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Abstract

This paper deals with several qualitative properties ofitsmhs of some stationary equations asso-
ciated to the Monge—Ampeére operator on the set of convestifums non necessarely in a strict sense.
Mainly, we focus our attention in the occurrence of a freerutauy (separating the region where the
solutionw is locally a hyperplane, and so were the Hesdién is vanishing, from the rest of the do-
main). Among other things, we take advantage of these pdinge to give a detailed version of some
results already announced long time ago (s Remark 2.25]). In particular, our results apply to suit-
able formulations of the Gauss curvature flow and of the wiwnes problems intensively studied in the
literature.

1 Introduction

It is well known that Geometry has been an extremely rich s®wf interesting problems in partial
differential equations since the pioneering works by Gespdonge, Comte de Peluse, (1746-1818) and
André—Marie Ampere (1775- 1836), among others (see[32] and [5]).

Here we shall concentrate our attention in several secathet gartial differential equations involving
the Hessian determinant (the Monge-Ampere operator)e$tialar unknown functiom. Several concrete
problems can be mentioned as source of the motivations ®fper. For instance, we can mention the
series of works by L. Nirenberg and coauthors (sge Nirenberg B3]) on some geometric problems, as
isometric embedding whose most familiar one is the clakMaakowski problem, in which the Monge—
Ampere equation arises in presence of a nonlinear pettarb@rm on the own unknown. Nevertheless,
today it is well-known that the Monge—Ampere operator hasynapplications, not only in Geometry, but
also in applied areas: optimal transportation, optimaigiesf antenna arrays, vision, statistical mechanics,
front formation in meteorology, financial mathematics (sgethe referencegy| 25, 39], mainly for optimal
transportation). In fact, we shall formulate the parabahd elliptic problems of this paper in connection
to a special problem which attracted the attention of marnlyas since 1974: the shape of worn stones.

Such as it was shown by Fiery?2{]), the idealized wearing process for a convex stone, ipatraith

respect to wear, can be described by
oP
— = p
5 KPn
where the point® of the N-dimensional convex hyper-surfag&' (t) embedded iRN+! (in the physical

case,N = 3) under Gauss curvature flol& with exponent > 0 moves in the inward direction to the
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surface with velocity equal to the-power of its Gaussian curvature (see also the importargrgaf). In
the special case in which we express locally the surfdté) as a graphrn 1 = u(z,t), withz € ©, a
convex open set @Y, then the function: satisfies the parabolic Monge—Ampére equation

( det DQu)p
(N+2)p—1 °

(1 + |Du|2) 2

Uy =

Since the exact form of the above denominator will not beveeie (once we assume some suitable condi-
tions). Then, our global formulation will be a Cauchy prohle

ur+Au=0 t>0,
u(0) = uy,

over the Banach spade= C(9) equipped with the supremum norm, for a suitable definiticthefoperator
A which, at least formally, is given by

(det Dgu)lD
g(|Dul)
whereu € C? is a locally convex function of andu = ¢ on the boundarg2 . Heref2 is a bounded open

set of RN, ¢ a continuous function oA andw, a locally convex function of2. In the operator4 also
take part a coefficient > 0 and a continuous functiopne C([0, +o0)) such that

Au = —

g(s) > 1foranys > 0. (1)

It can be proved (se€lf] and [21]) that the operator is accretive and satisfig3(I + c.4) D D(A) for
anye > 0. Then the Cauchy problem is solved thanks to the semigragrytfor accretive operator$ by
applying the Crandall-Liggett generation theorem (see[14]) for which the so calleanild solutionu of
the above Cauchy problem is found by solving the implicitéEgicheme

Up — U

ol 4 Au, =0, forneN,
3

or

det D*u,, = (g(|Dun|)W) " inq. )

This is why among the many different formulations of elliptiroblems to which we can apply our tech-
nigues we pay an special attention to the following statiprmoblem: with the above assumption on
Q, o, p andg, find a convex functiom satisfying, in some sense to be defined, the problem

det D?u = g(|Dul) [(u—h)%] in Q,
+
U= on o1,

whereh = h(z) is a given continuous function of2. Certainly if we want to return to2j we must

replacey (|Du|) by (g(|Dul)) 7. Since the Monge—Ampere operator is only elliptic on theoésymmetric
definite positive matrices, a compatibility is required be structure of the equation. In fact, the operator
is degenerate elliptic on the symmetric definite nonnegatiatrices (see the comments at the end of this
Introduction). As it will be proved in Theorefi(see also Remar®), the compatibility is based on

h is locally convex o2 andh < ¢ on 9Q. 3)

We also emphasize thatifp < 1 andp(zg) > h(xo) at somery € 9 or det D2h(xq) > 0 at some point
o € ) then the problem20) is elliptic non degenerate in path-connected open Qetss it is deduced
from our Corollary2.

