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Abstract
We present a detailed analysis of the spin models with near-neighbors interactions con-

structed in our previous paper [1] by a suitable generalization of the exchange operator

formalism. We provide a complete description of a certain flag of finite-dimensional spaces

of spin functions preserved by the Hamiltonian of each model. By explicitly diagonalizing

the Hamiltonian in the latter spaces, we compute several infinite families of eigenfunc-

tions of the above models in closed form in terms of generalized Laguerre and Jacobi

polynomials.

PACS numbers: 03.65.Fd, 03.65.Ge

Keywords: Calogero–Sutherland models, exchange operators, quasi-exact solvability

1

http://arXiv.org/abs/nlin/0604073v2


1. INTRODUCTION

The discovery of the quantum models named after Calogero [2] and Suther-
land [3, 4] is a key development in the theory of integrable systems which has ex-
erted a far-reaching influence on many different areas of Mathematics and Physics.
This is borne out by the relevance of these models in such disparate fields as
group theory [5, 6], the theory of special functions and orthogonal polynomi-
als [7, 8, 9, 10], soliton theory [11], random matrix theory [12, 13, 14], quantum
field theory [15, 16, 17], etc. The Calogero and Sutherland models describe a sys-
tem ofN quantum particles in a line or circle, respectively, with pairwise interactions
inversely proportional to the square of the distance. Over the years, many different
generalizations of these models have been considered in the literature. One such
significant extension was proposed in the early eighties by Olshanetsky and Perelo-
mov [18], who showed that both the Calogero and Sutherland models are limiting
cases of a more general integrable model with a two-body interaction potential of
elliptic type. The integrability of the latter model was explained by expressing the
Hamiltonian as one of the radial components of the Laplace–Beltrami operator in a
symmetric space associated with the AN−1 root system. It was also shown in Ref. [18]
that one can construct integrable generalizations of the Calogero–Sutherland (CS)
models associated with any classical (extended) root system, like BCN .

Another essential feature of the original Calogero and Sutherland models and
their generalization to other root systems is their exact solvability, that is, the fact
that the whole spectrum can be computed in closed form using algebraic techniques.
In the last decade, some authors have introduced further extensions of CS models
which are quasi-exactly solvable, in the sense that only part of the spectrum can
be computed algebraically [19, 20, 21, 22]. In all of these quasi-exactly solvable
CS models, the Hamiltonian can be expressed as a polynomial in the generators of
a realization of the Lie algebra slN+1 in terms of first-order differential operators.
Since these operators leave invariant a finite-dimensional space of functions, the
Hamiltonian is guaranteed to possess a finite number of eigenfunctions belonging to
this space.

A great deal of attention has also been devoted to constructing models of CS type
for particles with internal degrees of freedom (typically spin), partly motivated by
their intimate connection with integrable spin chains of Haldane–Shastry type [23,
24]. Two main approaches have been followed in order to incorporate spin into CS
models, based either on supersymmetry [25, 26, 27, 28, 29] or the exchange (also
known as Dunkl) operator formalism [8, 30, 31, 32, 33, 34]. The spin models thus
obtained include the exactly solvable spin counterparts of the scalar Calogero and
Sutherland models of AN and BCN type, as well as several quasi-exactly solvable
deformations thereof, some of them with elliptic potentials [35, 36]. A common
property shared by all of these models is the long-range character of the interaction
potential, in the sense that all particles interact with each other.

The connection between spin CS models and spin chains of Haldane–Shastry
type was first elucidated by Polychronakos through a mechanism known as the
“freezing trick” [37]. The main idea is that in the large coupling constant limit
the particles in a (dynamical) spin CS model freeze at the classical equilibrium of
the scalar part of the potential, thus giving rise to a spin chain with long-range
position-dependent interactions. In this limit the eigenfunctions of the spin CS
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model factorize into the product of an eigenfunction of the corresponding scalar CS
model times an eigenfunction of the associated spin chain. If all the eigenfunctions
of both the scalar and spin CS models are known, the partition function of the
corresponding spin chain can be exactly computed from those of the scalar and spin
CS models [38, 39, 40].

A few years ago, Jain and Khare presented a novel class of scalar CS-like mod-
els of AN type, characterized by the fact that each particle only interacts with its
nearest and next-to-nearest neighbors [41]. In a subsequent paper [42], Auberson,
Jain and Khare discussed a generalization of these models to the BCN root system
and to higher dimensions. The latter papers, however, left open some important
issues, such as the exact or quasi-exact solvability of these models, the derivation of
general explicit formulas for their eigenfunctions and the existence of similar mod-
els for particles with spin. The last question was first addressed by Deguchi and
Ghosh [43], who introduced and partially solved several spin 1/2 extensions of the
scalar models of Jain and Khare using the supersymmetric approach. By a suitable
generalization of the exchange operator formalism, in our previous paper [1] we con-
structed the three spin models of AN type with near neighbors interactions listed in
Eq. (2) below. A significant property of these models is the fact that the spin chains
obtained from them by the freezing trick feature short-range position-dependent in-
teractions, and thus occupy an intermediate position between the Heisenberg chain
(with short-range position-independent interactions) and the spin chains of Haldane–
Shastry type (possessing long-range position-dependent interactions). In Ref. [1] we
presented without proof closed-form expressions for several infinite families of eigen-
functions of the scalar reductions of all three models, considerably generalizing the
results of Ref. [42]. We were also able to derive similar expressions for a wide class
of spin eigenfunctions of the models (2b) and (2c). The computation of the spin
eigenfunctions for the remaining model (2a), which is probably the most interest-
ing one due to the rich structure of its finite-dimensional invariant spaces, was not
undertaken in Ref. [1].

In this paper we present a detailed analysis of the models (2), with special empha-
sis on the rational model (2a). In particular, we have achieved a complete description
of the flag of invariant finite-dimensional spaces for the latter model presented in
Ref. [1]. More importantly, we have found that this flag can be further enlarged with
an additional family of spin functions. We have computed all the eigenfunctions of
the model (2a) belonging to the new flag, thereby obtaining seven infinite families
of spin eigenfunctions in closed form. These eigenfunctions have been expressed in
all cases in a compact way in terms of generalized Laguerre and Jacobi polynomials.
The resulting expressions will be used in a forthcoming paper for computing a num-
ber of eigenvalues and eigenfunctions of the spin chain obtained from the model (2a)
by taking the strong coupling limit.

The paper is organized as follows. In Section 2 we define the Hamiltonians of
the spin many-body models which are the subject of this work, and show that
they can be expressed in terms of suitable differential operators with near-neighbors
exchange terms. Section 3 is entirely devoted to the characterization of certain finite-
dimensional spaces of polynomial spin functions invariant under these operators.
The first part of this section deals with the construction of the latter spaces and the
proof of their invariance, cf. Theorem 1 and Corollary 1. In the rest of the section we
complete the description of the invariant spaces for the model (2a), by identifying the

3



spin states which satisfy a restriction stated in Theorem 1. In Section 4 we show that
the eigenvalue problems for the Hamiltonians of the models (2) restricted to their
invariant spaces reduce to finding the polynomial solutions of a corresponding system
of differential equations. By completely solving the latter problem, we obtain several
(infinite) families of eigenfunctions for the models (2), whose explicit expressions
are presented in Theorems 2–4. Finally, in Section 5 we summarize our results and
outline some related open problems.

2. THE MODELS

In this section we shall introduce the three types of N -body models with near-
neighbors interactions whose study is the aim of this paper. We shall also recall
from our previous paper [1] the relation of each of these models with a corresponding
differential-difference operator involving near-neighbors exchange operators.

Let us begin with some preliminary definitions. We shall denote by |s1 . . . sN〉,
where si = −M,−M + 1, . . . ,M and M ∈ 1

2
N, the elements of the canonical basis

of the space Σ of the particles’ internal degrees of freedom (SU(2M + 1) spin). The
action of the spin permutation operators Sij on this basis is given by

Sij| . . . si . . . sj . . . 〉 = | . . . sj . . . si . . . 〉.

The operators Sij can be expressed in terms of the fundamental SU(2M + 1) gener-
ators Sa

i , a = 1, . . . , 4M(M+1), as Sij = 1/(2M+1)+
∑

a S
a
i S

a
j . The Hamiltonians

of the models we shall be concerned with are given by

Hǫ = −
∑

i

∂2
xi

+ Vǫ , ǫ = 0, 1, 2, (1)

where

V0 = ω2r2 +
∑

i

2a2

(xi − xi−1)(xi − xi+1)
+

∑

i

2a

(xi − xi+1)2
(a− Si,i+1), (2a)

V1 = ω2r2 +
∑

i

b(b− 1)

x2
i

+
∑

i

8a2x2
i

(x2
i − x2

i−1)(x
2
i − x2

i+1)

+ 4a
∑

i

x2
i + x2

i+1

(x2
i − x2

i+1)
2 (a− Si,i+1), (2b)

V2 = 2a2
∑

i

cot(xi − xi−1) cot(xi − xi+1) + 2a
∑

i

csc2(xi − xi+1) (a− Si,i+1), (2c)

with r2 =
∑

i x
2
i and a, b > 1/2. Here and in what follows, all sums and products

run from 1 to N unless otherwise stated, with the identifications x0 ≡ xN and
xN+1 ≡ x1. A few remarks on the configuration spaces of these models are now in
order. In all three models the potential diverges as (xi −xi+1)

−2 on the hyperplanes
xi = xi+1, so that the particles i and i + 1 cannot overtake one another. Since we
are interested in models with nearest and next-to-nearest neighbors interactions, we
shall henceforth assume that x1 < · · · < xN . For the second potential (2b) we shall
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take in addition x1 > 0, due to the double pole at xi = 0. For a similar reason, we
shall assume that xi+1 − xi < π for the potential (2c).

Remark 1. The Hamiltonians (1) admit scalar reductions Hsc
ǫ ≡ Hǫ

∣∣
Si,i+1→1

satisfy-

ing the obvious identity
Hǫ(ψ|s〉) = (Hsc

ǫ ψ)|s〉 ,
where ψ is a scalar function of the coordinates x = (x1, . . . , xN) and |s〉 is a
totally symmetric spin state. It follows that the spin Hamiltonians Hǫ possess
factorized eigenfunctions of the form Ψ = ψ|s〉, where ψ is an eigenfunction of
the corresponding scalar Hamiltonian Hsc

ǫ and |s〉 is again a symmetric spin state.
The scalar reductions of the models (2a) and (2c) were introduced by Auberson,
Jain and Khare in Ref. [42], whereas that of the model (2b) first appeared in our
paper [1]. It should also be noted that for spin 1/2 the potentials V0 and V2 differ
from those studied by Deguchi and Ghosh in Ref. [43] by a spin-dependent term.

