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DONALDSON INVARIANTS FOR CONNECTED SUMS ALONG

SURFACES OF GENUS 2

VICENTE MUÑOZ

Abstract. We prove a gluing formula for the Donaldson invariants of the con-
nected sum of two four-manifolds along a surface of genus 2. We also prove a finite
type condition for manifolds containing a surface of genus 2, self-intersection zero
and representing an odd homology class.

1. Introduction

This paper tries to answer the question of the behaviour of the Donaldson invariants
under connected sums along surfaces of genus 2. This has been treated by the author
in [10] making use of a suitable version of the Atiyah-Floer Conjecture. The purpose
of this paper is to remove the use of any conjecture as well as to make the argument
direct and very simple. This was prompted by Tom Mrowka in the conference on four-
manifolds in Oberwolfach (Germany) on May 96. We also remark that similar cases
have been treated by Morgan and Szabó [9] [14], but our results are more general.

Let X be a smooth, compact, oriented four-manifold with b+ > 1 and b+ − b1 odd.
For any w ∈ H2(X; Z), Dw

X will denote the corresponding Donaldson invariant [8],
which is defined as a linear functional on A(X) = Sym∗(H0(X) ⊕ H2(X)) (H∗(X)
will always denote homology with rational coefficients, and similarly for H∗(X)). Let
x ∈ H0(X) be the class of a point. Then Kronheimer and Mrowka [8] define X to be
of simple type (with respect to w) when Dw

X((x2 − 4)z) = 0 for all z ∈ A(X), and in
that case define

D
w
X(z) = Dw

X((1 +
x

2
)z),

for all z ∈ Sym∗H2(X). The series Dw
X(etα), α ∈ H2(X), is even or odd depending

on whether d0 = d0(X,w) = −w2 − 3
2
(1 − b1 + b+) is even or odd. When b1 = 0 and

b+ > 1, X is of simple type with respect to some w if and only if it is so with respect
to any w. In such case, X is just called of simple type.

Proposition 1. Let X be a manifold of simple type with b1 = 0 and b+ > 1 and odd.
Then we have

D
w
X(eα) = eQ(α)/2

∑

(−1)
Ki·w+w2

2 ai e
Ki·α
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2 VICENTE MUÑOZ

for finitely many Ki ∈ H2(X; Z) (called basic classes) and rational numbers ai (the
collection is empty when the invariants all vanish). These classes are lifts to integral
cohomology of w2(X). Moreover, for any embedded surface S →֒ X of genus g and
with S2 ≥ 0, one has 2g − 2 ≥ S2 + |Ki · S|.

Analogously, we define X to be of finite type with respect to w whenever Dw
X((x2−

4)nz) = 0 for all z ∈ A(X), and some n > 0. The order is the minimum of such n.

When X has b+ = 1, the invariants depend on the metric through a structure of
walls and chambers [7] and therefore we have to specify the metric.

Definition 2. (w,Σ) is an allowable pair if w,Σ ∈ H2(X; Z), w · Σ ≡ 1 (mod 2)
and Σ2 = 0. Then we define

D
(w,Σ)
X = Dw

X +Dw+Σ
X .

When b+ = 1 we consider the invariants referring to the chambers defined by Σ,
i.e. for metrics whose period points are in the (unique) chamber containing Σ in its
closure (which is so since w · Σ ≡ 1 (mod 2)). In fact, we would need a result saying
that the invariants only depend on the metric through the period point. This is true
for simply-connected manifolds and for Σ × CP

1, with Σ a Riemann surface, which
are all the cases we need for our arguments.

D
(w,Σ)
X depends only on Σ and w (mod Σ), since Dw+2Σ

X = Dw
X . As (w + Σ)2 ≡

w2 + 2 (mod 4), we can recover Dw
X and Dw+Σ

X from D
(w,Σ)
X . The series D

(w,Σ)
X (etα),

α ∈ H2(X), is even or odd according to whether d0 is even or odd.

Proposition 3. Suppose X is a manifold of simple type with b1 = 0 and b+ > 1 and

odd. Write the Donaldson series as Dw
X(eα) = eQ(α)/2

∑

(−1)
Kj ·w+w2

2 aj e
Kj ·α. Then

setting d0 = d0(X,w) = −w2 − 3
2
(1 + b+) we have

D
(w,Σ)
X (eα) = eQ(α)/2

∑

Kj ·Σ≡2 (mod 4)

(−1)
Kj ·w+w2

2 aje
Kj ·α + e−Q(α)/2

∑

Kj ·Σ≡0 (mod 4)

i−d0(−1)
Kj ·w+w2

2 aje
iKj ·α

So giving D
w
X is equivalent to giving D

(w,Σ)
X .

Proof. Note that Kj ·Σ ≡ 0 (mod 2), for all basic classes Kj. Since ((w+ Σ)2 +Kj ·
(w + Σ)) = (w2 +Kj · w) + 2(w · Σ +Kj · Σ/2) we have

D
w+Σ
X (eα) = eQ(α)/2

∑

Kj ·Σ≡2 (mod 4)

(−1)
Kj ·w+w2

2 aj e
Kj ·α − eQ(α)/2

∑

Kj ·Σ≡0 (mod 4)

(−1)
Kj ·w+w2

2 aj e
Kj ·α

Now since the only powers in Dw
X(etα) are those td with d ≡ d0 (mod 4) one has

Dw
X(etα) =

1

2
(Dw

X(etα) + i−d0Dw
X(eitα))
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and analogously

Dw+Σ
X (etα) =

1

2
(Dw+Σ

X (etα) − i−d0Dw+Σ
X (eitα))

since d0(X,w + Σ) = d0(X,w) + 2. So we finally get

D
(w,Σ)
X (eα) = eQ(α)/2

∑

Kj ·Σ≡2 (mod 4)

