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Analytical and geometrical information on certain dynamical systemsX is obtained
under the assumption thatX is embedded into a certain real Lie algebra. ©2001
American Institute of Physics.@DOI: 10.1063/1.1412598#

I. INTRODUCTION

This article deals with the problem of extracting information of a three-dimensional dynam
systemX, whenX is embedded into a Lie algebra of 3-D vectorfields.

This approach is interesting since up to now, as we explain later in this work, the only
considered has been that in which the generators of the Lie algebra areX and a certain number o
symmetries or pseudosymmetries ofX. Such restriction is dropped in this article.

Let us explain this in more detail.
It is well known1 that when a vectorfieldX ~v.f. in what follows! admits a symmetry vector

that is, a v.f.S satisfying

LS~X!50, ~1!

LS standing for the Lie derivative along the streamlines ofS, useful consequences on the local a
global structure ofX can be obtained: existence of local and global first integrals, limit cycle
X,2 etc.

Remember that~1! implies that the flow of the v.f.S acts on the set of solutions of th
differential equations

dx

dt
5X~x!. ~2!

In other words, the local flow ofS transforms a solution of~2! into another solution of Eq.~2!.
Sometimes the pair of v.f. (X,S) does not satisfy Eq.~1! but the equations

LS~X!5l~x!X, ~3!

l(x) being a function. In this caseS is called a pseudosymmetry ofX. The geometrical meaning
of Eq. ~3! is that the local flow ofS conservesnot the solutions of~2! but the trajectories on which
these solutions lie~a trajectory ofX is just an unparametrized solution ofX!.

Interesting geometric information on the trajectories ofX when ~3! holds can be found in
Ref. 2.

Motivated by Eqs.~1! and~3! we consider in this article thatX ~a R3 v.f. from now on! is one
of the generators of a Lie algebraA2,2 of dimension two orA3,3 of dimension three. That is,

@X,S1#5a0X1a1S1 ,
57410022-2488/2001/42(12)/5741/12/$18.00 © 2001 American Institute of Physics
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a0 ,a1PR, ~4!

rank~X,S1!52 for anyxPR3,

in the first case, and

@X,S1#5a0X1a1S11a2S2 ,
@X,S2#5b0X1b1S11b2S2 ,
@S1 ,S2#5c0X1c1S11c2S2 ,

ai ,bi ,ciPR,
rank~X,S1 ,S2!53 for anyxPR3,

~5!

in the case of an algebra of typeA3,3.
Note that@,# stands for the Lie bracket of v.f. andAi , j ( i> j ) stands for a Lie algebra withi

generators~including X! and rank (X,S1 ,..,Si 21)5 j .
We shall say thatX belongs to a certain Lie algebra ifX is one of its generators. For exampl

X belongs to the Lie algebrasA2,2 andA3,3 defined by Eqs.~4! and ~5!.
Note that the case of pseudosymmetries corresponds toa150 in Eq. ~4! and a15a25b1

5b250 in Eq. ~5!.
We shall prove in what follows that when a dynamical systemX belongs to a Lie algebra thi

information can be useful in order to get qualitative information on the orbits ofX.
This article is organized this way. Lie algebras of typeA2,2 are briefly considered in Sec. II

where their influence onX is studied. The structure constants ofA3,3 algebras are reduced to
finite number of canonical forms in Sec. III. The case of a v.f.X embedded into anA3,3 Lie algebra
is studied in Sec. IV. Illustrative examples are given in Sec. V, and some open problem
discussed in Sec. VI.

We end this section by motivating our study with some considerations of the significanc
applicability of the idea of embedding a v.f.X into a Lie algebra.

We shall refer to the illustrative example ofA2,2 algebras@that is, algebras with two generato
and rank equal 2: see Eq.~4!#. For these algebras Eq.~4! can be interpreted in two ways:

~i! as the structure equation of a Lie transformation~local! group G acting onR3 of generators
X andS, or

~ii ! as the equations defining an involutive distribution3,4 generated byX andS.

The fact thata0 and a1 in Eq. ~4! are real numbers instead of functions ofx5(x1 ,x2 ,x3) is a
useful piece of information that should be taken into account.
Therefore the philosophy of this article is the following:

~i! get X ~if you can, via computer packages, etc.! be embedded into the algebrasAr ,3(r
>3) or Ar ,2(r>2) of some Lie transformation groupG. We shall speak immediately abou
the difficulties of this process.