The models (2) share a common property that is ultimately responsible for their
partial solvability, namely that each HamiltonianHǫ is related to a scalar differential-
difference operator involving near-neighbors exchange operators. Indeed, let Kij

denote the operator whose action on a smooth function f of the (possibly complex)
coordinates z = (z1, . . . , zN ) is given by

(Kijf) (z1, . . . , zi, . . . , zj, . . . , zN) = f(z1, . . . , zj, . . . , zi, . . . , zN). (3)

Given a scalar differential-difference operator D linear in the exchange operator Kij ,
we shall denote by D∗ the differential operator acting on C∞ ⊗ Σ obtained from D
by the replacement Kij → Sij. One of the key ingredients in our construction is the
fact that

DΦ = D∗Φ , for all Φ ∈ Λ
(
C∞ ⊗ Σ

)
, (4)

where Λ denotes the projector on states totally symmetric under simultaneous per-
mutations of the coordinates and spins. Consider next the second-order differential-
difference operators Tǫ given by

Tǫ =
∑

i

zǫ
i∂

2
i +2a

∑

i

1

zi − zi+1

(zǫ
i∂i−zǫ

i+1∂i+1)−2a
∑

i

ϑǫ(zi, zi+1)

(zi − zi+1)2
(1−Ki,i+1), (5)

where ∂i = ∂zi
, zN+1 ≡ z1, and

ϑ0(x, y) = 1 , ϑ1(x, y) =
1

2
(x+ y) , ϑ2(x, y) = xy .

Each Hamiltonian Hǫ is related to a linear combination

Hǫ = c Tǫ + c−J
− + c0J

0 + E0 (6)

of its corresponding operator Tǫ and the first-order differential operators

J− =
∑

i

∂i , J0 =
∑

i

zi∂i (7)
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TABLE I: Parameters, gauge factor and change of variable in Eqs. (6) and (8).

ǫ = 0 ǫ = 1 ǫ = 2

c −1 −4 4

c− 0 −2(2b + 1) 0

c0 2ω 4ω 4(1 − 2a)

E0 Nω(2a + 1) Nω(4a + 2b + 1) 2Na2

µ(x) e−
ω
2

r2 ∏
i
|xi − xi+1|a e−

ω
2

r2 ∏
i
|x2

i − x2
i+1|

a
xb

i

∏
i

sina |xi − xi+1|

ζ(x) x x2 e±2ix

through the star mapping, a change of variables and a gauge transformation. More
precisely,

Hǫ = µ ·H∗
ǫ

∣∣
zi=ζ(xi)

· µ−1 , ǫ = 0, 1, 2, (8)

where the constants c, c−, c0, E0, the gauge factor µ(x), and the change of variables
ζ(x) for each model are listed in Table I.

From Eqs. (4) and (8) it follows that if Φ(z) ∈ Λ
(
C∞ ⊗ Σ

)
is a symmetric

eigenfunction of Hǫ, then

Ψ(x) = µ(x)Φ(z)|zi=ζ(xi) (9)

is a (formal) eigenfunction of Hǫ with the same eigenvalue. In this paper we shall
construct a flag H0

ǫ ⊂ H1
ǫ ⊂ · · · of finite-dimensional subspaces of Λ

(
C[z] ⊗ Σ

)

invariant under each Hǫ. We will show that the problem of diagonalizing Hǫ in
each subspace Hn

ǫ is equivalent to the computation of the polynomial solutions of
a system of linear differential equations. We shall completely solve this problem,
thereby obtaining several infinite families of eigenfunctions of Hǫ for each ǫ. From
the expressions for the change of variable and the gauge factor in Table I, and the
fact that the functions Φ in Eq. (9) are in all cases polynomials, it immediately
follows that the eigenfunctions thus obtained are in fact normalizable.

Remark 2. The operators (5) can be expressed as quadratic combinations of the
first-order operators

Dǫ
i = zǫ

i∂i , Qǫ
i =

ϑǫ(zi, zi+1)

zi − zi+1
(1 −Ki,i+1) +

ϑǫ(zi−1, zi)

zi − zi−1
(1 −Ki−1,i) ,

where ǫ = 0, 1, as follows:

T0 =
∑

i

[(
D0

i

)2
+ a

{
D0

i , Q
0
i

}]
, T1 =

∑

i

[
D1

iD
0
i + a

{
D1

i , Q
0
i

}]
,

T2 =
∑

i

[(
D1

i

)2
+

{
D1

i , aQ
1
i + a− 1

2

}]
.

For each nonnegative integer n, the space Pn of polynomials in z of total degree
at most n is invariant under the operators Qǫ

i (see Ref. [35]), and hence also under
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both Tǫ and Hǫ. Note, however, that the operators Hǫ do not commute with
the symmetrizer Λ, and thus the previous observation does not imply that they
preserve the space Λ(Pn ⊗ Σ) of symmetric spin functions of polynomial type.
Consequently, Hǫ is not guaranteed a priori to admit finite-dimensional invariant
subspaces of Λ

(
C[z]⊗Σ

)
. This is in fact the main difference with the usual solvable

spin CS models [8, 30, 35, 36, 44, 45, 46], for which the operators analogous to
Hǫ preserve Pn and commute with Λ, and hence automatically leave invariant the
space Λ(Pn ⊗ Σ).

3. THE INVARIANT SPACES

In this section we shall prove that each operator Tǫ leaves invariant a flag T 0
ǫ ⊂

T 1
ǫ ⊂ · · · , where T n

ǫ is a finite-dimensional subspace of Λ(Pn ⊗ Σ). This result
will then be used to construct a corresponding invariant flag H0

ǫ ⊂ H1
ǫ ⊂ · · · for the

operator Hǫ, where Hn
ǫ ⊂ T n

ǫ for all n.
Let us first introduce the following two sets of elementary symmetric polynomials:

σk =
∑

i

zk
i , τk =

∑

i1<···<ik

zi1 · · · zik ; k = 1, . . . , N .

It is well known that any symmetric polynomial in z can be expressed as a polynomial
in either σ ≡ (σ1, . . . , σN ) or τ ≡ (τ1, . . . , τN).

We shall denote by 2aXǫ the terms of Tǫ linear in derivatives, that is

Xǫ =
∑

i

1

zi − zi+1
(zǫ

i∂i − zǫ
i+1∂i+1) .

In the next lemma we show that each vector field Xǫ leaves invariant a corresponding
flag X 0

ǫ ⊂ X 1
ǫ ⊂ · · · of finite-dimensional subspaces of the space S ≡ C[σ] = C[τ ]

of symmetric polynomials in z.

Lemma 1. For each n = 0, 1, . . . , the operator Xǫ leaves invariant the linear space

X n
ǫ , where

X n
0 = C[σ1, σ2, σ3] ∩ Pn, X n

1 = C[σ1, σ2, τN ] ∩ Pn, X n
2 = C[σ1, τN−1, τN ] ∩ Pn.

Proof. If f is a function of the symmetric variables σ1, σ2, σ3, τN−1, τN , we shall use
from now on the convenient notation

fk =

{
∂σk

f , k = 1, 2, 3,

∂τk
f , k = N − 1, N.

Let us first consider the vector field X0. Since

X0σk = k
∑

i

zk−1
i X0zi = k

( ∑

i

zk−1
i

zi − zi+1

−
∑

i

zk−1
i

zi−1 − zi

)
=





0 , k = 1 ,

2N , k = 2 ,

6σ1 , k = 3 ,
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if f ∈ X n
0 we have

X0f = 2(Nf2 + 3σ1f3) ∈ X n
0 . (10a)

The proof for the remaining two cases follows from the analogous formulas

X1f = Nf1 + 4σ1f2 , f ∈ X n
1 ; (10b)

X2f = 2σ1f1 +N(τN−1fN−1 + τNfN) , f ∈ X n
2 . (10c)

Remark 3. It should be noted that these flags cannot be trivially enlarged, since,
e.g.,

1

4
X0σ4 = 2σ2 +

∑

i

zizi+1 ,

1

3
X1σ3 = 2σ2 +

∑

i

zizi+1 , X1τN−1 = τN
∑

i

(zizi+1)
−1 ,

1

2
X2σ2 = 2σ2 +

∑

i

zizi+1 , X2τN−2 = NτN−2 − τN
∑

i

(zizi+1)
−1

are not symmetric polynomials.
We note that the restriction of Tǫ to X n

ǫ ⊂ S obviously satisfies

Tǫ|Xn
ǫ

=
∑

i

zǫ
i∂

2
i + 2aXǫ . (11)

The second-order terms of the operator (11), however, do not preserve the corre-
sponding space X n

ǫ , unless one imposes the additional restrictions specified in the
following proposition:

Proposition 1. For each n = 0, 1, . . . , the operator Tǫ leaves invariant the linear

space Sn
ǫ , where

Sn
0 = {f ∈ X n

0 | f33 = 0} ,
Sn

1 = {f ∈ X n
1 | f22 = fNN = 0} ,

Sn
2 = {f ∈ X n

2 | f11 = fN−1,N−1 = 0} .

Proof. Let us begin with the operator T0. If f ∈ X n
0 , an elementary computation

shows that
∂if = f1 + 2zif2 + 3z2

i f3 (12)

and therefore

∑

i

∂2
i f = N(f11 + 2f2) + 2(2f12 + 3f3)σ1

+ 2(3f13 + 2f22)σ2 + 12f23σ3 + 9f33σ4 . (13)

From the previous formula and Eq. (10a) it follows that T0f ∈ Sn
0 whenever f ∈ Sn

0 .
Similarly, if f ∈ X n

1 we have

∂if = f1 + 2zif2 + z−1
i τNfN , (14)
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so that
∑

i

zi∂
2
i f = (f11 + 2f2)σ1 + 4f12σ2 + 4f22σ3

+ 2Nf1NτN + 4f2Nσ1τN + fNNτN−1τN , (15)

which together with Eq. (10b) implies that T1f ∈ Sn
1 for all f ∈ Sn

1 . Finally, if
f ∈ X n

2 then
∂if = f1 +

(
z−1

i τN−1 − z−2
i τN

)
fN−1 + z−1

i τNfN (16)

and hence
∑

i

z2
i ∂

2
i f = f11σ2 + 2f1,N−1(σ1τN−1 −NτN )

+ 2f1Nσ1τN + fN−1,N−1

[
(N − 1)τ 2

N−1 − 2τN−2τN
]

+ 2(N − 1)fN−1,NτN−1τN +NfNNτ
2
N . (17)

The statement follows again from the previous equation and Eq. (10c).

