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Abstract. We describe a new algorithm for the obtainment of the affine and Euclidean calibration of a camera
under general motion. The algorithm exploit the relationships of the horopter curves associated to each pair of
cameras with the plane at infinity and the absolute conic. Using these properties we define cost functions whose

minimization by means of general purpose techniques provides the required calibration. The experiments show the
good convergence properties, computational efficiency and robust performance of the new techniques.
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1. Introduction

The seminal paper [2] was the first to show the possibility of calibrating a camera from a set of views, avoiding
the use of any kind of calibrating object. Their method was based in the so-called Kruppa equations, which permit
to locate the plane at infinity and the absolute conic in it, so recovering the Euclidean structure of space.

Additional objects and concepts came later to provide alternative tools and methods to solve the self-calibration
problem. In [18] the absolute quadric was introduced. This is a singular imaginary quadric in the dual space P3⋆

which encodes simultaneously the position of the plane at infinity and the absolute conic. In [12] the homographies
between images induced by the plane at infinity are employed to obtain the unimodular constraint from which the
plane at infinity can be found. The key observation of this work is that for the plane at infinity the associated
homography is conjugated to a rotation and therefore its eigenvalues are all of them of equal modulus. Other
approaches to self-calibration can be found in [4] and [7].

Another natural geometric object associated to a pair of identically calibrated cameras is the horopter curve,
defined as the set of points in space which have the same image coordinates in both cameras, and generically
is a twisted cubic. They were introduced in modern computer vision by Maybank in [9], appearing as one of
the irreducible components of the quartic curve obtained as intersection of two ambiguous surfaces. Some of the
interesting properties of horopter curves can be found in [9], [10], [7].

Up to our knowledge, horopter curves have not been used so far in their full potential for the self-calibration
problem, with the remarkable exceptions of the works of Armstrong et al. [1] and of Schaffalitzky [15]. In the first
one it is shown how horopters can be used for the recovery of the plane at infinity in the special case of planar
camera motions. In the second the properties of horopter curves are employed to obtain new polynomial equations
for the obtainment of the plane at infinity.

All the previously mentioned methods, as well as the present work, deal with the recovery of arbitrary but
constant intrinsic parameters of the camera. Research has also been conducted elsewhere to cover the case of
varying intrinsic parameters with some restrictions (see e.g., [8] and the references therein).

The main idea behind the algorithms is to take advantage of the highly singular configuration adopted by the
horopter curves in relation with the plane at infinity and the absolute conic, which is preserved by homographies
of the space. Then, starting from a projective calibration, this allows for the definition of cost functions on the set
of planes of the space which vanish for the plane at infinity independently of the adopted projective coordinates.
The minimization is carried out by means of a Levenberg-Marquardt algorithm.

Experiments show the good convergence and stability properties of the technique, even in the presence of noise,
along with its computationally efficiency. Besides, the approach does not require the precise initialization which is
usually imperative.

The paper is organized as follows: Section 2 reviews the projective camera model and formalizes the self-
calibration problem. Section 3 provides a self-contained presentation of the relevant properties of horopter curves.
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Some of these properties are new and for the others we have provided new proofs toward a more consistent and
geometric-oriented presentation. Section 3 describes the algorithms and, finally, Section 4 provides the experimental
results. The main contributions of this work, appart from the autocalibration algorithms, consist in relating
horopter curves with the unimodular constraint of [12], which is done in Theorems 3.1.3 and 3.2. Theorems 3.5
and 3.6 also present new results concerning the geometry of horopter curves.

2. Mathematical model of camera self-calibration

Our model for a real camera will be the traditional pinhole camera [3], which is defined by its optical center C
and the image plane π. The image plane is endowed with an affine coordinate system (O;u,v), where O ∈ π is
an arbitrary origin of coordinates and vectors u and v form a basis of the plane, not necessarily orthonormal. In
practice this coordinate system is that given by the pixel structure of the camera. The capture of the 3D-scene is
then mathematically modeled as the correspondence of each space point with its projection onto the plane π with
center C.

For convenience, we consider the Euclidean space coordinate system {C;x,y, z} where x = u/ ‖u‖, y is defined
so that {x,y} is an orthonormal basis of π with the same orientation of {u,v}, and z completes them to an
orthonormal basis and points toward the camera from C.