(−1)
Kj ·w+w2

2 aje
Kj ·α + i−d0e−Q(α)/2

∑

Kj ·Σ≡0 (mod 4)

(−1)
Kj ·w+w2

2 aje
iKj ·α

Definition 4. We say that (X,Σ) is permissible if X is a smooth compact oriented
four-manifold and Σ →֒ X is an embedded Riemann surface of genus 2 and self-
intersection zero such that [Σ] ∈ H2(X; Z) is odd (its reduction modulo 2 is non-zero,
or equivalently, it is an odd multiple of a primitive homology class). So we can
consider w ∈ H2(X; Z) with w · Σ ≡ 1 (mod 2). Then (w,Σ) is an allowable pair.
This implies that b+ > 0. Let NΣ

∼= A = Σ ×D2 be an open tubular neighbourhood
of Σ and set Xo = X − NΣ. Then ∂Xo = Y ∼= Σ × S1 (but the isomorphism is not
canonical). We consider one such isomorphism fixed and (when necessary) we furnish
Xo with a cylindrical end, i.e. we consider Xo ∪ (Y × [0,∞)) (and keep on calling it
Xo).

We call identification for Y = Σ × S1 any (orientation preserving) bundle auto-

morphism φ : Y
∼
→ Y . Up to isotopy, φ depends only on the isotopy class of the

induced diffeomorphism on Σ and on an element of H1(Σ; Z).

Definition 5. Let (X1,Σ1) and (X2,Σ2) be permissible. We pick orientations so
that ∂Xo

1 = −∂Xo
2 = Y (minus means reversed orientation). Then X = X(φ) =

Xo
1 ∪φ X

o
2 = X1#ΣX2 is a compact, naturally oriented, smooth four-manifold, called

the connected sum along Σ of (X1,Σ1) and (X2,Σ2) (with identification φ). The
induced homology classes [Σ1] and [Σ2] coincide and are induced by an embedded
Σ →֒ X. Then (X,Σ) is permissible.

Choose wi ∈ H2(Xi; Z), i = 1, 2, and w ∈ H2(X; Z) such that wi ·Σi ≡ 1 (mod 2),
w · Σ ≡ 1 (mod 2), in a compatible way (i.e. the restricition of w to Xo

i ⊂ X
coincides with the restriction of wi to Xo

i ⊂ Xi). We shall call w all of them, not
making explicit to which manifold they refer. Also let H = {D ∈ H2(X)/D|Y =
k[S1] ∈ H1(Y ), for some k}. Then for every D ∈ H, we can choose Di ∈ H2(Xi)
agreeing with D (i.e. Di|Xo

i
= D|Xo

i
, i = 1, 2) and with D2 = D2

1 +D2
2. Furthermore,

we can arrange D 7→ (D1, D2) to be linear. Once chosen one of these maps, any other
is of the form D 7→ (D1 − rΣ, D2 + rΣ), for a rational number r.

A simple but important remark is that if b1(X1) = b1(X2) = 0 then b1(X) = 0 and
b+(X) > 1. Now we are ready to state our main results.
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Theorem 6. Suppose (X1,Σ1) and (X2,Σ2) are permissible and X1, X2 have both
b1 = 0 and b+ > 1 and are of simple type. Let Dw

X1
(eα) = eQ(α)/2

∑

ai,we
Ki·α and

Dw
X2

(eα) = eQ(α)/2
∑

bj,we
Lj ·α. Let X = X1#ΣX2 (for some identification). Then X

is of simple type and for every D ∈ H, choose Di ∈ H2(Xi) agreeing with D satisfying
D2 = D2

1 +D2
2, in such a way that D 7→ (D1, D2) is linear. Then

D
w
X(etD) =

= eQ(tD)/2(
∑

Ki·Σ=Lj ·Σ=2

−32ai,wbj,w e
(Ki·D1+Lj ·D2+2Σ·D)t+

∑

Ki·Σ=Lj ·Σ=−2

32ai,wbj,w e
(Ki·D1+Lj ·D2−2Σ·D)t),

(for appropriate homology orientations).

Remark 7. The reason for the different signs is easy to work out. First, w2 for X is
always congruent (mod 2) with the sum of both of w2 for Xi. Also −3

2
(1 − b1(X) +

b+(X)) = −3
2
(1 − b1(X1) + b+(X1)) −

3
2
(1 − b1(X2) + b+(X2)) − 3(g − 1). Therefore,

as g = 2, d0(X,w) ≡ d0(X1, w) + d0(X2, w) + 1 (mod 2). Now the sign comes from
the fact that the coefficient for the basic class −κ is (−1)d0cκ, being cκ the coefficient
for the basic class κ.

Corollary 8. Suppose we are in the conditions of the former theorem. Write DX(eα) =
eQ(α)/2

∑

cκe
κ·α for the Donaldson series for X and DX1

(eα) = eQ(α)/2
∑

aie
Ki·α and

DX2
(eα) = eQ(α)/2

∑

bje
Lj ·α for the Donaldson series for X1 and X2. Then given any

pair (K,L) ∈ H2(Xo
1 ; Z) ⊕H2(Xo

2 ; Z), we have
∑

{κ/κ|Xo
1
=K,κ|Xo

2
=L}

cκ = ±32 (
∑

Ki|Xo
1
=K

ai) · (
∑

Lj |Xo
2
=L

bj)

whenever K|Y = L|Y = ±2P.D.[S1]. Otherwise, the left hand side is zero.

Proof. This is an immediate consequence of theorem 6, noting that

(−1)
κ·w+w2

2 = −(−1)
Ki·w+w2

2 (−1)
Lj ·w+w2

2

whenever κ|Xo
1

= Ki|Xo
1

= K, κ|Xo
2

= Lj |Xo
2

= L.

Theorem 9. Let (X,Σ) be permissible. Then X is of finite type (with respect to any
w ∈ H2(X; Z) with w · Σ ≡ 1 (mod 2), and for the invariants given by Σ in case
b+ = 1).