~ii ! apply the techniques of this article in order to get information on some structures ofX, as
first integrals, invariant sets, existence of partitions ofR3 invariant underX, integrability
via quadratures, etc.

The most difficult point is, of course, the finding of the concrete embedding ofX. In fact it may
even happen that~for structural reasons connected with the orbit structure ofX, strange or com-
plicated limit behavior of the orbits whent→1`! the embedding process will be a failur
because it does not exist at all. For example, by topological reasons it isimpossibleto get an
embedding ofX into an algebra of typeA3,2 or A2,2 if X is a dynamical system with an orbit whic
is an asymptotic ‘‘limit cycle’’~orbit of typeS1 acting as limit set of neighboring orbits!. Never-
theless, the dynamical systemX could be embedded into an algebra of typeA3,3.
l 2013 to 147.96.14.16. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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However, we havenot been able to find analytical conditions, geometric structures, etc.
that if X satisfies them, thenX cannot be embedded into an algebra of typeA3,3. Upto today open
problems are to decide

~i! whether or not a given v.f.X can be embedded into a finite dimensional Lie algebra,
~ii ! whether or not a given v.f.X can be embedded into an algebra of typeAn,3(n>3), where

n is a fixed natural number.

In general, the problem of studying the relation between the geometry of the orbits ofX and the
type of algebra into whichX can or cannot be embedded seems to be a very difficult one.

In conclussion, this article could be of interest to people working in differential equat
dynamical systems, etc., and to all those normally handling symmetry techniques in differ
equations since we offer here a certain generalization of them yielding, under some cond
first integrals, invariant sets, integrability via quadratures, foliations ofR3 invariant underX, etc.

II. R3 DYNAMICAL SYSTEMS EMBEDDED INTO A LIE ALGEBRA A 2,2

Let us now develop some consequences of the fact that our dynamical systemX is embedded
into a Lie algebra of typeA2,2, that is,

@X,S1#5a0X1a1S1 ,

a0 ,a1PR, ~6!

rank~X,S1!52.

We shall now obtain from Eq.~6! consequences of several kinds concerning the orbit structu
X. Most of these results fail when the real constantsa0 and a1 of ~6! are substituted by rea
functionsa(x) andb(x), xPR3. Therefore, most of these results cannot be obtained whenX is
embedded into a two-dimensional foliation instead of being embedded into aA2,2 algebra.

From now on all the functions v.f.’s, and differential forms of this article are assumed t
analytic (Cw). See Refs. 3–5 for the theory and applications of differential forms.

A. First integrals of X

We obtain now first integrals ofX via the construction of exact one-forms. The reader
have a look at this method whena05a150 in Ref. 3.

Our assumptions are the following:
X belongs to aA2,2 Lie algebra@see Eq.~6!# and

Div X52a1 , Div S15a0 , ~7!

a0 anda1 being the real numbers of Eq.~6! and Div Y standing for

Div Y5
]Y1

]x1
1

]Y2

]x2
1

]Y3

]x3
,

~8!
Y5Y1]11Y2]21Y3]3 .

Div Y can be alternatively defined byLYV35Div Y•V3 , V3 being the standard volume form
dx1∧dx2∧dx3 of R3.

Under these hypotheses the one-formw1 defined by

w15 i xi s1
V3 ~9!

is exact (dw150) and we can write
l 2013 to 147.96.14.16. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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w15dI, ~10!

and sincei xw150 we can write

Lx~ I !50. ~11!

ThereforeI is a global first integral ofX.
Note that I can never become a trivial constant, as this would implyw150 ~identically!,

getting a contradiction with the rank condition appearing in Eq.~6!.

B. Independent first integrals

Let us now assume thatI 1 , I 2 are two independent first integrals ofS1; this situation often
appears in physics6 asS1 usually is a v.f. easier to handle thanX ~isometries ofR3 considered as
Euclidean space, linear or affine v.f. and so on!. Under this assumption let us see that the integ
tion of X can be simplified.

Under these conditions Eq.~6! implies

2LS1
LX~ I i !5a0LX~ I i !, i 51,2, ~12!

and whena050 we get

LX~ I i !5w i~ I 1 ,I 2!, ~13!

that is,X projects to theR3 v.f.

