
Spinning strings in the η-deformed Neumann-Rosochatius system

Rafael Hernández* and Juan Miguel Nieto†

Departamento de Física Teórica I, Universidad Complutense de Madrid, 28040 Madrid, Spain
(Received 4 August 2017; published 16 October 2017)

The sigma model of closed strings spinning in the η deformation of AdS5 × S5 leads to an integrable
deformation of the one-dimensional Neumann-Rosochatius mechanical system. In this article we construct
general solutions to this system that can be written in terms of elliptic functions. The solutions correspond
to closed strings with nonconstant radii rotating with two different angular momenta in an η-deformed
three-sphere. We analyze the reduction of the elliptic solutions for some limiting values of the deformation
parameter. For the case of solutions with constant radii we find the dependence of the classical energy of the
string on the angular momenta as an expansion in the ’t Hooft coupling.
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I. INTRODUCTION

The identification of the sigma model of bosonic strings
spinning in AdS5 × S5 with the Neumann and the Neumann-
Rosochatius systems was one of the first steps towards
the uncovering of the integrable structure underlying the
AdS/CFT correspondence [1]. The Neumann system is an
integrablemodel of harmonic oscillators restricted tomoveon
a sphere. The case of the Neumann-Rosochatius system
includes an additional centrifugal barrier term. The equiv-
alence of the spinning string ansatz to the Neumann and the
Neumann-Rosochatius integrable systems allowed a beau-
tiful description of quite general string configurations in terms
of solutions to these mechanical models and proved useful to
find their energies as functions of their spins and angular
momenta, which lead to very precise comparisons with the
corresponding gauge theory duals (see [2] for a review).
A natural problem is the extension of the spinning string

ansatz to the study of strings rotating in less symmetric
backgrounds that preserve integrability. The integrable defor-
mations of the sigma model of type IIB strings on AdS5 × S5

can be divided in three different classes, referred to as η
deformations [3], λ deformations [4] and deformations of
solutions to the classicalYang-Baxter equation [5]. In the case
of the η deformation, the spinning string ansatz was shown
to lead to a deformation of the Neumann system in [6],
where both the deformations of the Lax connection and the
Uhlenbeck integrals of motion were computed. More
recently, the η deformation of the complete Neumann-
Rosochatius system has been found in [7], and the problem
of geodesic motion on the η-deformed two-sphere has
been shown to be superintegrable [8]. In this article, we
will continue the analysis of the η-deformed Neumann-
Rosochatius system by constructing a general set of solutions
by integration of the problem in terms of Jacobian elliptic
functions (additional solutions corresponding to various

string configurations in η-deformed AdS5 × S5 have been
studied before using diverse approaches in Refs. [9–17]).
The remaining part of the article is organized as follows. In

Sec. II we will introduce the η deformation of the Neumann-
Rosochatius system. We will consider the case of a closed
string rotating with two different angular momenta in an
η-deformed three-sphere. In Sec. III we will employ the
Uhlenbeck constants of the system to write the equations of
motion of the problem in terms of an elliptic curve. We will
find a general class of solutions with nonconstant radii that
can be written in terms of Jacobi elliptic functions. We will
study the reduction of these elliptic solutions for some
limiting values of the deformation parameter of the system.
We conclude in Sec. IVwith some remarks on our results and
a discussion on some related problems. We include an
appendix where we recover the solutions that we have
obtained for limiting values of the η deformation by taking
the corresponding limit directly at the Lagrangian.

II. THE η-DEFORMED
NEUMANN-ROSOCHATIUS SYSTEM

In this article we will be interested in finding solutions
to the η-deformed Neumann-Rosochatius system. These
solutions will correspond to closed strings rotating in the η
deformation of AdS5 × S5. But before addressing the
general problem in the η-deformed system we will first
briefly review the spinning string ansatz in the absence of a
deformation. For simplicity we will restrict the dynamics of
the string to rotation in a three-sphere. We will thus take the
ansatz Y1 ¼ Y2 ¼ 0 and Y3 þ iY0 ¼ eiw0τ, together with

X1 þ iX2 ¼ x1ðσÞeiφ1ðτ;σÞ; X3 þ iX4 ¼ x2ðσÞeiφ2ðτ;σÞ;

ð2:1Þ

where Yj and Xk are, respectively, the embedding coor-
dinates of AdS3 and S3, and we have chosen
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φiðτ; σÞ ¼ ωiτ þ αiðσÞ; ð2:2Þ

with i ¼ 1, 2. As we are going to study closed string
solutions, the radial functions and the angles must satisfy
the periodicity conditions

xiðσ þ 2πÞ ¼ xiðσÞ; αiðσ þ 2πÞ ¼ αiðσÞ þ 2πmi;

ð2:3Þ
where mi are integer numbers that act as winding numbers.
When we enter this ansatz in the Polyakov action in the
conformal gauge we find the Lagrangian [1]

L ¼
ffiffiffi
λ

p

2π

�X2
i¼1

1

2
½x0i2 þ x2i ðα0i2 − ω2

i Þ� −
Λ
2
ðx21 þ x22 − 1Þ

�
;

