Static Inference of Transmission Data Sizes
in Distributed Systems

Elvira Albert!, Jests Correas', Enrique Martin-Martin!,
Guillermo Roman-Diez?

1 DSIC, Complutense University of Madrid, Spain
2 DLSIIS, Technical University of Madrid, Spain

Abstract. We present a static analysis to infer the amount of data
that a distributed system may transmit. The different locations of a dis-
tributed system communicate and coordinate their actions by posting
tasks among them. A task is posted by building a message with the task
name and the data on which such task has to be executed. When the
task completes, the result can be retrieved by means of another message
from which the result of the computation can be obtained. Thus, the
transmission data size of a distributed system mainly depends on the
amount of messages posted among the locations of the system, and the
sizes of the data transferred in the messages. Our static analysis has two
main parts: (1) we over-approximate the sizes of the data at the program
points where tasks are spawned and where the results are received, and
(2) we over-approximate the total number of messages. Knowledge of the
transmission data sizes is essential, among other things, to predict the
bandwidth required to achieve a certain response time, or conversely, to
estimate the response time for a given bandwidth. A prototype imple-
mentation in the SACO system demonstrates the accuracy and feasibility
of the proposed analysis.

1 Introduction

Distributed systems are increasingly used in industrial processes and products,
such as manufacturing plants, aircraft and vehicles. For example, many control
systems are decentralized using a distributed architecture with different process-
ing locations interconnected through buses or networks. The software in these
systems typically consists of concurrent tasks which are statically allocated to
specific locations for processing, and which exchange messages with other tasks
at the same or at other locations to perform a collaborative work. A decen-
tralized approach is often superior to traditional centralized control systems in
performance, capability and robustness. Systems such as control systems are of-
ten critical: they have strict requirements with respect to timing, performance,
and stability. A failure to meet these requirements may have catastrophic con-
sequences. To verify that a given system is able to provide the required quality
of control, an essential aspect is to accurately predict the communication traffic
among its distributed components, i.e., the amount of data to be transmitted
along any execution of the distributed system.

In order to estimate the transmission data sizes, we need to keep track of
the amount of data transmitted in two ways: (1) by posting asynchronous tasks
among the locations, this requires building a message in which the name of the
task to execute and the data on which it executes are included; (2) by retrieving
the results of executing the tasks, in our setting, we use future variables [8] to
synchronize with the completion of a task and retrieve the result. This paper
presents a static analysis to infer a safe over-approximation of the transmission
data sizes required by both sources of communications in a distributed system.
Our method infers three different pieces of information:

1. Inference of distributed locations. As locations can be dynamically created,
in a first step, we need to find out the locations that compose the system
and give them abstract names which will allow us to track communications
among them during the analysis. This is formalized by means of points-to
analysis [14,13], a typical analysis in pointer-based languages which infers
the memory locations that a reference variable can point to. In our case,
locations are referenced from reference variables, thus the use of points-to
analysis.

2. Inference of number of tasks spawned. The second step is to infer an upper
bound on the number of tasks spawned between each pair of distributed
locations. This is a problem which can be solved by a generic cost anal-
ysis framework such as [3]. In particular, we need to use a symbolic cost
model which allows us to annotate the caller and callee locations when a
task is spawned in the program. In essence, if we find an instruction a!m(x)
which spawns a task m at location a, the cost model symbolically counts
c(this,a,m) * 1, i.e., it counts that 1 task executing m is spawned from the
current location this at a. If the task is spawned within a loop that performs
n iterations, the analysis will infer c(this,a, m) * n.

3. Inference of data sizes. Finally, we need to infer the sizes of the arguments
in the task invocations. Typically, size analysis [7] infers upper bounds on
the data sizes at the end of the program execution. Here, we are interested
in inferring the sizes at the points in which tasks are spawned. In particular,
given an instruction alm(x), we aim at over-approximating the size of x when
the program reaches the above instruction. If the above instruction can be
executed several times, we aim at inferring the largest size of x, denoted «(x),
in all executions of the instructions. Altogether, ¢(this,a,m) * a(z) is a safe
over-approximation of the data size transmission due to such instruction.
The analysis will infer such information for each pair of locations in the
system that communicate, annotating also the task that was spawned.

We demonstrate the accuracy and feasibility of the presented cost analysis by
implementing a prototype analyzer within the SACO system [2], a static analyzer
for distributed concurrent programs. Preliminary experiments on some typical
applications for distributed programs show the feasibility and accuracy of our
analysis. The tool can be used on-line from a web interface available at
http://costa.ls.fi.upm.es/web/saco.

http://costa.ls.fi.upm.es/web/saco

The remaining of the paper is organized as follows. The next section will
present the distribution model that we use to formalize the analysis. Sec. 3
defines the concrete notion of transmission data size that we then want to over-
approximate by means of static analysis. Sec. 4 presents the static analysis that
carries out the three steps mentioned above. Sec. 5 reports on preliminary ex-
perimental results and Sec. 6 concludes.

2 Distribution Model

We consider a distributed programming model with explicit locations and based
on the actor-based paradigm [1]. Each location represents a processor with a
procedure stack and an unordered queue of pending tasks. Initially all processors
are idle. When an idle processor’s task queue is not empty, some task is selected
for execution. Besides accessing its own processor’s global storage, each task can
post tasks to the queues of any processor (message passing), including its own,
and synchronize with the completion of tasks. This synchronization is done by
means of future variables [8]. When a task completes or when it is awaiting for
another task to terminate, its processor becomes idle again, chooses the next
pending task, and so on. This distribution model captures the essence of the
concurrency model of languages like X10 [12], Erlang [6], Scala [10] or ABS [11].