X25w1~ I 1 ,I 2!] I 1
1w2~ I 1 ,I 2!] I 2

, ~14!

that is

dI1

dt
5w1~ I 1 ,I 2!,

~15!
dI2

dt
5w2~ I 1 ,I 2!.

Therefore, the integration ofX has been simplified.
We now summarize the results of this section: We have seen that it is, in general, impo

to get geometric information on the trajectories of theR3 v.f. X just by knowing thatX belongs to
a certain Lie algebra of v.f. More information concerning the v.f. of the Lie algebra is needed
for example, the requirements in~7!.

A similar observation can be made in relation to the study of the pseudosymmetries ofX @see
Eq. ~3!#. Namely, pseudosymmetries,per se, are insufficient in order to get first integrals and oth
geometric structures related to the trajectories ofX.

What is new in this section is the fact that we have shown the possibility of getting g
geometric information on the trajectories ofX whenno pseudosymmetries are known but we ha
discovered that our dynamical systemX is a generator of anA2,2 algebra of vectorfields.

For brevity reasons we shall not study in the following sections algebras of typeA3,2, but just
algebras of typeA3,3.

III. CLASSIFICATION OF A 3,3 ALGEBRAS

A classification list of theA3,3 algebras is given now. The proof shall not be given and will
sent on request. As we can see the classification contains 18 different types. Note that th
l 2013 to 147.96.14.16. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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written brackets betweenX, S1 andS2 vanish and have been omitted. Nevertheless, all brac
have been written in the algebra of type number one~for esthetic reasons!.

Any A3,3 algebra can be obtained from those appearing in the list by means of linear c
nations of type

X* 5a0X,

S1* 5b0X1b1S11b2S2 ,

S2* 5g0X1g1S11g2S2 , ~16!

a0 ,b0 ,g0PR a0Þ0,

b1g22g1b2Þ0.

These linear combinations arise as the generatorX ~representing the dynamical system! must be
isolated in all the algebraic manipulations; otherwise a generatorX* could be obtained mixing the
dynamics ofX with the dynamics of the v.f.S1 andS2. Therefore, the orbit structure ofX would
be unrelated to the orbit structure ofX* .

The 18 types ofA3,3 algebras are

~1! @X,Si#50, @S1,S2#50, i 51,2;
~2! @X,S1#5X;
~3! @S1,S2#5X;
~4! @X,S1#5S1;
~5! @X,S2#5S1, @S1,S2#5aS1, aPR;
~6! @S1,S2#5S1;
~7! @X,S2#5X, @S1,S2#5X1aS1, aPR\$0%;
~8! @X,S2#5X1S1, @S1,S2#5X;
~9! @X,S2#5S1, @S1,S2#52X;
~10! @X,S2#5S1, @S1,S2#5X;
~11! @X,S1#5S1, @X,S2#5aS2, aPR\$0%;
~12! @X,S1#5S1, @X,S2#5S11S2;
~13! @X,S1#5aS11S2, @X,S2#52S11aS2, aPR\$0%;
~14! @X,S1#5X, @X,S2#5S1, @S1,S2#5X1S2;
~15! @X,S1#5S2, @X,S2#52S1, @S1,S2#5X;
~16! @X,S1#5S2, @X,S2#5S1, @S1,S2#5X;
~17! @X,S1#52S12S2, @X,S2#5S2, @S1,S2#5X; and
~18! @X,S1#52S11S2, @X,S2#5S2, @S1,S2#5X.

IV. INVARIANT SETS AND FIRST INTEGRALS WHEN THE DYNAMICAL SYSTEM IS
EMBEDDED INTO AN A 3,3 ALGEBRA

We now show that it is possible to get first integrals, invariant sets and foliations inva
underX when X belongs to anA3,3 algebra. Reduction ofX to a two-dimensional v.f. is also
possible~see Sec. IV C!.

A. Global results

We get in this paragraph global results onX assuming that

LXwi5 f ~x!wi , ~17!

wi being a C` differential form of degreei ~i 51,2,3).
Define the functionsD i via
l 2013 to 147.96.14.16. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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D l5 i Xi S1
i S2

w3 , ~18!

D25 i Xi Sj
w2 , j 51,2, ~19!

D35 i S1
i S2

w2 , ~20!

D45 i Xw1 , ~21!

D55 i Sj
w1 , j 51,2. ~22!