Now we introduce a very important example. Let B be the K3-surface blown-up in
two points. Let S ⊂ K3 be a tight surface of genus 2 (which existence is guaranteed
by [8]) and let E1, E2 be the two exceptional divisors in B. Then Σ = S−E1 −E2 is
the proper transform of S. So (B,Σ) is permissible. For any (X,Σ) permissible, write

X̃ = X#ΣB (fixing some identification). It has b+(X) > 1 and b1(X̃) = 0 whenever
b1(X) = 0. Now for any embedded surface Do ⊂ Xo with ∂Do = ∂Xo ∩Do, we can

choose cappings D = Do + Do
B in X̃ (in general it is enough to suppose that Do is
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a cycle and that, giving Xo a cylindrical end, Do ∩ (Y × [0,∞)) = γ × [0,∞), with
γ ⊂ Y an embedded curve). Fix an embedded surface representing E1 + E2 + Σ and
intersecting Σ transversely in two points, and let Ko be its restriction to Bo. Then
we always impose Do

B ·Ko = 0 (this pairing makes sense as long as ∂Ko and ∂Do
B are

disjoint).

Theorem 10. Let (Xi,Σi) be permissible with b1(Xi) = 0, i = 1, 2 (not necessarily
of simple type). Consider X̃i = Xi#ΣB. Then X̃i are of simple type. Put Dw

X̃1
(eα) =

eQ(α)/2
∑

ãi,we
K̃i·α and Dw

X̃2

(eα) = eQ(α)/2
∑

b̃j,we
L̃j ·α. Let X = X1#ΣX2 (for some

identification). Then X is of simple type. For every D ∈ H2(X), consider any
cappings Di ∈ H2(X̃i) with the condition above in such a way that D 7→ (D1, D2) is
linear. Then

D
w
X(etD) = eQ(tD)/2(

∑

K̃i·Σ=L̃j ·Σ=2

−
1

2
ãi,w b̃j,we

t(K̃i·D1+L̃j ·D2) +
∑

K̃i·Σ=L̃j ·Σ=−2

1

2
ãi,wb̃j,we

t(K̃i·D1+L̃j ·D2)).

Corollary 11. Under the conditions of theorem 10, X has no basic classes κ with
κ · Σ = 0.

Acknowledgements: First I want to thank my D. Phil. supervisor Simon Donaldson,
for his encouragement and help during the last three years. Also I am very grateful
to the Mathematics Department in Universidad de Málaga for their hospitatility and
for letting me use their facilities, and to Banco de España for financial support. The
author wishes to thank T. Mrowka for suggesting he remove the use of the Atiyah-
Floer conjecture from his earlier work.

2. Applications

Now we pass on to give some nice and simple applications of theorem 10. Probably,
many results like the following can be obtained in the same fashion. We only want
to give some examples to show its usefulness.

Corollary 12. Let (X1,Σ1) and (X2,Σ2) be permissible with b1(Xi) = 0. Let φ and ψ
be two different identifications for Y = Σ×S1 and consider the two different connected
sums along Σ, X(φ) and X(ψ). Suppose that φ∗ = ψ∗ : H1(Y ) → H1(Y ). Then there

is an (non-canonical) isomorphism of vector spaces H2(X(φ))
∼
→ H2(X(ψ)) sending

the basic classes of X(φ) to those of X(ψ) such that the rational numbers attached to
them coincide.

Proof. First we observe that we have a natural identification of the images Iφ of
H2(X

o
1) ⊕ H2(X

o
2) → H2(X(φ)) and Iψ of H2(X

o
1) ⊕ H2(X

o
2) → H2(X(ψ)) since

the kernels coincide. Now consider a splitting H2(X2(φ)) ∼= Im(Iφ) ⊕ V with V
∼
→

H1(Y ). Choose an integral basis {α} for H1(Y ; Z). For every α we have an element
Dα ∈ H2(X(φ)) which can be split as Dα = Do

1 + Do
2, for Do

i ⊂ Xo
i with ∂Do

1 = γ,
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−∂Do
2 = φ(γ) and α = [γ]. Now we leave Do

1 (and D1 ∈ H2(X̃1)) fixed and modify

Do
2 to glue it to Do

1 in H2(X(ψ)). Write D2 = Do
2 + Do

3 ∈ H2(X̃2). The loops φ(γ)
and ψ(γ) are homologous and hence there is homology C = S1 × [0, 1] →֒ Σ ⊂ Σ× S1

between them. Consider

(D′)o3 =
[

Do
3 ∪φ(γ) C ∪ψ(γ) (ψ(γ) × [0,∞))

]

+ nΣ ⊂ Bo

(D′)o2 =
[

Do
2 ∪φ(γ) (−C) ∪ψ(γ) (−ψ(γ) × [0,∞))

]

− nΣ ⊂ Xo
2

where n is chosen so that (D′)o3 · K
o = 0. So D′

2 = (D′)o2 + (D′)o3 = D2. Consider
D′
α = Do

1 + (D′)o2 ∈ H2(X(ψ)). The map Dα 7→ D′
α gives the required isomorphism

H2(X(φ))
∼
→ H2(X(ψ)).

This corollary says that although in principle X(φ) and X(ψ) might not be diffeo-
morphic (and probably in many cases this happens), they can not be distinguished by
the number and coefficients of their basic classes. Still the polynomial invariants can
differentiate both manifolds (maybe the intersection matrix of the basic classes could
help). It would be desirable to find examples when this happens. The identifications
to try out could be Dehn twists along separating curves in Σ.

Corollary 13. Let (X1,Σ1) and (X2,Σ2) be permissible with b1(Xi) = 0. Let φ and ψ
be two different identifications for Y = Σ×S1 and consider the two different connected
sums along Σ, X(φ) and X(ψ). Suppose that X(φ) has only two basic classes ±κ.
Then the same is true for X(ψ) and the coefficients coincide (up to sign). Also if the
invariants of X(φ) vanish (no basic classes), so do the invariants of X(ψ).

