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[. INTRODUCTION

This article deals with the problem of extracting information of a three-dimensional dynamical
systemX, whenX is embedded into a Lie algebra of 3-D vectorfields.

This approach is interesting since up to now, as we explain later in this work, the only case
considered has been that in which the generators of the Lie algebXaaare a certain number of
symmetries or pseudosymmetries>of Such restriction is dropped in this article.

Let us explain this in more detail.

It is well known' that when a vectorfieléX (v.f. in what follows admits a symmetry vector,
that is, a v.f.S satisfying

Lg(X)=0, )

Lg standing for the Lie derivative along the streamlineSafiseful consequences on the local and
global structure oX can be obtained: existence of local and global first integrals, limit cycles of
X,? etc.

Remember thatl) implies that the flow of the v.fS acts on the set of solutions of the
differential equations

dx_
i =X @

In other words, the local flow 0% transforms a solution of2) into another solution of Eq2).
Sometimes the pair of v.f.X,S) does not satisfy Eq.l) but the equations

Lg(X)=A(X)X, )

N(X) being a function. In this casgis called a pseudosymmetry ®f The geometrical meaning
of Eq. (3) is that the local flow ofS conservesotthe solutions of2) but the trajectories on which
these solutions li€a trajectory ofX is just an unparametrized solution Xj.

Interesting geometric information on the trajectoriesXofvhen (3) holds can be found in
Ref. 2.

Motivated by Eqgs(1) and(3) we consider in this article that (a R3 v.f. from now on is one
of the generators of a Lie algebfg , of dimension two orA; 3 of dimension three. That is,

[X,S1]=acX+a;S;,
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ag,a;eR, 4
rank X,S;)=2 for anyxe R,

in the first case, and

[X,S]=aoX+2a;S +a,Ss,,
[X,S:]=bpX+Db;S,+b,S,,
[S1,S]=coX+C1S + ¢S, (5)
a; !bi ,CiER,
rank X,S;,S,)=3 for anyxe R3,

in the case of an algebra of type ;.

Note that[,] stands for the Lie bracket of v.f. ar| ; (i=]) stands for a Lie algebra with
generatorgincluding X) and rank K,S;,..,.§_1)=].

We shall say thaK belongs to a certain Lie algebraXfis one of its generators. For example,
X belongs to the Lie algebras, , and A; ; defined by Eqs(4) and(5).

Note that the case of pseudosymmetries corresponds @ in Eq. (4) anda;=a,=b;
=b,=0 in Eq. (5).

We shall prove in what follows that when a dynamical syskinelongs to a Lie algebra this
information can be useful in order to get qualitative information on the orbits. of

This article is organized this way. Lie algebras of typg, are briefly considered in Sec. I,
where their influence oX is studied. The structure constants/Af3 algebras are reduced to a
finite number of canonical forms in Sec. Ill. The case of aX.émbedded into aA; ; Lie algebra
is studied in Sec. IV. lllustrative examples are given in Sec. V, and some open problems are
discussed in Sec. VI.

We end this section by motivating our study with some considerations of the significance and
applicability of the idea of embedding a vX. into a Lie algebra.

We shall refer to the illustrative example &f , algebragthat is, algebras with two generators
and rank equal 2: see E@})]. For these algebras E(}) can be interpreted in two ways:

(i) as the structure equation of a Lie transformatiimcal) group G acting oiik® of generators
X ands, or
(i)  as the equations defining an involutive distribufidiyenerated by andS.

The fact thatay anda; in Eq. (4) are real numbers instead of functions»af (x1,X5,X3) is a
useful piece of information that should be taken into account.
Therefore the philosophy of this article is the following:

(i) get X (if you can, via computer packages, ¢tbe embedded into the algebras x(r
=3) orA, 5(r=2) of some Lie transformation groud. We shall speak immediately about
the difficulties of this process.