ð2:4Þ
where the prime stands for derivatives with respect to σ and
Λ is a Lagrange multiplier. This is the Lagrangian of the
Neumann-Rosochatius integrable system, which describes
a set of oscillators with a centrifugal barrier constrained to
move on a sphere. The equations of motion are

x00i ¼ ðα02i − ω2
i þ ΛÞxi; α0i ¼

vi
x2i

; ð2:5Þ

where the vi are some integration constants and the
Virasoro constraints read

X2
i¼1

½x02i þ x2i ðα02i þ ω2
i Þ� ¼ w2

0;
X2
i¼1

x2i α
0
iωi ¼ 0: ð2:6Þ

The energy and the angular momenta Ji of the string are

E ¼
ffiffiffi
λ

p
w0; Ji ¼

ffiffiffi
λ

p Z
dσ
2π

x2iωi: ð2:7Þ

The integrability of the Neumann-Rosochatius system
follows from the existence of two integrals of motion I1
and I2 in involution, called the Uhlenbeck constants. The
Uhlenbeck constants were first found in [18] for the case of
the Neumann model, which corresponds to the choice
vi ¼ 0. In the case of the Neumann-Rosochatius system,
for arbitrary values of the constants vi, they are given by [1]

Ii¼x2i þ
X
j≠i

1

ω2
i −ω2

j

�
ðxix0j−xjx0iÞ2þv2i

x2j
x2i
þv2j

x2i
x2j

�
: ð2:8Þ

It is immediate to check that these integrals are constrained
by the relation I1 þ I2 ¼ 1.
Wewill nowmove to the case of a spinning string in the η

deformation of AdS5 × S5. In particular we will restrict
again our analysis to the motion on the deformed sphere. In
this case, the spinning string ansatz (2.1) and (2.2) leads to
the Lagrangian of the η-deformed Neumann-Rosochatius
system [6],

L ¼
ffiffiffi
λ

p

2π

� ðx1x02 − x01x2Þ2
ðx21 þ x22Þ½1þ ϰ2ðx21 þ x22Þx22�

þ x023
ðx21 þ x22Þ½1þ ϰ2ðx21 þ x22Þ�

þ x21ðα021 − ω2
1Þ

1þ ϰ2ðx21 þ x22Þx22
þ x22ðα022 − ω2

2Þ

þ x23ðα023 − ω2
3Þ

1þ ϰ2ðx21 þ x22Þ
þ 2ϰω1x1x2ðx1x02 − x2x01Þ

1þ ϰ2ðx21 þ x22Þx22
þ 2ϰω3x3x03
1þ ϰ2ðx21 þ x22Þ

−
Λ
2
ðx21 þ x22 þ x23 − 1Þ

�
; ð2:9Þ

where we have written the deformation parameter in terms
of ϰ ¼ 2η=ð1 − η2Þ. It is immediate to write down the
complete equations of motion for the radial and angular
coordinates coming from this Lagrangian. However in this
article we will only be interested in the case of a string
spinning on an η-deformed three-sphere. Therefore, rather
than presenting the general set of equations we will focus
on how we should perform a consistent reduction to capture
the dynamics on the deformed three-sphere. We can clarify
this by inspecting the equation of motion for x3, which is
given by

�
x03

ðx21 þ x22Þð1þ ϰ2ðx21 þ x22ÞÞ
�0

¼ Λx3 þ
x3ðα023 − ω2

3Þ
1þ ϰ2ðx21 þ x22Þ

:

ð2:10Þ

We see that x3 ¼ 0 is a solution independently of the
behavior of the other two coordinates. This means
that setting x3 ¼ 0 is a consistent truncation from the

η-deformed five-sphere to an η-deformed three-sphere.1

The Lagrangian simplifies to

1Note that this is not the only reduction that we can perform to
obtain a consistent truncation from S5η to S3η. For instance, from
the equation of motion for x1,

x001
r
¼ ϰ2

2ðx21 þ x22Þx01x2x02 þ x1x021 x
2
2 þ 2x01x

3
2x

0
2 − x1x22x

02
2

r2

− 4ϰω1

x1x2x02
r2

þ Λx1 þ
x1ðα021 − ω2

1Þ
r

�
1 − ϰ2

x21x
2
2

r

�
;

with r ¼ 1þ ϰ2x22ðx21 þ x22Þ, we conclude that the choice x1 ¼ 0
provides indeed another possible truncation. When we set x1 ¼ 0
the Lagrangian becomes