The last proposition implies that each operator Tǫ preserves “trivial” symmetric
spaces Sn

ǫ ⊗ Λ(Σ) spanned by factorized states. The main theorem of this section
shows that in fact the latter operator leaves invariant a flag of nontrivial finite-
dimensional subspaces of Λ(Pn ⊗ Σ). Before stating this theorem we need to make
a few preliminary definitions. Given a spin state |s〉 ∈ Σ, we set

|si〉 =
1

N !

∑

π∈SN

π(1)=i

π |s〉 , |s±ij〉 =
1

N !

∑

π∈SN

π(1)=i,π(2)=j

π(1 ± S12)|s〉 , (18)

where SN is the symmetric group on N elements. Here and throughout the paper
we identify an abstract permutation π with its realization as a permutation of the
particles’ spins. From Eq. (18) we have

Λ
(
f(z1)|s〉

)
=

∑

i

f(zi)|si〉 , Λ
(
g±(z1, z2)|s〉

)
=

∑

i<j

g±(zi, zj)|s±ij〉 , (19)

where the last identity holds if g±(z2, z1) = ±g±(z1, z2). We also define the subspace

Σ′ =
{
|s〉 ∈ Σ

∣∣ ∑
i

|s+
i,i+1〉 ∈ Λ(Σ)

}
⊂ Σ . (20)

Theorem 1. Let

T n
0 =

〈
f(σ1, σ2, σ3)Λ|s〉, g(σ1, σ2, σ3)Λ(z1|s〉), h(σ1, σ2)Λ(z2

1 |s〉),
h̃(σ1, σ2)Λ(z1z2|s′〉), w(σ1, σ2)Λ(z1z2(z1 − z2)|s〉) | f33 = g33 = 0

〉
,

T n
1 =

〈
f(σ1, σ2, τN)Λ|s〉, g(σ1, τN)Λ(z1|s〉) | f22 = fNN = gNN = 0

〉
,

T n
2 =

〈
f(σ1, τN−1, τN)Λ|s〉, g(τN−1, τN)Λ(z1|s〉), τNq(σ1, τN)Λ(z−1

1 |s〉)
| f11 = fN−1,N−1 = gN−1,N−1 = q11 = 0

〉
,

where |s〉 ∈ Σ, |s′〉 ∈ Σ′, deg f ≤ n, deg g ≤ n − 1, deg h ≤ n − 2, deg h̃ ≤ n − 2,
degw ≤ n − 3, deg q ≤ n − N + 1, and deg is the total degree in z. Then T n

ǫ is

invariant under Tǫ for all n = 0, 1, . . . .
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Proof. By Proposition 1, it suffices to show that Tǫ maps T n
ǫ /

(
Sn

ǫ ⊗Λ(Σ)
)

into T n
ǫ .

We shall first deal with the operator T0. Consider the states of the form gΛ(z1|s〉),
with g ∈ Sn−1

0 . Since

(∂l − ∂l+1)zi =
1

zl − zl+1
(1 −Kl,l+1)zi , ∀ i, l,

we have
T0(gzi) = (T0g)zi + 2∂ig .

Calling
Φ(k) ≡ Λ(zk

1 |s〉), k ∈ Z , (21)

from Eqs. (12) and (19) we obtain

T0

(
gΦ(1)

)
=

∑

i

T0(gzi)|si〉 = (T0g)Φ
(1) + 2

3∑

k=1

kgkΦ
(k−1) ∈ T n−2

0 . (22)

Similarly, if h(σ1, σ2) ∈ Sn−2
0 , the identity

(∂l − ∂l+1)z
2
i =

1

zl − zl+1
(1 −Kl,l+1)z

2
i + (zl − zl+1)(δli + δl,i−1) , ∀ i, l

implies that
T0(hz

2
i ) = (T0h)z

2
i + 4zi∂ih+ 2(2a+ 1)h ,

and therefore

T0

(
hΦ(2)

)
=

∑

i

T0(hz
2
i )|si〉

= (T0h+ 8h2)Φ
(2) + 4h1Φ

(1) + 2(2a+ 1)hΦ(0) (23)

belongs to T n−2
0 on account of Eqs. (10a) and (13). On the other hand, from the

equality

(∂l − ∂l+1)zizj =
1

zl − zl+1
(1 −Kl,l+1)zizj − (zl − zl+1)δj,i+1δl,i, ∀ i < j, ∀ l

it follows that

T0(h̃zizj) = (T0h̃)zizj + 2(zi∂j h̃+ zj∂ih̃) − 2ah̃δj,i+1 .

Setting

Φ̃(2) ≡ Λ(z1z2|s〉) (24)

and using again Eqs. (12) and (19) we then have

T0

(
h̃Φ̃(2)

)
=

∑

i<j

T0(h̃zizj)|s+
ij〉

= (T0h̃+ 8h̃2)Φ̃
(2) + 2h̃1Λ

[
(z1 + z2)|s〉

]
− 2ah̃

∑

i

|s+
i,i+1〉 . (25)
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Since Λ
[
(z1 + z2)|s〉

]
= Λ

[
z1(1 + S12)|s〉

]
, the RHS of Eq. (25) belongs to T n−2

0 if
and only if |s〉 ∈ Σ′. The last type of states generating the module T n

0 are of the

form w(σ1, σ2)Φ̂
(3), where

Φ̂(3) ≡ Λ(z1z2(z1 − z2)|s〉) . (26)

From the equality

1

zl − zl+1
(∂l − ∂l+1)

[
zizj(zi − zj)

]
=

1

(zl − zl+1)2
(1 −Kl,l+1)

[
zizj(zi − zj)

]

+ (δl,i−1 + δli)zj − (δl,j−1 + δlj)zi, ∀ i < j, ∀ l

it follows that

T0

[
wzizj(zi − zj)

]
= (T0w)zizj(zi − zj) + 2zj(2zi − zj)∂iw

− 2zi(2zj − zi)∂jw − 2(2a+ 1)(zi − zj)w . (27)

Using again Eqs. (12) and (19) we obtain

T0

(
wΦ̂(3)

)
=

∑

i<j

T0

(
wzizj(zi − zj)

)
|s−ij〉 = (T0w + 12w2)Φ̂

(3)

+ 2w1Λ
[
(z2

1 − z2
2)|s〉

]
− 2(2a+ 1)wΛ

[
(z1 − z2)|s〉

]
. (28)

Since Λ
[
(zk

1 − zk
2 )|s〉

]
= Λ

[
zk
1 (1 − S12)|s〉

]
, the RHS of the latter equation clearly

belongs to T n−2
0 . This shows that T0(T n

0 ) ⊂ T n−2
0 ⊂ T n

0 .
Consider next the action of the operator T1 on a state of the form g(σ1, τN)Φ(1),

with g ∈ Sn−1
1 . From the identity

(zl∂l − zl+1∂l+1)zi =
1

2

zl + zl+1

zl − zl+1
(1 −Kl,l+1)zi +

1

2
(zl − zl+1)(δl,i + δl,i−1) , ∀ i, l

we easily obtain
T1(gzi) = (T1g)zi + 2zi∂ig + 2ag ,

and therefore, by Eqs. (10b), (14) and (15),

T1

(
gΦ(1)

)
=

∑

i

T1(gzi)|si〉 = (T1g + 2g1)Φ
(1) + 2(ag + τNgN)Φ(0) ∈ T n−1

1 . (29)

Thus T1(T n
1 ) ⊂ T n−1

1 ⊂ T n
1 , as claimed.

Consider, finally, the operator T2. If g(τN−1, τN) ∈ Sn−1
2 , the identity

(z2
l ∂l − z2

l+1∂l+1)zi =
zlzl+1

zl − zl+1
(1 −Kl,l+1)zi + zi(zl − zl+1)(δl,i + δl,i−1), ∀ i, l

yields
T2(gzi) = (T2g)zi + 2z2

i ∂ig + 4azig ,

and hence, by Eq. (16),

T2(gΦ
(1)) =

∑

i

T2(gzi)|si〉

=
[
T2g + 2(τN−1gN−1 + τNgN + 2ag)

]
Φ(1) − 2τNgN−1Φ

(0) (30)
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clearly belongs to T n
2 on account of Eqs. (10c) and (17). The last type of spin states

we need to study are of the form q̂Φ(−1), where q̂ ≡ τNq(σ1, τN) with q11 = 0. Since

(z2
l ∂l − z2

l+1∂l+1)z
−1
i =

zlzl+1

zl − zl+1
(1 −Kl,l+1)z

−1
i , ∀ i, l,

we obtain
T2

(
q̂z−1

i

)
= (T2q̂)z

−1
i − 2∂iq̂ + 2q̂z−1

i ,

and thus, by Eqs. (16) and (19),

T2

(
q̂Φ(−1)

)
=

∑

i

T2(q̂z
−1
i )|si〉 = (T2q̂ − 2τN q̂N + 2q̂)Φ(−1) − 2q̂1Φ

(0) . (31)

From Eqs. (10c) and (17), it follows that the RHS of the previous equation belongs
to T n

2 . Hence T2(T n
2 ) ⊂ T n

2 , which concludes the proof.

Remark 4. We have chosen to allow a certain overlap between the different types
of states spanning the spaces T n

ǫ . For instance, if |s〉 is symmetric the state
g(σ1, σ2, σ3)Λ(z1|s〉) ∈ T n

0 is also of the form f(σ1, σ2, σ3)Λ|s〉. Less trivially, if
|s〉 involves only two distinct spin components and is antisymmetric under S12, then
we have

Φ̂(3) =
2

N

(
σ1Φ

(2) − σ2Φ
(1)

)
,

where Φ(k) and Φ̂(3) are respectively defined in Eqs. (21) and (26). Hence, for spin

1/2 the states of the form w(σ1, σ2)Φ̂
(3) in the space T n

0 can be expressed in terms
of the other generators of this space.

