
December 15, 2003 / Vol. 28, No. 24 / OPTICS LETTERS 2443
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The Wigner distribution of rotationally symmetric partially coherent light is considered, and the constraints
for its moments are derived. Although all odd-order moments vanish, these constraints lead to a drastic
reduction in the number of parameters that we need to describe all even-order moments: whereas in gen-
eral we have �N 1 1� �N 1 2� �N 1 3��6 different moments of order N , this number reduces to �1 1 N�2�2

in the case of rotational symmetry. A way to measure the moments as intensity moments in the output
planes of (generally anamorphic) fractional Fourier-transform systems is presented. © 2003 Optical Society
of America
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The Wigner distribution1 of partially coherent light
is defined in terms of the cross-spectral density2,3
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The (real-valued) Wigner distribution W �x, y,u, v�
represents partially coherent light in a combined space
or spatial-frequency domain, the so-called phase space,
where u and v are the spatial-frequency variables as-
sociated with the space variables x and y, respectively.
In previous papers the special but important case of
rotational symmetry has been studied extensively; we
mention studies of twisted Gaussian–Schell model
light4 and the characterization of rotationally sym-
metric light in terms of second-order moments.5,6 In
this Letter we present an extension to higher-order
moments.

To formulate the rotational symmetry of the Wigner
distribution W �x, y,u, v� we express the space variables
x and y in polar coordinates, x � r cos f and y �
r sin f, respectively, and with the angle f as an offset
we do the same with the spatial-frequency variables
u and v, u � z cos�f 1 u� and v � z sin�f 1 u�, re-
spectively. We can then formulate an expression for
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W �x, y,u,v� in terms of the four variables r, f, z , and
u; for rotational symmetry we require that this expres-
sion does not depend on the angle f:

W �r cos f,r sin f, z cos�f 1 u�, z sin�f 1 u��

� W±�r, z , u� . (2)

The (normalized) moments mpqrs of the Wigner dis-
tribution are defined as

mpqrsE �
Z `
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W �x, y,u, v�

3 xpuqyrvsdxdydudv , (3)

where m0000 � 1 and normalization constant E rep-
resents the intensity of the light. In general there
are �N 1 1� �N 1 2� �N 1 3��6 moments7 of order
N � p 1 q 1 r 1 s. In the case of rotational sym-
metry, however, the number of parameters that we
need to describe all even-order moments is reduced
drastically to �1 1 N�2�2. That this is so can easily
be seen from Eq. (2), from which we conclude that
the four-dimensional Wigner distribution W �x, y,u, v�
is completely determined by the three-dimensional
function W �x, 0,u, v�, where, moreover, W �x, 0,u, v� is
an even function of x; this three-dimensional function
has �1 1 N�2�2 different nonvanishing moments of
even order N .
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Using symmetry condition (2), we write
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3 �sin f�r�sin�f 1 u��sdf . (4)

From the special form of the integral over f, we con-
clude that all odd-order moments (i.e., N � p 1 q 1

r 1 s is odd) are zero. Moreover, using the defini-
tion of the beta function B�x, y� � 2

R
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�sin w�2y21dw � G�x�G� y��G�x 1 y� we can express this
integral as
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Since nonvanishing values under the summation ap-
pear only if both p 1 q 2 k 1 l and r 1 s 1 k 2 l
are even, we can use the property G�n 1 1/2�2n�

p
p �

�2n 2 1�!! � 1 3 3 3 5 . . . �2n 2 1�.
It is advantageous to write the moments as

mp,q,m2p,n2q, where p 1 r � m and q 1 s � n, and
to group those moments that have identical m and n
together. For easy reference, Ipqrs�u� is presented in
Table 1 for second-order moments [�m, n� � �2, 0�, �1, 1�,
and �0, 2�] and fourth-order moments [�m,n� � �4, 0�,
�3, 1�, �2, 2�, �1, 3�, and �0, 4�] such that equal m and
n (with m 1 n � 2 and m 1 n � 4, respectively) are
grouped together. Identical values of Ipqrs�u� in the
same block then lead to companion moments mpqrs.
For different choices of p and q (but with constant
m � p 1 r and n � q 1 s) we can easily f ind relations
between the different moments mpqrs. In particular,
we find that in any �m,n� block, the number of non-
vanishing parameters equals 1 1 min�m, n�, leading
to a total of �1 1 N�2�2 parameters to describe the
moments of order N � m 1 n.

Let us consider the second-order moments, which
can be represented elegantly in the usual form of a
real, symmetric 4 3 4 matrix. As a consequence of
the moment relations, this matrix now takes a special
form4 and is determined by four parameters instead of
the ten parameters in the general case. In particular,
we observe that three moments appear in pairs with a
positive companion (m2000, m1100, and m0200), and one
moment forms a pair with a negative companion
(m1001); moreover, two moments vanish (m1010 and
m0101).