The paper is organized as follows. In Sectibrome weak maximum principles are obtained for the
boundary value problen2(). The main consequence of the Weak Maximum Principle is timeparison
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result for which one deducés < u on (2, provided @), thus,h behaves as a kind of lower “obstacle” for
the solutionu (see Remarl below). Therefore, undeB) the problem becomes

{ det D*u = g(|Dul) (u — h)* in £, @)

U= onof2,

where the usual restriction on the non negativity of thetrigind side is here supplied b§)( By simplify
: 1 . . "
the notation we usg = —. In particular, the inequalities
p

w <. < Up_1 <up <...<u onQ (5)

hold for the iterative scheme), We emphasize that since the right hand side of the equageds not
strictly positive in some region d?, the ellipticity of the Monge—Ampére operator and the tagty C? of
solutions cannot be “a priori” guaranteed. The so calledcosity solutions” or the “generalized solutions”
are adequate notions in order to remove the non-degeneypogttesis on the operator. In fact, it is shown
in [29) for convex domain$) that both notions coincide. By using the Weak Maximum Ppleand well
known methods we prove, in Theore®nthe existence of a unique generalized solutiond)far more
generally of the problen?(Q) where the nonlinear expressi()m — h)q is replaced byf (v — h) being

f € C(R) anincreasing function satisfying(0) = 0. (6)

By a simple reasoning we obtain estimates on the gradlanBounds for the second derivativBdu can
be deduced from22) as we shall prove in0] (see Remarlg).

Sinceh < u holds onQ, the junctionF between the regions whefe = h] and[h < u] is a free
boundary (it is not known a priori). This free boundary candedined also as the boundary of the set
of pointsz € Q for which det D?u(x) > 0. Obviously, since the interior of the regiofis = k| and
[det D?u = 0] coincide, ifh € C? we must have thab?h = 0. Motivated by the applications, as well as
by the structure of the equation, the occurrence and Iat#diz of a the free boundary is studied in Section
3wheneveri(x) has flat regions

Flat(h) = | J{z € Q: h(z) = (Pa, ) + da, Pa € RY, aq € R} # 0,

where(-, -) denotes the Euclidean inner producRiN. As it will be proved, the free bounda does exist
under two different kind of conditions on the data: a suiaithavior of zeroth order term\(> q) and a
suitable balance between the "size” of the region afhereh(z) is flat and the “size” of the data and
h. For this last reason, we rewrite the equation making risesitipe parametexk,

det D?u = Ag(|Dul) f(u—h) inQ. (7

We shall show here how the theory on free boundaries (esdigritie boundary of the support of the
solutionu), developed for a class of quasilinear operators in divezgdorm, can be extended to the case
of the solution of 7) inside of flat regions ok, whereu;,, = u — h solves

det D*uy, = Ag(|Dul) f(un).

We send the reader to the exposition made in the monogeaplidr details and examples (among many
other references on this topic in the literature we mentieretthe more recent monogra@¥] and the
paper [LE] for the case of other fully nonlinear operators).
As it was suggested ir2p] for the Monge—Ampére operator arfg(t) = ¢4, the appearance of the free
boundary is strongly based on the condition
q<N. (8)

Assumption 8) corresponds to the power like choice of the more generalition

/0+ (F(t)) " dt < oo, )
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t
whereF(t) :/ f(s)ds, relative to whenf is a continuous increasing functiorissatisfying f(0) = 0

(see RQ)). Becaouse the strict convexity must be removed, a critiza of the data is required, the parameter
A governs these kind of magnitude (séé&)(below). For instance, it is satisfied X is large enough. In
Theorems4 and 6 below we prove the occurrence of the free bound&rgnd give some estimates on
its localization. We also prove that/f(«) growths moderately (in a suitable way) near the region where
it ceases to be flat then the free boundary region associatétetflattens ofu (i.e. the region where
up, = u — h vanishes) may coincide with the own boundary of the set wheseflat (see Theorerii for
fq(t) = t4, q < N). The estimates on the localization of the free boundaryoatenal, in the class of
nonlinearitiesf (s) satisfying @), as it will be proved in 20].