Proof. We do the case of two basic classes. The other one is analogous. Suppose
φ = Id, put X = X(φ) and let ±κ be the two basic classes, with κ · Σ = 2. Let cκ,w
be its coefficient. We now want to prove that this implies that there is only one basic
class K̃i with K̃i · Σ = 2 and only one basic class L̃j with L̃j · Σ = 2. The result
follows from this applying theorem 10.

Suppose that we can find Si ∈ H2(X̃i) with α = S1 ∩ [Y ] = −S2 ∩ [Y ] ∈ H1(Y ; Z)
such that all the values K̃i · S1 are different among them, and all the values L̃j · S2

are also different among them (where K̃i and L̃j run through all the basic classes in

X̃1 and X̃2 evaluating 2 on Σ). Then reorder the subindices in such a way that

K̃1 · S1 < K̃2 · S1 < · · · < K̃n1
· S1

L̃1 · S2 < L̃2 · S2 < · · · < L̃n2
· S2

We can easily arrange Do
i ⊂ Xo

i with ∂Do
1 = −∂Do

2 = γ with [γ] = α such that the
corresponding Di is Si. Set D = Do

1 +Do
2 ∈ H2(X) and apply theorem 10. We have

cκ,we
tκ·D =

∑

K̃i·Σ=L̃j ·Σ=2

−
1

2
ãi,wb̃j,we

t(K̃i·S1+L̃j ·S2)
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Considering the exponentials with the smallest and with the largest exponents, we
see that we must have K̃1 · S1 + L̃1 · S2 = K̃n1

· S1 + L̃n2
· S2, from where the result.

To find the required collection of Si, we consider all the differences αij = K̃i − K̃j ,

βij = L̃i − L̃j , i 6= j. Consider α ∈ H1(Y ; Z) such that α · αij 6= 0 for any αij which

happens to be in the image of the homomorphism H1(Y ) ∼= H2(Y ) →֒ H2(X̃1) ∼=
H2(X̃1), and α ·βij 6= 0 when βij is in the same condition with X̃2 replacing X̃1. Now

we can choose S1 ∈ H2(X̃1) with S1 ∩ [Y ] = α such that αij · S1 6= 0 (indeed the bad
set is a finite union of hyperplanes). Analogously we choose S2.

3. Gluing theory

Let X = Xo
1 ∪Y X

o
2 , D ∈ H2(X). Substitute D by a rational multiple if necessary

so that D|Y ∈ H1(Y ; Z) and it is primitive. Represent D by a cycle so D = Do
1 +Do

2,
Do
i ⊂ Xo

i , ∂D
o
1 = −∂Do

2 = γ, with γ ⊂ Y an embedded curve in Y (when Xo
1 has a

cylindrical end, we suppose Do
1 ∩ (Y × [0,∞)) = γ× [0,∞), and analogously for Xo

2).

Proposition 14 ([2][10]). Suppose w|Y odd. Then there are Fukaya-Floer homol-
ogy groups HFF∗(Y, γ) graded mod 4 such that (Xo

i , D
o
i ) define relative invariants

φw1(Xo
1 , e

tDo
1) ∈ HFF∗(Y, γ), φ

w2(Xo
2 , e

tDo
2) ∈ HFF∗(−Y,−γ). There is a natural

pairing such that

D
(w,Σ)
X (etD) =< φw1(Xo

1 , e
tDo

1), φw2(Xo
2 , e

tDo
2) > . (1)

When b+ = 1, the invariants are calculated for a long neck, i.e. we refer to the
invariants defined by Σ.

In our case Y ∼= (−Y ). Also, as explained in [2], HFF∗(Y, γ) is the limit of a

spectral sequence whose E3-term is HF∗(Y ) ⊗ Ĥ∗(CP
∞) (the hat means the natural

completion of H∗(CP
∞)), and d3 is multiplication by µ(γ).

First, HF∗(Y ) = HF∗(Σ×S1) ∼= HF symp
∗ (Modd

Σ ) ∼= H∗(M
odd
Σ ) as vector spaces (we

are using rational coefficients), where Modd
Σ is the moduli space of odd degree rank

two stable vector bundles on Σ (with the grading considered mod 4) (for the first
isomorphism see [5], for the second see [12]). For g = 2, these groups were computed
by Donaldson [4], finding that H∗(M

odd
Σ ) has an even part of dimension 4 and an odd

part of dimension 4 (in the even part the intersection product is symmetric, in the
odd part it is antisymmetric).

There is a conjecture asserting that multiplication by µ(γ) is intertwined with
quantum multiplication by µ(γ) (see [4] [10]). In [10, chapter 5], the author has
studied the implications of such a conjecture. Here we want to avoid it altogether.

Essentially we have two cases to deal with, γ = S1 ⊂ Σ × S1 = Y and γ ⊂ Σ ⊂
Σ × S

1 = Y .
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• γ = S1 ⊂ Σ×S1. Now all the differentials in the E3 term of the spectral sequence
are of the form Hodd(M

odd
Σ ) → Heven(M

odd
Σ ) and Heven(M

odd
Σ ) → Hodd(M

odd
Σ ).

When the boundary cycle is γ = S1 and thus invariant under the action of the
group Diff(Σ) on Y = Σ × S1, the differentials commute with the action of
Diff(Σ). As there are elements ρ ∈ Diff(Σ) acting as −1 on H1(Σ), we have that
ρ acts as −1 on Hodd(M

odd
Σ ) and as 1 on Heven(M

odd
Σ ). Therefore the differentials

are zero and the spectral sequence degenerates in the third term. This implies
that HFFeven(Y, γ) = V4[[t]], where V4 = HFeven(Y ) has dimension 4. The
relative invariants will be φw1(Xo

1 , e
tDo

1) ∈ V4[[t]]. We do not consider the odd
part since the pairing is antisymmetric in the odd part, but the expression (1)
is symmetric.