2.1 Syntax

Regarding data, the language contains basic types B (int, bool .. .) and paramet-
ric data types D. Data types are declared by listing all the possible constructors
C and their arguments, a syntax similar to functional languages like Haskell:

(Type variable) N :=a,b,c...

(Basic type) B = int | bool | void | ...

(Data type declaration) Dd ::=data D(N1,...,N,)=C;|...| Cy (n>0,k>0)
(Constructor) C == Co(Ni,...,N,) (n>0)

(Ground type) T =:=B|D(Ti,...,Tn) (n>0)

Ezample 1 (Data types). We define integer lists and general binary trees as:
data List = Nil | Cons(int, List)
data Tree(a) = Leaf(a) | Branch(a, Tree(a), Tree(a))
Using the previously declared constructors the list | = [1,2,3] is defined as
| = Cons(1, Cons(2, Cons(3,Nil))), and the binary tree ¢t with 2 at the root, 1 as left
child and 3 as right child as t = Branch(2, Leaf(1), Leaf(3))

Apart from data type declarations, the language allows the definition of functions
based on pattern matching as in functional languages—e.g. head, tail, length, etc.
This syntax has been omitted for the sake of conciseness, as it does not play an
important role for presenting the analysis.

Regarding programs, the number of distributed locations needs not be known
a priori (e.g., locations may be virtual). Syntactically, a location will therefore

main (List |, int s) { 11 void extend (List lint s) { 20 List add (List I, int e) {

1
2 x = newloc; 12 while(s > 0) { 21 List r = Cons(e,l);
3y = newloc; 13 Fut f= yladd(l,5); 22 return r;
4+ z = newlog; 14 await f7; 23 }
5 xlextend(l,s); 15 | = flget; 24 void process (List le) {
6} 16 z! process(l); 25 while(le !'= Nil) {
7 17 s =s-—1, 26 Int h = head(le)
sint foo (int i) { 18} 27 y!foo(h);
o return i; 19 } 28 le = tail (le);
10 } 29 }

30 }

Fig. 1. Running Example

be similar to an object and can be dynamically created using the instruction
newLoc. The program is composed by a set of methods finished with a return
instruction M::=T m(T Z){s;return z; } where s takes the form:

su=gs;s|x=e|x= fget| if e then s else s | while € do s | b = newlLoc
| f=0bm(Z) | await f7
The notation T is used as a shorthand for 7171, ...,T,, and similarly for other

names. The special location identifier this denotes the current location. For the
sake of generality, the syntax of expressions e is left open. The semantics of
future variables f and concurrency instructions is explained below.

Ezample 2 (running example). Fig. 1 shows a method main which creates three
distributed locations, x, y and z, and receives a list of integers, |, and one integer,
s. In the example, we assume that x, y and z are global variables and thus
accessible to all methods. Also, we have omitted return instructions in void tasks.
Method main spawns task extend at location x in Line 5 (L5 for short) and sends
data | and x (thus there is data transmission at this point). Method extend
extends | with s new elements. To do this, it invokes method add at location
y that extends the list with a new element (L13). The await instruction at L14
awaits for the termination of add. The result is retrieved using the get instruction
at L15, where besides we assign the result to |. Within the loop of extend, tasks
executing process are spawned at location z. The execution of process traverses
the list in the while loop and invokes foo for each element in . An important
point to note is that, besides the data transmitted when asynchronous tasks
are spawned, the instruction get also involves data transmission to retrieve the
results.

2.2 Semantics

A program state has the form loci]|...||loc,, denoting the currently existing
distributed locations. Each location is a term loc(lid, tid, Q) where lid is the
location identifier, tid is the identifier of the active task which holds the location’s

(NEWLOC)
t = tsk(tid, m,l, (x = newloc;s)), fresh(lid1) , I = l[x — lid1]
loc(lid, tid, {t} U Q) ~
loc(lid, tid, {tsk(tid, m,l’,s)} U Q) || loc(lid1, L, {})

(AsYNC)

l(z) = lid1, fresh(tid1), li=buildLocals(z,m1), I' =I[f — (tid1, L, 1)]
loc(lid, tid, {tsk(tid, m,l, {f=z!m1(2);s))} U Q) || loc(lid1, -, Q") ~
loc(lid, tid, {tsk(tid, m,l’, s)}UQ) |
loc(lid, -, {tsk(tid1, m1,11,body(m1)) U Q'})

(RETURN)
l(z) = v, li(f) = (tid, L, L), 1] = l1[f — {(tid, true, 1)]
loc(lid, tid, {tsk(tid, m,l, (return z))} U Q) || loc(lid1, -, {tsk(tid1, -, 11,-)} U Q1) ~
loc(lid, L, {tsk(tid, m,l,e(v))} U Q) || loc(lid1, -, {tsk(tid1, -, 11,)} U Q1)

(AWAIT-T)
t = tsk(tid, m, 1, (await f7;s)),l(f) = (tid1, true, _)
loc(lid, tid, {t} U Q) ~» loc(lid, tid, {tsk(tid, m,l,s)} U Q)

(AWAIT-F)
t = tsk(tid, m,l, (await f7;5)),l(f) = (tid1, L, L)
loc(lid, tid, {t} U Q) ~ loc(lid, L, {tsk(tid, m,l, (await f?;s))} U Q)