In Section4, by means of a Strong Maximum Principle faof, we prove that the condition

/ % =00 (orN < qfor fy(t) =t9) (10)
o+ (F(t)) N+1

is a necessary condition for the existence of such free banyr(dee Theorer, Corollary2 and Remark
12 below). More precisely, we shall prove that under the comwlithe solution cannot have any flat region.
This can be regarded as an extensiond@f fo the non divergence case (see als6],[[22] and [34]). As it
was pointed out, the conditidd < ¢ implies the ellipticity non degenerate of the problet)(under very
simple assumptions, as(x) > h(xo) at somex, € 9 or det D*h(z¢) > 0 at some point;, € € for
path-connected open get(see Corollar?).

After the completion of this work (a preliminary special sien of it was presented in the proceedings
[19) the authors became aware of the paper by Daskalopoulos@adl5] in which one considers a
problem (classified by they as an eigenvalue type probleth)several resemblances with our formulation
(4), for the caseN = 2, q €]0,2[andg = 1. The main goal is the study the regularity of the solution and
so their approach use different tools.

We end this introduction by pointing out that our methods barapplied to the borderline cases for
(9). This will be made in the future papez(] in which the Monge—Ampeére operator is replaced by other
nonlinear operators of the Hessian of the unknown such as"telementary symmetric functions

SkIA(D?u)] = > Aiy - Aip, 1<E<N, (11)

1<i1 <io< <4, <N

where \(D?u) = (/\1, ey /\N) are the eigenvalues d2u. Note that the casé = 1 corresponds to
the Laplacian operator while it is a fully nonlinear operafiar the other choices of. The case: =
N corresponds to the Monge—Ampere operator. Some otheepiep for thek™ elementary symmetric
function (L1) will be considered in futures studies by the authorslin [L8, 20].

2 On the notion of solutions and the weak maximum principle

Many previous expositions on the nature of the solutionsbeafound in the literature, see for instance
the survey 7). Certainly in the class of? convex functions, the Monge—Ampére operatet D is
elliptic because the cofactor matrix Bf« is positive definite. So that, as it is proved by several mgsho
in [10, 11, 20, 26, 28, 31, 35, 36, 37, 3§, there exists &2 convex solution of the general boundary value
problems as

(12)

det D?u = H(Du, u, r), on¢,
u =, onof,

under suitable assumptions ) H > 0 andy. A main question arises now both in theory and in appli-
cations: what happensi > 0. Certainly, the ellipticity degeneracy occurs and in gah#re regularity
C? of solutions cannot be guaranteed. The so called "viscssitytions” or the “generalized solutions” are
suitable notions in order to remove the degeneracy of theatge In fact, it can be proved that for a convex
domain{) both notions coincide (se9]). A short description of all that is as follows. By a chande o
variable we get

|Du(E)] :/detDQde:/H(Du,u,x)dx (13)
E B
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for any Borel sefc C (2, where the left hand side makes sense merely whenC' is convex. By the
structure of the problem, must be convex of2 and consequently is at least locally Lipschitz. While for
locally Lipschitz functions the right hand side df3) is well defined, slight but careful modifications are
needed to give sense to the left hand side. The progressiditection is achieved thanks to the notion of
subgradients of a convex functian givenp € RY, we say

p € du(z) iff u(y)>u(x)+ (p,y—z), forallyeqQ. (14)
Thus, we can define the Radon measure
pu(E) = |0u(E)| = meagp € RY : p € du(x) for somez € E}. (15)

Since the pioneering works by Aleksandray everal authors have contributed to the study of the
above measure (see, for instan@&¥]]. Then we arrive to

Definition 1 A convex functiom on 2 is a “generalized solution” of(12) if

uu(E):/EH(Du,u,:v)d:v

for any Borel sek C Q.