Using homogeneous coordinates attached to the previously defined references, say Qc = (xc, yc, zc, tc)T and
q = (u, v, w)T for space and image points, respectively, the equations of the projection are

q = λK(I |0)Qc,

where I is the 3 × 3 identity matrix, λ is a projective proportionality constant, and K is the matrix of intrinsic
parameters given by

K =











−
f

‖u‖

f cot θ

‖u‖
u0

0 −
f

‖v‖ sin θ
v0

0 0 1











.

In this matrix f is the focal length, i.e., the Euclidean distance from the optical center to the image plane, θ is
the angle from u to v, and (u0, v0)

T are the non-homogeneous image coordinates of the principal point, i.e., the
orthogonal projection of C onto π [3].

More generally, if we want to use and arbitrary Euclidean space coordinate system instead of the one associated
to the camera, the projection equations become

q = λK (R | t) Qe

where Qe = (x, y, z, t)T are the space point homogeneous coordinates in the new reference and R and t are
respectively the rotation matrix and translation vector giving the motion from the second to the first space systems.

Even more generally, we can use an arbitrary projective 3D coordinate system instead of an Euclidean one, with
coordinates Q = (X, Y, Z, T )T related to the Euclidean coordinates by a 4 × 4 regular matrix G so that

Qe = µ GQ,

where µ is a projective proportionality constant. In this case the equation of the projection is given by

q = νPQ

where P = K (R | t)G and we have abbreviated ν = λµ.
The knowledge of the projection matrix P referred to the mentioned 3D projective coordinate system and the

2D affine coordinate system of the camera is called a projective calibration of the camera. In the case of multiple
cameras, a projective calibration of the set is the knowledge of their projection matrices with respect to a common
projective space reference and their respective image plane references. An important issue is to obtain a projective
calibration respeting the convex hull of the points in the image (see [6], [11]).

The affine calibration of the set of cameras consist in the obtainment of the projection matrices with respect to
any affine space reference. We recall that an affine reference is just a projective reference {X0,X1,X2,X3,E} such
that X1,X2 and X3 belong to the plane at infinity (see [16]). Therefore the affine calibration can be achieved by
determining the coordinates of the plane at infinity.

Analogously, an Euclidean calibration is an affine calibration for which the affine reference is Euclidean, i.e.,
such that the absolute conic has equations

X2 + Y 2 + Z2 = T = 0.
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This corresponds to the usual notion that the basis of the associated Cartesian reference is orthonormal (up to a
scale factor).

3. Horopter curves

3.1. Definition and basic properties. Let us consider two cameras identical in every respect but in their space
position. This means that each element of the second camera can be obtained from the corresponding element
of the first one by applying to it a common Euclidean motion. The set of 3D points whose projections on both
cameras have identical coordinates is called the horopter associated to the pair of cameras. In this paper we will
only develop those properties of the horopter curves which are related to the recovery of intrinsic and extrinsic
parameters. The interested reader may consult [9], [10], [7] for related information on the subject.

Let us compute the equation of the horopter associated with a couple of cameras with projection matrices
Pi = λiK(Ri | ti)G, i = 1, 2. A point Q projects onto each camera on points of the same homogeneous projective
coordinates if and only if

(1) P1Q = θP2Q,

for some constant θ ∈ C ∪ {∞} = P1 understood as a projective parameter, in the sense of [16]. Note that
the particular cases θ = 0 or θ = ∞ correspond to the camera centers, which always belong to the horopter.
Equation (1) means that Q belongs to the null-space of the matrix P1 − θP2. To compute this kernel, let us denote
by aT

i , bT
i and cT

i the rows of the matrix Pi. A point Q is in this kernel if and only if it satisfies the system of
equations

(aT
1 − θaT

2 )Q = 0

(bT
1 − θbT

2 )Q = 0

(cT
1 − θcT

2 )Q = 0.

This means that Q lies simultaneously in the planes of coordinates a1 − θa2, b1 − θb2 and c1 − θc2. Let us denote
by α = (α1, α2, α3, α4)

T the coefficients of a generic plane. The planes of the star through Q (we recall –see [16]–
that this is the set of planes and lines containing Q) are given by the equation

det(α, a1 − θa2, b1 − θb2, c1 − θc2) = 0.

The coordinates of Q are therefore the coefficients of (α1, α2, α3, α4) in this equation. From this we see that the
homogeneous coordinates of Q are given by four polynomials of degree three in θ. Generically, these polynomials
are independent and the horopter is therefore a twisted cubic. For more information on twisted cubics, see [16].
We will denote the parametric equation of the horopter by h = h(θ).