L¼1

2

�
x023

x22ð1þϰ2x22Þ
þx22ðα022 −ω2

2Þþ
x23ðα023 −ω2

3Þ
1þϰ2x22

�
þΛ
2
ðx22þx23−1Þ;

which can be easily seen to be equivalent to the one for the x3 ¼ 0
truncation.
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L ¼
ffiffiffi
λ

p

2π

�
x021 þ x022 þ x21ðα021 − ω2

1Þ
1þ ϰ2x22

þ x22ðα022 − ω2
2Þ

−
Λ
2
ðx21 þ x22 − 1Þ

�
: ð2:11Þ

The equations of motion for the radial coordinates are given
by

x001
1þ ϰ2x22

þ 2ϰ2
x1x021

ð1þ ϰ2x22Þ2
¼ x1ðα021 − ω2

1Þ
1þ ϰ2x22

þ Λx1;

ð2:12Þ

x002
1þ ϰ2x22

− 2ϰ2
x2x022

ð1þ ϰ2x22Þ2

¼ x2ðα022 − ω2
2Þ − ϰ2x2

x021 þ x022 þ x21ðα021 − ω2
1Þ

ð1þ ϰ2x22Þ2
þ Λx1;

ð2:13Þ

and for the angles we find

α01 ¼
v1
x21

ð1þ ϰ2x22ðx21 þ x22ÞÞ; α02 ¼
v2
x22

: ð2:14Þ

The Virasoro constraints become

x021 þ x022 þ x21ðα021 þ ω2
1Þ

1þ ϰ2x22
þ x22ðα022 þ ω2

2Þ ¼ w2
0; ð2:15Þ

x21α
0
1ω1

1þ ϰ2x22
þ x22α

0
2ω2 ¼ 0; ð2:16Þ

and the energy and the angular momenta are given now by

E ¼
ffiffiffi
λ

p
w0; J1 ¼

Z
dσ
2π

x21ω1

1þ ϰ2x22
; J2 ¼

Z
dσ
2π

x22ω2:

ð2:17Þ

We can prove that integrability remains a symmetry of
the system after the η deformation by constructing a
deformation ~Ii of the Uhlenbeck constants which makes
them constants of motion again. To find this deformation
we are going to assume that

~I1 ¼
1

ω2
1 − ω2

2

�
fðx1; x2Þ½x021 þ x022 � þ

v21x
2
2

x21

þ v22x
2
1

x22
þ hðx1; x2Þ

�
; ð2:18Þ

and impose that ~I01 ¼ 0. By doing this we find that

−2ϰ2f
�

x1x031
1þ ϰ2x22

þ x1x01x
02
2

1þ ϰ2x22

�
þ f0x021 þ f0x022 ¼ 0;

ð2:19Þ

where we have made use of the equations of motion (2.12)
and (2.13). We can easily integrate this relation to get

fðx2Þ ¼
1

1þ ϰ2x22
; ð2:20Þ

where we have set an overall integration constant to 1.
We can proceed in the same way to obtain the function h.
We finally conclude that2

~I1 ¼
1

ω2
1 − ω2

2

�
x021 þ x022 þ x21ω

2
1

1þ ϰ2x22
− x21ω

2
2

þ ð1þ ϰ2Þ v
2
1x

2
2

x21
þ v22x

2
1

x22

�
: ð2:21Þ

We can follow an identical reasoning to derive the
deformation of the second Uhlenbeck constant, which
turns to verify the extended closure relation ~I1 þ ~I2 ¼ 1.

III. SPINNING STRING SOLUTIONS

We will now focus on the construction of general
solutions to the η-deformed Neumann-Rosochatius system
corresponding to nonconstant radii strings rotating in S3η.
We will first introduce an ellipsoidal coordinate [19],
defined as the root of the equation

x21
ζ − ω2

1

þ x22
ζ − ω2

2

¼ 0: ð3:1Þ

If we assume that ω1 < ω2, then the ellipsoidal coordinate
will vary from ω2

1 to ω2
2. When we replace the radial

coordinates by the ellipsoidal one in the equations of
motion we are left with a second-order differential equation
for ζ. But we can more conveniently reduce the problem to
the study of a first-order equation by writing the Uhlenbeck
constant in terms of the ellipsoidal coordinate [1]. We find
that

ζ02 ¼ −4P4ðζÞ; ð3:2Þ

where P4ðζÞ is the fourth-order polynomial

2The Uhlenbeck constants were constructed using the Lax
representation in [6]. Some immediate algebra shows that the
constants in [6] reduce to the ones we present in here along the
x3 ¼ 0 truncation.
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P4ðζÞ ¼ −
ϰ2ω2

2

ðω2
1 − ω2

2Þ2
ðζ − ω2

1Þ2ðζ − ω2
2Þ2 þ ðω2

1 − ð1þ ϰ2Þω2
2 þ ϰ2ζÞ

�
~I1ðζ − ω2

1Þðζ − ω2
2Þ þ

ð1þ ϰ2Þv21
ω2
1 − ω2

2

ðζ − ω2
2Þ2

þ v22
ω2
1 − ω2

2

ðζ − ω2
1Þ2

�
þ ðζ − ω2

1Þ2ðζ − ω2
2Þ

¼ −
ϰ2ω2

2

ðω2
1 − ω2

2Þ2
Y4
i¼1

ðζ − ζiÞ: ð3:3Þ

We can solve this equation if we change variables to

η2 ¼ ζ − ζ4
ζ3 − ζ4

; ð3:4Þ

which transforms Eq. (3.2) into

η02 ¼ −
ϰ2ω2

2ζ
2
34

ðω2
1 − ω2

2Þ2
ð1 − η2Þðη2 − η21Þðη2 − η22Þ; ð3:5Þ

where we have defined ζij ¼ ζi − ζj and η2i ¼ ζi4=ζ34. The solution to this equation can be written in terms of the Jacobi
elliptic sine,