(i)  apply the techniques of this article in order to get information on some structudésasf
first integrals, invariant sets, existence of partitionsidfinvariant undeiX, integrability
via quadratures, etc.

The most difficult point is, of course, the finding of the concrete embeddink. ¢h fact it may
even happen thdfor structural reasons connected with the orbit structur¥ o$trange or com-
plicated limit behavior of the orbits wheti—+) the embedding process will be a failure
because it does not exist at all. For example, by topological reasonsniipisssibleto get an
embedding oK into an algebra of typé; , or A, , if X is a dynamical system with an orbit which
is an asymptotic “limit cycle”(orbit of type S acting as limit set of neighboring orbjtsNever-
theless, the dynamical systexncould be embedded into an algebra of tyjg;.
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However, we haveot been able to find analytical conditions, geometric structures, etc. such
that if X satisfies them, theX cannot be embedded into an algebra of tigg. Upto today open
problems are to decide

(i) whether or not a given v.fX can be embedded into a finite dimensional Lie algebra, and
(i) whether or not a given v.iX can be embedded into an algebra of tyjes(n=3), where
nis a fixed natural number.

In general, the problem of studying the relation between the geometry of the ortXtauod the
type of algebra into whictlX can or cannot be embedded seems to be a very difficult one.

In conclussion, this article could be of interest to people working in differential equations,
dynamical systems, etc., and to all those normally handling symmetry techniques in differential
equations since we offer here a certain generalization of them yielding, under some conditions,
first integrals, invariant sets, integrability via quadratures, foliation&%ihvariant undeiX, etc.

Il. R DYNAMICAL SYSTEMS EMBEDDED INTO A LIE ALGEBRA Ass

Let us now develop some consequences of the fact that our dynamical sysseembedded
into a Lie algebra of typé\, ,, that is,

[X,S;]=agX+a;Sy,

ao,alE R, (6)

rank X,S;)=2.

We shall now obtain from Eq6) consequences of several kinds concerning the orbit structure of
X. Most of these results fail when the real constamjsand a; of (6) are substituted by real
functionsa(x) andb(x), xe R®. Therefore, most of these results cannot be obtained Whin
embedded into a two-dimensional foliation instead of being embedded iAg algebra.

From now on all the functions v.f.’s, and differential forms of this article are assumed to be
analytic (C"). See Refs. 3-5 for the theory and applications of differential forms.

A. First integrals of X

We obtain now first integrals ok via the construction of exact one-forms. The reader can
have a look at this method whepy=a;=0 in Ref. 3.

Our assumptions are the following:
X belongs to &, , Lie algebra[see Eq.(6)] and

DivX=—a;, DivS,=a,, (7)
ay anda, being the real numbers of E¢) and DivY standing for

Div'Y = (7Y1 " (9Y2 f7Y3
VY= Xy Xy OXg'
8
Y:Y161+Y2&2+Y363.

DivY can be alternatively defined bgvQ;=Div Y Q,;, Q3 being the standard volume form
dx,0dx,0dx; of R3.
Under these hypotheses the one-fosmdefined by
Wl:iXi 5193 (9)

is exact w;=0) and we can write
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w,=dl, (10
and sincda,w;=0 we can write
Ly(1)=0. (11

Thereforel is a global first integral oK.
Note thatl can never become a trivial constant, as this would imply=0 (identically),
getting a contradiction with the rank condition appearing in &g.

B. Independent first integrals

Let us now assume that, |, are two independent first integrals 8f; this situation often
appears in physiésas S, usually is a v.f. easier to handle th¥n(isometries ofR® considered as
Euclidean space, linear or affine v.f. and sg.dsnder this assumption let us see that the integra-
tion of X can be simplified.

Under these conditions E6) implies

—Ls Lx(l)=aolx(ly), =12, (12)
and whenay=0 we get
Lx(1))=ei(l1,13), (13
that is, X projects to thek® v.f.
Xo=@1(l1,12)1 + @2l 1,12)d),, (14
that is
di,
H:%('l,'z),
(15
di,
HZQDZ(ILIZ)-

Therefore, the integration of has been simplified.