3.2. The horopter and the absolute conic. Being the horopter a cubic curve, it generically meets each plane
in three points (maybe of complex coordinates). Let us denote the plane at infinity by π∞. A point Q ∈ π∞ of
Euclidean coordinates Qe ∼ G−1Q = (x, y, z, 0)T belongs to the horopter if and only if

(P1 − θP2)Q ∼ K(λ1R1 − θλ2R2|λ1t1 − θλ2t2)Qe = 0.

Setting Q̂e = (x, y, z)T and α = λ2/λ1, this is equivalent to

(R1 − α θR2)Q̂
e = 0 ⇐⇒ (RT

2 R1 − α θI)Q̂e = 0.

Observe that R = RT
2 R1 is the rotation part of the motion carrying the first camera to the second one. The last

equation means that Q̂e is an eigenvector of R with eigenvalue αθ. Being R a rotation matrix, its eigenvalues are
1, eiϕ and e−iϕ where ϕ is the rotation angle. The eigenvector associated with the eigenvalue αθ = 1 must be real
and corresponds to the direction of the rotation axis. Considering an eigenvector Q̂e of eigenvalue eiϕ we have that

Q̂eT Q̂e = Q̂eT RT RQ̂e = (RQ̂e)T (RQ̂e) = eiϕQ̂eT eiϕQ̂e = e2iϕQ̂eT Q̂e.

So, as long as e2iϕ 6= 1, i.e, ϕ 6= 0, π (as we will assume from now on) we obtain that Q̂eT Q̂e = 0, i.e, its coordinates
satisfy the equation

x2 + y2 + z2 = 0.

This means that the complex eigenvectors are points of the absolute conic (see [16], [3] for information on the
absolute conic and how it encodes the Euclidean –or, more precisely, conformal– structure of the space).

Denoting by Q̂e
0 the real eigenvector and by Q̂e

1, Q̂e
2 the complex conjugate eigenvectors of R, a similar compu-

tation shows that

Q̂eT
0 Q̂e

1 = Q̂eT
0 Q̂e

2 = 0,
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provided that ϕ 6= 0. This means that the polar line of the point of coordinates Q̂e
0 with respect to the absolute

conic is the line through the points of coordinates Q̂e
1 and Q̂e

2. So we have the following result:

Theorem 3.1. (1) The horopter curve attached to a pair of cameras related with a motion of angle different

from 0 and π intersects the plane at infinity at three points, one of which is real and the other two are

complex conjugate and lie on the absolute conic.

(2) The pole of the line determined by the complex points is the real one and the real point represents the

direction of the screw axis of the motion.1

(3) The horopter reaches the plane at infinity at parameters with ratios

1 : eiϕ : e−iϕ,

ϕ being the rotation angle of the motion. In particular, the three parameters have the same modulus.

Remark 3.1. Since all the cameras share the same calibration matrix, the retinal coordinates provide us with
natural isomorphisms among them, relating points with the same coordinates in different retinal planes. Therefore
we can identify these planes with a virtual retinal plane Π endowed with coordinates (u, v, w) compatible with the
isomorphisms and project onto it the intersection points and the absolute conic using any of the projection matrices
(or even all of them). A relevant feature of this construction is that, as is well known (see [7]), the absolute conic
projects onto the same conic of Π independently of the projection matrix used.

The polarity relations are preserved by the homographies induced by these projections. Let us consider a set
of n projectively calibrated cameras Pl, l = 1, . . . , n with identical intrinsic parameters. For each pair of cameras
(i, j), i < j, we denote by hij = hij(θ) the corresponding horopter, by Qij

k , k = 0, 1, 2 its intersection points with

π∞ and by rij
kl the projection rij

kl = PlQ
ij
k . Of course, rij

ki = PiQ
ij
k = PjQ

ij
k = rij

kj , but the other projections will be

different, in general (see figure 1). If A is the definite symmetric matrix of the projected absolute conic in Π we
have

(2)
(

rij
0l

)T

Arij
kl = 0 and

(

rij
kl

)T

Arij
kl = 0,

where k = 1, 2, 1 ≤ i < j ≤ n, and l = 1, . . . , n.
Note that although the projected points rij

kl, l 6= i, j, are homographically related to the rij
ki = rij

kj , the con-
sideration of all these points is not redundant in the context of the search for the plane at infinity. Indeed, if
the candidate plane is the plane at infinity, this homography leaves invariant the projected absolute conic, but if
this is not the case, invariance of the conic does not hold true, and therefore these additional constraints are not
redundant.