GET-R)

(
I(f) = (tida, true, L),l' =[xz — v, f — (tid1, true,v)]
loc(lid, tid, {tsk(tid, m,l, (x = f.get;s))} U Q) || loc(lidy, -, {tsk(tid1, -, l1,e(v))} U Q1) ~>
loc(lid, tid, {tsk(tid,m,l’, s)} U Q) || loc(lid1, _, {tsk(tid1, _, 11, e(v))} U Q1)

(GET-L)
I(f) = (tid1, true,v),v # L' =z — v]
loc(lid, tid, {tsk(tid, m,l, {x = f.get;s))} U Q) ~» loc(lid, tid, {tsk(tid, m,l',s)} U Q)

(SELECT)
select(Q) = tid, t = tsk(tid, _, _, s)€Q, s # €(v)
loc(lid, L, Q)~loc(lid, tid, Q)

Fig. 2. (Summarized) Semantics for Distributed Execution

lock or L if the lock is free, and Q is the set of tasks at the location. Only one
task, which holds the location’s lock, can be active (running) at this location. All
other tasks are pending, waiting to be executed, or finished, if they terminated
and released the lock. A task is a term tsk(tid, m,l, s) where tid is a unique task
identifier, m is the name of the method executing in the task, [is a mapping
from local variables to their values and s is the sequence of instructions to be
executed or s = €(v) if the task has terminated with value v.

The execution of a program starts from a method m in an initial state Sy
with a single (initial) location with identifier 0 executing task 0 of the form
So=loc(0,0, {tsk(0,m,l, body(m))}). Here, I maps parameters to their initial val-

ues and local references to null (standard initialization), and body(m) refers to the
sequence of instructions in the method m. The execution proceeds from the ini-
tial state Sy by selecting non-deterministically one of the locations and applying
the semantic rules depicted in Fig. 2. The treatment of sequential instructions is
standard and thus omitted. The operational semantics ~» is given in a rewriting-
based style where at each step a subset of the state is rewritten according to the
rules as follows. In NEwLOC, the active task tid at location lid creates a location
lid1 which is introduced to the state with a free lock. AsyNc spawns a new task
(the initial state is created by buildLocals) with a fresh task identifier ¢tid; which
is added to the queue of location lid;—the case lid=lid, is analogous, the new
task tid; is simply added to the queue Q of lid. The future variable f allows
synchronizing the execution of the current task with the completion of the cre-
ated task, and retrieving its result. The association of the future variable to the
task is stored in the local variables table I'(f)=(tid;, L, L): the future variable
f is linked to task tidq, the task has not terminated yet (first L in the tuple),
and the result of the invocation is not available yet (second L). The rule RETURN
is used when a task tid executes a return instruction. The terminating task tid
finishes the execution with value v (its sequence of instructions is set to €(v))
and the calling task tid; is notified that tid has terminated by setting to true
the termination flag of the corresponding future variable—the case lid=lid; is
analogous, but storing the termination flag in a task in queue Q. In AWAIT-T,
the future variable we are awaiting for points to a finished task (it has the ter-
mination flag set to true in the future variable f stored in the local variable
table [) and await can be completed. Otherwise, awarr-r yields the lock so that
any other task of the same location can take it. The rule GET-R retrieves the
returning value from the task t¢id; linked to the future variable f, if the corre-
sponding task has terminated and the value has not been retrieved before. If tid
has not terminated, it will wait for the value without yielding the lock. If the
returning value has been retrieved from the remote object already, it is copied
locally from the future variable f by means of GeT-L. Finally, in rule SELECT an
idle location takes a non-finished task to continue the execution—the function
select(Q) non-deterministically returns a task identifier occurring in Q.

Ezample 3 (semantics). The following sequence is the beginning of a trace of
the program in Fig. 1 starting from main(Cons(1,Cons(2,Nil)),7). For the sake of
conciseness we represent lists with square brackets—[1,2]—instead of construc-
tors and we use l., [, and [, to denote initial local mappings, stressing only the
important changes to them at each step.

So = loc(0,0, {tsk(0, main, I, (x = newLoc;...))}) ~sNEWLOCXS
S3 = loc(0,0, {tsk(0, main, lm[x — 1,y — 2,z — 3], (xlextend(l,s)))}) || loc(1, L,{})
| loc(2, L, {}) || loc(3, L, {}) ~*"¢
S4 = 1oc(0,0,...) || loc(1, L, {tsk(1, extend, ., (while (s > 0){...}))})
[loc(2, L, {}) || loc(3, L, {}) ~""" S5~
Se = loc(0,0,...) || loc(1,1, {tsk(1, extend, ., (Fut f=yladd(1,5);...))})
[loc(2, L, {}) || loc(3, L, {}) ~*¢
S7 = loc(0,0,...) || loc(1,1, {tsk(1,extend, l[f — (2, L, 1}], (await f?;...))})
|| loc(2, L, {tsk(2,add, ., (List r = Cons(e,l);return r))}) || loc(3, L, {}) ~""="