Let us now consider the fourth-order moments.
From the moment relations we conclude that the
moments are determined by 9 parameters, whereas in
the general case we would need 35 parameters. In
particular, we observe that two moments appear
in pairs with a positive companion (m2200 and m2002),
two moments appear in triples with positive com-
panions (m4000 and m0400), five moments appear in

Table 1. Ipqrs for Second-Order Moments [���m,n��� 5
���2, 0���, ���1,1���, ���0, 2���] and Fourth-Order Mo-

ments [���m,n��� 5 ���4, 0���, ���3, 1���, ���2,2���, ���1, 3���, ���0,4���]

m n Ipqrs�u� mpqrs Companion

2 0 1 m2000
2 0 0 m1010 —
2 0 1 m0020 m2000

1 1 cos u m1100
1 1 sin u m1001
1 1 2sin u m0110 2m1001
1 1 cos u m0011 m1100

0 2 1 m0200
0 2 0 m0101 —
0 2 1 m0002 m0200

4 0 3�4 m4000
4 0 0 m3010 —
4 0 1�4 m2020 m4000�3
4 0 0 m1030 —
4 0 3�4 m0040 m4000

3 1 3 cos u�4 m3100
3 1 3 sin u�4 m3001
3 1 2sin u�4 m2110 2m3001�3
3 1 cos u�4 m2011 m3100�3
3 1 cos u�4 m1120 m3100�3
3 1 sin u�4 m1021 m3001�3
3 1 23 sin u�4 m0130 2m3001
3 1 3 cos u�4 m0031 m3100

2 2 �2 1 cos 2u��4 m2200
2 2 sin 2u�4 m2101
2 2 �2 2 cos 2u��4 m2002
2 2 2sin 2u�4 m1210 2m2101
2 2 cos 2u�4 m1111 �m2200 2 m2002��2
2 2 sin 2u�4 m1012 m2101
2 2 �2 2 cos 2u��4 m0220 m2002
2 2 2sin 2u�4 m0121 2m2101
2 2 �2 1 cos 2u��4 m0022 m2200

1 3 3 cos u�4 m1300
1 3 sin u�4 m1201
1 3 cos u�4 m1102 m1300�3
1 3 3 sin u�4 m1003 3m1201
1 3 23 sin u�4 m0310 23m1201
1 3 cos u�4 m0211 m1300�3
1 3 2sin u�4 m0112 2m1201
1 3 3 cos u�4 m0013 m1300

0 4 3�4 m0400
0 4 0 m0301 —
0 4 1�4 m0202 m0400�3
0 4 0 m0103 —
0 4 3�4 m0004 m0400
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quadruples, two moments appear with positive com-
panions (m3100 and m1300), and three moments appear
with one positive and two negative companions (m3001,
m2101, and m1201). Moreover, four moments vanish
(m3010, m1030, m0301, and m0103), and moment m1111
follows from the relation m1111 � �m2200 2 m2002��2.

Following the procedure described in Ref. 7, we
can determine the moments from measurement of the
intensity distribution G�x, y, x, y� in the output plane
of some (possibly anamorphic) fractional Fourier-
transform systems, with a fractional angle a in the x
direction and a fractional angle b in the y direction,
say, for appropriately chosen values of a and b. In
the output plane we then measure the intensity mo-
ments m

out
p0r0�a, b� [see Eq. (3) with q � s � 0], which

are completely determined by the output intensity
distribution. The general relationship between the
output intensity moments and the moments in the
input plane reads as7

mout
p0r0�a,b� �
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∂ µ
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∂
mp2k,k,r2m,m cosp2k a

3 sink a cosr2m b sinm b . (6)

In the case of second-order moments the set of
relevant equations in which the intensity moments
m

out
2000�a,b�, m

out
1010�a,b�, and m

out
0020�a,b� at the output of

a fractional Fourier-transform system with fractional
angles a and b are expressed in terms of the input
moments reduces to

mout
2000�a,b� � m2000 cos2 a 1 2m1100 cos a sin a

1 m0200 sin2 a , (7)

mout
1010�a,b� � m1001 sin�b 2 a� . (8)

To measure moment m1001 from intensity moment
m

out
1010�a,b� we clearly need an anamorphic system,

a fi b. Together with two additional isotropic sys-
tems, a � b, we can then construct four equations
from measurements of the intensity distributions in
the three output planes, and we conclude that the four
second-order moments can be determined from knowl-
edge of the intensity distributions in the output plane
of three fractional Fourier-transform systems, where
one of them has to be anamorphic; see Ref. 6. We
would not need the anamorphic system if the rotation-
ally symmetric light satisfied the additional condition
that W±�r, z , u� is an even function of u.

In the case of fourth-order moments, the set of rele-
vant equations for the output intensity moments7 re-
duces to

mout
4000�a,b� � m4000 cos4 a 1 4m3100 cos3 a sin a

1 6m2200 cos2 a sin2 a

1 4m1300 cos a sin3 a

1 m0400 sin4 a , (9)

mout
3010�a,b� � �m3001 cos2 a 1 3m2101 cos a sin a

1 3m1201 sin2 a�sin�b 2 a� , (10)

3mout
2020�a,b� � m4000 cos2 a cos2 b

1 2m3100 cos a cos b sin�a 1 b�

1 6m2200 cos a sin a cos b sin b

1 3m2002 sin2�b 2 a�

1 2m1300 sin a sin b sin�a 1 b�

1 m0400 sin2 a sin2 b . (11)

To determine moments m3001, m2101, and m1201 from
intensity moment m

out
3010�a,b� and moment m2002 from

intensity moment m
out
2020�a,b� we obviously need three

anamorphic systems. Together with two additional
isotropic systems, we can then construct nine equa-
tions from measurements of the intensity distributions
in the f ive output planes, with which the nine mo-
ments can be determined. We note that, even in the
highly symmetric case in which W±�r, z , u� is an even
function of u, we still need an anamorphic system.
Such a system would not be necessary if W±�r, z , u�
did not depend on u at all, in which case only the
strictly even-order moments (i.e., p, q, r, and s are
even) remain and all other moments vanish.
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tue.nl.
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