The continuity orf) is compatible with the usual realization of the Dirichletinolary condition. Obviously,
the conditiorHl > 0 cannot be removed. Certainly, the definition, as welll&, can be extended to locally
convex functions: on €2, for whichwu can be constant on some subsefof

This notion of generalized solution is specific of the equatigoverned by the Monge—Ampere opera-
tor, but other notion of solutions are available for othg@etyf fully nonlinear equations with non divergence
form. The most usual is the so called “viscosity solutiorttaduced by M.G. Crandall and P.L. Lions (see
the users guidelf3)])

Definition 2 A convex functiom on(2 is a viscosity solution of the inequality
det D*u > H(Du,u,z) inQ  (subsolution)

if for everyC? convex functio® on ) for which
(u—®@)(xg) > (u— D)(x) locallyatzy € Q2

one has
det D*®(z0) > H(D®(z), u(z0), o).

Analogously, one defines the viscosity solution of the seviekequality
det D?*u < H(Du,u,z) inQ  (supersolution)
as a convex function on 2 such that for everg? convex functior® on €2 for which
(u—@)(x0) < (u—P)(x) locallyatzy €

one has
det D*®(z0) < H(D®(x0), u(zo), (20))-

Finally, when both properties hold we arrive to the notiorvisicosity solution of
det D*u = H(Du,u,z) in Q.

Note that the convexity condition om and ® are extra assumptions with respect to the usual notion of
viscosity solution (seelfd]). This is needed here because the Monge—Ampeére opesabaiy degenerate
elliptic on this class of functions. In fact, the convexitythe test functio® is only required for the correct
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definition of super solutions in viscosity sense, because-if® attains a local maximum af, € (2 for a
convex functionu on 2 and® € C?(€2) one deduces

D?®(z0) > 0
(see R9)). One proves the equivalence
u is a generalized solution o1 ) if and only if u is a viscosity solution of1(2),

provided that? is a convex domain and € C(RN x R x Q) (see R9)).
With this intrinsic way of solvel2) one may study some complementary regularity results. fiicpdar,
we may get back the notion of classical solution by meansefdhowing consistence result

Theorem 1 ([ 10]) Letwu be a strictly convex generalized solution @f2) in a convex domaif? ¢ RY,
whereH € C%%(RN x R x Q) is positive. Them € C*< () N CH1(Q), for somen’ €]0, 1[, andu solves
(12) in the classical sense. o

We continue this section with the study of some comparisahexiistence results for the equatiof).(
All results of this section apply to the case of general iasiieg functiong’ € C(R) satisfyingf(0) =0

det D*u = g(|Du|) f(u —h) inQ.
We begin by showing that the nature of the viscosity soluigantrinsic to the Maximum Principle.

Proposition 1 (Weak Maximum Principle ) Lethq, hy € C(Q). Letus € C?(2)NC(2) be a classical
solution of

—det D*us + g(|Dua|) f(uz — ho) >0 in Y,
and letu; € C(Q2) be a convex viscosity solution of
—detD2u1 —|—g(|DU1|)f(U1 —hl) S 0 in Q.

Then one has

(ur —ug)(z) < s{;g) [ul — uQ]+ + sgp [hl - h2}+, x € €.

PROOF By continuity there exists, € Q where[u; — u»], achieves the maximum value én We only
consider the casey € Q and[u; — uz2]+(zo) > 0, because otherwise the result follows. Then from the
applications of the definition of viscosity solution fer we can takeb = u, and so we deduce

0 —det DQUQ(wo) + g(|Du2(x0)|)f(u1 (,To) — hl (,To))

>
> g(|Dug(x0)|) f (ur(z0) — ha(20)) — g(|Dua(zo)|) f (ua(wo) — ha(x0)).

Then, sincef is increasing

(w1 —u2)(zo) < (hl - h2)(170) < Sglglzi) [U1 - U2]+ + Slgllp[}h — hal4.

O

Remark 1 We note that the monotonicity on the zeroth order terms istthg assumption required on the
structure of the equation and that our argument is strongbed on the notion of viscosity solution. An
analogous estimate holds by changing the roles,;adindu, (but then we do not require th& function
uy to be convex). Note also that we did not assume any convegitgiion on the domaif2. When
Q is convex these results can be extended to the class of tleeajierd solutions through the mentioned
equivalence between such solution and the viscosity saisiti In P0] we extend Propositioid to non
decreasing functiong. o
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A very simple (and important fact) was used in our precedaptraents: ifu; € C? anduy — uy € C?
are convex functions on a bal then

det D?us > det D?u;  in B.