These equations provide us with a method to recover the projection of the absolute conic from the knowledge
of the coordinates of the plane at infinity. They are in the heart of our algorithms, as will be explained later.
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Figure 1. Diagram of relationships between the intersections of the horopters with the plane at
infinity, the absolute conic, and their projections.

1This is just a projective version of the fact that the real line determined by the complex points is the direction of the pencil of
planes orthogonal to the screw axis.
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3.3. Horopters and the unimodular constraint. Twisted cubics can be generated by means of a homography
relating two stars in space. For the convenience of the reader, we recall here this Steiner-type construction (see
[16]).

The star of a point has a structure of projective plane and so we can consider homographies between stars.
Such homographies can be generated using a homography of the ambient space H : P3 → P3 as follows: For
each pair of points C1 and C2 = H(C1) we can define a homography Star(C1) → Star(C2) just by sending the
line l ∈ Star(C1) (resp. the plane π) to the line H(l) ∈ Star(C2) (resp. the plane H(π)). For simplicity, we will
denote the homography between these stars again by H . Note that any homography between stars is induced by a
homography of the ambient space: to see this it is enough to realize that a homography between stars is equivalent
to a homography between two planes of the dual space P3⋆, which has an infinity of extensions to the whole space.

In general, a line of the first star does not intersect its image. However, the set of lines which do intersect its
image produce a twisted cubic, i.e., given a homography H : Star(C1) → Star(C2) the set

{P ∈ P3 : P = l ∩ H(l), l ∈ Star(C1)}.

is a twisted cubic. And, conversely, every twisted cubic can be generated in this way.
The motion between the cameras is a homography of the space which induces the corresponding homography

between the stars based on the optical centers of the cameras. The associated twisted cubic is the horopter
previously defined. From this, it follows immediately that the horopter depends only on the relative motion
between the cameras and the position of the first optical center.

So let us consider a homography H : Star(C1) → Star(C2). For each plane τ not containing neither of the points
C1 and C2, there is a natural homography Hτ : τ → τ induced by H , defined as follows: Given a point Q ∈ τ , we
define Hτ (Q) = H(C1Q) ∩ τ . Generically, a homography of a projective plane has three fixed points. By its very
definition, the three fixed points of Hτ are the three intersection points of τ with the twisted cubic associated to
H .

Theorem 3.2. (Unimodular constraint) Let H : Star(C1) → Star(C2) be a homography and τ a plane not con-

taining any of the centers of the stars. Let us consider the associated homography Hτ : τ → τ , which we suppose

to be generic, in the sense that it has exactly three different fixed points, say, Q0, Q1 and Q2. Let h = h(θ) be the

twisted cubic attached to H, and let us denote by θi the parameters of the points Qi for i = 0, 1, 2, and by µj the

parameters of Cj, j = 1, 2. Then the eigenvalues λ0, λ1 and λ2 of Hτ have ratios given by

λ0

λ2
= {µ1, µ2, θ0, θ2},

λ1

λ2
= {µ1, µ2, θ1, θ2}.

In the particular case that the centers are reached at parameters 0 and ∞, we have

λ0

λ2
= {0,∞, θ0, θ2} =

θ0

θ2
,

λ1

λ2
= {0,∞, θ1, θ2} =

θ1

θ2
.

Proof. Let us consider the projective reference {X0,X1,X2,X3,E} of P3, where X0 = C1,X1 = Q0,X2 =
Q1,X3 = Q2,E = C2. In terms of this reference, the plane τ = X1X2X3 has equation X = 0. The cubic
that reaches the points at the required parameters has the form

h(θ) =

(

µ2 − µ1

θ − µ1
,
µ2 − θ0

θ − θ0
,
µ2 − θ1

θ − θ1
,
µ2 − θ2

θ − θ2

)

.

as can be easily checked. To determine the homography Hτ we need to know the image of a fourth point. Note
that the twisted cubic can be reparametrizated by means of a homographic change of coordinate