• γ ⊂ Σ ⊂ Σ × S1. The E3 term of the usual spectral sequence is HF∗(Y ) ⊗

Ĥ∗(CP
∞), with differencital d3 given by

µ(γ) : Hi(M
odd
Σ ) ⊗Hj(CP

∞) → Hi−3(M
odd
Σ ) ⊗Hj+2(CP

∞).

Lemma 15. The image of d3 : HF3 → HF0 is one-dimensional and the kernel
of d3 : HF2 → HF3 is one-dimensional.

Proof. Let us see first that

µ(γ) : HF∗(Y ) → HF∗(Y )

is non-zero. We decompose Σ × CP
1 = A ∪Y A. From the definition of µ(γ)

(see [3] [1] [10]), we have that for X = Xo
1 ∪Y X

o
2 , zi ∈ A(Xo

i ), φ
w(Xo

i , zi) ∈

HF∗(Y ) and β ∈ H∗(Y ), it is φw(Xo
1 , βz1) = µ(β)(φw(Xo

1 , z1)). Also D
(w,Σ)
X (z1z2)

=< φw(Xo
1 , z1), φ

w(Xo
2 , z2) >. We have thus

D
(w,Σ)

Σ×CP
1(γ1γ2) =< φw(A, 1), µ(γ1)µ(γ2)(φ

w(A, 1)) > .

The invariant of the left hand side corresponds to the six-dimensional moduli
space. This is in fact Modd

Σ . From [4] [15] we know that this number is non-zero

(actually ǫS(w) γ1 · γ2, with ǫS(w) = (−1)
KS ·w+w2

2 ). Therefore µ(γ) 6= 0.
Under the intersection pairing, HF2

∼= (HF0)
∗ and HF3

∼= (HF3)
∗. also,

d3 : HF3 → HF0 and d3 : HF2 → HF3 are dual maps, so the dimensions of
ker(d3 : HF2 → HF3) and im(d3 : HF3 → HF0) coincide. Since d3 is non-zero,
these dimensions are at least one. They cannot be two because that would imply
that HFFeven(Y, γ) = HF0 ⊕ 0 ⊕ 0 ⊕ · · · and hence

D
(w,Σ)
X (etD) =< φw(Xo

1 , e
tDo

1), φw(Xo
2 , e

tDo
2) >= 0

for any case in which D = Do
1 + Do

2, D
o
i ⊂ Xo

i , with ∂Do
1 = −∂Do

2 = γ. In

particular, the invariants D
(w,Σ)
X would vanish whenever X = X1#ΣX2 with

b1(Xi) = 0, i = 1, 2. But this is impossible, as we will see examples in the proof
of theorem 10 when the invariants do not vanish (these examples are independent
of the computation of HFF∗(Y, γ) for γ ⊂ Σ ⊂ Y ).



DONALDSON INVARIANTS FOR CONNECTED SUMS 9

From this we write the even part of the E5 term of the spectral sequence. Set
HF red

2 = ker(d3 : HF2 → HF3), HF
red
0 = HF0/im(d3 : HF3 → HF0). The even

part of the E5 term is

(E5)0 = HF0 ⊕ 0 ⊕ HF red
2 ⊕ 0 ⊕ HF red

0 ⊕ · · ·
(E5)2 = HF red

2 ⊕ 0 ⊕ HF red
0 ⊕ 0 ⊕ HF red

2 ⊕ · · ·

The differential d5 has to be zero (at least on the even part of E5), since otherwise

we would have again that the invariants D
(w,Σ)
X vanish whenever X = X1#ΣX2

with b1(Xi) = 0, i = 1, 2.
Hence HFFeven(Y, γ) is equal to this (E5)even. Write HF0 = R⊕HF red

0 , where
R is the orthogonal complement to HF red

2 . Then HFFeven(Y, γ) = R ⊕ V2[[t]],
with V2 = HF red

0 ⊕ HF red
2 of dimension 2, the pairing vanishing on the R-

summand. The relative invariants will be φw(Xo
1 , e

tDo
1) ∈ V2[[t]]. Again we do

not consider the odd part, and we also ignore the extra R-summand.

Proposition 16. 1. There is a vector space V4 of dimension 4 endowed with a
symmetric bilinear form such that for every permissible (X,Σ) and Do ⊂ Xo

with ∂Do = S
1, we have φw(Xo, etD

o

) ∈ V4[[t]]. For X = Xo
1∪YX

o
2 , D = Do

1+D
o
2,

∂Do
1 = −∂Do

2 = S1, we have

D
(w,Σ)
X (etD) =< φw1(Xo

1 , e
tDo

1), φw2(Xo
2 , e

tDo
2) > .

2. There is a vector space V2 of dimension 2 endowed with a symmetric bilinear
form such that for every permissible (X,Σ) and Do ⊂ Xo with ∂Do = γ not
representing in homology a multiple of [S1], we have φw(Xo, etD

o

) ∈ V2[[t]]. For
X = Xo

1 ∪Y X
o
2 , D = Do

1 +Do
2, ∂D

o
1 = −∂Do

2 = γ, we have

D
(w,Σ)
X (etD) =< φw1(Xo

1 , e
tDo

1), φw2(Xo
2 , e

tDo
2) > .

4. Proof of Theorems

Proof of Theorem 6.

The fact that X is of simple type will be proved in the proof of theorem 10. Let us
analyse the following list of examples (we use proposition 3 for finding the invariants

D
(w,Σ)
X ).

