difference between ¢(0) and 7. So the theorem formalizes what is enough. Next notation will be used later

in the theorem.

Let:

ol

RO =0; ROT-1,7-2) =7 g

1+2M8K(1+1,T)

¢y = —eninldr )
oD 26-2NFK(t+1,T)

t=9,.,0-1 (8)

_ R(+1,T-)+8¢(t.N)a
R 72y = Rl T2t g 7 ©)
«T-2) ToBoG.T)
KT = )\K{t+l,T}+%(1+2h6K(t+l,'I))¢(t,T) t=0,..7-1 10y
Theorem 1
If:
«(0) > R(0,T-2) (1)
(12)

b > NK(ED) t=1,..,T-1

where R(0,T-2) and K(t,T) for every t€ {1,...,T-1} are defined in (7) to (10}, then:
i) g W= T){act); Y =KDy, t=0,..,T-1; where ¢, T) for every
t&{0,...,T-1} is defined in (8).
i) Tnn problem 1, under x'(9), o(T-1)>7 holds.

The proofs of all theorems and corollaries are included in appendix L

The next corollary, and the following theorem and coroflary, state when, under the optimal
policy, 7 is reached in period s € {2,...,T-1}. Intuitively, if there must be enough difference between ¢(0}
and 7 (given all the other parameters) not to reach 7 in T periods, then, to reach 7 in a period different
from period 1, c(0) mmst be between two vatues. Firstly, c(0) must be sufficiently greater than T so as
not to reach 7 before. On the other hand, c(0) must be close enough to 7 so as not to reach {for the first
time) 7 later. Formally, we can establish a partition in the set of all possible values for c(0} (the open
interval (r,)) such that, depending on the value of ¢(0) in the partition, we know when (if so} the cost
reaches r for the first time, Furthermore, we show that, depending on the value of ¢(0) in the partition,

the parameters of the production rule change.

Corollary 1
If (12) holds and furthermore (11) does not verify then, under «™(0), we have c(T-1)=T1.
|

The following notation is used in the next theorem.



Lets€{2,...,T-1}; let:
Corollary 2
Kits)=0; t=s,..7 R(-15-2) = Q@.s-1) =17 13 ; -
Lets€{2,...,T-1}; if (21) holds, c(@) = R(0,5-2) and furthermore c(s)=7 under 7 (0), then, under

#°(0), we have c(s-1)=7.

K@ = LI a1
olds I T el = 8,0 4y ]

i 11 >2 i ion i
b(t5) = 1+203K(s+1,58) . t= 0. .T-1 as) If the hyphotesis of the last corollary hoid for s>2, theorem 2 defines a optimal solution if

2B-2032K(1+1,8) ols-1)=7 and ¢(s-2) > 7. I the hyphotesis of the last coroflary hold for s=2 then, under x'(0), we have

c(1)=r, in this case, the next theorem defines a optimal solution, The following notation is used in the

- Rl+Lls-23+8(.5)a
R{ts-2) = 20 L TPt = - low.
(t,5-2) ) ;=052 16) : theorem bellow
Let:
Os-1) = Qerls—DeBelsa . g o4 an
[+64(1.9) K) =0:¢=1,.,T @2)
= + +}' + + . = —\TF
K(5) = NK(+1,)+ L DABKU1,D(5) 5 ¢ = 0,51 (18) K1 - a%(a—f)llli\; I @3)
K1) = NE(t+1,5) ; = 0,...,5-1 (19) PN o Tt "
) = — 3 t=0,.,T-
2b
_ THB¢(0,5)a 2
Theorem 2 00.0) 1+8¢(0,1) 9
Let s&{2,...,T-1}. I:
RO,5-2) < o) = Q0,5-1) 20) KO = % 9
b > NEK(S) ¢ =1,..5-1 P2y E0,1) = ML D) @7
where R{0,s-2), Q(0,5-1) and K(t,s) for every t€ {1,...,s-1} are defined in (13) 1o (18}, and furthermore
o
cfsy=7 under =" (0); thien: Th 3
G corem
i) ) =o(t,8)a-ct)); T(c),D=Ke, s+ K(1,s)a-c(t)’ 1=0,...,T-1; where ¢(t,s) and K(t,5) if:
for every t€{0,...,T-1} are defined in (15) and (£9). . -
28)

i) In problem I, the unitary cost, under = (0), reaches , for the first time, in period s. o0) = 0.0

where Q(0,0) is defined in (24} and (25), and furthermore ¢(2)=r under «'(0) and b>0; then:
g M=, Dia-c@); I'Ee®n= Ko(t, 4K, I(a-c{t)’; £=0,...,T-1; where ¢(t,1) and Ko(t,1)