θ =
aθ′ + b

cθ′ + d
, ad − bc 6= 0

without affecting the cross ratios of the parameters. So we can assume, reparametrizating the curve if necessary,
that none of the parameters λi, µj coincides with ∞. Then we can consider the point Q = h(∞) = (µ2 − µ1, µ2 −
θ0, µ2 − θ1, µ2 − θ2). Since Hτ (C1Q ∩ τ) = C2Q ∩ τ , the point C1Q ∩ τ = (0, µ2 − θ0, µ2 − θ1, µ2 − θ2) maps
to the point of coordinates (0, µ1 − θ0, µ1 − θ1, µ1 − θ2). Using now (Y, Z, T ) as coordinates for the plane τ , the
homography Hτ maps

(1, 0, 0) 7→ (1, 0, 0)

(0, 1, 0) 7→ (0, 1, 0)

(0, 0, 1) 7→ (0, 0, 1)

(µ2 − θ0, µ2 − θ1, µ2 − θ2) 7→ (µ1 − θ0, µ1 − θ1, µ1 − θ2)
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and so it is given by a matrix of the form (up to multiples)

Hτ ≡







µ1−θ0

µ2−θ0

0 0

0 µ1−θ1

µ2−θ1

0

0 0 µ1−θ2

µ2−θ2






,

so λ0 : λ1 : λ2 = µ1−θ0

µ2−θ0

: µ1−θ1

µ2−θ1

: µ1−θ2

µ2−θ2

from which the result follows. �

Since we have seen that in the particular case of an horopter attached to a pair of cameras with identical intrinsic
parameters the optical centers are reached by the horopter at θ = 0,∞, we obtain that the eigenvalues λ0, λ1 and
λ2 of the inter-image homography induced by the plane at infinity are in the same ratio that the parameters θ0, θ1

and θ2 at which the horopter reaches the plane at infinity, i.e.,

λ0 : λ1 : λ2 = θ0 : θ1 : θ2.

This equality, together with Theorem 3.1.3 implies the unimodular constraint introduced by Pollefeys et al. [12].
Compare with [15].

Next Theorem shows how the parameters of these points are related with the eigenvalues of Hτ . Note that this
result, together with Theorem 3.1.3 implies the unimodular constraint

3.4. Cones and horopters. There is a 2-parameter family of quadrics containing a given twisted cubic (see [16]),
and this relates the horopter with the ambiguity phenomenon (see the interesting book of Maybank [10] for more
information on this subject).

For each point P of the twisted cubic, the set of rays joining P with all the other points of the cubic is a
cone, including the tangent line at P as a limit case. To see this, it is enough to check that the curve obtained
intersecting this surface with a plane not including P is a conic. According to Bezout’s Theorem it is enough to
see that a generic line on the plane intersects the curve in just two points. To find them is equivalent to finding the
intersections, different from P , of the plane determined by the line and P with the twisted cubic. These intersection
are, in general, three points, the vertex P and two other ones. This means that the curve is a conic and therefore
that the ruled surface is a cone (cf. [16]).

In the particular case of an horopter curve, we can consider the cone with vertex the real point at infinity of
the horopter, Q0, which is a cylinder. To see what type of conic is the base of this cylinder, let us consider a plane
orthogonal to the axis of the cylinder, i.e., a plane intersecting the plane at infinity in the polar line of Q0 with
respect the absolute conic. By Theorem 3.1, this plane contains the complex conjugate points of the horopter at
infinity, Q1 and Q2, the cyclic points at infinity of the plane. Therefore the conic is a circle (see figure 2). We have
proved the following Theorem (this result is well known and frequently mentioned in the literature, e.g., [14]).

Theorem 3.3. The horopter curve is contained within a circular cylinder formed by all the lines touching the

horopter with the same direction that the screw axis of the motion.

1

C2

C

Figure 2. An horopter in its cylinder showing the screw axis of the motion.
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For the sake of completeness, we include the following property. Let us construct a cone containing the horopter
taking as vertex one of the optical centers. The curve obtained intersecting the cone with the corresponding retinal
plane is a conic. It is not difficult to find the equation of this conic: If the points q and q′ are the images in the first
and second cameras, respectively, of the same point in space, then their coordinates satisfy the relation qT Fq′ = 0,
where F is the fundamental matrix of the pair. If q and q′ are the images of a point of the horopter h(θ), then
q and q′ have the same coordinates. We abuse notation and write q = q′. Therefore qT Fq = 0 If we decompose
F = FS + FA as a sum of its symmetric part FS = (F + FT )/2 and its antisymmetric part FA = (F − FT )/2, we
have that qT Fq = qT FSq = 0, i.e., q lies over a conic of matrix FS . Note that although F is a singular matrix, its
antisymmetric part is not singular, in general. So we have proved the following Theorem, which can also be found
in [7]).