Ss = 1oc(0,0,...)) || loc(1,1, {tsk(1, extend, ., (await f?;...))})
| loc(2,2, {tsk(2,add,lq, (List r = Cons(e,l);return r))}) || loc(3, L, {}) ~ Sg ~»""TVEN
S10 = 10c(0,0,...) || loc(1,1, {tsk(1, extend, lc[f — (2, true, L)], (await f?;...))})
Il loc(2, L, {tsk(2,add, la, €([5,1,2])}) || loc(3, L, {}) ~s*Warm-THaETr
S12 = 1oc(0,0,...) || loc(2, L, {tsk(2,add, la,e([5,1,2]))}) || loc(3, L,{}) || loc(1,1,
{tsk(1, extend, lc[f—~(2, true, [5, 1, 2]), >[5, 1, 2]], (z!process(l);. . .)) }) ~*5N¢
S13 = 1oc(0,0,...) || loc(2, L,...) || loc(3, L, {tsk(3, L, 1y, body(process))})
loc(1,1, {tsk(1,extend,lc, (s =s-1;...))})

From state Sp to S3 we create the three locations x(1), y(2) and z(3) applying

rule NEWLOC. In S3 a new task extend is spawned using rule ASYNC, that is
placed in the queue of location 1. Since location 1 is idle but the queue contains
the non-finished task 2 in Sy, it takes the lock (SELECT) and executes the first
iteration of the loop. In Sg and S7 a new task add is spawned to location 2 and
it takes the lock. Note that in S7 the local mapping is extended to store that
the future variable f is linked to task 2, which is not finished yet (L). Task 2
finishes immediately by assigning variable r and returning: it stores the final
value [5,1,2] and notifies task 1 (RETURN). Since task 2 is finished in Sy the
await and get instructions can proceed (rules AWAIT-T and GET-R resp.), yielding
to Sto. Finally, task 2 spawns a new task process in location 3.

3 The Notion of Transmission Data Size

The transmission data size of a program execution is the total amount of data
that is moved between locations. There are two situations that generate data
movement between locations: a) when a task is invoked (in this case it sends a
message to the destination location containing all the arguments); and b) when
the returning value of a task invocation is retrieved (it sends a message contain-
ing that value). Therefore, only these two transitions of states will contribute
to the transmission data size of a program execution. In order to define this
notion we will consider that state transitions are decorated with transmission
data size information: S; W?lidl,lidg,m) S2, meaning a transmission of d units of
data from object lid; to lids through m. Transitions that do not generate data
transmission will be decorated as 51 wg S2. Since we are considering an abstract
representation of data by means of functional types, we will focus on units of
data transmitted instead of bits, which depends on the actual implementation
and is highly platform-dependent. Concretely, we assume that the cost of trans-
mitting a basic value or a data type constructor is one unit of data. This size
measure is known as term size. However, the static analysis we propose later
would work also with any other mapping from data types to corresponding sizes
(given by means of a function a such as the one below).

Definition 1 (term size). The term size of value v—a(v)—is defined as:

a(v) = { 1+ > 0 o) ifv= Co(vr...v,),

1 otherwise.

Ezample 4 (size measures). Considering the term size measure, the size of the
list | = Cons(1, Cons(2, Cons(3,Nil))) is a(l) = 7 (4 data constructors and 3
integers) and the size of the tree t = Branch(2, Leaf(1), Leaf(3)) is a(t) = 6 (3
constructors plus 3 integers).

Definition 2 (decorated step). A step S; ~ Sa using rule R from Fig. 2 is
decorated as follows:

— If R = AsYNC then the step is decorated as Sp W?lid,lid;,m) Sa, where d =
T+ .cza(l(2)), and m is the method invoked in the call. The constant
T is the size of establishing the communication, and we add the size of all
the arguments passed to the destination location. Note that a task invocation
inside the same location (lid = lid,) will not generate any transmission, so
in these cases the decoration is S wg Ss.

— If R = GET-R then the decorated step is S1 W((ilidz,lidj,m) Sa, where d =
T + a(v), v corresponds to the returned value, and m is the method that
returned v. As before, if lid = lid, then there is no transmission and the
decoration is Sy ~~ Sy.

— If R € {NEWLOC, RETURN, AWAIT-T, AWAIT-F, GET-L, SELECT}, then the step
does not move any data, so it is decorated with an empty label: S; ~° Ss.

Observe that rules AwAIT-T, AWAIT-F and GET-L use local variables only, and
therefore do not perform any remote communication. Rule RETURN notifies the
termination of a method to the caller location, although its cost is included in
the size Z for establishing the communication included in rule AsyNc.

Definition 3 (transmission data size of a trace). Given a decorated trace
T = So =8 8y w2 wsdn S the transmission data size of T—trans(T)—is
defined as:

trans(T) = Z d;

Ezample 5 (transmission data size). The decorated trace from Ex. 3 is:
_ I+6 I+6
Ta = So ~0 81 ~0 85 0 83 W(OJ,rl,extend) Sy 0 S5 0 S W(1+,2,add) S7 ~~0 Sg
0 0 0 I+7 I+7
e So e S10 e S W(Q,l,add) S12 W(1,3,process) S13
From S5 to Sy it sends a message (Z) from location 0 to 1 containing the argu-
ments of the call: I=Cons(1,Cons(2,Nil)) and s=7, where a(l) = 5 and «(7) = 1.
Similarly, from Sg to S7 it sends a message from location 1 to 2 with the ar-
guments | and 5 for task add. In State Sy it executes a return instruction, that
notifies the termination to the caller, but its size is already considered in the
call (Sg). The returning value from the call to add is actually received from the
caller at Sq2, by means of a message from location 2 to 1 with the returning value
r = Cons(5,Cons(1,Cons(2,Nil))), a(r) = 7. Finally, the invocation of task process
in state S12 sends a message from location 1 to 3 containing the argument | =

Cons(5,Cons(1,Cons(2,Nil))), of size 7. Considering this decorated trace, the total
transmission data size is:

trans(Tq) = (Z+6) +(Z+6)+ (Z+7) + (T4 7) = 4+L + 26

In other words, the transmission data size is 4+Z units of data for creating 4
messages, and 26 units of data for the transmission of values.