.




for every t&€ {0,...,T-1} aze defined in (23), (24) and (27).
i) In problem I, the unitary cost, under 7'(0), reaches 7 in the period 1 for the first time.
a

Next, we prove that, since the monopolist solves a strictly concave problem in every period,
then, there cannot exist a value of ¢{0) such that it satisfies the conditions to reach 7, for the first time,
in two different periods. This is shown formally in the next theorem. Before, we must note that, in view
of theorems 1, 2 and 3, we can interpret R{j,1) as the minimmm value that c(j) can take that, under the
optimal policy for problem I, c{t+1)> 7 holds (for j<t, furthermore R(t-+1,0)=7). It is alse possible
to make a similar interpretation for Q(j,t): it can be interpreted as the maximum value that c(j) can take
that, under the optimal policy of the problem I with c(0}=c(j) and T=t+1, c{t+ 1)=r holds (for j=<t,
furthermore Q{t-+1,0)=7).

Theorem 4
If {12) and (21) hold, then:

Q0.5 < RO, t=0,.,7-2 @9
where R(0,5) and Q(0,t) for every t& {0,...,T-2} are defined in (7} to (10), (13) to {18), (24} and (25).
]

In the view of the last theorem, for example, we can have Q(0,T-2)<¢(0)<R{0,T-2). The
theorems presented up to this point do not define the optimal policy if, in a general way for
s€{0,...,T-2}, Q(0,s) <c(0) = R{0,s} holds. The next theorem states the optimal policy for this case, and
50 the problem I is solved for any c(Q)€(r,2).

The idea is very simple. Let, for example: Q(0,T-2) <c(0) <R(0,T-2). In this case c(0) is too low
not to reach + (under the optimal policy) in T periods (c(0)=<R(0,T-2)), se c(T-1)=r holds. But if we
have o(T-1)=r, then, for c(T-2) given, the problem to be solved is to maximize present benefit subject
to the fact that the cost must be 7 in T-1. By making s=T-1 in theorem 2 we have: if
&(0) = Q(0,T-2), then,;for ¢{T-2) given, the output that maximizes the present benefit already satisfies the
constraint that cost in T-l must be 7. So, if Q(0,T-2) < c¢(0) holds, then, for ¢(T-2) given, under concavity
of the present profit function, the best q(T-2) to be taken is not the one that maximizes that function (it
does not satisfy the constraint ¢{T-1)=17 since Q(0,T-2) < ¢(0)), but the nearest to the maximum which
satisfies the constraint, that is, the point which exactly satisfies the constraint, which is: 87(c(T-2)-7).

We calculate for this value of q(T-2) the present profit in T-2, and the remaining problem from T-2 to

'
¥

0 is Hnear quadratic, s0 we can solve Bellman’s equation.

Next notation is used in the theorem.

Let s&{t,....T-1}; let:

1

pos-1) = _T; P opsD = -3

K, {s-1) = -%(aé’é’iwmﬂ(s,s)
K fs-1) = %(a+fr+2%)

K, fs-1) = -.é(n%)

and, if s> 1, then, for every t€{0,. ..,8-2}:

a-agK, {t+1) 1+2)\,5'K1'E(t+1)

Po(f) = @ =

Kyl = MR i{r1)+2(@-NBK, 6+ DIp,()

[

K, £ ?\KLE{I+1)~(1+2?\.3K2'E(t+1))po{t)

G A0) = N1+ (2N, (1P,

Theorem 5
Let s€{1,...,T-1}; if (12) and (21) hold and furthermore:

0(0,5-1) < ¢(0) < R(Os-1)

b > NP, A = 1,...5-2 (for 5>1}

202K, e+1) 2b-20F°K, (1+1)

(30

3D

(32)

33

(34)

35

(36)

@7

(38

3%



where K, g(t), Q(0,5-1) and R(0,s-1) for every 1€ {1,...,5-2} are defined in (7) to (10). (13) to (18), (24,
25), (33) and (37); then:
D) For t=s: ¢ ()=a(s,8)(a-c()); and J(c{t),ty=Ky(t,s). Furthermore, for t<s: g ({)=p,1)
p(te(t); and J’(c(t),t)=K0‘E(t)+Kl‘E(t)c(t)+K2v5(t)c(t)2. Where ¢(s,s) and K(t,s} for t<s are
defined in (13), (14} and (15).
ii} In problem I, the unitary cost reaches 7, under #(0), for the first time, in the period s.

This theorem completes the solution method. It is important to observe that in view of the last
theorem, we have established a partition in (r,a), such that, depending on the specific value of ¢(0) the

parameters of the production rule change.

IV Some examples

In this section, we illustrate the solution method with some examples with specific parameter

values,

We fix, arbitrarily, T=60, A=.9 and b=10 for all the problems solved (one problem for every
set of parameters). We consider two possible values for a, which are: 10 (smat] in terms of b) and 40
(large in terms of b). Furthermore we consider two different values for the pair (c(0),7): a) (8,1), that
is, a large difference from the initial to the final cost, and b) (5,4), which represents a smaller difference.

Finally we consider two different values for 8: .5 and .1.

The results for every combination of the parameters given above are presented in table 1. Each
row represents a different problem. In appendix Il we plot a graph with the optimal policy, and in the
first column of the table we put the number of the graph in appendix II corresponding to this problem.
Columns two to five contain values of the parameter for each problem, and the last two columns have
the value of the discounted benefit flow (Y'(c(0),0)) and the first period of cost = (a blank appears if 7

is not reached), under the optimal policy.
it

eiliting,

10

graph a c(0) T B8 F{c(0),0) first thme 7
1 10 8 1 5 2.05 43
2 10 5 4 5 8.03 8
3 10 8 1 5| 1.10
4 10 5 4 A 6.85 37
5 40 8 1 5 334.14 9
6 40 5 4 5 321.46 3
7 40 ] 1 1 280.70 40
8 40 5 4 .1 318.32 7
L
Table 1

The results presented in table 1 are reasonable. First, for every combination {c(0),7,5) we have:
the higher a, the higher I'(c((),0) and the soomer the cost reaches 7 {compare Tows 1t0 5, 20 6, 3 1o
7 and 4 to ). Second, for every combination (a,c(0),r) we have: the higher 8, the higher T7{e(0),0) and
the sooner the cost reaches + (compare TOWS 1403, 2tod, 5107 and 6 to 8). Third, for every
combination (a,§) we have: the shoster distance between c(0) and 7, the sconer the cost reaches 7
{compare rows 1to 2, 3 to 4, 5 to 6 and 7 to 8). Finally, also for every combination (a,8), in three cases
we have that, the shorter distance between c(0) and r, the higher J"(c(0),0) (compare rows lw?2,3to

4 and 7 to 8) and in one case the reverse holds (compare rows 5 to 6},

V Conclusions and Further research

We obtain in closed-form the optimal policy for a class of models with learning by doing. The
models consider an industry with a single agent, and are deterministic, with a finite time horizon and in
discrete time. The demand function is linear. The cost evolution equation is taken from Dasgupta and
Stiglitz (1988), in this eguation the unitary cost of the next period is reduced linearly with the present
output, but if the cost reaches a lower bound {7), it remains in that value until the end of the decision

problem.

The interest of the method presented is that, for the models described here, it finds the

closed-form optimal policy. The key idea is to identify the role of 7 as binding constraint. Te do that,

1




we consiruct a partition in the set of all possible vatues for the initial cost, such that, depending on the
value of ¢(0) in the partition, an eguivalent problem is formulated. We show that the optimal decision
is a linear function indexed by initial cost, that is, depending on the valve of the initial cost, the
parameters of the decision rule change. The solution method is formally presented, and some examples

with specific parameter values are also given.