ηðσÞ ¼
−isn

h
�iϰω2ζ34η1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − η22Þ

p
ðσ − σ0Þ=ðω2

1 − ω2
2Þ; ν

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

η2
2

− sn2½�iϰω2ζ34η1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − η22Þ

p
ðσ − σ0Þ=ðω2

1 − ω2
2Þ; ν�

q ; ð3:6Þ

where the elliptic modulus is given by

ν ¼ ð1 − η21Þη22
ð1 − η22Þη21

¼ ζ13ζ24
ζ14ζ23

; ð3:7Þ

and σ0 is an integration constant that we can set to zero by performing a rotation. Therefore we conclude that

x21ðσÞ ¼
ω2
1 − ζ4

ω2
1 − ω2

2

−
ζ34

ω2
1 − ω2

2

ζ24sn2
h
�ϰω2

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ14ζ23

p
σ=ðω2

1 − ω2
2Þ; ν

i
ζ23 þ ζ24sn2½�ϰω2

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ14ζ23

p
σ=ðω2

1 − ω2
2Þ; ν�

: ð3:8Þ

Now we could use this expression to write the energy as a
function of the winding numbers and the angular
momenta. However, the first step in this direction, which
is finding the winding numbers and the momenta in terms
of the integration constants vi and the angular frequencies
ωi, already leads to complicated integrals. Instead of
following this path, which leads to cumbersome and
non-illuminating expressions, in what follows we will
analyze the problem in some interesting regimes of the
deformation parameter. Upon inspection of the polyno-
mial (3.3) it is clear that there are two limits that simplify
the evaluation of the roots, namely ϰ ¼ ∞ and ϰ ¼ i.3 The
fate of the deformed ten-dimensional background in each
of these limits has been studied in Ref. [21]. In the case

where ϰ ¼ ∞ the deformed ten-dimensional metric is
T-dual to de Sitter space times the hyperboloid, dS5 ×H5,
which can also be understood as a flipped double Wick
rotation of AdS5 × S5. On the other hand, in the limit
of imaginary deformation, ϰ ¼ i, the deformed ten-
dimensional metric turns into a pp-wave type background.
Wewill study first the case where ϰ ¼ ∞. To analyze this

limit we will consider two different possible choices of our
physical parameters. We will first set v2 ¼ ω1 ¼ 0. With
this choice, the roots of (3.3) become

ζ1;2 ¼
1

2

�
~I1ω2

2 − v21ð1þ ϰ2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½~I1ω2

2 − v21ð1þ ϰ2Þ�2 þ 4v21ω
2
2ð1þ ϰ2Þ

q �
;

ζ3 ¼
ω2
2ð1þ ϰ2Þ

ϰ2
; ζ4 ¼ ω2

2: ð3:9Þ
3From an algebraic point of view, the ϰ ¼ i limit behaves in the

same way as the limit of pure NS-NS flux in the analysis of the
deformation by flux of the Neumann-Rosochatius system [20].
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Therefore in the ϰ ¼ ∞ limit one of the roots goes to (minus) infinity and the degree of the polynomial reduces to three. In
order to take the limit at the level of the solution, we need to make sure that we can send ζ1 to minus infinity in a controlled
way. This requires writing Eq. (3.8) in the form

x21ðσÞ ¼
ω2
1 − ζ4

ω2
1 − ω2

2

−
ζ14

ω2
1 − ω2

2

ζ24sn2½�ϰω2

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ34ζ21

p
σ=ðω2

1 − ω2
2Þ; ν=ðν − 1Þ�

ζ13 þ ζ34sn2½�ϰω2

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ24ζ13

p
σ=ðω2

1 − ω2
2Þ; ν=ðν − 1Þ� : ð3:10Þ

After some manipulations we conclude that

x21ðσÞ ¼
ζ4
ω2
2

−
ζ34
ω2
2

sn2
h
∓ϰ

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ24ζ21

p
σ=ω2; ζ34=ζ24

i
þ � � � ;

ð3:11Þ

which when we enter explicitly the remaining roots
becomes

x21ðσÞ ¼ 1þ 1

ϰ2
sn2

�
∓ϰ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω2

2
~I2

q
σ;−v21=ω2

2
~I2

�
þ � � � ;

ð3:12Þ

where we have made use of the closure of the η-deformed
Uhlenbeck constants, ~I1 þ ~I2 ¼ 1. In the Appendix we
will study this solution in some detail, and find an
expansion for its energy in terms of the angular momentum.
The second interesting choice of parameters in the