The transmission data size of a trace takes into account all the invocation
and returning messages, independently of the location involved. In our setting
we have several locations that can be executing in different machines or CPUs,
so it is interesting to limit transmission data size to some locations. We define
a restriction operator over traces to consider only data-moving steps between
certain locations.

Definition 4 (trace restriction). Given a decorated trace T, two location

identifiers, I and ly, a method m, the trace restriction 'T|l my is defined as:
1 2

T = {81 w?l

i
1,l2,m)

d; i
=50, Si | Si-1 W(l17l2am) S € T}

4 Automatic Inference of Transmission Data Sizes

The analysis has three main parts which are introduced in the following sections:
Sec. 4.1 is encharged of inferring the locations in the distributed system and using
them to define the cost centers on which the cost analysis is based; Sec. 4.2
infers upper bounds on the number of tasks spawned along any execution of
the program; Sec. 4.3 over-approximates the sizes of the data transmitted when
spawning asynchronous calls and when retrieving their results.

4.1 Inference of Distributed Locations

Since locations can be dynamically created, we need an analysis that abstracts
them into a finite abstract representation, and that tells us which (abstract)
location a reference variable is pointing-to. Points-to analysis [14,13,15] solves
this problem. It infers the set of memory locations that a reference variable
can point-to. Different abstractions can be used and our method is parametric
on the chosen abstraction. Any points-to analysis that provides the following
information with more or less accurate precision can be used (our implementation
uses [13]): (1) O, the set of abstract locations; (2) a function pt(pp,v) that, for
a given program point pp and variable v, returns the set of abstract locations in
O to which v may point.

Ezample 6 (distributed locations). Consider the main method shown in Fig. 1
which creates three locations x, y and z at L2, L3 and L4, and which are ab-
stracted, respectively, as o, o, and o,. By using the points-to analysis we obtain
the following set of objects created along the execution of main, O = {0, 0y, 0.}.

Besides, the points-to analysis can infer information for the local variables at
the level of program point, that is, pt(L11,this) = {o,}, pt(L13,y) = {oy},
pt(L16,z) = {o,}, pt(L20,this) = {o,}, pt(L24,this) = {o.}, pt(L26,y) = {o,}
or pt(L8, this) = {o,}.

The distributed locations that the points-to analysis infers are used to define
the cost centers [3] that the resource analysis will use. The notion of cost center
is used to attribute the cost of each instruction to the location that executes it.
In the above example, we have three locations which lead to three cost centers,
c(oz), c(oy) and c(o;).

4.2 Inference of number of tasks spawned

Our analysis builds upon well-established work on cost analysis [9,16,3]. Such
analyses are based on a generic notion of resource which can be instantiated to
measure different metrics such as number of executed instructions, amount of
memory created, number of calls to methods, etc. In particular, the cost model
is used to determine the type of resource we are measuring. Traditionally, a cost
model is a function M : Instr — N which, for each instruction in the program,
returns a natural number which represents its cost. As examples of cost models
we could have: for counting the number of instructions executed by a program,
the cost model counts one unit for any instruction, i.e., Ml(ms) = 1; for counting
the number of calls, we can use M°(ins) = 1 if ins = xz!m(_); and 0 otherwise.
When the analysis uses cost centers, the cost model additionally defines to which
cost center the cost must be attributed. For instance, when counting number of
instructions, we have that M(i) = }_ c i (,p.this) €(0) %1, where pp is the program
point of instruction i, i.e., the instruction is accumulated in all locations that it
can be executed (this is given by the locations to which the this reference can
point).

In what follows, we use the cost analyzer as a black box in the following
way. Given a method m(Z) and a cost model, the cost analyzer gives us an upper
bound for the total cost (for the resource specified in the cost model) of executing
m of the form U, (Z) = 2?21 cc;xC;, where cc; is a cost center and C; is a cost
expression that bounds the cost of the computation carried out by the cost center
cc;. If one is interested in studying the computation performed by one particular
cost center ccj, we simply replace all cc; with ¢ # j by 0 and cc; by 1. In order to
obtain the cost expression C;, the cost analyzer needs to over-approximate the
number of iterations that loops perform, and infer the maximum sizes of data.
For the sake of this paper, we do not need to go into the technical details of
this process. To infer an upper bound on the number of tasks spawned by the
program, we simply have to define a number of tasks cost model and use the cost
analyzer as a black box.

Definition 5 (number of tasks cost model). Given an instruction ins at
program point pp, we define the number of tasks cost model, M*(ins) as a func-
tion which returns c(o1,02,m) if ins = f=ylm(.) A o1 € pt(pp,this) A oy €
pt(pp,y) A o1 # 02, and 0 otherwise.

10

The main feature of the above cost model is that we use an extended form of cost
centers which are triples of the form c¢(o1, 02, m), where oy is the object that is
executing, oo is the object responsible for executing the call, and m is the name
of the invoked method. These cost centers are symbolic expressions that will be
part of the upper bound computed by the analyzer. Let us see an example.