We now summarize the results of this section: We have seen that it is, in general, impossible
to get geometric information on the trajectories of fiiev.f. X just by knowing thaX belongs to
a certain Lie algebra of v.f. More information concerning the v.f. of the Lie algebra is needed: see,
for example, the requirements {i).

A similar observation can be made in relation to the study of the pseudosymmetkgseé
Eq. (3)]. Namely, pseudosymmetrigser sg are insufficient in order to get first integrals and other
geometric structures related to the trajectorieXof

What is new in this section is the fact that we have shown the possibility of getting global
geometric information on the trajectoriesXfwhenno pseudosymmetries are known but we have
discovered that our dynamical systefnis a generator of aA, , algebra of vectorfields.

For brevity reasons we shall not study in the following sections algebras oftypebut just
algebras of typé\; ;.

[ll. CLASSIFICATION OF A;3; ALGEBRAS

A classification list of theA; 3 algebras is given now. The proof shall not be given and will be
sent on request. As we can see the classification contains 18 different types. Note that the non-
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written brackets betweeX, S; and S, vanish and have been omitted. Nevertheless, all brackets
have been written in the algebra of type number @oe esthetic reasons

Any Aj; 3 algebra can be obtained from those appearing in the list by means of linear combi-
nations of type

* =a0X,
St =BoX+B1S1+B2S,,
S =YX+ ¥1S1+ 72, (16)

@9,Bo,v0eR ao#0,

B1v2—v1B270.

These linear combinations arise as the generdt@representing the dynamical systemust be
isolated in all the algebraic manipulations; otherwise a gene¥dtarould be obtained mixing the
dynamics ofX with the dynamics of the v.fS; andS,. Therefore, the orbit structure &f would
be unrelated to the orbit structure Xf .

The 18 types ofA; ; algebras are

D [X,§]=0,[$,$,]=0,i=12

@ [X,S]=X;
Q) [SuSI=X;
4 [X.§]=S;
6 [X.$]=S;, [S.§]=aS;, aek;
6 [S.S]=Sy;

(1) [X,S]=X, [S1.S]=X+aS;, aeR{0};

(8 [X,S]=X+S, [S1,S]=X;

(9) [X,Sz]:S_L, [SI!SZ]:_X1

(10 [X,$]=Sy [S1,.S]=X;

11 [X,$]=Sy, [X,S]=aS, acR\{0};

(12) [X,$1]=Sy, [X,S]=5+S;

(13 [X.S]=aS+S, [X,S,]= —S+aS, acR\{0}:
(14 [X,S]=X, [X,$]=S;, [S1.S]=X+S;

(15) [X!S].]:SZv [X!82]2_811 [81182]:)(1

(16) [X,S1]=S, [X,$]=S;, [S1,S]=X;

A7) [X,S1]= =81~ S, [X,$]=S,, [S1,$]=X; and
(18) [X,Sl]:_S_I_+Sz, [X!SZ:IZSZ! [S_IJSZ]:X

IV. INVARIANT SETS AND FIRST INTEGRALS WHEN THE DYNAMICAL SYSTEM IS

EMBEDDED INTO AN A;; ALGEBRA

We now show that it is possible to get first integrals, invariant sets and foliations invariant
under X when X belongs to am\; ; algebra. Reduction oK to a two-dimensional v.f. is also
possible(see Sec. IV E

A. Global results

We get in this paragraph global results ¥rassuming that
Lyw;=f(x)w;, (17

w; being a C differential form of degree (i=1,2,3).
Define the functiong\; via
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Aj=ixisisws, (18
Ap=ixigWz, =12, (19
Az=isisWa, (20)
Ay=ixwy, (21
As=igwi, j=12. (22)

We then get under standard manipulatfbns
Lx(A)=(f(x)+K)4;, Kek, (23

where the real numbé¢ depends on the constaras, b;, ¢; (i=0,1,2) defining the; ; algebra
[see Eq(5H)].
Now, Eg.(23) implies the following.