Theorem 3.4. The projection of the horopter on each retina of the camera pair is a conic with matrix the symmetric

part of the fundamental matrix of the pair.

3.5. Other properties of the horopters. Given a plane π ∈ Star(C1) let us consider its image π′ = H(π) ∈
Star(C2), which we suppose to be different from π. Let us consider the line l = π ∩ π′, which we suppose different
from C1C2. Then H induces a homography on l, sending each P ∈ l to the point P ′ = H(C1P )∩l. Any homography
of a line has either two different fixed points, or one double fixed point. Note that the fixed points belong to the
associated twisted cubic, so l is a chord of this cubic. If we have a double fixed point on l then l is tangent to the
twisted cubic at that point.

In the particular case of the horopter curve, let l be the screw axis of the motion and π the plane determined
by C1 and l. Being the screw axis invariant under the motion, the image of π is the plane π′ determined by C2

and l. Hence the screw axis l = π ∩ π′ is a chord of the horopter. But, since the motion acts on l as a translation
(assuming that the motion is not a pure rotation), the only fixed point of the homography induced on l is the point
at infinity, which is double. So we have the following Theorem:

Theorem 3.5. If the motion between the cameras is not a pure traslation, then the tangent to the horopter at its

real point at infinity is the screw axis of the motion.

Proof. We have already considered the case of a generic motion. If the motion is a pure rotation, the horopter
factorices in a line (the screw axis) and a circle, and so the Theorem holds true. �

Let us now study the effect of a coordinate change on the horopter curve. So we have new projective coordinates
Q̄ = (X̄, Ȳ , Z̄, T̄ )T related with the former ones by a non-singular matrix A as follows: Q̄ = GQ. Then we will
have new camera matrices P̄i = νiPiG

−1, and the horopter h̄ = h̄(θ̄) is defined by

0 = (P̄1 − θ̄P̄2)h̄(θ̄) = (ν1P1 − ν2θ̄P2)G
−1h̄(θ̄),

therefore

h̄(θ̄) = Gh

(

ν2

ν1
θ̄

)

.

We see from this that for a given coordinate system and an order of the cameras all the possible parameterizations
of the corresponding horopter are related by a coordinate change of the form θ = kθ̄, k 6= 0. In any of these
parameterizations the optical center of the first camera is reached at θ = 0 and that of the second camera is
reached at θ = ∞. If there is no privileged order of cameras, we must also consider changes of parameter of the
form θ = k/θ̄, as it follows from equation [1]. So we have the following Theorem:

Theorem 3.6. Under a change of projective coordinates Q̄ = GQ, the corresponding horopter h̄ = h̄(θ̄) is related

to h = h(θ) by

h̄(θ̄) = Gh
(

λ θ̄
)

or h̄(θ̄) = Gh

(

λ

θ̄

)

according to whether we interchange or not the order of the cameras and where λ is a constant which depends on

the choice of the representatives of the matrices of the cameras. The parameters 0 and ∞ always correspond to the

optical centers of the cameras.

4. Camera self-calibration using horopter curves

In this section we propose two different algorithms based on the properties of the horopters introduced above.
The first algorithm consists in a stratified calibration which first provides the plane at infinity and then the absolute
conic. Its first phase (affine calibration) can be seen as an implementation of the unimodular constraint algorithm
of [12] in terms of horopter curves. The second phase (Euclidean calibration) provides the absolute conic by
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estimating linearly the best-fit conic with respect to the intersections of the horopters with the plane at infinity
(relations given in Theorem 3.1).

The second one gives directly the Euclidean structure of space. While the first algorithm is computationally
simpler, the second one is more robust in the presence of noise, as we will see in the next section. Both algorithms
use general purpose optimization techniques (a Levenberg-Marquardt algorithm as in [13]).

4.1. Algorithm 1: Horopters and the unimodular constraint. This algorithm operates in two phases. In
the first one the plane at infinity is obtained by means of an optimization process in which the target function is
based on the unimodular constraint. The second phase provides the projected absolute conic in a direct fashion
using the relationships given in Remark 3.1.