• X a K3 surface blown-up twice with E1 and E2 the two exceptional divisors,
Σ = S−E1−E2 for S a tight surface of genus 2 in K3, w = E1, D a cohomology

class coming from the K3 such that D ·S = 1, D2 = 0. We get D
(w,Σ)
X (esΣ+tD) =

−ets e
2s−e−2s

4
.

• X, Σ, D as before, but now w ∈ H2(K3), with w · S = 1. We will get

D
(w,Σ)
X (esΣ+tD) = (−1)

w2

2 ets e
2s+e−2s

4
− 1

2
e−ts.



10 VICENTE MUÑOZ

• X a K3 surface, Σ a tight torus with an added trivial handle to make it of genus
2, w ∈ H2(X; Z) such that w · Σ = 1 and D with D · Σ = 1, D2 = 0. Then

D
(w,Σ)
X (esΣ+tD) = −e−ts.

• S = CP
1 × Σ, w = P.D.[CP

1], D = CP
1. Then g(t, s) = D

(w,Σ)
S (esΣ+tD) is a

non-zero function with monomials of degree at least three (since the smallest
moduli space has dimension six).

We conclude that there are at least four functions, say f1 = ets+2s,f2 = ets−2s,

f3 = e−ts and f4 = g(t, s), appearing in some D
(w,Σ)
X (esΣ+tD) (for different permissible

pairs (X,Σ) and D ·Σ = 1), and linearly independent over F(t), the field of (formal)
Laurent series on t. We have the map

< ·, φw(A, et∆+sΣ) >: V4[[t]] → R
4[[t]] (2)

which assigns to φ(t) ∈ V4[[t]] a four-vector whose i-th coordinate (actually we should
tensor V4[[t]] and R4[[t]] with F(t), but we will not be explicit about this point) is
the coefficient (in F(t)) of fi in < φ(t), φw(A, et∆+sΣ) > (where ∆ = pt ×D2 ⊂ A).

Therefore φw(Xo, etD
o

) is sent to (cX,i(t)), the coefficients of fi in D
(w,Σ)
X (esΣ+tD),

where D = Do + ∆ (so D
(w,Σ)
X (esΣ+tD) =

∑

cX,i(t) · fi(t, s)).

From the examples, the map above is an isomorphism (over F(t)), so we can push
the product from V4[[t]] to R4[[t]] and we shall have a universal symmetric matrix
M(t) = (Mij(t)) such that

D
(w,Σ)
X (etD) =

∑

i,j

cX1,i(t)Mij(t)cX2,j(t).

Remark 17. Since the map (2) is an isomorphism, D
(w,Σ)
X ((x2 − 4)etD+sΣ) = 0 if and

only if φw(Xo, (x2 − 4)etD
o

) = 0.

The image of all possible φw(Xo, etD
o

) with X of simple type, b1 = 0 and b+ > 1,
is exactly the three-dimensional subspace given by equating the last coordinate to
zero. So when Xi are both of simple type with b1 = 0 and b+ > 1, write Dw

X1
(eα) =

eQ(α)/2
∑

ai,we
Ki·α and Dw

X2
(eα) = eQ(α)/2

∑

bj,we
Lj ·α. Then































cX1,1(t) = eQ(tD1)/2
∑

Kj ·Σ=2

aj,we
tKj ·D1

cX1,2(t) = eQ(tD1)/2
∑

Kj ·Σ=−2

aj,we
tKj ·D1

cX1,3(t) = e−Q(tD1)/2
∑

Kj ·Σ=0

i−d0aj,we
ti Kj ·D1

cX1,4(t) = 0

(3)

and

D
(w,Σ)
X (etD) =

∑

1≤i,j≤3

cX1,i(t)Mij(t)cX2,j(t). (4)



DONALDSON INVARIANTS FOR CONNECTED SUMS 11

This expression is valid for any D ∈ H2(X) with D|Y = [S1]. For D ∈ H we have

D
(w,Σ)
X (etD) =

∑

1≤i,j≤3

cX1,i(t)Mij(t(D · Σ))cX2,j(t).

Considering D, D1+rΣ, D2−rΣ in (4), we get that Mij(t) = 0 for i 6= j, 1 ≤ i, j ≤ 3.
Now consider the case in which both Xi and Σi are as in the third example of the
list. Then X = X1#ΣX2 splits off a S

2 × S
2, so its invariants are zero. Therefore

M33(t) = 0. So finally we have (using also D2 = D2
1 +D2

2),

D
(w,Σ)
X (etD) = eQ(tD)/2(

∑

Ki·Σ=Lj ·Σ=2

M11(t(D · Σ))ai,wbj,w e
(Ki·D1+Lj ·D2)t+

∑

Ki·Σ=Lj ·Σ=−2

M11(t(D · Σ))ai,wbj,w e
(Ki·D1+Lj ·D2)t).

Let us now compute M11(t) and M22(t). By the universality and since all the
manifolds involved can be chosen of simple type, one has M11(t) =

∑

cn e
nt and

M22(t) =
∑

dn e
nt, finite sums of exponentials. Let S = CP

2#10CP
2

be the rational
elliptic surface blown-up once. Denote by E1, . . . , E10 the exceptional divisors and
let T1 = C − E1 − · · · − E9, T2 = C − E1 − · · · − E8 − E10, where C is the cubic
curve in CP

2. So T1 and T2 can be represented by smooth tori of self-intersection
zero and with T1 · T2 = 1. We can glue two copies of S along T1. The result is a
K3 surface S#T1

S blown-up twice. The T2 pieces glue together to give a genus 2
Riemann surface Σ2 of self-intersection zero which intersects T1 in one point. This is
actually the pair (B,Σ) we introduced before the statement of theorem 10. Now set
X = (S#T1

S)#Σ2
(S#T1

S), which is of simple type (by [8], since it contains a torus of
self-intersection 0 intersecting an embedded (−2)-sphere transversely in one point).
Now call Σ = Σ2 and get D piecing together both T1’s in S#T1