We then get under standard manipulations4

LX~D i !5~ f ~x!1K !D i , KPR, ~23!

where the real numberK depends on the constantsai , bi , ci ( i 50,1,2) defining theA3,3 algebra
@see Eq.~5!#.

Now, Eq. ~23! implies the following.

~i! When the set$D i50% is a differential manifold~¹(D i)Þ0 for any PP$D i50%!, then the
set$D i50% is invariant underX. See Example 1 in Sec. V.

~ii ! When f 1K is a function ofD i ~in particular whenf 1K is a constant real number!, then
the sets$D i5const% form a two-foliation invariant underX.

~iii ! When f (x) is a trivial constant function andf 1K is equal to zero, then the functionD i is
a global first integral ofX.

These results give useful information on the orbits ofX and they have been obtained witho
problems in spite of the fact thatS1 andS2 are, in general, not pseudosymmetries ofX.

See the examples on these results at the end of the article.
Note that the techniques of this section can be applied toanyof the canonical algebras of th

list in Sec. III.

B. Subalgebras

We now assume that ourA3,3 algebra contains twoA2,2 subalgebras satisfying

@X,S1#5aX1bS1,

@S2,X#5a8X1b8S1,
~24!

@S2,S1#5a9X1b9S1,

a,a8,a9,b,b8,b9PR,

or

@S1* ,S2* #5cS1* 1dS2* ,

@X,S1* #5c8S1* 1d8S2* ,
~25!

@X,S2* #5c9S1* 1d9S2* ,

c,c8,c9,d,d8,d9PR,
l 2013 to 147.96.14.16. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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or both @i.e., A3,3 might contain a subalgebra satisfying Eq.~24! and another two-dimensiona
subalgebra satisfying Eq.~25!#. Note that$X,S1% in the case of Eq.~24! and$S1* ,S2* % in the case
of Eq. ~25! are ideals of dimension two ofA3,3.7

First of all, notice that we can apply the techniques of Sec. II to the pair (X,S1) of Eq. ~24!.
Note that Eqs.~24! are fulfilled by the algebras 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 13 and Eqs.~25!

are satisfied by the algebras 1, 4, 5, 6, 11, and 12.
On the other hand, algebras 13–18 satisfy neither Eqs.~24! nor Eqs.~25!. The reader will

have no difficulty in checking all these points.
We give now the geometric meaning of Eqs.~24! and ~25!. Calling F2 and F2* the two-

foliations associated with the pairs (X,S1) and (S1* ,S2* ), Eqs.~24! and~25! can be rewritten in the
form

LS2
~F2!,F2 , ~26!

and

LX~F2* !,F2* . ~27!

Accordingly,F2 andF2* can be locally integrated via the well known formulas8

D21
•~ i Xi S1

V3!5dI,

V35dx1∧dx2∧dx3 , ~28!

D5 i Xi S1
i S2

V3 ,

and

D21
•~ i S1*

i S
2*
V3!5dI* , ~29!

I and I * satisfying

LX~ I !50 ~30!

and

LX~ I * !5 f ~ I * ! ~31!

for a certain functionf.
The functionI is, of course, a local integral ofX and it globalizes to aR3 first integral ofX

when the functionD of Eq. ~28! never vanishes.
On the other hand, the geometrical meaning of Eq.~31! is that the local flow ofX acts on the

level sets ofI * . When the functionf of ~31! never vanishes,X is free from closed trajectories. I
f (I 0* )50, then closed trajectories ofX might appear on the level setI * 5I 0* .

Note thatI and I * are genuine functions, not reducing to constant functions, since in anA3.3

algebra the ranks of the pairs (X,S) and (S1* ,S2* ) cannot be lower than 2.

C. Results

We now get several results on the orbits of the dynamical systemX assuming that a pair o
first integrals common toS1 andS2 are known. For brevity’s sake, the case of only a first integ
I common toS1 andS2 shall not be studied.

See Ref. 6 for a similar use of a pair of first integrals of a symmetry of aR3 dynamical system
related to the Bessel, Poisson–Boltzmann, Emden–Fowler and Fermi–Thomas equation
l 2013 to 147.96.14.16. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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approach can be justified since in most of the applications the v.f.Si are simple v.f.; often they are
affine, or even linear v.f., and therefore the finding of their first integrals is, in general
difficult.