(i)  When the sefA;=0} is a differential manifoldV(A;)#0 for any P e {A;=0}), then the
set{A;=0} is invariant undeiX. See Example 1 in Sec. V.

(i)  Whenf+K is a function ofA; (in particular whenf +K is a constant real numbeithen
the setA;=const form a two-foliation invariant undeX.

(i)  Whenf(x) is a trivial constant function antHK is equal to zero, then the functiay is
a global first integral oX.

These results give useful information on the orbitXodnd they have been obtained without
problems in spite of the fact th&, andS, are, in general, not pseudosymmetriesxof

See the examples on these results at the end of the article.

Note that the techniques of this section can be appliezhyoof the canonical algebras of the
list in Sec. Ill.

B. Subalgebras

We now assume that ou; ; algebra contains twé\, , subalgebras satisfying
[X,S;]=aX+bs,,
[S2X]=a'X+Db'S,
[S:Si]=a"X+Db"S,,

a,a’,a”,b,b’,b" eR,

(24)

or
[S/.S]=cS[ +dS;,
[X.S{]=c'S+d'S;,
[X.§]=c"S[ +d"S;,

c,c’',c”.d,d,d"eR,

(29
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or both[i.e., Az 3 might contain a subalgebra satisfying E@4) and another two-dimensional
subalgebra satisfying EG25)]. Note that{X, S]} in the case of Eq(24) and{S} ,S;} in the case
of Eq. (25) are ideals of dimension two oﬂﬁ33

First of all, notice that we can apply the techniques of Sec. Il to the paig,) of Eq. (24).

Note that Eqs(24) are fulfilled by the algebras 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 13 and(Egjs.
are satisfied by the algebras 1, 4, 5, 6, 11, and 12.

On the other hand, algebras 13-18 satisfy neither EB.nor Egs.(25). The reader will
have no difficulty in checking all these points.

We give now the geometric meaning of qu4) and (25). Calling 5, and F; the two-
foliations associated with the pair¥(S,) and S7 ,S5), Egs.(24) and(25) can be rewritten in the
form

Ls(F2)CFs, (26)
and

Lx(F3)CF5 . (27)
Accordingly, 7, and 75 can be locally integrated via the well known formflas

Afl'(ixislﬂs):dh

Q5=dx;0dx,0dx3, (28
A=ixigisQs,
and
AL (igr rig Qg)=dI*, (29
| and1* satisfying
Lyx(1)=0 (30)
and
Ly(I*)=1(1%) (31

for a certain functiorf.

The functionl is, of course, a local integral of and it globalizes to &2 first integral ofX
when the functiomA of Eq. (28) never vanishes.

On the other hand, the geometrical meaning of B@) is that the local flow oX acts on the
level sets oft *. When the functiorf of (31) never vanishesX is free from closed trajectories. If
f(15)=0, then closed trajectories &f might appear on the level st =17 .

Note thatl and1* are genuine functions, not reducing to constant functions, since Azan
algebra the ranks of the pairX(S) and (S} ,S;) cannot be lower than 2.

C. Results

We now get several results on the orbits of the dynamical sy3teassuming that a pair of
first integrals common t&, andS, are known. For brevity's sake, the case of only a first integral
I common toS; andS, shall not be studied.

See Ref. 6 for a similar use of a pair of first integrals of a symmetryltt dynamical system
related to the Bessel, Poisson—Boltzmann, Emden—Fowler and Fermi—Thomas equations. This
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approach can be justified since in most of the applications th&\afe simple v.f.; often they are
affine, or even linear v.f., and therefore the finding of their first integrals is, in general, not
difficult.