Many extensions are being studied now. We outline here some of them. The solution method is
developed for the case of a monopolist, but it is equally valid for the case of a nationalized industry. So,
an extension to this paper is to apply this solution method to a nationalized industry and to study the
differences between both structures in the view of the closed-form optimal policy. Furthermore, i is
possible to extend this §oiution method for some simple stochastic problems, and fo find the closed-form
optimal policy for those problems. So, for some stochastic models, it is also possible to compare the
behaviour of 2 monopoly to the behaviour of a nationalized industry, and to compare their behaviour in

the stochastic and the deterministic case.
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APPENDIX 1
In this appendix we present the proofs of all theorems and corollaries. Previously we present a

lemma, which will be used later in the proofs.

Lemma I

Given the problem:

Max { flg) = (a-bg-clg+MKla-c+Bqy} e
g=0

with A>0, 8>0, K=0, and a>c.

If b>AFK; then the optimal sclution is:

q" = #{a-o) 1)
where:
_ 1K 42
¢ 2b-203K @2
Furthermore:
fa") = K'(a-cp “3)
where:
K - )\K+%(1+2)\ﬁK)¢ (44)
. |
Proof

The problem is a maximization preblem subject to a inequality constraint. We denote by p the
Lagrange multiplier associated with the constraint q =0, and by q* the valae which solves the problem.
The necessary Kuhn-Tucker optimality conditions are: (i) £(q)+p=0; (ii) p=0; (i) "=0 and (iv)
#q"=0 (where the prime denotes derivative). If 1> 0 then it must be that =0, and so £(0)+p=0. From
(49) we have: £(0)=(1+2a5K)(a-c), and under the hypothesis of the lemma this is strictly positive, so
it cannot be £{0)+p =0 with >0, so it must be p=0. By taking =0, from (i) we have: £'(g) =0, and

13




solving for ¢ we have q =¢{a-c); where: ¢ =(1+20\FK)(2b-27\F°K)". Furthermore: £ (@) =-2b+2MKA?,
for every gER. So, if b> AGK, then £°(q) <0, for cvery qE R, () is concave in q, the program is
convex and hence g is 2 global maximum. Finally, by substituting q" in f(g) we have: flq)=K'{a-c);

where: K’ =rK+3%(1-+2MK)d.

a
Proof of theorem I
We define the auxiliary problem:
-1
MAX 1Y Na-ba®)-c)alt) } 4s)
=0
g(0),....q(7-1)
subject to:
(46)

ct+1)y = cH-Bglty t=10,..7-2

q(t) =0 for every v€1{0,...,T-1}.
¢(0) given

If the optimal policy of this auxiliary problem satisfies the next additional constraint:
c(ty= 7. for every t={1,...,T-1}

then, it it also the optimal policy for prebiem I

The proof of the theorem has two steps. In the first step we solve the auxiliary problem and we

prove that the optimal palicy for this problem is the one that appears in the thesis i of the theorem. In
the second step we prove that under the conditions given in the hypothesis and under the optimat policy

of the auxiliary probiem c(T-1}>7 holds.

First step. We denote by I(c(n).fy the value function in the period t, and by
()= {q;(O),...,qa'(f-l)} the optimal poticy for the auxiliary problem. Bellman’s equation assoctated

with the auxiliary prdﬁlem is:

(et = MAX{(a—bq(r)uc(t))q(t)+wﬂ‘(c(z+1),r+1)} t=0,.,T-1 “@n
qify =0
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subject to (46), and taking J,”(c(T),T)=0. Next we prove, by finite induction on t, that ¢."(t)=q7(¥) and
1 (e, =T {c(),1) for every t€{0,..., T-1}. In effect: let t="T-1, that is, c(T-1) given, then the problem
te be solved is static, in fact is the problem of lemma I taking c=¢(T-1), @=q(T-1) and K=0. From that
lemma we obtain: q, (T-1}=¢(T-1,T){(a-c(T-1)). The sufficient condition for maximum is b>0, and if
it holds, then (5) assures that the output is positive. From the lemma we also obtain