S. So (choose w = T1

on S#T1
S)

D
(D,Σ)
X (etD+sΣ) = eQ(tD+sΣ)/2(

∑

Ki·Σ=Lj ·Σ=2

cnaibj e
2s+nt +

∑

Ki·Σ=Lj ·Σ=−2

dnaibj e
−2s+nt) =

= ets(
∑ cn

16
e2s+nt +

∑ dn
16
e−2s+nt),

since T1 evaluates 0 on basic classes being a torus of self-intersection zero (the coeffi-
cient 1

16
appears from the explicit computation of the basic classes of the K3 surface

blown-up in two points, see below (6)). The trick is now to use the symmetry fact that
X = (S#T2

S)#Σ1
(S#T2

S), where Σ1 comes from gluing together both T1’s. Under
this diffeomorphism D = Σ1 and Σ comes from piecing together both T2’s in S#T2

S.
Hence

D
(Σ,D)
X (etD+sΣ) = ets(

∑ cn
16
e2t+ns +

∑ dn
16
e−2t+ns).



12 VICENTE MUÑOZ

Both expressions are equal, and equal to D
D+Σ
X (etD+sΣ). From here we deduce that

cn = 0 unless n = ±2 and dn = 0 unless n = ±2. Also c−2 = d2. Put l = c2 + c−2, so

D
(D,Σ)
X (esΣ) = l

16
e2s − l

16
e−2s (note that d0(X,D) = −15 is odd). So c2 − d−2 = 2 l.

But c2 = ±d−2, so it has to be c−2 = d2 = 0 and c2 = −d−2 = l. Thus

D
(D,Σ)
X (etD+sΣ) = ets(

l

16
e2s+2t −

l

16
e−2s−2t). (5)

So M11(t) = l e2t and M22(t) = −l e−2t. To get the theorem it only remains to prove

Lemma 18. l = −32.

Proof. Let ei = φw(A,Σi) ∈ HF∗(Y ), i = 0, 1, 2, 3. Then {ei} is a basis forHFeven(Y ),
since the latter is a vector space of dimension 4 and the intersection matrix for (ei ·ej)
is invertible. Actually, it is

N =









0 0 0 −1/2
0 0 −1/2 0
0 −1/2 0 −2

−1/2 0 −2 0









.

To check this we note that ei · ej =< φw(A,Σi), φw(A,Σj) >= D
(w,Σ)
S (Σi+j), S =

Σ×CP
1 = A∪Y A, w = CP

1, so we only need to find D
(w,Σ)
S (Σ3) and D

(w,Σ)
S (Σ5). For

the first one, the moduli space is Modd
Σ , which is six-dimensional. Then µ(Σ)3 = 1/2,

with µ(Σ) ∈ H2(Modd
Σ ), from [15]. This invariant is computed using the complex

orientation of the moduli space which differs from the one we use by a factor ǫS(w) =

(−1)
KS ·w+w2

2 = −1. So D
(w,Σ)
S (Σ3) = −1/2. For the second one, the moduli space

is ten-dimensional, corresponding to w = CP
1 + Σ and polarisation close to Σ. For

a polarisation close to CP
1, the moduli space is empty [13]. There is only one wall

corresponding to ζ = −Σ + CP
1. Now we can apply the formulas in [11] for wall-

crossing when the irregularity is not zero, noting that ζ is a good wall. This gives

D
(w,Σ)
S (Σ5) = −2. Also this can be computed directly with an explicit description of

the algebraic moduli space and we propose this calculation as a good exercise.

Now consider the pair (B,Σ). Recall that B is the K3 surface blown-up in
two points. Let E1 and E2 be the two exceptional divisors. We have DB(eα) =
eQ(α)/2 sinh(E1 · α) sinh(E2 · α), so by proposition 3 with w = T1,

D
(w,Σ)
B (eα) = eQ(α)/2 1

2
cosh((E1 + E2) · α) + e−Q(α)/2 1

2
cos((E1 − E2) · α). (6)
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Then D
(w,Σ)
B (esΣ) = 1

2
cosh(2s), so in the basis dual to {ei}, φ

w(Bo, 1) = (1/2, 0, 2, 0)
and φw(Bo,Σ) = (0, 2, 0, 8). Therefore for C = B#ΣB,

D
(w,Σ)
C (Σ) =< φw(Bo, 1), φw(Bo,Σ) >= (1/2, 0, 2, 0)N−1N N−1









0
2
0
8









= −8.

From formula (5), we get D
(w,Σ)
C (Σ) = l

4
, so l = −32.

Proof of Theorem 9.

We are going to check that D
(w,Σ)
X ((x2 − 4)2etD) = 0, for all D ∈ H2(X) with

D · Σ = 1. This is clearly enough to infer the result. Put D = Do + ∆. If X is of
simple type with b1 = 0 and b+ > 1, we have

0 = D
(w,Σ)
X ((x2 − 4)etD+sΣ) =< φw(Xo, etD

o

), φw(A, (x2 − 4)et∆+sΣ) > .

The vectors φw(Xo, etD
o

) (with X being of simple type with b1 = 0 and b+ > 1)
generate a the 3-dimensional subspace V3[[t]] in V4[[t]] given by equating the last
coordinate to zero. Then φw(A, (x2 − 4)et∆+sΣ) lies in the subspace orthogonal to
V3[[t]]. As the pairing in V4[[t]] is non-degenerate and V3[[t]] contains an isotropic
vector (from the computation of the Mij(t) in the proof of theorem 6, the intersection
matrix restricted to V3[[t]] is degenerate), φw(A, (x2−4)et∆+sΣ) is isotropic and hence

< φw(A, (x2 − 4)et∆+sΣ), φw(A, (x2 − 4)et∆) >= D
(w,Σ)

Σ×CP
1((x

2 − 4)2etCP
1+sΣ) = 0,

from where φw(A, (x2 − 4)2et∆) = 0 (remark 17) and hence the result.