This simple inequality can be extended to the easandu, —u; convex function on a balB, with u; = s
on 0B, by the “monotonicity formula”

s (B) < 1y (B) (16)
(see B7]). So that, the Weak Maximum Principle can be extended talhss of generalized solutions

Theorem 2 (Weak Maximum Principle ) Lethy, hy € C(Q). Letus,us € C(Q) whereu, is locally
convex inf). Suppose

— det D*uy + g(|Dusl) f (ur — k1) < —detD?us + g(|Dusa|) f(uz — h) inQ 17

in the generalized solution sense. Then

(up —uz2)(z) < sauéa[ul —ugly + S?lp[hl —hol+, xz€Q. (18)
In particular,
|ug — usl(x) < supluy —ug| +suplhy — ha|, x € Q, (29)
o0 Q

whenever the equality holds (7).

PROOF As above, we only consider the case where the maximumof us] . onQ is achieved at some
zo € QWwith [uy — ua]4 (z9) > 0. Therefore(u; —uz)(x) > 0 and convexin a baBg(zo), R small. Let
QF = {u1 > us} 2 Br(zo). We constructiy (z) = ui(z) + v(|lz — 20|> — M?) — 4, whereM > 0 is
large andy, § > 0 such thati; < u; on9Q™ and the seﬂ% = {1 > uz} is compactly contained i

and contain®. (z() for some= small. By choosingy, 6 properly, we can assume that the diametem%
is small so thati;, and therefore.s = (us — u1) + u1, are convexin it. Thenl) implies

0 < (ve)N[B1(0)| < pruy (Be(wo)) — pruy (Be(20))

g/ [g(IDual) f (uz — ha) — g(Dusl) f (us — ha)]de.
Be(z0)

Sinceg (|Duy (z0)|) = g(|Duz(zo)|) > 0 (see Remark below), by lettings — 0, the Lebesgue differen-
tiation theorem implies

0 < g(IDug(o)]) f (uz(x0) — ha(x0)) — g(|Dus(x0)]) f (u1(x0) — hi(xo)),

whence

(ul — ug) (20) < (h1 — hg)(xo) < s(;lg]zp [ul — ugLr + stglzp [hl — thr

concludes the estimates. o
Remark 2 The above proof requires a simple fact, any convex funation a convex open se ¢ RN

achieving a local interior maximum at somge O verifiesDy)(zp) = 0. Indeed, for anyp € Jy(zo) one
has

() > h(20) + (P, — 20) > ¥(x) + (p,x — z) With z nearz,

thus
<pa T — Z0> 2 0.

Then ifr > 0 is small enough we may choose- z; = —7p € O and deduce the contradiction

7|p|* < 0.
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A first consequence of the general theory fb2)(and the Weak Maximum Principle is the following
existence result

Theorem 3 Lety € C(992) and assume the compatibility conditi8). Then there exists a unique locally
convex function verifying

det D?u = g(|Dul) f(u — h) in Q,
{ U= onos, (20)
in the generalized sense. In fact, one verifies
hz) <u(z) <Ugy(z), =€, (21)

whereU,, is the harmonic function if2 with U, = ¢ on0f2.
PrROOF First we consider the generalized solution of the problem

—det D?u + g(|Dul) [f(u — hﬂ+ =0 in Q.
{ U= onof.