1,7(e(T-1), T-1)=K(T-1,T)a-o(T-1))*. Let it now be the induction hypothesis for t+1:

q, ¢+ 1) =¢{t+1,Ta-c(t+ 1)) and F,{c(t+ 1),t+ =Kt +1,T)(a-ct+ N Let cft) given, we must solve
the functional equation (47), but this is the problem of lemma T taking: c=c(t), g=q{t} and
K=K(t+1,T). From that lemma we obtain: g, (f)=g(t, T)(a-c(t)). The sufficient condition for maxiraum
is b>ASK(t+1,T), and if it holds, then (5) and (6) assure that the output is positive, From the lemnoma
we also have: J'(c(t),0)=K(t,T)(a-c(t))*. This concludes the first step.

Secand step. We prove, under ,(0), that ¢(0)>R(0,T-2)=c(T-1)>7. We demonstrate that,
under a, (0}, the next chain of equivalences holds:
e(T-1)> 7ec(T-2) > R(T-2,T-2)&.. . «c(t) > R({, T-2y= (0} >R(0,T-2), Note that, for t=T-2, we have
e(T-1y > ree(l-20-8q,(T-2) > roc(T-2) > R(T-2,T-2), where the last implication is obtained by
considering that q,"(T-2)=¢(T-2,T){a-c(T-2)). The induction hypothesis for t+1 is:
(T-1) > rec(t+1) > R(t+1,T-2). Now it must be proved for t. In effect, let be cft) given:
o(T-1) > rec(t+1) > R{t+ 1, T-D)=c(t)-Bg, (0 > R+ 1,T-2)ec®) >R(, T-2), where the last implication
comes from the fact that g, (t}=¢@, THa-c(t)). This demonstrates the chain of equivalences, and so
concludes the second step.
a
Proof of corollary 1
If ¢(T-1)>> #, then prolem I is equivalent to the auxiliary problem defined in the demonstration
of theorem 1, but the optimal policy of this auxiliary problem, which is defined under (12), verifies
¢(T-1) > 7 iff ¢(0)>> R(D,T-2), as we have seen in the second step of the proof of the theorem 1. So if
c(0)y=R(0,T-2) then c(T-1)=7 holds, since for hypothesis it is o(T-I)=r.
]

Proof of theorem 2

Let the auxiliary problem:
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e
MAX  { Y Na-bg®)-c(ta® } (a8)
=0
gO,....q(T-1)

subject to:

ct+1) = c-Bglty t=10,..52 4%

on =7 t=s5..7T-1 (50)

q(0) =0 for every t€{0,...,T-1}.
c(0) given

If. under 7°(0), it holds c(s)=7, and if the optimat policy of this auxiliary problem satisfies the

additional constraints:
c(ty=T, for every te{1,...,5-1}
(Bt <, for every tE {s-1,...,T-2} (in Fact, it is sufficient that c(s-1)-Bq(s-1)< 1)

then this optimal policy is also the optimal policy for problem .

The proof is similar to the proof of theorem 1 and it has two steps. In the first step we solve the
auxiliary problem, and we show that the optimal policy for this problem is the one given in the thesis
of the theorem. In the second step we prove that, under the hypotbesis of the theorem, the optimal policy

of the auxiliaty problem satisfies the additional constraints given above.

First step. We denote by J,7(e(6,ty the value function in the period t, and by
. (0={g,(0),-...q,(T-1)} the optimal policy for the suxiliary problem. The Bellman’s equation
associated with the auxiliary problem is:

12 (e, = MAX{{a-bgity-cO)gOy N, (e D+D} 1= 0,071 &1)
q)y=0

Eoullifing,

subject to (49} and (50), and taking J,(e(T), T)=0. Let t=T-1, that is c(T-1) given, then the probiem to
be solved is static, indeed it is the problem of lemma I taking c=c(T-1), q=q(T-1) and K=0. From that
lemma we have: 4,7 (T-1)=¢(T-1,5)(a-c(T-1)). The sufficient condition for maximum is b>>0, and if it
holds, then (5) ensures that the output is positive. From the lemma we also have