ϰ ¼ ∞ limit is ω2 ¼ v1 ¼ v2 ¼ 0. In this case the roots
become

ζ1¼−∞; ζ2¼0; ζ3¼
ω2
1
~I2

1þϰ2~I1
; ζ4¼ω2

1; ð3:13Þ

and the degree of the polynomial is again reduced to three.
The solution is given by4

x22ðσÞ ¼
ζ2
ω2
1

−
ζ24
ω2
1

sn2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ23ð1þ ϰ2~I1Þ
q

σ; ζ24=ζ23

�
; ð3:14Þ

which when we enter the roots (3.13) turns into

x22ðσÞ ¼
~I2

1þ ϰ2~I1
sn2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω2

1ð1þ ϰ2~I1Þ
q

σ;
~I2

1þ ϰ2~I1

�
;

ð3:15Þ

where we have made use of the relation snðu;mÞ ¼
snð ffiffiffiffi

m
p

u; 1mÞ=
ffiffiffiffi
m

p
. We must note that this solution contains

four different regimes. In the cases where either ~I1 ≥ 1 or
~I1 < −1=ϰ2 we have to analytically continue the x2
coordinate to ix2. On the contrary, the region where

0 < ~I1 < 1 requires the continuation of the x1 coordinate
instead. Finally, in the region with −1=ϰ2 < ~I1 < 0 we are
left with a circular solution, which completely disappears in
the limit ϰ ¼ ∞, where the sphere gets deformed into the
hyperboloid [21].
We will now move to the study of the ϰ ¼ i limit. In this

limit the contribution from the constant v1 is negligible and
ω1 reduces to a shift in the Uhlenbeck constant. Therefore
ω2 and v2 are the only relevant free parameters. Again, we
will consider two different cases. Wewill first set v2 ¼ 0. In
this case the roots of (3.3) behave like

ζ1;2 ¼ 0þ � � � ; ζ3 ¼ ~I1ω2
2; ζ4 ¼ ω2

2: ð3:16Þ

Upon substitution and after some immediate algebra we
find

x21ðσÞ ¼
~I1

1þ ~I2 cosh2
� ffiffiffiffiffiffiffiffiffiffi

ω2
2
~I1

q
σ
� : ð3:17Þ

Wewill next consider the case with ω2 ¼ 0, where the roots
are given by

ζ1≃ζ2¼ω2
1þ��� ; ζ3¼

v22ω
2
1

v22−ω2
1
~I2
; ζ4¼−∞; ð3:18Þ

where we have kept ω1 ≠ 0 to avoid the need to redefine ~I1.
After some immediate algebra we conclude that

x21ðσÞ ¼
ω2
1
~I2

v22 − ω2
1
~I2
sech2ð~I2σÞ: ð3:19Þ

Now we can eliminate the ω1 factor by the redefinition
v2 ¼ ~v2ω1. As we have noted above, this is a consequence
of the fact that the term encoding the dependence on ω2

1 in
the Uhlenbeck integral becomes a constant in the ϰ ¼ i
limit, making it a dummy variable.
We must point out that although the solutions for v2 ¼ 0

and ω2 ¼ 0 seem completely different, they are deeply
related. This relation is not explicit from point of view of
the Uhlenbeck constant, but it will be evident once we have
written the Lagrangian associated to each limit. We will
explore this connection in the Appendix.
To conclude this section, we will consider the case where

the radii are taken to be constant, which allows us to obtain
4A similar result was obtained for the pulsating string ansatz in

Ref. [15].
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the energy of the string as an expansion in the ’t Hooft
coupling and the angular momentum for arbitrary values
of the deformation parameter. When we set to zero the
derivatives in the equations of motion and solve for the
Lagrange multiplier we find that

α021 − ω2
1

1þ ϰ2x22
¼ α022 − ω2

2 − ϰ2
x21ðα021 − ω2

1Þ
ð1þ ϰ2x22Þ2

: ð3:20Þ

We can rewrite this expression as

ð1þ ϰ2x22Þ2 ¼ ð1þ ϰ2Þm
2
1 − ω2

1

m2
2 − ω2

2

; ð3:21Þ

where we have used the constraint x21 þ x22 ¼ 1 and the fact
that mi ¼ α0i because the angular velocities are constant
when the radii are constant. From this relation it is
immediate to conclude that in the limit ϰ ¼ i the solution
reduces to x1 ¼ 0 and x2 ¼ 1, together with either zero
winding number or zero total angular momentum because
of the Virasoro constraint (2.16). However solving
Eq. (3.21) exactly for arbitrary values of the deformation
together with the Virasoro constraint leads to an algebraic
equation of sixth degree. Instead of trying to solve the
problem directly, we can write the solution as a power
series expansion in inverse powers of the total angular
momentum. We get5