SinceH(Du,u,z) = g(|Dul)[f(u — h)] . > 0 we can apply well known results in the literature. In
particular, from Bg], it follows the existence and uniqueness of the solutiohe second point is to note
that, by construction, the own locally convex functiorerifies

—detD*h + g(|Dul) [f(h —h)], <0 inQ.
Therefore, by the Weak Maximum Principle and the assumgtighy on 02 we get that
h<wu inQQ,

whence

[fu—h)], = f(u—h)
concludes the existence. The uniqueness also follows fneriieak Maximum Principle. Finally, sinece
is locally convex, the arithmetic—geometric mean ineduddiad to

0 < det D?u < % (Aw)N inQ

)

whence the estimate _
hMz) <u(z) <Uy(z), z€Q

is completed by the weak maximum principe for harmonic fioms. o

Remark 3 i) As it was pointed out in the Introduction, no sign assummptn# is required in Theorerf.
The simple structural assumptioB) (implies thath, < « on Q and therefore the ellipticity, eventually
degenerate, of the equation holds. Thus, the ellipticitdfionceh behaves as a lower “obstacle” for the
solutionu. We note that these compatibility conditions are not resgliat priori in the Weak Maximum
Principles because there we are working with functions whegstence is a priori assumed.

i) Sincew is locally convex orf), we can prove

sup |Du| = sup |Dul,
Q o0

(see pQ]) then inequality 1) gives a priori bounds ofDu| on 2, providedh = ¢ ond$ andDh is defined
on df). The second derivative estimate is based on the inequality

sup |[D?u| < C <1 + sup |D2u|> (22)
Q o

for some constant independent om, as it will be proved in20]. o

In the next section we prove a kind of Strong Maximum Prireihich under suitable assumptions
will avoid the appearance of the mentioned free boundary.



3 Flatregions

In this section we focus the attention to a lower “obstaclgidtion’ locally convex orf) having some
region giving rise to the set

Flat(h) = | ] Flat, (k)

where _
Flat,(h) = {z € Q : h(2) = (pa, ) + a,, for somep, € RN anda,, € R}. (23)
Since
U(y) - (<p0uy> + a’a) > ’LL(ZC) - (<p0¢a‘r> + aa) + <p —PayY — x>7
thus

pedu(z) < p-—pas€d(u@) — ((Par)+aa)),
the equationy) becomes
det D*uq = Ag(|Dul) f(ua), « € Flat,(h), (24)

for uq = u— ((pa,z) + as). Remember that, > 0inan opense® C €, if u, > 0 0nJO. Assumption
g(|p|) > 1 leads us to study for the auxiliar problem

{ det D2U = Af(U)  inBg(0),

U=M>0 on9Bg(0), (25)

foranyM > 0. From the uniqueness of solutions, it follows thatis radially symmetric, because by
rotating it we would find another solutions. Moreover, by tieenparison resultd is nonnegative. There-
fore, the solutiorU is governed by a nonnegative radial profile functidéfr) = U(|z|) for which some
straightforward computations leads to

~ N-1
det D2U(z) = 0" (r) (UT(”)> - % [(ﬁ’(r))N}'. (26)
Remark 4 ForN = 1, the problem25) becomes the semi linear ODE
U"(r) = Af(0)
whose annulation set was carefully studied4][ o
We start by considering the initial value problem

’f'l_N N /
< {(U’(r)) } =\ (U(M), A>0, @7
U(0) = U'(0) = 0.

Obviously,U(r) = 0 is always a solution, but we are interested in the existeficeuotrivial and non-
negative solutions. Assume for the moment that there exiptsr(U, A) formed by an increasing function
U : [0, Ry[— R4 and\y > 0 satisfying that

U(0) = U'(0) =0,

for some0 < Ry < oo. We shall return to these assumption later.
By rescaling byC > 0, (28) becomes

=N , N1/
{ — [T = xr(Ue), 0<r <Ry, (28)

N

N [(U/(CT))N}/ +Af(U(Cr)) = [A = AgC] fF(U(Cr)), 0<r <Ry (29)
U(0) = U'(0) = 0,

B
whence forCj », = (/\i) it follows
U
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1. if C < Cy », the functionU(Cr) is a supersolution of the equatio®i,

2. if C = C, ,, the functionU(Cr) is the solution of the equatio2),

3. if C > C, », the functionU(Cr) is a subsolution of the equatio®).
Moreover, the function

Ry

or(@) = U (Cano ((l2l = 714)) - @ € Brarg,(0), Rua = 5= (30)
s AU
solves
—det DQUT(ZC) + )\f(v,.(:zr)) =0, z€Brig,(0).
Furthermore, it verifies
vr(z) =M, |z] =R <7+Ryp,x
once we take )
F=R— (%U) U-H(M) = [A;ﬁ - A*ﬂ UL (M)A
with N
1
A> A =y <§U1(M)) . (31)

Now for the solution of {) we may localize a core of the flat region Flat inside the flat subregion Flath)
of the “obstacle”.