The main result of this section follows easily from the previous theorem:

Corollary 1. For each ǫ = 0, 1, 2, the gauge Hamiltonian Hǫ leaves invariant the

space Hn
ǫ defined by

Hn
0 = T n

0 , Hn
1 = T n

1

∣∣
fN=gN=0

, Hn
2 = T n

2 . (32)

Proof. We shall begin by showing that each space T n
ǫ is invariant under the operator

J0. Note first that

J0Φ(j) = jΦ(j) , J0Φ̃(2) = 2Φ̃(2) , J0Φ̂(3) = 3Φ̂(3) ; j ∈ Z , (33)

where the states Φ(j), Φ̃(2) and Φ̂(3) are defined in Eqs. (21), (24) and (26), respec-
tively. Using Eqs. (12), (14) and (16) one can immediately establish the identities

J0f = σ1f1 + 2σ2f2 + 3σ3f3 , ∀f(σ1, σ2, σ3) , (34a)

J0f = σ1f1 + 2σ2f2 +NτNfN , ∀f(σ1, σ2, τN) , (34b)

J0f = σ1f1 + (N − 1)τN−1fN−1 +NτNfN , ∀f(σ1, τN−1, τN ) . (34c)

From Eqs. (33)-(34) and the fact that J0 is a derivation it follows that J0 leaves
invariant the spaces T n

ǫ for all ǫ = 0, 1, 2. This implies that Hǫ preserves T n
ǫ for
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ǫ = 0, 2, since the coefficient c− vanishes in these cases (cf. Table I). On the other
hand, for ǫ = 1 the coefficient c− is nonzero, and thus we have to consider the action
of the operator J− on the space T n

1 . We now have

J−Φ(j) = jΦ(j−1) , j ∈ Z , (35)

and, from Eq. (14),

J−f = Nf1 + 2σ1f2 + τN−1fN , ∀f(σ1, σ2, τN) . (36)

Hence J− leaves invariant the subspace Hn
1 of T n

1 defined by the restrictions fN =
gN = 0. From the obvious identity T1

(
fΦ(0)

)
=

(
T1f

)
Φ(0) and Eq. (29), together

with (10b), (11) and (15), it follows that the operator T1 also preserves Hn
1 . Likewise,

Eqs. (33) and (34b) imply that Hn
1 is invariant under J0, and hence under the gauge

Hamiltonian H1.

Theorem 1 characterizes the invariant space T n
0 in terms of the subspace Σ′ ⊂ Σ

in Eq. (20) that we shall now study in detail. In fact, from the definition of the
invariant space T n

0 it follows that we can consider without loss of generality the
quotient space Σ′/∼, where |s〉 ∼ |s̃〉 if Λ(z1z2|s〉) = Λ(z1z2|s̃〉). For instance, from
Eq. (18) it immediately follows that if |s〉 ∈ Σ′ and π ∈ SN is a permutation such
that π(i) ∈ {1, 2} for i = 1, 2, then π|s〉 belongs to Σ′ and is equivalent to |s〉.

In the rest of this section, we shall denote |s+
ij〉 simply as |sij〉 for the sake of

conciseness. From Eq. (18) it easily follows that any symmetric state belongs to Σ′,
since ∑

i

|si,i+1〉 =
2

N − 1
|s〉 , for all |s〉 ∈ Λ(Σ) . (37)

On the other hand, if |s〉 ∈ Λ(Σ) the corresponding state h(σ1, σ2)Λ(z1z2|s〉) is a
trivial (factorized) state. We shall next show that the reciprocal of this statement
is also true, up to equivalence.

Lemma 2. For every |s〉 ∈ Σ, Λ(z1z2|s〉) is a factorized state if and only if |s〉 ∼
Λ|s〉.

Proof. Suppose that

Λ(z1z2|s〉) = |ŝ〉
∑

i<j

cijzizj

is a factorized state. Since the LHS of the previous formula is symmetric, cij = c
for all i, j and |ŝ〉 ∈ Λ(Σ). By absorbing the constant c into |ŝ〉 we can take c = 1
without loss of generality, and therefore

Λ(z1z2|s〉) =
∑

i<j

zizj |sij〉 = τ2|ŝ〉 =⇒ |sij〉 = |ŝ〉 , i, j = 1, . . . , N.

From Eq. (19) with f(z1, z2) = 1 it then follows that

Λ|s〉 =
∑

i<j

|sij〉 =
1

2
N(N − 1)|ŝ〉 .
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Setting |s0〉 = |s〉 − Λ|s〉 and using the previous identity we obtain

Λ(z1z2|s0〉) = Λ(z1z2|s〉) −
2τ2

N(N − 1)
Λ|s〉 = |ŝ〉τ2 −

2τ2
N(N − 1)

Λ|s〉 = 0 .

Hence |s〉 ∼ Λ|s〉, as claimed.

By the previous observations, it suffices to characterize the nonsymmetric states
in Σ′. To this end, let us introduce the linear operator A : Σ → Σ by

A|s〉 =
∑

i

|si,i+1〉. (38)

Given an element |s〉 ≡ |s1 . . . sN〉 of the canonical basis of Σ, we shall also denote
by {s1, . . . , sn} the set of distinct components of s ≡ (s1, . . . , sN), and by νi the
number of times that si appears among the components of s. For instance, if |s〉 =
|−2, 0, 1,−2, 1〉, then we can take s1 = −2, s2 = 0, s3 = 1, so that ν1 = ν3 = 2,
ν2 = 1. Consider the spin states |χi(s)〉 ≡ |χi〉, i = 1, . . . , n, given by

|χi〉 = νi(νi − 1)|sisi . . . 〉 −
∑

1≤j,k≤n
j,k 6=i

νj(νk − δjk)|sjsk . . . 〉 , νi > 1 , (39a)

|χi〉 =
∑

1≤j≤n
j 6=i

νj

(
|sisj . . . 〉 + |sjsi . . . 〉

)
, νi = 1 . (39b)

Here we have adopted the following convention: an ellipsis inside a ket stands for
an arbitrary ordering of the components in s not indicated explicitly. Note that the
states (39) are defined only up to equivalence, and that |χi(s)〉 = |χi(πs)〉 for any
permutation π ∈ SN .

Proposition 2. Given a basic spin state |s〉, the associated spin states |χi(s)〉 are

all in Σ′/∼.

Proof. Consider first a state |χi〉 of the type (39a). Using the definition of the
operator A in Eq. (38) we obtain

N !A|χi〉 = 2νi(νi − 1)
∑

l

∑

π∈SN−2

π| . . . s
↓
l

isi . . . 〉

− 2
∑

l

∑

1≤j,k≤n
j,k 6=i

∑

π∈SN−2

νj(νk − δjk)π| . . . s
↓
l

jsk . . . 〉 , (40)

where the permutations π act only on the N − 2 spin components specified by the
ellipses. On the other hand, we have

N ·N !Λ|s〉 =
∑

l

∑

π∈SN−2

νi(νi − 1)π| . . . s
↓
l

isi . . . 〉

+ 2
∑

l

∑

1≤j≤n
j 6=i

∑

π∈SN−1

νjπ| . . . s
↓
l

j . . . 〉

−
∑

l

∑

1≤j,k≤n
j,k 6=i

∑

π∈SN−2

νj(νk − δjk)π| . . . s
↓
l

jsk . . . 〉 . (41)
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Comparing Eqs. (40) and (41) we obtain

A|χi〉 = 2

(
NΛ|s〉 − 2

N !

∑

1≤j≤n
j 6=i

νj

∑

l

∑

π∈SN−1

π| . . . s
↓
l

j . . . 〉
)

= 2

(
N − 2

∑

1≤j≤n
j 6=i

νj

)
Λ|s〉 = 2(2νi −N)Λ|s〉 . (42)

This shows that any state of the form (39a) belongs to Σ′/∼. Suppose next that
νi = 1, so that |χi〉 is given by Eq. (39b). Since

A|χi〉 =
2

N !

∑

l

∑

1≤j≤n
j 6=i

∑

π∈SN−2

νjπ
(
| . . . s

↓
l

isj . . . 〉 + | . . . s
↓
l

jsi . . . 〉
)

= 4Λ|s〉 , (43)

it follows that in this case |χi〉 is also in Σ′/∼ .

Remark 5. Just as symmetric spin states, cf. Eq. (37), the states |χi〉 satisfy the
relation

A|χi〉 =
2

N − 1
Λ|χi〉 . (44)

Indeed, if νi > 1, from Eqs. (39a) and (42) we have

Λ|χi〉 =

[
νi(νi − 1) +

∑

1≤j≤n
j 6=i

νj −
∑

1≤j,k≤n
j,k 6=i

νjνk

]
Λ|s〉

=
[
νi(νi − 1) +N − νi − (N − νi)

2
]
Λ|s〉

= (N − 1)(2νi −N)Λ|s〉 =
N − 1

2
A|χi〉 .

On the other hand, if νi = 1 Eqs. (39b) and (43) imply that

Λ|χi〉 = 2

( ∑

1≤j≤n
j 6=i

νj

)
Λ|s〉 = 2(N − 1)Λ|s〉 =

N − 1

2
A|χi〉 .

Example 1. We shall now present all the states of the form (39) for spin 1/2. In this
case, up to a permutation the basic state |s〉 is given by

|s〉 = |
ν︷ ︸︸ ︷

+ · · ·+
N−ν︷ ︸︸ ︷

− · · ·− 〉 . (45)

If ν is either 0 or N , then n = 1 and thus |χ1〉 is of the type (39a) and proportional
to |s〉. If ν = 1, then n = 2 and we can take (dropping inessential factors)

|χ1〉 =
1

2

(
|+−· · · 〉 + |−+ · · · 〉

)
∼ |+−· · · 〉 , |χ2〉 = |−− · · · 〉 .

Although the states |χ1〉 and |χ2〉 are linearly independent, the combination 2|χ1〉+
(N −2)|χ2〉 is equivalent to a symmetric state. In the case ν = N −1 the states |χi〉
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are obtained from the previous ones by flipping the spins. Finally, if 2 ≤ ν ≤ N − 2
then n = 2 and the states |χi〉 are now given by

|χ1〉 = −|χ2〉 = ν(ν − 1)|++ · · · 〉 − (N − ν)(N − ν − 1)|−− · · · 〉 . (46)

According to the previous example, for spin 1/2 there are exactly n−1 independent
states of the form (39) associated to each basic state |s〉, up to symmetric states.
We shall see next that this fact actually holds for arbitrary spin:

Proposition 3. Let |s〉 be a basic spin state. If n is the number of distinct com-

ponents of s, there are exactly n − 1 independent states of the form (39) modulo

symmetric states.

Proof. Let p be the number of distinct components si of s such that νi > 1. A
straightforward computation shows that the combination

n∑

i=1

|χi〉 ∼ (2 − p)

n∑

i,j=1

νi(νj − δij)|sisj · · · 〉 ∼ (2 − p)N(N − 1)Λ|s〉 (47)

is equivalent to a symmetric state. Suppose first that p 6= 2. It is immediate to
check that in this case the set {|χi〉 | i = 1, . . . , n} is linearly independent. If a
linear combination

∑n
i=1 ci|χi〉 is equivalent to a symmetric state |ŝ〉, then |ŝ〉 must

be proportional to Λ|s〉, so that we can write

n∑

i=1

ci|χi〉 ∼ λ(2 − p)N(N − 1)Λ|s〉 .

Hence
∑n

i=1(ci − λ)|χi〉 ∼ 0, and the linear independence of the states |χi〉 implies
that ci = λ for all i. On the other hand, if p = 2 the set {|χi〉 | i = 1, . . . , n} is
linearly dependent on account of Eq. (47), but removing one of the two states with
νi > 1 clearly yields a linearly independent set. It is also obvious from the coefficients
of the states |sisi . . . 〉 that no linear combination

∑n
i=1 ci|χi〉 can be equivalent to a

nonzero symmetric state.