Consider that

Ls(1)=0, i,j=12 (32
that isl,l, are independent first integrals commonSgS,. We then get via Eq5) (cy#0)
Ly(1)=¢i(l1,15) =12 (33
ThereforeX can be written in the form
X=¢1(X,Y)d1+ @2(X,y)d;. (34)

Accordingly, X has been reduced toRf v.f.

V. EXAMPLES
Examples 1Consider the conformal V.
X = (X —X5=X5) 91+ (2X1X) 2+ (2X1X3) I3 (35
and the v.f.

S;= X302~ X203,
(36)
S,= X101+ X072+ X33,
with commutation relations
[X,$1]=0, [X.S$]=-X, [S,$]=0. (37)
By application of the results obtained in Secs. IV A and IV B we get
Ar=ixis s (dx/\dxp/\dxg) = (x3+x3)(—x3—x5—X3). (39
On the other hand,
Lx(A1)=6X1-Aq. (39

Therefore, the seh ;=0 is invariant undeX. Note that the seA ;=0 is just thex;-axis.
Let us now get a local first integral of by application of the methods of Sec. IV B. In fact,
computingixis, (dxy/Adxo/\dx3)/ A1 we get the differential form

wy o 2xydxg Jr(—xzdxz—xgdx3)(x§—x§—x§) 40
Ay —xi—x5—x5 (X5+X5)(—x5—x5—x3) ' (40

which is locally exact w,/A;=dl). Upon integration we get the local first integtahat can be
reduced to

X5+X3

__Ketxs 41
X2+ X5+ X5 (41)

Example 2:Consider now the family of v.f.
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X=F(X3) (X34 X3) X191+ F (X3) (X34 X3) X0+ G(X3) (X5 +X5)"d3, n=1,2,3,..., (42

whereF and G are analytic ands vanishes on the set(ZCR).
LetS (i=1,2) be the v.f.

S1=X1d1+ X205,
(43
S=Xpd1= X105

The three v.fX,S;,S, form a commutative algebra. By applying to them the techniques of Secs.
IVA and IV B we get the invariant set

A1=G(xg)(xj+x3)" =0, (44)
that is, the invariant sets
X2+ x5=0,
(45)
X3=2, zel.

On the other hand, we can also write

Wy

A, =dl, (46)
w; standing for the one-form
Wi =1, (dx; HdxpUdXs). (47
We get in this way
1 F(x3)
_ = 2 2y
= > L(x{+X5) f Gixy) dxs, (48

L standing for Neperian logarithm, that is, a local first integrakof

Example 3:We now give an example related to Sec. Il B.

Let H;(x;,X5,X3) be homogeneous polynomials of degregsaandd,. DefineX andS viahe
equations

X=VHOVH,+ag(X191+ X2+ X3d3),
S=VH;0VH,, (49)
apge R, V=gradient operator.
The reader will check that
[X,S]=bS, beR. (50

Therefore the pairX,S) forms anA, , algebra.
SinceH,; andH, are first integrals of, we get from(50)

Ly(H1)=¢1(Hy,Hy),

(51)
Ly(H2)=@y(Hy,Hy),
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that is, X projects to theR? v.f.
®104,F €20H,: (52)

Note that the v.fX of (49) is not trivial, as it isnot a homogeneous V.f.

Note also that any first integré(H,,H,) of the reduced differential equatiofsl) is a first
integral of X.

Example 4:The considerations of Example 3 can be extended to nonhomogeneous functions
in this way.