The cost function employed for the affine calibration assigns to a candidate plane of coordinates u = (u0, u1, u2, u3)
the quantity

c1(u) =

n
∑

i,j=1
i<j

2
∑

k,l=1
k 6=l

(∣

∣

∣

θij
k

θij
l

∣

∣

∣ − 1
)2

,

where θij
0 , θij

1 , θij
2 are the parameters of the points of intersection of the plane u with the horopter associated to

the camera pair (i, j). This cost function has been designed to be invariant under permutations and scaling of the
parameters. Note that with an adequate parameterization of the space of planes, this leads to a three-dimensional
search. In practice, this will be achieved by selecting one of the ui to be one. It would also be possible to carry out
just a two-dimensional search using as parameters the modulus and the phase of the θij

k for a given horopter hij .
However, numerical instability has been observed, which discourages this approach. Besides, three-dimensional
search turns out to perform quite efficiently, as will be explained in the following section.

Note that the computational cost of one evaluation of c1 is essentially that of finding the roots of a third degree
polynomial equation. For the starting point of the optimization process, a first guess of the plane at infinity is
obtained by means of a linear algorithm which provides an exact solution if the cameras are orthogonal, i.e., if K
is a diagonal matrix (see [17]). The good convergence properties of the algorithm allow to employ a starting point
obtained by this method even if the camera is very far from verifying this condition, as will be seen in the section
of results.

Once the plane at infinity has been found, different linear methods can be employed to calculate the projection
of the absolute conic (see e.g. [12]). The properties of the horopters provide new linear methods for this task. A
first approach would be to estimate the absolute conic as the best-fit conic in the plane at infinity with respect
to the incidence and polarity relations given by Theorem 3.1. This would require the definition of a suitable
projective reference in this plane. To avoid this, we take advantage of the constrution in Remark 3.1 by projecting
the intersection points onto the virtual plane Π and calculating the best-fit conic with respect to equations (2).
The obtained conic is the projection of the absolute conic, whose matrix is given by A = (KKT )−1, so that the
intrinsic parameter matrix can be obtained from it by means of Cholesky factorization.

4.2. Algorithm 2: Horopters and absolute conic. This algorithm is an alternative to the previous one in
which both affine and Euclidean calibration are performed at the same time by means of an optimization process.
The new target function measures to what extent a candidate plane verifies equations (2). For the sake of clarity
we define this function in two steps. First, we associate to a given plane of coordinates u = (u0, u1, u2, u3)

T and a
symmetric matrix A the number f(u, A) given by

f(u, A) =
∑

i<j

n
∑

l=1

{

∣

∣

∣

∣

(

rij
0l

)T

Arij
kl

∣

∣

∣

∣

2

+

2
∑

k=1

∣

∣

∣

∣

(

rij
kl

)T

Arij
kl

∣

∣

∣

∣

2
}

with notations as in Remark 3.1 and taking normalized representatives of the rij
kl. This is a quadratic form in the

coefficients of A, so with respect to these coefficients standard minimization can be applied: We write

f(u, A) = aT Ma

where M is a 6 × 6 matrix whose entries depend on the rij
kl and aT = (a1, . . . , a6) where

A =





a1 a2 a3

a2 a4 a5

a3 a5 a6



 .

Then we define the cost of the plane u as

c(u) = min
‖a‖=1

f(u, A)
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where ‖a‖ stands for the Euclidean norm of the vector.
Then c(u) is given by the minimum eigenvalue of M and the vector a is the corresponding eigenvector. If u is

the true plane at infinity, this eigenvalue must be zero, since the best-fit conic meets exactly all the constraints.
Although there are more sophisticated methods to find the best-fit conic, we will see in the following section that
this linear technique suffices to provide satisfactory results.

The risk that the optimization process leads to a spurious minimum motivates the introduction of additional
terms in the cost function. As the matrix of the projected absolute conic is definite, penalty terms have been
included in the target function to increase the cost of a candidate plane leading to a non-definite matrix. The
finally selected target function has the form

c2(u) = c(u)g1(Au) + αg2(Au)

where Au is the normalized symmetric matrix that minimizes f(u, A) for the plane u, g1(A) is the penalty for
closeness to singularity, g2(A) is that for non-definiteness and α is a weighting factor. We define

g1(A) = 1 + 1/|λmin|
p

g2(A) =
∑

sign(λi) 6=sign(λmax)

|λi|

where λmin (resp. λmax) is the eigenvalue of A of minimum (resp. maximum) absolute value, p is a suitable power
and (λi) is the sequence of eigenvalues of A. In our experiments we have taken α = 1012, p = 6.