The next natural question to be addressed is whether the states of the form (39)
span the space Σ′/∼ up to symmetric states:

Proposition 4. The space
(
Σ′/Λ(Σ)

)
/∼ is spanned by states of the form (39).

Proof. For conciseness, we present the proof of this result only for the case M = 1/2.
Let Σν denote the subspace of Σ spanned by basic spin states with ν “+” spins, and
set Σ′

ν = Σ′ ∩ Σν . Since the operators A and Λ involved in the definition (20) of Σ′

clearly preserve Σν , it suffices to show that the states |χi(s)〉 with s given by (45)
span the space Σ′

ν/∼ up to symmetric states. Note first that the statement is trivial
for ν = 0, 1, N−1, N , since in this case the states of the form (39) obviously generate
the whole space Σν/∼ . Suppose, therefore, that 2 ≤ ν ≤ N − 2, so that

Σν/∼ =
〈
|++ · · · 〉, |+−· · · 〉, |−− · · · 〉

〉
.
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Since the state (46) and the symmetric state (up to equivalence)

ν(ν − 1)|++ · · · 〉 + 2ν(N − ν)|+− · · · 〉 + (N − ν)(N − ν − 1)|−− · · · 〉

both belong to Σ′
ν/∼, we need only show that (for instance) |+− · · · 〉 is not in Σ′

ν/∼,
i.e., that A|+−· · · 〉 is not symmetric. But this is certainly the case, since a state of
the form

|
2k︷ ︸︸ ︷

+−· · ·+−
N−ν−k︷ ︸︸ ︷
− · · ·−

ν−k︷ ︸︸ ︷
+ · · ·+ 〉 , k = 1, 2, . . . ,min(ν,N − ν) ,

appears in A|+− · · · 〉 with coefficient 2k(ν − 1)!(N − ν − 1)! depending on k.

4. THE ALGEBRAIC EIGENFUNCTIONS

In the previous section we have provided a detailed description of the spaces Hn
ǫ ⊂

Λ
(
C[z]⊗Σ

)
invariant under the corresponding gauge HamiltonianHǫ. In this section

we shall explicitly compute all the eigenfunctions of the restrictions of the operators
Hǫ to their invariant spaces Hn

ǫ . This yields several infinite1 families of eigenfunctions
for each of the models (2), which is the main result of this paper. We shall use the
term algebraic to refer to these eigenfunctions and their corresponding energies. It
is important to observe that the eigenfunctions of the gauge Hamiltonian Hǫ that
can be constructed in this way are necessarily invariant under the whole symmetric
group, in spite of the fact that Hǫ is symmetric only under cyclic permutations. In
fact, the explicit solutions of all known CS models with near-neighbors interactions
(both in the scalar and spin cases) can be factorized as the product of a simple
gauge factor analogous to µ times a completely symmetric function [41, 42, 43, 48].
This, however, does not rule out the existence of other eigenfunctions of the gauge
Hamiltonian Hǫ invariant only under the subgroup of cyclic permutations, which is
indeed an interesting open problem.

Case a

We shall begin with the model (2a), which is probably the most interesting one
due to the rich structure of its associated invariant flag. In order to find the algebraic
energies of the model, note first that one can clearly construct a basis Bn

0 of Hn
0 whose

elements are homogeneous polynomials in z with coefficients in Σ. If F ∈ Bn
0 has

degree k, then J0F = kF and T0F has degree at most k − 2. If Bn
0 is ordered

according to the degree, the operator H0 is represented in this basis by a triangular
matrix with diagonal elements E0 + kc0, where k = 0, . . . , n is the degree. Thus the
algebraic energies are the numbers

Ek = E0 + 2kω, k = 0, 1, . . . .

We shall next show that the algebraic eigenfunctions of H0 can be expressed in
closed form in terms of generalized Laguerre and Jacobi polynomials. The computa-
tion is basically a two-step procedure. In the first place, one encodes the eigenvalue

1 For the model (2c) we shall see below that the number of eigenfunctions with a given total

momentum is finite.
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problem in the invariant space Hn
0 as a system of linear partial differential equations.

The second step then consists in finding the polynomial solutions of this system.
Regarding the first step, we shall need the following preliminary lemma:

Lemma 3. The operator H0 preserves the following subspaces of Hn
0 :

Hn
0,|s〉 = 〈fΦ(0), gΦ(1), hΦ(2)〉 , |s〉 ∈ Σ , (48)

H̃n
0,|s〉 = Hn

0,|s〉 + 〈h̃Φ̃(2)〉 , |s〉 ∈ Σ′ , S12|s〉 = |s〉 , (49)

Ĥn
0,|s〉 = Hn

0,|s〉 + 〈wΦ̂(3)〉 , |s〉 ∈ Σ , S12|s〉 = −|s〉 , (50)

where f , g, h, h̃, w are as in the definition of T n
0 in Theorem 1, and Φ(k), Φ̃(2), Φ̂(3)

are respectively given by (21), (24) and (26).

Proof. The identity T0

(
fΦ(0)

)
= (T0f)Φ(0) and Eqs. (22), (23) and (33) clearly

imply that the subspace Hn
0,|s〉 is invariant under H0. Consider next the action of

H0 on a function of the form h̃Φ̃(2). Since |s〉 is symmetric under S12, we can replace
Λ

[
(z1+z2)|s〉

]
by 2Φ(1) in Eq. (25). Secondly, any state |s〉 ∈ Σ′ satisfies the identity

∑

i

|s+
i,i+1〉 =

2

N − 1
Λ|s〉 . (51)

Indeed, we already know that the previous identity holds for symmetric states
(cf. Eq. (37)) and for states of the form (39) (cf. Eqs. (38) and (44)). On the
other hand, by Proposition 4 every state in Σ′ is a linear combination of a symmet-
ric state, states of the form (39), and a state |s〉 such that Λ

(
z1z2|s〉

)
= 0. But for

the latter “null” state |sij〉 = 0 for all i < j, and hence A|s〉 = Λ|s〉 = 0. Therefore,
Eq. (25) can be written as

T0

(
h̃Φ̃(2)

)
= (T0h̃ + 8h̃2)Φ̃

(2) + 4h̃1Φ
(1) − 4a

N − 1
h̃Φ(0) . (52)

From the previous equation and Eq. (33) it follows that H0

(
h̃Φ̃(2)

)
∈ H̃n

0,|s〉. Finally,

if S12|s〉 = −|s〉, Eq. (28) reduces to

T0

(
wΦ̂(3)

)
= (T0w + 12w2)Φ̂

(3) + 4w1Φ
(2) − 4(2a+ 1)wΦ(1) , (53)

which, together with Eq. (33), implies that H0

(
wΦ̂(3)

)
∈ Ĥn

0,|s〉.

Remark 6. The requirement that |s〉 be symmetric (respectively antisymmetric)

under S12 in the definition of the space H̃n
0,|s〉 (respectively Ĥn

0,|s〉) is no real

restriction, since the antisymmetric (respectively symmetric) part of |s〉 does not

contribute to the state Φ̃(2) (respectively Φ̂(3)).

By the previous lemma, we can consider without loss of generality eigenfunctions
of H0 of the form

Φ = fΦ(0) + gΦ(1) + hΦ(2) + h̃Φ̃(2) + wΦ̂(3) , deg Φ = k , (54)
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where the spin functions Φ(k), Φ̃(2) and Φ̂(3) are all built from the same spin state
|s〉. Note that we can assume that h̃w = 0, and that the spin state |s〉 is symmetric

under S12 and belongs to Σ′ if h̃ 6= 0, whereas it is antisymmetric under S12 if w 6= 0.
Using Eqs. (22), (23), (33), (52) and (53), it is straightforward to show that the

eigenvalue equation H0Φ = (E0 + 2kω)Φ is equivalent to the system

[
−T0 + 2ω(J0 + 3 − k)

]
w − 12w2 = 0 , (55a)

[
−T0 + 2ω(J0 + 2 − k)

]
h̃− 8h̃2 = 0 , (55b)

[
−T0 + 2ω(J0 + 2 − k)

]
h− 8h2 = 6g3 + 4w1 , (55c)

[
−T0 + 2ω(J0 + 1 − k)

]
g − 4g2 = 4(h1 + h̃1) − 4(2a+ 1)w , (55d)

[
−T0 + 2ω(J0 − k)

]
f = 2

(
g1 + (2a+ 1)h− 2a

N − 1
h̃
)
. (55e)

Since f and g are linear in σ3, we can write

f = p+ σ3q , g = u+ σ3v , (56)

where p, q, u and v are polynomials in σ1 and σ2. Taking into account that the
action of T0 on scalar symmetric functions is given by the RHS of Eq. (11) with
ǫ = 0, and using Eqs. (10a), (13) and (34a), we finally obtain the following linear
system of PDEs:

[
L0 − 2ω(k − 3)

]
w − 12w2 = 0 , (57a)

[
L0 − 2ω(k − 2)

]
h̃− 8h̃2 = 0 , (57b)

[
L0 − 2ω(k − 2)

]
h− 8h2 = 6v + 4w1 , (57c)

[
L0 − 2ω(k − 1)

]
u− 4u2 = 4h1 + 4h̃1 + 6σ2v1

+ 6(2a+ 1)σ1v − 4(2a+ 1)w , (57d)
[
L0 − 2ω(k − 4)

]
v − 16v2 = 0 , (57e)

(
L0 − 2ωk

)
p = 2u1 + 2(2a+ 1)h− 4a

N − 1
h̃+ 6σ2q1 + 6(2a+ 1)σ1q , (57f)

[
L0 − 2ω(k − 3)

]
q − 12q2 = 2v1 , (57g)

where

L0 = −
(
N∂2

σ1
+ 4σ1∂σ1

∂σ2
+ 4σ2∂

2
σ2

+ 2(2a+ 1)N∂σ2

)

+ 2ω(σ1∂σ1
+ 2σ2∂σ2

) . (58)

As a consequence of the general discussion of the previous Section, the latter system
is guaranteed to possess polynomials solutions. In fact, these polynomial solutions
can be expressed in closed form in terms of generalized Laguerre polynomials Lλ

ν

and Jacobi polynomials P
(γ,δ)
ν .