Proof of Theorem 10.

Recall the permissible pair (B,Σ), where B is the K3 surface blown-up in two
points with E1 and E2 the exceptional divisors, and Σ = S − E1 − E2 is the proper
transform of a tight embedded surface S ⊂ K3 of genus 2. Call C = B#ΣB the
double of B, i.e. the connected sum of B with itself with the identification which is
given by the natural orientation reversing diffeomorphism of Y = ∂Bo to itself. As
in the proof of theorem 6, we choose D ⊂ C to be the embedded surface obtained by
piecing together two fibres of the natural elliptic fibration of B. Then D is a genus 2
Riemann surface of self-intersection zero. Also take w = P.D.[D] ∈ H2(X; Z). Then
equation (5) gives

D
(w,Σ)
C (etD+sΣ) = −ets(2 e2s+2t − 2 e−2s−2t).

We can take a collection αi, 1 ≤ i ≤ 4, of loops in a fibre Σ ⊂ ∂Bo, which together
with S1 form a basis for H1(Y ), such that they can be capped off with embedded
(−1)-discs Di (writing B = S#T1

S, as in the proof of theorem 6, we consider the
vanishing discs of the elliptic fibration of S with fibre T2, see [6, page 167], since they
do not intersect T1). Now these discs can be glued together pairwise when forming
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C = Bo ∪Y B
o to give a collection of (−2)-embedded spheres Si = Di ∪αi

Di. Every
one of these discs has a dual torus Ti, by considering another loop in Σ ⊂ ∂Bo, say
βi, with αi · βi = 1, and putting Ti = βi × S1 ⊂ Σ × S1. Then the elements Si + Ti
are represented by embedded tori of self-intersection zero. Hence the manifold C is
of simple type [8], and the basic classes evaluate zero on Ti and on Si + Ti. Our
conclusion is

D
(w,Σ)
C (eα) = −4 eQ(α)/2 sinh(K · α),

with K ∈ H2(C; Z) being the only cohomology class with

• K · α = (E1 + E2) · α for α ∈ H2(B
o).

• K · Σ = K ·D = 2.
• K · Si = K · Ti = 0, for all i.

We split K into two symmetric pieces Ko ⊂ Bo. The boundary of Ko is ∂Ko = 2S1

and (Ko)2 = 2 since K2 = 4.

Analogously, the manifold C2 = C#ΣB is of simple type and

D
(w,Σ)
C2

(eα) = 32 eQ(α)/2 cosh(K2 · α).

for a unique K2 ∈ H2(C2; Z). Let D2 be obtained gluing the D coming from C with
one fibre of the elliptic fibration of B. Then

D
(w,Σ)
C2

(etD2+sΣ) = ets(16 e2s+2t + 16 e−2s−2t).

So there are two functions, f̃1 = ets+2s,f̃2 = ets−2s, appearing in someD
(w,Σ)

X̃
(esΣ+tD)

(for different permissible (X,Σ) with b1 = 0, X̃ = Xo ∪Y B
o, D ∈ H2(X̃), D =

Do+Do
B, ∂Do = γ), and linearly independent over F(t). Now we mimic the reasoning

of the proof of theorem 6. We have a map

< ·, φw(Bo, etD
o
B

+sΣ) >: V2[[t]] → R
2[[t]]

which is an isomorphism (over F(t)), such that D
(w,Σ)

X̃
(esΣ+tD) =

∑

cX̃,i(t) · f̃i(t, s).

We shall have a universal symmetric matrix M̃(t) = (M̃ij(t)) such that

D
(w,Σ)
X (etD) =

∑

i,j

cX̃1,i
(t)M̃ij(t)cX̃2,j

(t).

This expression is valid for any D ∈ H2(X) with D|Y = [γ] ∈ H1(Y ), γ ⊂ Σ ⊂ Y an

embedded curve. Now φw(Bo, (x2 − 4)etD
o
B) = 0, since D

(w,Σ)
C ((x2 − 4)etD+sΣ) = 0, as

C is of simple type. Therefore X̃i = Xo
i ∪Y B

o are of simple type. Also this implies
that φw(Xo

i , (x
2 − 4)etD

o

) = 0 and hence that X = Xo
1 ∪Y X

o
2 is of simple type. Now











cX̃1,1
(t) = eQ(tD1)/2

∑

K̃i·Σ=2

ãi,we
tK̃i·D1

cX̃1,2
(t) = eQ(tD1)/2

∑

K̃i·Σ=−2

ãi,we
tK̃i·D1

(7)
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Again, as in the proof of theorem 6, we get that M̃ij(t) = 0 for i 6= j. Consider

X1 = B, X2 = B, X = C, X̃1 = C, X̃2 = C, let DC = Do
B + Do

B ∈ H2(C) and put

D1 = D2 = DC , D = DC . We get that M̃11(t) = −1
2
eQ(tDC)/2, M̃22(t) = 1

2
eQ(tDC)/2.

Now we have that for any X = Xo
1 ∪Y X

o
2 and D = Do

1 +Do
2 with ∂Do

1 = −∂Do
2 = γ,

it is Q(tDC)/2 = Q(tD)/2 −Q(tD1)/2 −Q(tD2)/2, where Di = Do
i +Do

B ∈ H2(X̃i).
From this we get the sought expression in the statement of theorem 10, for any
D ∈ H2(X) with D|Y ∈ H1(Y ) satisfying that p∗(D|Y ) ∈ H1(Σ) (p : Y → Σ the
projection) is primitive and non-zero. Since we have chosen the map D 7→ (D1, D2)
to be linear, this finishes the proof.
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[14] Z. Szabó, Irreducible four-manifolds with small Euler characteristics, Topology. 35 1996, 411-

426.
[15] M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles,

Jour. Differential Geometry, 35 1992, 131-150.
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