1 e(T-1), T-1)=K(T-1,9). Now let the next induction hypothesis for =s;
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I7(e(t+ 1)+ D=K(t+1,5) and g, (t+ D=¢(t+1,8)(a-c(t+1}). Let be ¢(t) given, then the function to be
maximized is again the function of lemma 1 taking c=c(t), g=q{t} and K=40, plus the constant

WK, (t+1,8). From that lemma we have: g, () =@(t,sHa-c(t)}, with c(t)=r. The sufficient condition for
maximum holds if b>0. We also have, from lemma 1: I (c(t),t)=Kt,s). Thus, by following the
induction until t=s we obtain: J,(c(s),8)=K,(5.8) and g, "(s)=¢(s,8)(a-e{s)). Let t=s-1, that is ¢(s-1)
given, then the function to be maximized obtained from Bellman’s equation is the function of the lenuma
1 waking: c=c(s-1), q=q(5-1) y K=0, plus the constant AK(s,s). From lemuma 1 we have:

q, {s-1)=¢(s-1,8)(a-c(s-1)). The sufficient condition for maximum is b>0. From lemma I we also have:
F(efs-1),5-1) =K,(s-1,5)+ K(s-1,8)(a-c(s-1))*. Let it now the induction hypothesis for t=s-1:

q, -+ 1) =e(t+ 1,s)a-c(t+ 1)) and I{cl-+D,t+1)=Kt+ 1,8} +K(t+1,5)(a-c(t+1)F. Let c{t) be given
(with 1=s-1), then we must solve Bellman’s equation, and to do so, the function to be maximized is the
function of the lemma 1 taking c=c(t), q=qft} and K=K(t+1,s), plus the constant AKy{t+1,s). From
that lemma we obtain: g, (f)=¢(,s)a-c(t)). The sufficient condition for maximum is b>NFK(+1,5).
¥f the last inequality holds, then (5} and (6) ensure that output is positive. We also obtain from lemma

1 17(elD, 0 =K (t,8) +K{t, s a-cD)

Second step. Note first that: ¢{s-1)-8g,"(s-1) < rec(s-1) = Q(s-1,5-1). Next we prove, by induction
on t, that, under r,’(0), it verifies:
7<e(s-1) S Q(5-1,5-1)9R(5-2,5-2) <c(s-2) <Q(s-2,5-1).. &R(Ls-2) <e{t} = Qft,5-1)&..
#R(0,5-2) < c(0) <Q(0,s-1). In effect, let 1=5-2:
7<o(s-1y = Qs-1,5-1)87 <o(s-2)-0¢q, (s-2) = Q(s-1,5-1)8R(5-2,5-2} < c(s-2) = Q(s-2,5-1). Induction
fiypothesis for t+1: 7<e(s-1)=Q(s-1,5-1DSR(E+1,5-2) <c(t+ 1) =Q(t+1,5-1). Let c(t) be given:
r<els-1) = Qis-1,8-1)8R{t+1,5-2) <e{t+ 1)< QU+ 1,5-1)eR(t+1,5-2) < c(t)-fg, () = Q1+ 1,5-1)=
«R(t,5-2) < c(t) = Q(t,s-1). Thus the chain of equivalences we wanted to prove is proved, so in particular:
7<e(s-1) £ Q(s-1,5-1)2R(0,5-2) < c(0) = Q(0,5-1); and this concludes the second step.

L]

Proof of corollary 2

If ¢(s-1)> r and ¢(s)=r, then preblem I is equivalent o the auxiliary problem defined in the
proof of theorem 2. The optimal policy for that problem is defined under (21). Under the optimal policy
for that auxiliary problem c(s-1}> 7 holds iff: ¢(0) >R(0,5-2), as we have proved in the second step of
the proof of theorem 2, but we have ¢(0)}=R{0,s-2), so it must be that ¢(s-1}=r, since by definition
cl(s-1) =T,
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Proof of theorem 3

Let the auxiliary problem:

T-1
MAX  { Y Ma-bg(t-cddq(t) } 52)
=1
g(0),. ...g{T-1}

subject to:

an =+ ¢=1,.T-1 53)

c(0) given
q(ty=0 for every t& {0,.. LT-1}.