Theorem 2. Let

α = N(a +
1

2
) − 3

2
, β ≡ β(m) = 1 −m−N

(
a+

1

2

)
, t =

2r2

Nx̄2
− 1 ,
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where x̄ = 1
N

∑
i xi is the center of mass coordinate. The Hamiltonian H0 possesses

the following families of spin eigenfunctions with eigenvalue Elm = E0 + 2ω(2l +m),
with l ≥ 0 and m as indicated in each case:

Ψ
(0)
lm = µx̄mL−β

l (ωr2)P
(α,β)
[ m
2

] (t) Φ(0) , m ≥ 0 ,

Ψ
(1)
lm = µx̄m−1L−β

l (ωr2)P
(α+1,β)

[ m−1

2
]

(t)
(
Φ(1) − x̄Φ(0)

)
, m ≥ 1 ,

Ψ
(2)
lm = µx̄m−2L−β

l (ωr2)

[
P

(α+2,β)
[ m
2

]−1 (t)
(
Φ(2) − 2x̄Φ(1)

)

+ x̄2

(
P

(α+2,β)
[ m
2

]−1 (t) − 2(α + 1)

2[m−1
2

] + 1
P

(α+1,β)
[ m

2
]−1 (t)

)
Φ(0)

]
, m ≥ 2 ,

Ψ̃
(2)
lm = µx̄m−2L−β

l (ωr2)

[
P

(α+2,β)
[ m
2

]−1 (t)
(
Φ̃(2) − 2x̄Φ(1)

)

+ x̄2

(
P

(α+2,β)
[ m

2
]−1 (t) +

2(α + 1)(
2[m−1

2
] + 1

)
(N − 1)

P
(α+1,β)
[ m

2
]−1 (t)

)
Φ(0)

]
, m ≥ 2 ,

Ψ
(3)
lm = µx̄m−3L−β

l (ωr2)

[
2

3N
P

(α+3,β)

[ m−3

2
]

(t)
∑

i

x3
i + x̄3ϕm(t)

]
Φ(0) , m ≥ 3 ,

Ψ̂
(3)
lm = µx̄m−3L−β

l (ωr2)

[
P

(α+3,β)

[ m−3

2
]

(t)
(
Φ̂(3) − 2x̄Φ(2)

)

+ 2x̄2

(
P

(α+3,β)

[ m−3

2
]

(t) +
2(α + 2)

2[m
2
] − 1

P
(α+2,β)

[ m−3

2
]

(t)

)
Φ(1)

− 2x̄3

(
1

3
P

(α+3,β)

[ m−3

2
]

(t) +
1

2[m
2
] − 1

P
(α+2,β)

[ m−3

2
]

(t)

+
2α + 3

m(m− 2)
ε(m)P

(α+1,β)
m−3

2

(t)

)
Φ(0)

]
, m ≥ 3 ,

Ψ
(4)
lm = µx̄m−4L−β

l (ωr2)

[
3

2([m−3
2

] + 1
2
)
x̄2P

(α+3,β)
[ m
2

]−2 (t) Φ(2)

+
(3

2
x̄3φm(t) − 1

N
P

(α+4,β)
[ m

2
]−2 (t)

∑

i

x3
i

)
Φ(1)

+
( 1

N
x̄P

(α+4,β)
[ m
2

]−2 (t)
∑

i

x3
i +

3

2
x̄4χm(t)

)
Φ(0)

]
, m ≥ 4 .

Here [·] denotes the integer part, ε(m) =
(
1 − (−1)m

)
/2, and

Φ(k) = Λ(xk
1|s〉), Φ̃(2) = Λ(x1x2|s〉), Φ̂(3) = Λ(x1x2(x1 − x2)|s〉),

where the spin state |s〉 is symmetric under S12 and belongs to Σ′ for the eigenfunc-

tion Ψ̃
(2)
lm , and is antisymmetric under S12 for the eigenfunction Ψ̂

(3)
lm . The functions

ϕm, φm and χm are polynomials given explicitly by

ϕm =
m+ 2α + 2

m− 1
P

(α+2,β−2)
m
2

− P
(α+3,β−1)
m
2
−1 − 4α + 7

m− 1
P

(α+2,β−1)
m
2
−1 +

1

3
P

(α+3,β)
m
2
−2 ,
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φm = P
(α+4,β−1)
m
2
−1 − 2P

(α+3,β−1)
m
2
−1 − m+ 2α+ 3

(m− 1)(m− 3)
P

(α+2,β−1)
m
2
−1

− 1

3
P

(α+4,β)
m
2
−2 +

m+ 2α− 1

m− 3
P

(α+3,β)
m
2
−2 ,

χm =
3m+ 2α

(m− 1)(m− 3)
P

(α+2,β−1)
m
2
−1 +

2m− 7

m− 3
P

(α+3,β−1)
m
2
−1 − P

(α+4,β−1)
m
2
−1

− m+ 2α+ 2

(m− 1)(m− 3)
P

(α+2,β)
m
2
−2 − m+ 2α

m− 3
P

(α+3,β)
m
2
−2 +

1

3
P

(α+4,β)
m
2
−2 ,

for even m, and

ϕm = 2P
(α+2,β−1)
m−1

2

− P
(α+3,β−1)
m−1

2

+
1

3
P

(α+3,β)
m−3

2

+
m+ 2α + 2

m(m− 2)
P

(α+1,β)
m−3

2

− m+ 2α + 2

m− 2
P

(α+2,β)
m−3

2

,

φm = P
(α+4,β−1)
m−3

2

− 2m− 5

m− 2
P

(α+3,β)
m−3

2

− 1

3
P

(α+4,β)
m−5

2

+
m+ 2α− 1

m− 2
P

(α+3,β)
m−5

2

,

χm =
2m− 3

m(m− 2)
P

(α+2,β−1)
m−3

2

+
2(m− 3)

m− 2
P

(α+3,β−1)
m−3

2

− P
(α+4,β−1)
m−3

2

− m+ 2α + 1

m(m− 2)
P

(α+2,β)
m−5

2

− m+ 2α

m− 2
P

(α+3,β)
m−5

2

+
1

3
P

(α+4,β)
m−3

2

,

for odd m. For every n = 0, 1, . . . , the above eigenfunctions with 2l + m ≤ n span

the whole H0-invariant space µHn
0 .

Proof. Recall, to begin with, that the algebraic eigenfunctions of H0 are of the form
Ψ = µΦ, with µ given in Table I and Φ an eigenfunction of H0 of the form (54)-(56).
In order to determine Φ, we must find the most general polynomial solution of the
linear system (57). From the structure of this system it follows that there are seven
types of independent solutions, characterized by the vanishing of certain subsets of
the unknown functions p, q, u, v, h, h̃, w. These types are listed in Table II, where
in the last column we have indicated the eigenfunction of H0 obtained from each
case. We shall present here in detail the solution of the system (57) for the case

q = v = h = h̃ = w = 0 and u 6= 0, which yields the eigenfunctions of the form

Ψ
(1)
lm (the procedure for the other cases is essentially the same). In this case the

system (57) reduces to
[
L0 − 2ω(k − 1)

]
u− 4u2 = 0 ,

(
L0 − 2ωk

)
p = 2u1 . (59)

Let us begin with the homogeneous equation for u. We shall look for polynomial
solutions of this equation of the form u = Q(σ1, σ2)R(σ2), where Q is a homogeneous
polynomial of degree m − 1 in z and R is a polynomial of degree l in σ2, so that
k = deg Φ = 2l +m by Eq. (54). From Eq. (58) and the homogeneity of Q we have

L0(QR) = (L0Q)R +Q(L0R) − 4σ1Q1R2 − 8σ2Q2R2

= (L0Q)R +Q(L0 − 4(m− 1)∂σ2
)R .

Hence the equation for u can be written as

R
(
L̂0 − 4∂σ2

)
Q = Q

(
− L0 + 4m∂σ2

+ 4lω
)
R ,
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TABLE II: The seven types of solutions of the system (57) and their corresponding eigen-

functions.

Conditions Eigenfunction

q = u = v = h = h̃ = w = 0, p 6= 0 Ψ
(0)
lm

u = v = h = h̃ = w = 0, q 6= 0 Ψ
(3)
lm

q = v = h = h̃ = w = 0, u 6= 0 Ψ
(1)
lm

q = v = h̃ = w = 0, h 6= 0 Ψ
(2)
lm

q = v = h = w = 0, h̃ 6= 0 Ψ̃
(2)
lm

q = v = h̃ = 0, w 6= 0 Ψ̂
(3)
lm

h̃ = w = 0, v 6= 0 Ψ
(4)
lm

where L̂0 = L0|ω=0. Since
(
L̂0 − 4∂σ2

)
Q is a homogeneous polynomial of degree

m − 3 in z, both sides of the latter equation must vanish separately. We are thus
led to the following decoupled equations for Q and R:

(
L̂0 − 4∂σ2

)
Q = 0 , (60)

(
− L0 + 4m∂σ2

+ 4lω
)
R = 0 . (61)

In terms of the variable ρ = ωσ2, Eq. (61) can be written as

4ωL−β
l (R) = 0 ,

where
Lλ

ν = ρ∂2
ρ + (λ+ 1 − ρ)∂ρ + ν (62)

is the generalized Laguerre operator. Hence R is proportional to the generalized
Laguerre polynomial L−β

l (ωσ2). On the other hand, we can write Q = σm−1
1 P (t)

where P is a polynomial in the homogeneous variable t = 2Nσ2

σ2
1

− 1. With this

substitution, Eq. (60) becomes

4Nσm−3
1 J (α+1,β)

[ m−1

2
]

(P ) = 0 ,

where the Jacobi operator J (γ,δ)
ν is given by

J (γ,δ)
ν = (1 − t2)∂2

t +
[
δ − γ − (γ + δ + 2)t

]
∂t + ν(ν + γ + δ + 1) .

Thus P (t) is proportional to the Jacobi polynomial P
(α+1,β)

[ m−1

2
]

(t), so that we can take

u = σm−1
1 L−β

l (ωσ2)P
(α+1,β)

[ m−1

2
]

(t) . (63)

We must next find a particular solution of the inhomogeneous equation for p
in (59), since the general solution of the corresponding homogeneous equation yields

an eigenfunction of the simpler type Ψ
(0)
lm . Since

u1 = σm−2
1 L−β

l (ωσ2)
[
(m− 1)P

(α+1,β)

[ m−1

2
]

(t) − 2(t+ 1)Ṗ
(α+1,β)

[ m−1

2
]

(t)
]
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(where the dot denotes derivative with respect to t), we make the ansatz p =
Q(σ1, σ2)R(σ2), where Q is a homogeneous polynomial of degree m in z and R
is a polynomial of degree l in σ2. Substituting this ansatz into the second equation
in (59) and proceeding as before we immediately obtain

R
(
L̂0Q

)
+Q

(
L0 − 4m∂σ2

− 4lω
)
R = 2u1 .

If we set R = L−β
l (ωσ2) the second term of the LHS vanishes, and cancelling the

common factor L−β
l (ωσ2) we are left with the following equation for Q:

L̂0Q = 2σm−2
1

[
(m− 1)P

(α+1,β)

[ m−1

2
]

(t) − 2(t+ 1)Ṗ
(α+1,β)

[ m−1

2
]

(t)
]
.