Theorem 4 Leth be locally convex of2. Let us assume that there exi®s (zo) C Flat, (h) with
0 <u(z) — ((Pa, ) + aa) <M <max(u—h), € IBr(z0), (32)
Q

whereu is a generalized solution df7), for someM > 0. Then, if (28) holds and

2N

A A A (%U%M)) ,

one verifies
0 <u(x) = ((Parx) +aa) <U(Can([lz] = 7]+)), = € Br(o), (33)
where )
A\ 2N _ 1 e 1 1
Cone = [ 2 and 7= [A* N\ zN} U~ (M)AFF, (34)
] )\[U
once we assume thRt< 7 + Ry, and
A\ .
N U (M) < R < dist(zg, 09). (35)

In particular, the function is flat onB, (). More precisely,

u(z) = (Pa, ) +ao foranyz € B, (z).

PROOF The result is a direct consequence of previous argumerdeeth for simplicity we can assume
xo = 0. Sinceg(|p|) > 1, by the comparison results we get that

0 <wua(z) <wv.(z), xeBgr(0)

(see 24) and @0)) and so the conclusions hold. o
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Remark 5 We have proved that under the above assumptions the flatnredio is a non—empty set.
Obviously, Flath) C Flat(u) whenever 82) fails, even if £8) holds. We shall examine the optimality of
(33) in [20] following different strategies carry out ir2P] for other free boundary problems. o

Remark 6 We point out that the above result applies to the case in which 1 andh = 0 (the so
called “dead core” problem) as well as to cases in whids flat only nea2 (take for instanceh(z) =
(Pa, ) + aq in Q andy = h onON). o

The equation inZ8) is equivalent to
((U'(r))NH)/ = NNy (F(U(r)), 0<r<Ry F =Ff

and

T

() =N (MEO0) - oy [ RO ). 0 <r <R,

So, we deduce tha28) requires

U(r) r / ) .
/ 7‘[5;:/ %S(NAU)N_HN_FITN_H’ 0 <7< Ry,

0 (F(S)) NES 0 (F(U(S)))N+l
Therefore 9) is a necessary condition in order #8] holds. o

The reasoning in proving thaf)is a sufficient condition for the assumptict8] is very technical. Here
we only construct a function verifying a similar propertyefid to our interest

Theorem 5 Assummé9). Then the functiog(r) = ¢(r) given implicity by
¢(r) 1 2N -1
/ (F(s)) ™ds=r"%, 0<r (36)
0

satisfies, for eac > 0 the property

1N N1/ R
— [@E)] <xaf(60), 0<r<R, 37)
6(0) = ¢/(0) = 0

where

(oo}

R < / (F(s))iﬁds < +o0,
0

N (NN e
R N N+1 '

(38)

PrROOF  Since the function .
wl) = [ (B(s) s, e,
0
is increasing fronR ;. to [0, 1/(c0)[ andw(0) = 0, we may consider the function given by
o(r) 1
/ (F(s)) ¥Tds=r" 0 <r<1p(oo) < +oo,
0

wherea is a positive constant to be chosen. Then
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hold. Next, we choose

(a—1)N+1-N=0 & a= 2NN_1,
and®(r) = (F(q&(r)))NL“. Since®(0) = 0 and
/ N N—1
V() = g/ (0
is increasing, the convexity inequality
O(r) < &' (r)r
gives
1-N , / 2N —1 Nl N N—1
"o < (B) et
Finally, sincea > 1 one hasy(0) = ¢'(0) = 0. o

Remark 7 The above result leads to a stronger statement (as in the pggrezis—Nirenbergq] for a
different quasilinear equation): givéh > 0 and\ > 0 there exists a boundary valdé&* = M*(R) such
that the solutiorlJ of (25) verifiesU(0) = 0 andU(r) > 0in By \ {0}. The proof is a simple adaptation
of the proof of P, Lemma 5] by means of an application of Theorem o

So that, fixedR < 1(cc) we have

N

T‘I_N ’ —~
— [(¢(cr))N} +AF(B(Cr) > [)\ )\ mc?N} F(@(Cr), 0<r<R (39)
U(0) = U'(0) = 0,

(see R9) becomes), whence for

the function

0r(@) =6 (Can, (el = 714) ) s 2 € Brym, 1 (0), Ry = (40)

solves
—det D*v,(z) + Af(v-(2)) >0, z€ BT+R¢7)\,§(O).