Ezample 7 (number of tasks). For the code in Fig. 1, cost analysis infers that the
number of iterations of the loop in extend (at L12) is bounded by the expression
nat(s), where nat(e) returns e if e > 0 and 0 otherwise. Since the size of | is
increased within the loop at 112, the maximum number of iterations for the
loop at L25 is produced in the last call to process. Recall that [represents the
term size of the list | (see Def. 1), and it counts 2 units for each element in the list.
Therefore, each iteration of the loop at L25 increments the term size of the list in
2 units and, consequently, the last call to process is done with a list of size [+2xs.
The loop in process (L25) traverses the list received as argument consuming
2 size units per iteration. Therefore, the expression (I + 2 % s)/2 = /2 + s
bounds the number of iterations of such loop. As process is called nat(s) times,
nat(s) * nat(l/2 + s) bounds the number of times that the body of the loop at
125 is executed. Then, by applying the number of tasks cost model we obtain
the following expression that bounds the number of tasks spawned:

Z/letxtend (lv S) = C(OI7 Oy, add) * nat(s)+
¢(0z, 02, process) * nat(s)+
c(02, 0y, f00) * (nat(s) * nat(l/2+s))

From the upper bounds on the tasks spawned, we can obtain a range of useful
information: (1) If we are interested in the number of communications for the
whole program, we just replace all expressions c(o01,02, m) by 1. (2) Replacing
all cost centers of the form ¢(o,_, _)/c(_,0,_) by 1 for the object o and the re-
maining ones by 0, we obtain an upper-bound on the number of tasks spawned
from/in o. We use, respectively, U, |o— and U, |-, to refer to the UB on the
outgoing/incoming tasks. (3) Replacing c(01, 02, -) by 1 for selected objects and
the remaining ones by 0, we can see the tasks spawned by o1 in 05, denoted
by Upm|o1—0,- (4) If we are interested in a particular method p, we can replace
¢(, ,p) by 1 and the rest by 0, we use Z/{m|i> to denote it.

Ezample 8 (number of tasks restriction). Given the upper bound of Ex. 7, the
number of tasks spawned from o, to o, is captured by replacing ¢(0,, 0y, -) (the
method is not relevant) by 1 and the rest by 0. Then, we obtain the expression
U tendlos—o, = nat(s), which shows that we have one task for each iteration of
the loop at L13. We can also obtain an upper bound on the number of tasks
from o, to oy, Ul nalo.—o, = nat(s)*nat(l/2+s). The number of tasks spawned

using method foo are captured by UL .| wocess . = nat(s).

4.3 Inference of amount of transmitted data

Our goal now is to infer, not only the number of tasks spawned, but also the sizes
of the arguments in the task invocation and of the returned values. Formally, this

11

is done by extending the previous cost model to include data sizes as well. We
rely on two auxiliary functions. Given a variable z at a certain program point,
function «(z) returns the term size of this variable at this point, as defined in
Sec. 3. Besides, after spawning a task, we are interested in knowing whether the
result of executing the task is retrieved, and in such case we accumulate the size
of the return value. This information is computed by a may-happen-in-parallel
analysis [5] which allows us to know to which task a future variable is associated.
Thus, we can assume the existence of a function hasGet(pp) which returns if the
result of the task spawned at program point pp is retrieved by a get instruction.
Now, we define a new cost model that counts the sizes of the data transferred
in each communication by relying on the two functions above.

Definition 6 (data sizes cost model). Given a program point pp we define
the cost model M%(ins) as a function which returns sc(ins) if pp : ins = r =
y!m(T) A o1 # 03 A o1 € pt(pp, this) A oy € pt(pp,y), and 0, otherwise; where

c(o1, 02, m)x(Z +2nat(o¢(wi)))+c(02, o1, m)*(Z+nat(a(r))) if hasGet(pp)

c(o1, 02, m)*(I—i—Z nat(a(x;))) otherwise

T, ET

se(ins)=

Observe that the above cost model extends the one in Def. 5 as it extends the
number of tasks cost model with the sizes of the data transmitted. Intuitively,
as any call always transfers its input arguments, their size is always included
(second case). However, the size of the returned information is only included
when there exists a get instruction that retrieves this information (first case).
In each case, we include the size for sending the messages Z. Note that the cost
centers reflect the direction of the transmission, c(o1,02,m) corresponds to a
transmission from o; to o9 through a call to m, whereas ¢(0q, 01, m) corresponds
to the information returned by o5 in response to a call to m spawned by o;. If
needed, call and return cost centers can be distinguished by marking the method
name, e.g., m for calls and m" for returns. As already mentioned, nat denotes
the positive value of an expression. We wrap the size of each argument using
nat because this way the analyzer treats them as an expression whose cost we
want to maximize (the technical details of the maximization operation can be
found in [4]). Therefore, the upper bound inferred by the analyzer using this cost
model already provides the overall information (i.e., number of tasks spawned
and maximum size of the data transmitted).

Ezample 9 (data sizes cost model). Let us see the application of the cost model
to the calls at L16, L13 and L26. At L16 we have the instruction z!process(l).
As the program does not retrieve any information from process(l), the function
hasGet(L16) returns false, and thus we only include the calling data. Then,
using the points-to information in Ex. 6, the application of M? at L16 returns:
M (zlprocess(l)) = c(0,, 0., process) * Z + nat(a(l)). As [is a data structure and
it is modified within the loop, a(l), returns the term size of I. Observe that
the expression captures, not only the objects and the method involved in the

12

call within the cost center, but also the amount of data transferred in the call,
nat(a(l)). The application of M9 to the call at L13, f = yladd(l,5), returns the
expression:

M (f=yladd(ly,5)) = c(04, 0y, add) * (Z + nat(a(lp)) + nat(a(5)))+
c(0y,05,add) * (T + nat(a(f)))

In this case, at L15 we have a get for the call at L13, so hasGet(L13) = true.
Note that we use [y to refer to the value of | at the beginning of the loop and [
to refer to the value of the list after calling add. The application of a(5) returns
1, as it is a basic type (counting as one constructor). The call at L27 returns the
expression ¢(oy, 0,,f00) * (Z + nat(a(h))).