The form of the RHS of this equation suggests the ansatz Q = σm
1 P (t), with P a

polynomial in the variable t. The previous equation then yields

J (α,β)
[ m

2
] (P ) =

1

2N

[
(m− 1)P

(α+1,β)

[ m−1

2
]

(t) − 2(t+ 1)Ṗ
(α+1,β)

[ m−1

2
]

(t)
]
. (64)

From the definition of the Jacobi operator we easily obtain

J (α,β)
[ m
2

] = J (α+1,β)

[ m−1

2
]

+ (1 + t) ∂t −
1

2
(m− 1) ,

which implies that P = − 1

N
P

(α+1,β)

[ m−1

2
]

is a particular solution of Eq. (64). Hence

p = − 1

N
σm

1 L
−β
l (ωσ2)P

(α+1,β)

[ m−1

2
]

(t) (65)

is a particular solution of the inhomogeneous equation in (59). We have thus shown
that Φ = pΦ(0) +uΦ(1), with u and p respectively given by Eqs. (63) and (65), is an
eigenfunction of H0 with eigenvalue E0 + 2ω(2l +m). Multiplying Φ by the gauge

factor µ we obtain the eigenfunction Ψ
(1)
lm of H0 in the statement.

It remains to show that the states Ψ
(k)
lm (k = 0, . . . , 4), Ψ̃

(2)
lm and Ψ̂

(3)
lm with

2l +m ≤ n generate the spaces (48)–(50). Consider first the “monomials” of the
form µσm

1 σ
l
2Φ

(0), which belong to µHn
0,|s〉 if 2l + m ≤ n. We can order such mono-

mials as follows: we say that µσm′

1 σl′

2 Φ(0) ≺ µσm
1 σ

l
2Φ

(0) if 2l′ + m′ < 2l + m, or
2l′ +m′ = 2l +m and m′ < m. From the expansion [47, Eq. 8.962.1]

P (γ,δ)
ν (t) =

1

ν!

ν∑

k=0

1

2kk!
(−ν)k(γ + δ + ν + 1)k(γ + k + 1)ν−k (1 − t)k ,

where (x)k is the Pochhammer symbol

(x)k = x(x+ 1) · · · (x+ k − 1) ,

it follows that P
(γ,δ)
ν (0) > 0 provided that γ+1 > 0 and γ+δ+2ν < 0. In particular,

P
(α,β)
[ m
2

] (0) > 0 since

α+1 = N

(
a+

1

2

)
− 1

2
> N − 1

2
> 0 , α+β+2

[
m

2

]
= 2

[
m

2

]
−m− 1

2
≤ −1

2
< 0 .
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Hence we can write
Ψ

(0)
lm = µΦ(0)

(
clmσ

m
1 σ

l
2 + l.o.t.

)
,

where clm 6= 0, so that

〈
Ψ

(0)
lm | 2l +m ≤ n

〉
=

〈
µσm

1 σ
l
2Φ

(0) | 2l +m ≤ n
〉
.

Likewise, a similar argument shows that for m ≥ 1

〈
µx̄m−1L−β

l (ωr2)P
(α+1,β)

[ m−1

2
]

(t) Φ(1) | 2l +m ≤ n
〉

=
〈
µσm−1

1 σl
2Φ

(1) | 2l +m ≤ n
〉
,

and therefore
〈
Ψ

(0)
lm , Ψ

(1)
lm | 2l +m ≤ n

〉
=

〈
µσm

1 σ
l
2Φ

(0), µσm−1
1 σl

2Φ
(1) | 2l +m ≤ n

〉
.

Proceeding in the same way with the remaining spin eigenfunctions we can finally
show that 〈

Ψ
(k)
lm | k = 0, . . . , 4 , 2l +m ≤ n

〉
= µHn

0,|s〉 ,

and that

µHn
0,|s〉 +

〈
Ψ̃

(2)
lm | 2l +m ≤ n

〉
= µH̃n

0,|s〉 , |s〉 ∈ Σ′, S12|s〉 = |s〉,
µHn

0,|s〉 +
〈
Ψ̂

(3)
lm | 2l +m ≤ n

〉
= µĤn

0,|s〉 , S12|s〉 = −|s〉,

as claimed.

Remark 7. By Remark 1, the coefficients of Φ(0) in the spin eigenfunctions Ψ
(0)
lm

and Ψ
(3)
lm yield the two families of eigenfunctions of the scalar reduction Hsc

0 of the
model (2a) presented without proof in our previous paper [1]. Earlier work on the
scalar model Hsc

0 had established the existence of two families of eigenfunctions

of the form µL−β
l (ωr2)pν(x), with pν a homogeneous polynomial of degree ν ≥ 3,

only for ν ≤ 6 and N ≥ ν [42]. More recently, Ezung et al. [48] have rederived a
very small subset of these scalar eigenfunctions by mapping Hsc

0 to N decoupled
oscillators.

Case b

Since c0 = 4ω in this case, reasoning as before we conclude that the algebraic
energies are the numbers

Ek = E0 + 4kω, k = 0, 1, . . . ,

where k is the degree in z of the corresponding eigenfunctions of H1. We shall
see below that these eigenfunctions can be written in terms of generalized Laguerre
polynomials. To this end, we begin by identifying certain subspaces of Hn

1 invariant
under H1.

Lemma 4. For any given spin state |s〉 ∈ Σ, the operator H1 preserves the subspace

Hn
1,|s〉 =

〈
f(σ1, σ2) Φ(0), g(σ1) Φ(1) | f22 = 0

〉
⊂ Hn

1 , (66)

where f and g are polynomials of degrees at most n and n−1 in z, respectively, and

Φ(k) is given by (21).
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Proof. The statement follows from the obvious identity T1

(
fΦ(0)

)
= (T1f)Φ(0) and

Eqs. (10b), (11), (15), (29), (33) and (35).

By the previous lemma we can assume that the eigenfunctions of H1 in Hn
1,|s〉 are

of the form
Φ = fΦ(0) + gΦ(1) , deg Φ = k ≤ n . (67)

From Eqs. (29), (33) and (35) it easily follows that the eigenvalue equation H1Φ =
(E0 + 4kω)Φ can be cast into the system

[
−T1 + ω(J0 + 1 − k) −

(
b+

1

2

)
J−

]
g − 2g1 = 0 , (68a)

[
−T1 + ω(J0 − k) −

(
b+

1

2

)
J−

]
f =

(
2a+ b+

1

2

)
g . (68b)

Since f is linear in σ2 (cf. Eq. (66)), we can write

f = p+ σ2q, (69)

where p and q are polynomials in σ1. Using Eqs. (10b), (11), (15), (34b) and (36)
we can easily rewrite the system (68) as follows:

[
L1 − ω(k − 1)

]
g − 2g1 = 0 , (70a)

[
L1 − ω(k − 2)

]
q − 4q1 = 0 , (70b)

(
L1 − ωk

)
p =

(
2a+ b+

1

2

)
g + 2

(
4a + b+

3

2

)
σ1q , (70c)

where

L1 = −σ1∂
2
σ1

+
[
ωσ1 −

(
2a+ b+

1

2

)
N

]
∂σ1

. (71)

The last step is to construct the polynomials solutions of the system (70), which
can be expressed in terms of generalized Laguerre polynomials, according to the
following theorem.

Theorem 3. The Hamiltonian H1 possesses the following families of spin eigen-

functions with eigenvalue Ek = E0 + 4kω:

Ψ
(0)
k = µLα−1

k (ωr2) Φ(0) , k ≥ 0 ,

Ψ
(1)
k = µLα+1

k−1(ωr
2)

[
NΦ(1) − r2Φ(0)

]
, k ≥ 1 ,

Ψ
(2)
k = µLα+3

k−2(ωr
2)

[
N(α + 1)

∑

i

x4
i − βr4

]
Φ(0) , k ≥ 2 ,

where α = N(2a+b+ 1
2
), β = N(4a+b+ 3

2
), and Φ(j) = Λ

(
x2j

1 |s〉
)
, with j = 0, 1 and

|s〉 ∈ Σ. For each |s〉 ∈ Σ and n = 0, 1, . . . , the above eigenfunctions with k ≤ n
span the whole H1-invariant space µHn

1,|s〉.

Proof. As in the previous case, the algebraic eigenfunctions of H1 are of the form
Ψ = µΦ, where µ is given in Table I and Φ is an eigenfunction of H1 of the form (67)-
(69). The functions p, q and g are polynomials in σ1 determined by the system (70),
which in terms of the variable t = ωσ1 ≡ ωr2 can be written as

Lα+1
k−1g = Lα+3

k−2q = 0 , Lα−1
k p = − α

Nω
g − 2β

Nω2
tq , (72)
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where Lλ
ν is the generalized Laguerre operator (cf. Eq. (62)). The general polynomial

solutions of the first two equations in (72) are respectively given by

g = c1L
α+1
k−1(t), q = c2L

α+3
k−2(t). (73)

On the other hand, from the elementary identity

Lλ
ν

(
tlLλ+2l

ν−l (t)
)

= l(l + λ)tl−1Lλ+2l
ν−l (t) ,

it follows that the general polynomial solution of the third equation in (72) is given
by

p = c0L
α−1
k (t) − c1

Nω
tLα+1

k−1(t) −
c2β

Nω2(α + 1)
t2Lα+3

k−2(t) . (74)

Equations (73) and (74) immediately yield the formulas of the eigenfunctions in
this case. The last assertion in the statement of the theorem follows from the fact
that the functions p, q and g in Eqs. (73) and (74) are the most general polynomial
solution of the system (72).

Remark 8. The spin eigenfunctions Ψ
(j)
k , j = 0, 1, 2, listed in the previous theorem

are essentially the same as those presented in Ref. [1] (note that in the latter

reference there is a typo in the formula for the scalar eigenfunction ψ
(1)
n , namely

the coefficient α multiplying r4 should be replaced by the parameter β defined in
Theorem 3).

Remark 9. It should be noted that for ω = 0 the potentials (2a) and (2b) scale
as r−2 under dilations of the coordinates (as is the case for the original Calogero
model). The standard argument used in the solution of the Calogero model shows
that there is a basis of eigenfunctions of these models of the form µ(x)Lλ

ν(ωr
2)F (x),

where F is a homogeneous spin-valued function. The eigenfunctions presented in
Theorems 2 and 3 are indeed of this form.

Case c

The model (2c) is of less interest than the previous ones, since we shall see that
in this case the number of independent algebraic eigenfunctions is essentially finite.
We shall take, for definiteness, the plus sign in the change of variable listed in Table I
(it will be apparent from the discussion that follows that the minus sign does not
yield additional solutions).