x21 ¼
km2

km2 −m1

þ λ

2J2
km1m2ðm1 þm2Þðm1 −m2Þ3ðm2

1 − 2km1m2 þm2
2Þ

ðkm1 −m2Þ2ðm1 − km2Þ4
þ � � � ; ð3:22Þ

x22 ¼
m1

m1 − km2

−
λ

2J2
km1m2ðm1 þm2Þðm1 −m2Þ3ðm2

1 − 2km1m2 þm2
2Þ

ðkm1 −m2Þ2ðm1 − km2Þ4
þ � � � ; ð3:23Þ

for the radial coordinates, and

ω1 ¼
Jffiffiffi
λ

p km1 −m2

m1 −m2

þ
ffiffiffi
λ

p

2J
km1ðm1 þm2Þðm1 −m2Þ2ðm2

1 − 2km1m2 þm2
2Þ

ðkm1 −m2Þ2ðm1 − km2Þ2
þ � � � ; ð3:24Þ

ω2 ¼
Jffiffiffi
λ

p m1 − km2

m1 −m2

þ
ffiffiffi
λ

p

2J
km2ðm1 þm2Þðm1 −m2Þ2ðm2

1 − 2km1m2 þm2
2Þ

ðkm1 −m2Þ2ðm1 − km2Þ2
þ � � � ; ð3:25Þ

for the angular frequencies, where for convenience we have
defined k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϰ2

p
. Using now Eq. (2.15) it is immediate

to write the dispersion relation,

E2 ¼ J2
ðm2

1 − 2km1m2 þm2
2Þ

ðm1 −m2Þ2

þ λ
m1m2ðm2

1 − 2km1m2 þm2
2Þ

ðkm1 −m2Þðkm2 −m1Þ
þ…: ð3:26Þ

In the absence of deformation, this expression reduces to
the expansion for the energy of a circular string rotating in a
three-sphere with two different angular momenta [1].

IV. CONCLUSIONS

In this article we have constructed a general class of
solutions to the η-deformed Neumann-Rosochatius system.
The solutions that we have found correspond to closed
strings with nonconstant radii rotating with two different

angular momenta in an η-deformed three-sphere. The
solutions can be written in terms of Jacobian elliptic
functions. We have studied the problem for some limiting
values of the η deformation, which allow us to reduce
the degree of the polynomial of the elliptic surface. In
particular, we have considered the limit η ¼ 1, where the
deformed AdS5 × S5 target space becomes dS5 ×H5, and
the limit where η ¼ i, which corresponds to a string moving
in a pp-wave type background. We have also solved the
case of strings with constant radii as an expansion in the
’t Hooft coupling and the total angular momentum for
arbitrary values of the deformation parameter.
There are several interesting directions that can be

followed to extend our analysis. An immediate one is
the study of closed strings spinning in the complete
η-deformed five-sphere, or in the complete background.
The hyperelliptic curve solving the problem in this higher-
dimensional case should again get reduced for the η ¼ 1
and η ¼ i limiting values. A more appealing problem
comes from the relation between different integrable
deformations of AdS5 × S5. In fact, the η deformation that
we have considered in this article can be recovered from the
λ deformation by performing a scaling limit together with

5There is an additional possible expansion, depending on the
choice of signs for the winding numbers.
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an analytical continuation of the coordinates when the
deformation parameters are adequately identified [21,22]. It
would be worthwhile to investigate the meaning of our
solutions and of the η deformation of the Neumann-
Rosochatius system from the point of view of the λ
deformation (see Ref. [23] for a related recent discussion
on this point).
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APPENDIX: LAGRANGIAN DESCRIPTION

In this appendix we will analyze the solutions that we
have constructed in this article in the cases where ϰ ¼ ∞
and ϰ ¼ i by performing the corresponding limit directly at
the level of the Lagrangian. In order to deal with this
problem it will be useful to think of the change of variables
that brings the kinetic term in the deformed Lagrangian to
canonical form, which is given by x2 ¼ snðϕ;−ϰ2Þ. In the
variable ϕ the Lagrangian turns into

L ¼ 1

2

�
ϕ02 − ω2

2sn
2ðϕ;−ϰ2Þ − v22

sn2ðϕ;−ϰ2Þ

−
ω2
1ð1þ 1

ϰ2
Þ

1þ ϰ2sn2ðϕ;−ϰ2Þ −
ð1þ ϰ2Þv21
cn2ðϕ;−ϰ2Þ

�
: ðA1Þ

In the limit ϰ ¼ i the change of variables reduces to
x2 ¼ tanhϕ, together with x1 ¼ sechϕ, and thus the
Lagrangian becomes

Li ¼
1

2

�
ϕ02 −

v22
sinh2ϕ

−
ω2
2

cosh2ϕ

�
; ðA2Þ

where we have shifted the Lagrangian by a constant to
rewrite the term associated with v22 with a hyperbolic secant
instead of a hyperbolic cotangent. To find the limit ϰ ¼ ∞
we need to transform the elliptic sine, because its funda-
mental domain is defined when the elliptic modulus is
contained between 0 and 1. We will write

snðϕ;−ϰ2Þ ¼
sd
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ϰ2
p

ϕ; ϰ2

1þϰ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϰ2

p ≃ sinhðϰϕÞ
ϰ

: ðA3Þ

Therefore the change of variables is given by ϰx2 ¼
sinh ϰϕ ¼ sinh ~ϕ, which leads to6