The initialization of the algorithm is the same as that of the previous one, and it is also robust with respect to
the starting point. However, as we next see, it is more robust with respect to noise.

5. Experimental results

To evaluate the performance of the techniques a scenario has been simulated in which a set of three cameras
capture a scene consisting in a set of 100 randomly positioned 3D points. The Euclidean coordinates of these points
are obtained from a uniform distribution with support a centered cube of side two units. The three cameras are
located at random with principal axes passing close to the center of the point distribution.

More specifically, the first camera has optical center C1 = −t1 = (0, 0, d)T and projects onto plane z = h, so
that its projection matrix in standard form can be written as P1 = K(I | t1). The other cameras are randomly
rotated and translated versions of the first one, with projection matrices Pi = K(Ri | ti), where the Ri are random
rotation matrices ranging over the whole rotation group, and ti = Rit1 + ∆ti, with the ∆ti random vectors
with independent components uniformly distributed within [−s, s]. This arrangement intends to model a set of
cameras approximately pointing toward the center of coordinates, and located all of them at a similar distance
of this center. We project the 3D points and perturb the resulting affine coordinates with noise of independent
components uniformly distributed within [−n, n].

The values of the intrinsic parameters have been taken so that the projections lie roughly within the range that
would be typical for values measured in pixels of images obtained with a video camera.

Projective calibration is first performed by camera pairs using the algorithm described in [5]. The estimation
of the fundamental matrix is computed by means of the elementary eight-point algorithm [7]. Then five of the
observed 3D points are selected at random to establish a common projective basis.

We parameterize the space of planes just by setting one of the components of the plane coordinates u =
(u0, u1, u2, u3)

T to be one. In practice, a very slight improvement is observed if the four possible choices are
employed and the result of minimum cost is selected, which is what we do in our experiments.

Although the geometry of the algorithms is independent of scaling, its numerical procedures are not: For
example, the extraction of eigenvalues is scaling-dependent. In practice, scaling of the data has proved to be very
significant in the performance of the algorithms. In our case, a homothety (u, v) 7→ (λu, λv) is applied to the
non-homogeneous affine observed noisy coordinates, and its effects are corrected in the output of the algorithm. A
rule of thumb for the value of λ is to take it as the inverse of the maximum observed coordinate.

For a given selection of intrinsic parameters and noise level, a set of 300 different experiments is considered,
each with a different set of camera positions and 3D point coordinates. With high noise levels the algorithms fail
occasionally to provide a definite matrix for the estimated absolute conic. This limitation is easily overcome by
reprocessing the data with a different choice for the projective basis. As each optimization takes a few seconds for
the second algorithm (on a Intel Pentium 4 machine running under Linux at 1500 MHz), which is the most costly,
this redundancy is perfectly affordable. In our experiments each processing is actually performed with different
basis until three different successes are obtained (with a maximum of ten attempts), and the minimum cost solution
is selected.
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Figure 3 show the average relative error curves for the first (figure 3.a) and second (figure 3.b) algorithms together
with the corresponding curves and for two intermediate algorithms resulting from two different combinations of the
cost functions β1c1 + β2c2 (figure 3.c and 3.d). We consider the case of three cameras with parameters indicated
in the caption. Figure 4 shows analogous results for a different set of intrinsic parameters.

These results clearly show that the increase in computational cost of algorithm 2 is justified by an improvement in
performance. Besides, it is seen that a combination of both cost functions does not necessarily imply an additional
gain.

Nacho: tienes que meter ms figuras
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Figure 3. Average results for f/‖u‖ = 250, ‖v‖/‖u‖ = 1.5, θ = 0.8π/2, u0 = 80, v0 = 80,
d = 1.6, s = 0.1, and noise amplitud n from 0 to 3 pixels. In (c) β1 = 1, β2 = 102. In (d) β1 = 1,
β2 = 105.
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Figure 4. Average results for f/‖u‖ = 1000, ‖v‖/‖u‖ = 1, θ = π/2, u0 = 250, v0 = 250, other
parameters as in previous figure.