Let H; andH, be nonhomogeneous polynomials that can be transformed into homogeneous
ones via a transformation of type

X1 — X5,
X2—> Xg y
(53
X3— X3,
a,b,ceR*.
For example, the pairs
H,= _ 2 2
1= XoXg, Ho=X{+X53+X3
and
Hi=X3+x3, Hy=xi—x3
become homogeneous under the transformations
X1—= X1, X=X, X3—>§
and
2 2
X1—>Xl X2—> 21 X3—>X3.
Under these circumstances the v.f. defined by
X= VH]_/\VH2+ aO(Xlﬁl-i- X2(?2+X3(93),
(54)

S:VHl/\VHz,

commutes as in Eq50). Therefore, the conclusions in Example 3 are valid for the v.f. of(E4).
For example, the Lorenz dynamical system

XL =0(Xo—X1)d1+ (=X X3+ X1 —Xp)do+ (X1Xo—bX3)d3, o,r,beR, (55
for the following particular values of the parameters,
o=3% r=0, b=1,
forms anA, , algebra, of the type discussed in this example, with the v.f.
S=V(x3+x2) AV (x2—x3) (56)

as the reader can check.
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Example 5We end this section with a list of second order differential equations appearing in
Physics(see in Ref. admitting a symmetry vectd® to which the methods of this article can be
applied(see Sec. 1B

(5.1) X%y 4+ XY+ X%y =0:

2

. X7y
Assomatedx:x=—xz—c9u+u8y+«9x U=Yyx.

Symmetry vector:S=ydy+ud,.
Commutation relation:[ X,S]=0.
First integrals ofS: 1,=x, Il,=uly.

(5.2 Y xxt Yy x/x=¢".

u
AssociatedX: X= ey—; dytUudytdy, U=Yiy.

Symmetry vector:X=xdy—2d,—Uud,.
Commutation relation:[ X,S]=X.
First integrals of S 1;=x%Y, 1,=xu.

(5.3 y xxt (2/X)y x+y"=0.

2u
Associated X: X=(—y”—? dytudytdy U=Y .

s . 2y 1+n
ymmetry vector: S=Xdy+ may'f' in udy .

Commutation relation:[ X,S]=X.
First integrals oB: [,=x2y"" 1, |,=x""yn~1,
(5.4) y o= X~ 1232
AssociatedX: X=(x"Y4%¥%)9,+ud,+d,, u=y,.

Symmetry vector: S=Xdy—3ydy—4ud,.
Commutation relation:[ X,S]=X.

First integrals ofS: 1,=x%, I,=x%u.

VI. FINAL REMARKS

We have seen that whenRE dynamical systenX lies inside anA,,, Az, or Az algebra
useful information on its trajectories can be obtained from this piece of information.

What happens wheK can be embedded into a Lie algel#g; whenn>3? Note that now
the canonical forms of Sec. Il are harder to obtain. On the other higngimight contain ideals
| containingX of lower dimensiom’, reducing the problem to an algeb&g. 5 of lower dimen-
sion. If no ideal of this type can be found, we can always apply the techniques of Sec. IV A.
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Considering only contractions of and S with differential forms of typews;, we can get in
this way a whole set of functiona;; :

Aj=ixisisWs, 1j=1..n-1, 57
leading to the sets
Aij(xl,X21X3):0 (58)

that are invariant undex [at least near the poini8on which(58) defines a differential manifold,
that isV(4;;)(P)#0].

Therefore, whem is high we can get, via Eq58), a collection of more and more sets
invariant undetX.

An open problem is to study if the numbmrof invariant sets in(58) is bounded or not when
n increases and whether or not these invariant sets accuntwlaém N is unboundef Does the
topology of the trajectories oK “feel” that X is included in anA, ; algebra(without proper
idealg whenn is large?

Another open problem meriting a separate study is this one: Assumx thabcluded among
the generators of aA,, ; algebra wheré\, 5 is an infinite Lie algebra, free from finite or infinite
proper ideals containink. Let us call themsimple-algebras.

Equation(57) can now be written in the form

Aij:iXiSiiSjW31 (59)

and, therefore, invariant sets ®f can be obtained this way.

The question arises again of classifying topologically the X.fthat can be included in a
simple A, 5 algebra.

Afinal question is this one: can a dynamical sysiérambedded into a Lie algebrs, ,, A, 3
orA. ,, A, 3 possess a strange attractor?
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