L∞ ¼ 1

2ϰ2

�
~ϕ02 − ðω2

2 þ v21 þ ϰ2v21Þsinh2 ~ϕ

−
ϰ4v22
sinh2 ~ϕ

−
ð1þ ϰ2Þω2

1

cosh2 ~ϕ

�
: ðA4Þ

Both limits lead thus to the same kind of Lagrangian,
although with different coefficients in front of the
potential terms. In what follows we will treat both of them
simultaneously. However, even in these limiting cases the
Lagrangian is not easy to handle unless some additional
simplifications are performed. These simplifications will
come from various convenient choices of the physical
parameters entering the problem. We will start by consid-
ering the easiest choice of parameters on the Lagrangian,
which is that where only the potential with the square of the
hyperbolic sine survives. Then

L ¼ 1

2ϰ2
½ϕ02 − α2 sinh2 ϕ�; ðA5Þ

with α a constant which will depend on which of the two
limits we are taking. The equation of motion is then

ϕ00 ¼ −α sinhϕ coshϕ; ðA6Þ

and can be solved in terms of the Jacobi amplitude,

ϕðσÞ ¼ �iam

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ c

p
σ;

α2

α2 þ c

�
; ðA7Þ

where c is a constant that has to be fixed by imposing
periodicity of xi (we have made use again of our freedom
in the choice of σ to eliminate an additional integration
constant). Note that in general, depending on the sign of
α2 þ c, we find two different solutions.
We will now focus on the limit ϰ ¼ ∞. In this case the

solutions are given by

x22ðσÞ¼−
1

ϰ2
sn2

� ffiffiffiffiffiffiffiffiffiffiffiffi
α2þc

p
σ;

α2

α2þc

�
; whenα2þc>0;

ðA8Þ

6The extra term ðv21 þ ϰ2v21Þ accompanying ω2
2 comes from the

expansion of the Jacobi cosine. Also, although not obvious,
taking this limit implicitly assumes x2 ≪ Oðϰ−1Þ. That is the
reason why the 1 − x22 factor dividing the kinetic term disappears,
in spite of direct substitution of the change of variables it is
subleading in ϰ−2.
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x22ðσÞ¼
1

ϰ2
sc2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðα2þcÞ

q
σ;

c
α2þc

�
; whenα2þc<0:

ðA9Þ

Note that in both cases we have to analytically continue to
hyperbolic space. This is in agreement with the results
obtained in [21], where in the limit ϰ ¼ ∞ the deformed
sphere becomes a hyperboloid. We must however stress
that the periodicity condition for each solution is different.
This is because the real periodicity of the sn2 function is
given by 2KðmÞ while its imaginary periodicity is
2iKð1 −mÞ, where KðxÞ is the complete elliptic integral
of first kind. Furthermore, the presence of the Jacobi
scðu;mÞ function in the case where α2 þ c < 0 leads to
a divergence when evaluating the angular momentum, so
from now on we will only consider relation (A8). This case
corresponds to solution (3.12) once we set α2 þ c ¼
ϰ2ω2

2ð~I1 − 1Þ. The periodicity condition implies

n
π
K

�
α2

α2 þ c

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ c

p
; ðA10Þ

which in general has no analytical solution. However, as α2

grows like ϰ2 we can assume that c=α2 is small enough to
perform a series expansion in both sides of the equality.
Then if we recall now that

K½1 − x�≃ −
logðxÞ

2
þ 2 logð2Þ; ðA11Þ

we find

c≃ nα
π
Wð16απe−2απ=n=nÞ; ðA12Þ

where WðxÞ is the Lambert W function. In fact, it is
easy to check that our assumption becomes true very fast,
because when n ¼ 10 and α2 ¼ 200 we already have
c=α2 ≈ 0.0014. Now, as we need to set v2 ¼ ω1 ¼ 0
to bring the Lagrangian to the form (A5), we have J1 ¼
m2 ¼ 0 and therefore we only need to compute the angular
momentum,

J2 ¼
Z

dσ
2π

x22ω2 ¼
ω2

ϰ2
α2 þ c
α2

�
1 −

Eð α2

α2þcÞ
Kð α2

α2þcÞ

#
; ðA13Þ

and the winding number,

m1 ¼
Z

dσ
2π

v1ð1− ϰ2x22Þ
x21

¼ v1

2
641þ ϰ2

ϰ2

Π
�
− 1

ϰ2
; α2

α2þc

�
K
�

α2

α2þc

� − 1

3
75;

ðA14Þ

where we have used the periodicity condition to simplify
both expressions, and EðxÞ and Πðn; xÞ are, respectively,
the complete elliptic integrals of the second and the third
kind. If we take now the large α2 limit, we conclude that