If under Q) verifies ¢(1)=r and the optimal sclution for this auxiliary problem satisfies the

additional constraint:
c(0)-Bg(0y <7

then this optimal policy is also the optimal for problem L.

The proof has two steps. In the first step we solve the auxiliary problem, and we prove that the
optimal policy for this problem is the one given in the thesis of the theorem. In the second step we prove
that, under the hypothesis of the theorem, the optimal policy of the auxiliary problem satifies the

additional constraints given above.

First step. We denote by J(c(f).r) the value fupction in the period t, and by
7, (0y={g,7(0),....q,(T-1)} the optimal policy for the auxiliary problem. Bellman’s equation associated

with the auxikiary problem is:

T, = MAX{{a-bg(0)-cq) N, (ci+D,+1} £ = 0,71 (54)
g =0

S
g,

s

subject to (53), and taking J, (c(T),T)=0. Let t="T-1, that is ¢(T-1) given, then the problem to be solved
is static, indeed it is the problem of lemma I taking e=¢(T-1), q=q(T-1) and K=0. From that lemma
we have: q,‘(T~1)»~=¢('1'~1,1)(a-c(Tul)), with ¢(T-1)=7. The sufficient condition for maximum is b>0,
and if it holds, then {5) ensures that the output is positive. From the lemma we also obtain

3.7(e(T-1),T-1)=Ky(T-1,1}. Next, Jet the next induction hypothesis on t+1, for t>1:
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LMo+ 1Dt D=Ky(t+1,1) and g, {t+1)=¢(t+1,1)(a-c{t+1)). Let c(f) be given, the functicn to be
maximized, obtained from ¢51), is the function of lemma 1 taking: c=c(t}, q=q{t} and K=0; plus the
constant AK,(t+1,1). From the equations of that lemma we have: g, (ty=@(t, [)(a-c(t)}, with c(t)=r. The
sufficient condition for maximum is b>0. From lemma 1 we have I, (e(t),fy==Kyt,1). Thus, by
continuing the induction we obtain I, (¢(1),1)=Ke{1,1) and q,"(1)=¢(1,1)(a-c(1)}. Let t=0, that is, ¢(0)
is given, then, the function to be maximized, obtained from the Bellman’s equation, is the function of
the lemma 1 taking ¢=c(0), g=q{0) and K=0; plus the constant AKy(1,1). Hence, we obtain:

4, (0)=¢(0, 1)(a-c(0)). The sufficient condition for maxizmum is b>0. Furthermore, from the lemma 1,
we have: J,7(c(0),0) =Ky (0,1} +K(0, 1){a-c(0))*.

Second step. Note that, under 7, (0), we have: c(})=r=¢(0)-8g, (0) = rec(0) < Q(0,0).

Proof of theorem 4
Let t€{0,...,T-2}. Indeed we prove that:

Q6.0 < RGy ; J =0, (55)

We define: hix,y)=(x+B8ya)(1+8yy"; n(x}=(1+2Mx)(2b-2A5%)";
Z(x)=hx+ (1 + 208 (4b-4n5% ).

We have Q(t,t)=h{r,4(t,t+ 1)) and on other hand R(t,{)=h{r,¢{t,t+2)), where ¢(t,t-+1}=n(0)
and & 1+2)=n(K({t+1,t+2) with K@+1,t+2)=2(0). Hence: ¢{tt+1)<H((t,t+2), and so
h{r,¢{t,t +1)) <h{r,¢(t,t+2)). Thus {55) is true for j=1. Furthermore, for the period 1, associated with
@{t,t+ 1) we have K{t,t + 1)=z(0); and associated with ¢(t,t+2) we have K(t,t +2)=z(K{t+1,t+2}). With
simple algebra, and assuming the concavity condition it can be proved that K(t,t+2)>K(t,t+1).