Let us first note that the potential for this model is translationally invariant, so
that the total momentum operator P = −i

∑
k ∂xk

commutes with the Hamiltonian
H2. Hence the eigenfunctions of H2 can be assumed to have well-defined total
momentum. Equivalently, since

µ−1 · P · µ
∣∣∣
xk=− i

2
log zk

= 2J0, (75)

the eigenfunctions of H2 can be assumed to be homogeneous in z. Let Φ be a
homogeneous eigenfunction of H2 of degree k and eigenvalue E, so that Ψ = µΦ is
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an eigenfunction of H2 with total momentum 2k (cf. Eq. (75)) and energy E. By
Eq. (75), the function τλ

NΨ clearly has total momentum 2(k + Nλ). In fact, the
following lemma implies that τλ

NΨ is also an eigenfunction of H2 with a suitably
boosted energy:

Lemma 5. Let Φ be a homogeneous eigenfunction of H2 of degree k and eigen-

value E. Then τλ
NΦ is an eigenfunction of H2 with eigenvalue E + 8kλ+ 4Nλ2.

Proof. From the identity

∑

i

1

zi − zi+1

(
z2

i ∂i − z2
i+1∂i+1

)
= J0 +

1

2

∑

i

zi + zi+1

zi − zi+1
(Di −Di+1) ,

where Di = zi∂i, we immediately obtain the following expression for the gauge
Hamiltonian H2:

1

4
(H2 − E0) =

∑

i

D2
i + a

∑

i

zi + zi+1

zi − zi+1

(Di −Di+1)

− 2a
∑

i

zizi+1

(zi − zi+1)2
(1 −Ki,i+1) . (76)

Since τ−λ
N Diτ

λ
N = Di + λ for any real λ, it follows that

τ−λ
N H2τ

λ
N = H2 + 8λJ0 + 4Nλ2 .

Taking into account that J0Φ = kΦ, we conclude that

H2

(
τλ
NΦ

)
=

(
E + 8kλ+ 4Nλ2

)
(τλ

NΦ) ,

as claimed.

By the previous discussion, in what follows any two eigenfunctions of H2 that dif-
fer by a power of τN shall be considered equivalent. From Theorem 1 and Corollary 1
it easily follows that in this case the number of independent algebraic eigenfunctions
is finite, up to equivalence. More precisely:

Lemma 6. Up to equivalence, the algebraic eigenfunctions of H2 can be assumed to

belong to a space of the form

H2,|s〉 = 〈σ1, τN−1, σ1τN−1, τN〉Φ(0) + 〈1, τN−1〉Φ(1) + 〈1, σ1〉 τNΦ(−1) (77)

for some spin state |s〉, where Φ(k) is given by (21).

Proof. Given a spin state |s〉, the obvious identity

T2

(
fΦ(0)

)
= (T2f)Φ(0) (78)

and Eqs. (6), (30), (31), and (33) imply that the gauge Hamiltonian H2 preserves
the space

Hn
2,|s〉 =

〈
fΦ(0), gΦ(1), τNqΦ

(−1)
〉
, (79)

where f , g and q are as in the definition of T n
2 in Theorem 1. Let Φ ∈ Hn

2,|s〉 be

an eigenfunction of H2, which as explained above can be taken as a homogeneous
function of z. From the conditions satisfied by the functions f , g and q in (79) and
the homogeneity of Φ, it readily follows that Φ ∈ τ l

NH2,|s〉 for some l, as claimed.
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Theorem 4. The Hamiltonian H2 possesses the following spin eigenfunctions with

zero momentum

Ψ0 = µΦ(0), Ψ1,2 = µ
∑

i

{
cos

sin

}(
2(xi − x̄)

)
|si〉,

Ψ3 = µ

[
2a

2a+ 1
Φ(0) +

∑

i6=j

cos
(
2(xi − xj)

)
|sj〉

]
, Ψ4 = µ

∑

i6=j

sin
(
2(xi − xj)

)
|sj〉,

where |si〉 is defined in (18) and x̄ is the center of mass coordinate. Their energies

are respectively given by

E0 , E1,2 = E0 + 4
(
2a+ 1 − 1

N

)
, E3,4 = E0 + 8(2a+ 1) .

Any algebraic eigenfunction with well-defined total momentum is equivalent to a

linear combination of the above eigenfunctions.

Proof. By Lemma 6, in order to compute the algebraic eigenfunctions of H2 it
suffices to diagonalize H2 in the spaces H2,|s〉 given by (77). Equations (30), (31),

(33) and (78), and the fact that H2 preserves the degree of homogeneity, imply that
the following subspaces of H2,|s〉 are invariant under H2:

〈σ1τN−1 , τN〉Φ(0) , (80a)

〈σ1Φ
(0)〉 , 〈σ1Φ

(0),Φ(1)〉 , 〈σ1τN−1Φ
(0), τN Φ(0), τN−1Φ

(1)〉 , (80b)

〈τN−1Φ
(0)〉 , 〈τN−1Φ

(0), τNΦ(−1)〉 , 〈σ1τN−1Φ
(0), τN Φ(0), σ1τN Φ(−1)〉 . (80c)

From Eqs. (80) it follows that the alternative change of variables zk = e−2ixk does
not yield additional eigenfunctions of H2. Indeed, the latter change corresponds to
the mapping zk 7→ 1/zk, which up to equivalence leaves the subspace (80a) invariant
and exchanges each subspace in (80b) with the corresponding one in (80c). For this
reason, we can safely ignore the subspaces (80c) in the computation that follows,
provided that we add to the eigenfunctions of H2 obtained from the subspaces (80b)
their images under the mapping zk 7→ 1/zk.

For the subspaces (80a)-(80b), using Eqs. (6), (11), (17), (30), (33), and (34c) we
easily obtain the following eigenfunctions of H2:

τN Φ(0), E = E0 + 4N, (81a)

Φ(1), E = E0 + 4(2a+ 1), (81b)

τN−1Φ
(1) − τN

2a+ 1
Φ(0), E = E0 + 4(N + 4a+ 2). (81c)

We have omitted the two additional eigenfunctions

σ1Φ
(0) ,

(
σ1τN−1 −

NτN
2a+ 1

)
Φ(0)

from the above list, since they are respectively obtained from (81b) and (81c) when
the spin state |s〉 is symmetric. The eigenfunctions (81) are equivalent to the fol-
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lowing “zero momentum” eigenfunctions:

Φ(0), E = E0, (82a)

τ
−1/N
N Φ(1), E = E0 + 4

(
2a+ 1 − 1

N

)
, (82b)

τN−1

τN
Φ(1) − 1

2a+ 1
Φ(0), E = E0 + 8(2a+ 1), (82c)

where the energies have been computed from those in Eqs. (81) using Lemma 5.
The eigenfunctions of H2 listed in the statement are readily obtained from these
spin functions together with the transforms of (82b) and (82c) under the mapping
zk 7→ 1/zk.

Remark 10. If the spin state |s〉 is symmetric, then |si〉 = Φ(0)/N for all i, and one
easily obtains from Theorem 4 the following eigenfunctions of the scalar Hamiltonian
Hsc

2 :

ψ0 = µ, ψ1,2 = µ
∑

i

{
cos

sin

}(
2(xi − x̄)

)
, ψ3 = µ

[
aN

2a+ 1
+

∑

i<j

cos
(
2(xi − xj)

)]
.

These formulas agree with those in Refs. [1] and [48] (the expression of ψ3 in the
former reference contains an obvious erratum, while this eigenfunction is missing
altogether in the latter reference).

5. SUMMARY AND OUTLOOK

In this paper we have computed in closed form several infinite families of eigen-
functions of the spin models with near-neighbors interactions (2) introduced in our
previous paper [1]. Our method is based on the fact that each spin Hamiltonian
Hǫ is related to a scalar operator Hǫ involving difference operators which exchange
pairs of neighboring particles, cf. Eqs. (5)–(8). We have explicitly constructed a flag
of finite-dimensional polynomial subspaces H0

ǫ ⊂ H1
ǫ ⊂ · · · invariant under Hǫ (see

Corollary 1). For all three models (2), we have been able to fully diagonalize the
gauge Hamiltonian Hǫ in its invariant spaces Hn

ǫ . Multiplying each eigenfunction
of Hǫ in Hn

ǫ by the appropriate gauge factor µ and performing a suitable change
of variables (cf. Table I) we obtain the families of eigenfunctions of Hǫ mentioned
above.

The results obtained in this paper suggest several open problems that we shall now
briefly discuss. In the first place, it would be natural to study the BCN counterparts
of the models (2), for which the interaction potential also depends on the sums
xi + xi+1. In fact, in the scalar case this question has already been addressed
in Ref. [42]. It would also be of interest to construct solvable models with near-
neighbors interactions of elliptic type, both in the scalar and spin cases; see Refs. [35,
36] for a list of models of this type with long-range interactions. An important
problem closely related with the subject of this paper is the analysis of the spin
chains obtained from the models (2) by applying the freezing trick. These chains
are characterized by the fact that the interactions are restricted to nearest neighbors
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(as in the Heisenberg chain), but their strength depends on the distance between
the sites (as in chains of Haldane–Shastry type). For this reason, we believe that
the study of these new chains could prove of considerable interest.

Consider, for instance, the chain associated with the model (2a), whose Hamil-
tonian is given by

H0 =
∑

i

(ξi − ξi+1)
−2Si,i+1, (83)

where (ξ1, . . . , ξN) is the unique equilibrium of the scalar potential

U0 =
1

2
r2 +

∑

i

1

(xi − xi−1)(xi − xi+1)
+

∑

i

1

(xi − xi+1)2

in the domain x1 < · · · < xN . It can be shown that the chain sites ξi are
symmetrically distributed around the origin; for instance, for N = 4 we have
ξ4 = −ξ1 = (

√
3 + 1)/2, ξ3 = −ξ2 = (

√
3 − 1)/2. Note, in particular, that the

chain sites are not equally spaced, as is the case in most spin chains of Haldane–
Shastry type. In principle, it is not possible to apply the method of Refs. [38, 39, 40]
to evaluate the partition function of the chain (83) in closed form, since the algebraic
eigenfunctions of the model (2a) computed in Section 4 do not form a complete set.
On the other hand, the explicit nature of the algebraic eigenfunctions presented in
Theorem 2 makes it feasible to compute a number of eigenvalues and eigenfunctions
of the spin chain (83) by taking the strong coupling limit a → ∞. We emphasize
that the results thus obtained would be valid for an arbitrary number of spins, and
thus could be helpful in uncovering general properties of the spectrum. By combin-
ing this approach with numerical computations for fixed values of N , we expect to
achieve a reasonable understanding of the properties of this novel type of chains.
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