As we have explained above, the size of a data structure might depend on
the input arguments that in turn can be modified along the program execution.
Consequently, if we are in a loop, for the same program point, the amount of data
transferred in one call can be different for each iteration of the loop. Soundness
of the cost analysis ensures that it provides the worst possible size in such case.
Technically, it is done by maximizing [4] the expressions inside nat within their
calling context.

Ezample 10 (data sizes upper bound). Once the cost model is applied to all
instructions in the program, we obtain a set of recursive equations which define
the transmission data sizes within the locations in the program. After solving
such equations using [4], we obtain the following expression which defines the

transmission data sizes of any execution starting from extend, denoted by U2, _ ,:

UL ena(l,8) = c(0x, 0y, add) * nat(s) * (Z 4+ nat(l + s+ 2 —2) + 1)+ D
c(0y, 0z,add) * nat(s) * (Z 4+ nat(l + s x 2))+ ©)
c(0z, 0z, process) * nat(s) * (Z + nat(l + s x 2))+ ®
¢(0z, 0y, f00) * (nat(s) * nat(l/2+s)) * (Z + 1) @)

The expression at (D includes the transmission from o, to o,. The worst case
size of the list at this point is nat(l+ s*2—2), this is because initially the list has
size nat(l) and at each iteration of the loop, the size is increased in method add
by two elements: Cons and an integer value. As the loop performs s iterations,
in the last invocation to add it has length [4+ (s — 1) x 2. This size is assumed
for all loop iterations (worst case size), hence we infer that the maximum data
size transmitted from o, to o, is nat(s) * (Z + nat(l + s %2 — 2) + 1), the 1 is due
to the second argument of the call (an integer). At @, o, receives from o, the
same list, but including the last element, that is nat(l + s % 2). The same list is
obtained at @. In @, the cost is constant in all iterations (1 integer).

As already mentioned in Sec. 4.2, the fact that cost centers are symbolic expres-
sions allows us to extract different pieces of information regarding the amount of
data transferred between the different abstract locations involved in the commu-
nications. With &¢ we can infer, not only an upper-bound on the total amount
of data transferred along the program execution, but also the size of the data
transferred between two objects, or the incoming/outgoing data sent/received
by a particular object.

13

Nodes Methods Pairs

Benchmark |loc |#c| T ||%5; | % | %0 ||%nr | Yom | You || %k, |%h, | %6k
BBuffer 200(17| 829 ||25.7|0.6(16.3|[43.9/0.1 (6.2 || 7.30.0(0.7
MailServer |119| 13| 693 |[30.0|4.4|15.4(|27.3|0.5(10.0|| 8.7 | 0.0]0.6
Chat 302{10| 171 ||40.5|7.5(20.0({12.7{0.1|3.0 /9.6 |0.0|1.1
DistHT 146| 9 | 1204 ||48.0]3.0|18.7(|40.7| 0.3 |10.0|| 8.0 | 0.0]0.9
BookShop |366| 10 | 3327 |[58.7|3.9(23.9(|23.6/ 0.1 | 8.3 {|29.5/0.0 (1.5
PeerToPeer|263| 19 |62575(|27.7/0.1 |15.6(|20.6/ 0.1 | 5.8 || 5.9 |1 0.0 |0.5

Table 1. Experimental results (times in ms)
Ezample 11 (data sizes restriction). From UL, (1, s), using the cost centers as
we have explained in Ex. 8, we can extract different types of information about
the data transferred. For instance, we can bound the size of the outgoing data
from location x:

U iend(l,5)|0n— = nat(s) (Z + nat(l + s % 2 — 2) + 1) + nat(s) * (Z + nat(l + s * 2))
Or the incoming data sizes for the location y:
U iena(l, 5)| 50, = nat(s) * (Z + nat(l 4+ s* 2 —2) + 1) + (nat(s) * nat(l/2+s)) * (Z + 1)

Theorem 1 (soundness). Let P be a program and ly,ly location identifiers.
Let O be the object names computed by a points-to analysis of P. Let 01,02 be
the abstractions of ly,ls in O. Then, given a trace T from P with arguments T
we have that

trans(T| <UL(T)|

ll l)lz) 01 1)02‘

5 Experimental Results

We have implemented our analysis in SACO [2] and applied it to some typical
examples of distributed systems: BBuffer, a bounded-buffer for communicating
several producers and consumers; MailServer, a client-server distributed system;
Chat, a chat application; DistHT, a distributed hash table; BookShop, a web shop
client-server application; and PeerToPeer, a peer-to-peer network with a set of
interconnected peers. Experiments have been performed on an Intel Core i7 at
3.4GHz with 8GB of RAM, running Ubuntu 12.04.