J2 ¼ J ¼ ω2

ϰ2
þ � � � ; ðA15Þ

where we have used that the first elliptic integral diverges
at x ¼ 1, while the second elliptic integral goes to 1. The
winding number can also be expanded as

m1 ¼
3v1
2ϰ2

þ � � � : ðA16Þ

The only thing left is to find the dispersion relation,

E2 ¼
Z

dσ
2π

�
x021 − x022
1− ϰ2x22

þ v21ð1− ϰ2x22Þ
x21

− x22ω
2
2

�

¼ α2

2
641− ð1þ ϰ2Þα2 þ c

ϰ2α2

Π
�
−1; α2

α2þc

�
K
�

α2

α2þc

�
3
75þm1v1 − Jω2;

ðA17Þ

that can be easily expanded to find

E2 ¼ −
α2

2ϰ2
þm1v1 − Jω2 þ � � �

¼ −
2ϰ4m2

1

9
þ 4ϰ2m2

1

9
−
3ϰ2J2

2
þ � � � : ðA18Þ

Note that the energy that we have obtained is purely
imaginary. This is a consequence of the fact that the
η-deformed anti–de Sitter factor in the metric reduces to
de Sitter space in the ϰ → ∞ limit [21]. Therefore the time
coordinate is analytically continued, which explains the
negative sign on the square of the energy.
Wewill next move to the choice of parameters that brings

the Lagrangian to the form

L ¼ 1

2ϰ2

�
ϕ02 −

α2

cosh2ϕ

�
: ðA19Þ

Instead of writing the equations of motion for this
Lagrangian and trying to integrate them it is more con-
venient to write the corresponding Hamiltonian,

H ¼ ϕ02 þ α2

cosh2 ϕ
; ðA20Þ

and make use that it is a conserved quantity to find ϕ from
direct integration. We conclude that
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arcsinhϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jα2 −Hj

H

r
sinhð

ffiffiffiffi
H

p
σÞ ¼ ϰx2: ðA21Þ

However this solution is not the same as the one we
obtained by analyzing the roots of the quartic polynomial
(3.15). The reason for this mismatch is that, as we have
previously discussed, the Lagrangian that we have written
implicitly ignores the 1=ð1 − x22Þ term in the kinetic energy
as it is subleading in ϰ. If we restore this factor the
Hamiltonian reads

H̄ ¼ ϰ2ϕ02

ϰ2 − sinh2ϕ
þ α2

cosh2ϕ
; ðA22Þ

which can be integrated to obtain

ϰx2 ¼ arcsinhϕ

¼ �ϰsn

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H̄ − α2

ϰ2

s
σ;

H̄ϰ2

α2 − H̄

1
CA

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − H̄

H̄

r
sn

� ffiffiffiffiffiffiffiffi
−H̄

p
σ;
α2 − H̄
H̄ϰ2

�
: ðA23Þ

In fact, solution (A21) can be recovered from (A23) by
taking the ϰ ¼ ∞ limit on the last expression. From the
point of view of Eq. (3.15), ignoring the 1=ð1 − x22Þ term in
the kinetic energy can be understood as taking explicitly the
limit ζ3 ≪ ζ4, which implies

ζðσÞ ¼ ζ3 sinh2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1ð1þ ϰ2~I1Þ

q
σ

�
: ðA24Þ

We can match the solutions obtained from the
Uhlenbeck constants to the solutions obtained from the

equation of motion by identifying H̄ ¼ ω2
1ð1þ ϰ2~I1Þ and

α2 ¼ ð1þ ϰ2Þω2
1.

We can now easily find the solution to the equations of
motion for the ϰ ¼ i limit in the case where v2 ¼ 0. To
do that we only have to use the transformation x1 ¼ sechϕ
in solution (A21) and recall that sech½arcsinhðxÞ� ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
. We find that

x21ðσÞ ¼
H

H − jα2 −Hjcosh2ð ffiffiffiffi
H

p
σÞ : ðA25Þ

This solution can be identified with Eq. (3.17) once we
perform the substitutions α2 ¼ ω2

2 andH ¼ ~I1ω2
2. Note that

for the formula to have the correct sign we need ~I1 ≤ 1,
which is equivalent to the condition ω2

1 ≤ ζi ≤ ω2
2 on the

roots of the elliptic curve.
To conclude our discussion we will address a third

simplification of the Lagrangian,

L ¼ 1

2ϰ2

�
ϕ02 −

β2

sinh2ϕ

�
: ðA26Þ

We can get all possible solutions to this Lagrangian from
the solutions of Lagrangian (A19) after substituting
ϕ → ϕþ iπ

2
and β2 → −α2. Let us examine one of the

solutions, corresponding to the limit ϰ ¼ i and ω2 ¼ 0. If
we choose the solution with the hyperbolic cosine we get

x21ðσÞ ¼ sech2
�
ϕ� iπ

2

�
¼ H

−β2 −H
sech2ð

ffiffiffiffi
H

p
σÞ;

ðA27Þ

which is equivalent to solution (3.19) once we identify
β2 ¼ −v22 and H ¼ ~I2.
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