Consider that

LSi
~ I j !50, i , j 51,2 ~32!

that is I 1 ,I 2 are independent first integrals common toS1,S2. We then get via Eq.~5! (c0Þ0)

LX~ I i !5w i~ I 1 ,I 2! i 51,2. ~33!

ThereforeX can be written in the form

X5w1~x,y!]11w2~x,y!]2 . ~34!

Accordingly,X has been reduced to aR2 v.f.

V. EXAMPLES

Examples 1:Consider the conformal v.f.4

X5~x1
22x2

22x3
2!]11~2x1x2!]21~2x1x3!]3 ~35!

and the v.f.

S15x3]22x2]3 ,
~36!

S25x1]11x2]21x3]3 ,

with commutation relations

@X,S1#50, @X,S2#52X, @S1,S2#50. ~37!

By application of the results obtained in Secs. IV A and IV B we get

D15 i Xi S1
i S2

~dx1`dx2`dx3!5~x2
21x3

2!~2x1
22x2

22x3
2!. ~38!

On the other hand,

LX~D1!56x1•D1 . ~39!

Therefore, the setD150 is invariant underX. Note that the setD150 is just thex1-axis.
Let us now get a local first integral ofX by application of the methods of Sec. IV B. In fac

computingi Xi S1
(dx1`dx2`dx3)/D1 we get the differential form

w1

D1
5

2x1dx1

2x1
22x2

22x3
2 1

~2x2dx22x3dx3!~x1
22x2

22x3
2!

~x2
21x3

2!~2x1
22x2

22x3
2!

, ~40!

which is locally exact (w1 /D15dI). Upon integration we get the local first integralI that can be
reduced to

I 85
x2

21x3
2

x1
21x2

21x3
2 . ~41!

Example 2:Consider now the family of v.f.
l 2013 to 147.96.14.16. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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X5F~x3!~x1
21x2

2!nx1]11F~x3!~x1
21x2

2!nx2]21G~x3!~x1
21x2

2!n]3 , n51,2,3,..., ~42!

whereF andG are analytic andG vanishes on the setZ(Z,R).
Let Si ( i 51,2) be the v.f.

S15x1]11x2]2 ,
~43!

S25x2]12x1]2 .

The three v.f.X,S1,S2 form a commutative algebra. By applying to them the techniques of S
IV A and IV B we get the invariant set

D15G~x3!~x1
21x2

2!n1150, ~44!

that is, the invariant sets

x1
21x2

250,
~45!

x35z, zPZ.

On the other hand, we can also write

w1

D1
5dI, ~46!

w1 standing for the one-form

w15 i xi s2
~dx1∧dx2∧dx3!. ~47!

We get in this way

I 5
1

2
L~x1

21x2
2!2E F~x3!

G~x3!
dx3 , ~48!

L standing for Neperian logarithm, that is, a local first integral ofX.
Example 3:We now give an example related to Sec. II B.
Let Hi(x1 ,x2 ,x3) be homogeneous polynomials of degreesd1 andd2 . DefineX andS viahe

equations

X5¹H1∧¹H21a0~x1]11x2]21x3]3!,

S5¹H1∧¹H2 , ~49!

a0PR, ¹5gradient operator.

The reader will check that

@X,S#5bS, bPR. ~50!

Therefore the pair (X,S) forms anA2,2 algebra.
SinceH1 andH2 are first integrals ofS, we get from~50!

Lx~H1!5w1~H1 ,H2!,
~51!

Lx~H2!5w2~H1 ,H2!,
l 2013 to 147.96.14.16. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



ctions

neous

5750 J. Math. Phys., Vol. 42, No. 12, December 2001 Campoamor-Stursberg, Gascon, and Peralta-Salas

Downloaded 01 Ju
that is,X projects to theR2 v.f.

w1]H1
1w2]H2

. ~52!

Note that the v.f.X of ~49! is not trivial, as it isnot a homogeneous v.f.
Note also that any first integralI (H1 ,H2) of the reduced differential equations~51! is a first

integral ofX.
Example 4:The considerations of Example 3 can be extended to nonhomogeneous fun

in this way.
Let H1 andH2 be nonhomogeneous polynomials that can be transformed into homoge

ones via a transformation of type

x1→x1
a ,

x2→x2
b ,

~53!
x3→x3

c ,

a,b,cPR1.