To prove (55) for any j, it is enough to establish the last result as an induction hypothesis that
holds for j+1 and to prove that it alse holds for j. So, let (55) be true for j+1, and let also
K+ 1,1+ 2)>K({+1,t+1). By definition: ¢{j,t-+1) =n{K{+1,t+ 1)) and ¢(j,t + 2)=n(K{+1,+2)}, but
since n'(x) >0 for all x, it verifies ¢(j,t+2)> ¢(j,t+1). On other hand, since (55) is true for j+1 we
have Q-+ 1,6} <R(j+1,t). Thus, since: Q(.D=h(Q(+1,t),¢(j,t+1)) and R(j,£)=h({R{+ L,t},¢{,1+2));
we have Q(j,0) <R(j,t). Furthermore, 2’(x)>0 for all x, and so we have X(j,t+2)>K(j,t+1).

[}
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APPENDIX II
Horizontal axis represents time, and for. every period we plot the optimal Jevel of output.

Proof of theorem 5

The coroliaries 1 and 2, indicate that if ¢(0) <R(0,s-1) and (12) and (21) hold, then, uader #"(0), . . -
¢(g) =7 must occur. In this case, 77(0) is also the optimal policy of the auxiliary problem defined in the -
proof of theorem 2 for s> 1 or theorem 3 for s=1 if, the optimal policies of those auxitiary problems . : o /
satisfy the additional constraints: = ”. /

clty=7 for every t€{1,...,5-1} (if s> 1) mn P | -
c(s-1)-Bg(s-1) =7 Graph 1 Gra];h 2“ B

Since c(0) > Q(0,s-1), then it also verifies c(0) > R(D,5-2) {for s> 1} so, under the optimal policy

of the auxiliary problems mentioned before, we have c(s-1)>7, and so the first of the additional ( . |

constraints given above holds. However, the second constraint dees not hold for those optimal policies.

Since, under x{0), this constraint must hold, then 7 (0) is obtained from solving the auxiliary problem [ o
defined in the proof of theorem 2 if 53> 1, and the one defined in the proof of theorem 3 if s=1, and | /
mpossin: E I or / i
cls-1)-By(s-1) =7 i l - / e
[ % R E e e oy —
Graph 3 Graph 4

For t=s, the optimal policy of the auxiliary problems satisfies both auxiliary constraints, so it
is also the optimal policy for problem 1. Thus, we obtain, for t=s, ¢ {€)=¢(s,5)(a-c{t)), with c(t)=r and

Te),0) =Kq(t,8). For t=s-1, from Beliman’s equation associated with the auxiliary problems, we obtain

the next problem to be solved: Maxyy {(a-bq(s—1)—c(s-1))q(s-1)+)J-(c(s),s)} subject to :: j ', !

qls-1) = BYc(s-1)-r). The eptimum of this problem without taking into account the constraint is: ! wt

(b)*(a-c(s-1y). From the second step of the theorems 2 and 3 we abtain: ' ” / l

(Zbyia-cis- 1)) = f{els-1)-nee(s-1) = Q(s-1 .s-13ec(0) < (0,5-1). Since the last inequality does not hold, -

and (a—bq(s—l)—c(s—l))q(s—l)+)\J‘(c(s),s) is plobally concave in g(s-1), then q'(s-1) is the lowest vaiue of ' / "

q(s-1) such that it verifies the constraint, that is: L S R R %

q(s-1y=p"c{s-1)-1), or q'(s-1)=py{s-1)-pi{s-Defs-1). By substituting in the last objetive function we Graph 5 Graph 6

obtain: J(c(s-1),5-1) =K, gls-1}+K, gs-1)c(s-1) +K; (s-De(s-1) 15> 1, let the next induction hypothesis

for t+1, with t< s-l:lgq'(H Dy=pt+1rpy{t+ Deft+1) and .

Feft+ D)1+ 1)=Ky i+ 1)+K, plt+ Deft+ D+K, -+ De(t+ 1%, Let oft) be given, the problem to be : T i |

solved is: MaxX g0 {{a-bg(6)-e{taity+ N glt-+ 1)+ XK g(t-+ D(e(t}-8a(t)) + MK, gt + Die(t)-Bg(t)*}. The - | P

solution is ' - - E

q'(=pe(t)-p,(Dc(), and sufficient condition for maximum is b > MK, g(t). Furthermore, by substituting g ¢ ’ !

in the objetive function we obtain: J7(c(t),t)=Ko () +K, e()e(0)+ Kagle(t)’. ol o } |
Graph 7 Graph 8
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