We have applied our analysis and evaluated the upper bound expressions for
different combinations of concrete input values so as to obtain some quantita-
tive information about the analysis. Table 1 summarizes the results obtained.
Columns Benchmark and loc show, resp. the name and the number of program
lines of the benchmark. Column #. displays the number of locations identified
by the analysis. Column T shows the time to perform the inference of the trans-
mission data sizes. We have studied the transmission data sizes among each pair
of locations identified by the points-to analysis. We have studied data transmis-
sion from three points of view: (1) from a location with the rest of the program,
(2) from a method, and (3) among pairs of locations. In case (1), we try to

14

identify potential bottlenecks in the communication, i.e., those locations that
produce/consume most of the data in the benchmark. Also, we want to observe
locations that do not have much communication. In the former, such locations
should have a fast communication channel, while in the latter we can still have
a good response time with slower bandwidth conditions. Columns %%, %, %
show, respectively, the percentage of the location that accumulates more traffic
(incoming + outgoing) w.r.t. the total traffic in the system, for the location with
less traffic, and the average for the traffic of all locations. Similarly, columns
%4, %E,, %~ show, for case (3), which is the percentage of the total traffic
transmitted by the pair of locations that have more traffic, by the pair with
less traffic and the average between the traffic of all pairs, respectively. Finally,
regarding case (2), columns under Methods show similar information but taking
into account the task that performs the communication, i.e., the percentage of
the traffic transmitted by the task that transmits more (resp., less) amount of
data, %7} (resp., %), and the average of the transmissions performed by each
task (%0).

We can observe in the table that our analysis is performed in a reason-
able time. One important issue is that we only have to perform the analysis
once, and the information can be extracted later by evaluating the upper bound
with different parameters and focusing in the communications of interest. In the
columns for the locations, we can see that all benchmarks are relatively well
distributed. The average of the data transmitted per location is under 25% for
all benchmarks. BookShop is the benchmark which could have a communica-
tion bottleneck as it accumulates in a single location 58.7% of the total traffic.
Regarding methods, it is interesting to see that for all benchmarks no method
accumulates more than 45% of the total traffic. Moreover, the table shows that
in all benchmarks there is at least one method that requires less than 0.5%, in
most cases this method (or methods) is an object constructor. Regarding pairs
of locations, in all benchmarks there is at least one pair of locations that do not
communicate, %P, = 0 for all benchmarks. This is an expected result, as it is
quite often to have pairs of locations which do not communicate in a distributed
program. Our experiments thus confirm that transmission among pairs of loca-
tions is relatively well distributed, as in most benchmarks, except for BookShop,
the pair with highest traffic requires less than 10% of the total traffic.

6 Conclusions

We have presented a static analysis to soundly approximate the amount of data
transmitted among the locations of a distributed system. This is an important
contribution to be able to infer the response times of distributed components. In
particular, if one knows the bandwidth conditions among each pair of locations,
we can infer the time required to transmit the data and to retrieve the result.
This time should be added to the time required to carry out the computation
at each location, which is an orthogonal issue. Conversely, we can use our anal-
ysis to establish the bandwidth conditions required to ensure a certain response
time. Technically, our analysis is formalized by defining a new cost model which

15

captures only the data transmission aspect of the application. This cost model
can be plugged into a generic cost analyzer for distributed systems, that directly
returns an upper bound on the transmission data sizes, without requiring any
modification to the other components of the cost analyzer.

Acknowledgments. This work was funded partially by the EU project FP7-
ICT-610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-
project.eu) and by the Spanish projects TIN2008-05624 and TIN2012-38137.

References

1. Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA, 1986.

2. E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gdémez-Zamalloa,
E. Martin-Martin, G. Puebla, and G. Roméan-Diez. SACO: Static Analyzer for
Concurrent Objects. In Proc. of TACAS’14, volume 8413 of LNCS, pages 562—
567. Springer, 2014.

3. E. Albert, P. Arenas, S. Genaim, M. Gémez-Zamalloa, and G. Puebla. Cost Anal-
ysis of Concurrent OO programs. In Proc. of APLAS’11, volume 7078 of LNCS,
pages 238-254. Springer, December 2011.

4. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning, 46(2):161-203, 2011.

5. E. Albert, A. Flores-Montoya, and S. Genaim. Analysis of May-Happen-in-Parallel
in Concurrent Objects. In Proc. of FORTE’12, volume 7273 of LNCS, pages 35-51.
Springer, 2012.

6. J. Armstrong, R. Virding, C. Wistrom, and M. Williams. Concurrent Programming
in Erlang. Prentice Hall, 1996.

7. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In POPL. ACM Press, 1978.

8. F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future. In
Proc. of ESOP’07, volume 4421 of LNCS, pages 316-330. Springer, 2007.

9. S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and Efficient Static
Estimation of Program Computational Complexity. In Proc. of POPL’09, pages
127-139. ACM, 2009.

10. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci., 410(2-3):202-220, 2009.

11. E. B. Johnsen, R. Hahnle, J. Schéfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. of FMCO’10 (Revised
Papers), volume 6957 of LNCS, pages 142-164. Springer, 2012.

12. Jonathan K. Lee and Jens Palsberg. Featherweight x10: a core calculus for async-
finish parallelism. SIGPLAN Not., 45(5):25-36, 2010. 1693459.

13. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized Object Sensitivity for
Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol., 14:1-41, 2005.

14. M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive Points-To Anal-
ysis. In Proc. of POPL’97, pages 1-14, Paris, France, January 1997. ACM.

15. M. Sridharan and R. Bodik. Refinement-based context-sensitive points-to analysis
for Java. In PLDI, pages 387-400, 2006.

16. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In SAS, volume 6887 of LNCS, pages
280-297. Springer, 2011.

16

	Static Inference of Transmission Data Sizes in Distributed Systems