For example, the pairs

H15x2x3 , H25x1
21x2

21x3

and

H15x2
21x3

2, H25x1
22x3

become homogeneous under the transformations

x1→x1 , x2→x2 , x3→3
2

and

x1→x1 x2→2
2, x3→x3

2.

Under these circumstances the v.f. defined by

X5¹H1`¹H21a0~x1]11x2]21x3]3!,
~54!

S5¹H1`¹H2 ,

commutes as in Eq.~50!. Therefore, the conclusions in Example 3 are valid for the v.f. of Eq.~54!.
For example, the Lorenz dynamical system9

XL5s~x22x1!]11~2x1x31rx12x2!]21~x1x22bx3!]3, s,r ,bPR, ~55!

for the following particular values of the parameters,

s5 1
2, r 50, b51,

forms anA2,2 algebra, of the type discussed in this example, with the v.f.

S5¹~x2
21x3

2!`¹~x1
22x3! ~56!

as the reader can check.
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Example 5:We end this section with a list of second order differential equations appeari
Physics~see in Ref. 6! admitting a symmetry vectorS to which the methods of this article can b
applied~see Sec. II B!.

~5.1! x2y,xx1xy,x1x2y50:

AssociatedX:X5
2xu2x2y

x2 ]u1u]y1]x u5y,x .

Symmetry vector:S5y]y1u]u .

Commutation relation:@X,S#50.

First integrals ofS: I 15x, I 25u/y.

~5.2! y,xx1y,x /x5ey.

AssociatedX: X5S ey2
u

xD ]u1u]y1]x , u5y,x .

Symmetry vector:X5x]x22]y2u]u .

Commutation relation:@X,S#5X.

First integrals of S: I 15x2ey, I 25xu.

~5.3! y,xx1(2/x)y,x1yn50.

AssociatedX: X5S 2yn2
2u

x D ]u1u]y1]x u5y,x .

Symmetry vector:S5x]x1
2y

12n
]y1

11n

12n
u]u .

Commutation relation:@X,S#5X.

First integrals ofS: I 15x2yn21, I 25xn11un21.

~5.4! y,xx5x21/2y3/2.

AssociatedX: X5~x21/2y3/2!]u1u]y1]x , u5y,x .

Symmetry vector:S5x]x23y]y24u]u .

Commutation relation:@X,S#5X.

First integrals ofS: I 15x3y, I 25x4u.

VI. FINAL REMARKS

We have seen that when aR3 dynamical systemX lies inside anA2,2, A3,2 or A3,3 algebra
useful information on its trajectories can be obtained from this piece of information.

What happens whenX can be embedded into a Lie algebraAn,3 whenn.3? Note that now
the canonical forms of Sec. III are harder to obtain. On the other hand,An,3 might contain ideals
I containingX of lower dimensionn8, reducing the problem to an algebraAn8,3 of lower dimen-
sion. If no ideal of this type can be found, we can always apply the techniques of Sec. IV
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Considering only contractions ofX andSi with differential forms of typew3 , we can get in
this way a whole set of functionsD i j :

D i j 5 i Xi Si
i Sj

w3 , i , j 51,...,n21, ~57!

leading to the sets

D i j ~x1 ,x2 ,x3!50 ~58!

that are invariant underX @at least near the pointsP on which~58! defines a differential manifold
that is¹(D i j )(P)Þ0#.

Therefore, whenn is high we can get, via Eq.~58!, a collection of more and more se
invariant underX.

An open problem is to study if the numberN of invariant sets in~58! is bounded or not when
n increases and whether or not these invariant sets accumulate~whenN is unbounded!. Does the
topology of the trajectories ofX ‘‘feel’’ that X is included in anAn,3 algebra~without proper
ideals! whenn is large?

Another open problem meriting a separate study is this one: Assume thatX is included among
the generators of anA`,3 algebra whereA`,3 is an infinite Lie algebra, free from finite or infinite
proper ideals containingX. Let us call themsimple`-algebras.

Equation~57! can now be written in the form

D i j 5 i Xi Si
i Sj

w3 , ~59!

and, therefore, invariant sets ofX can be obtained this way.
The question arises again of classifying topologically the v.f.X that can be included in a

simpleA`,3 algebra.
A final question is this one: can a dynamical systemX embedded into a Lie algebraAn,2 , An,3

or A`,2 , A`,3 possess a strange attractor?9
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