The reasonings of Theorefrapply and enable us to localize again a core of the flat regai(f by
Corollary 1 Leth be locally convex of2. Let us assume that there exi®g (x¢) C Flat, (k) with

0 <u(z) — ((Par ) +aa) <M< mﬁax(u —h), x € 0Bgr(x), (42)

whereu is a generalized solution df7), for someM > 0. Then, if (9) holds and

, an
A A=A 5 (§¢1<M>) :
one verifies
0 < u(@) = ((Pay ) +aa) <6 (Con, 5 (2l = 714)) @ € Br(o), (42)
where

%
Con - = <i> and 7= [A:W - A—ﬁ] 6T AT, (43)
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once we assume th&t < 7 + R¢ AR and

(222) 7 600 < R < s, ) 0

In particular, the function: is flat onB, (). More precisely,

u(z) = (Pa, ) +ao foranyz € B, (z). ;

Remark 8 Corollay 1 is the relative version of Theoreth Consequently, the comments of Remalks
and6 apply. o

In the particular casg, (t) = ¢4, the condition §) holds if and only ifN > ¢. Moreover, the assumption
(28) is verified for
2N (2N)N(N + q)
Ua(r) =r¥7e, Aq = Sg— st

consequently all above results apply. If we scale()%%*q for the function

Ry, = +oc, (45)

U(T) = CUQ(T)v r 2 07
the property 29) becomes
,,,lfN

N

()] Ma(ue) = 1= 205 gywe), (46)

Now,

o
1.ifC< (%) the functionU(r) is a supersolution of the equatiofd),
q

N
2. ifC= (%) the functionU(r) is the solution of the equatiod ),

q

3. ifC> (%) " the functionU(r) is a subsolution of the equatiodf).
q

So that, the particular choice

U(r) = (i> CUy(r), r>0, (47)
/\q
enables us to construct the function
UT(I) :U([|ZC| _T]Jr)a .CCGRN, (48)

vanishing in a balB(0) and solving
—det D%v,(z) + Afq(vr(z)) =0, z€RN.

Moreover, giverM > 0, it verifies

once we take

with N
. AgMN T4
The localization of a core of the flat region Flaj inside the flat subregion Flath) of the “obstacle” is

estimated by

(49)
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Theorem 6 Let f(t) = t9, q < N. Leth be locally convex off). Let us assume that there exists
BR(:C()) - Flata(h) with

0 <u(z)— (<pa,:17> + aa) <ML Ingx(u —h), x€0Bgr(xo), (50)

whereu is a generalized solution df7), for someM > 0. Then, ifNp > 1 and

1 M\
o (@)

— R2N Cq,N
one verifies
0 < @) — ((Par2) +aa) < A¥Cun([le — 2o =7],)¥ %, € Br(ao), (51)
where . L
=AM AT - A (52)
once we assume that )
(%) M AN <R < dist(zo, 99). (53)

In particular, the function: is flat onB, (). More precisely,

u(z) = (Pa, ) + ao foranyz € B, (z).

Remark 9 Theorenm6 is a new version of Theorerh Therefore, once more the comments of Remaérks
and6 apply also to this power like cagg(t) = t9, N > q. o

Theorem6 gives some estimates on the localization of the points éBld{ ) whereu becomes flat
too. The following result shows that if decays in a suitable way at the boundary points of(Rlathen
the solutionu becomes also flat in those points of the boundary of(Flatin this result the parametaris
irrelevant, therefore with no loss of generality we shadilase that\ = 1.

Theorem 7 Letus assumd > q. Letz, € dFlat, () such that

(@) = ((Pas @) + aa) < K|z —z0|¥4, € Br(zo) N (RN \ Flat(h)), (54)
and .
0 < lIH;E[?lX R{U (<pa7x> + aa)} < CRF-a (55)

for some suitable positive constaiisand C (see(57) below)andw is a generalized solution (f7). Then

u(z0) = (Pas o) + da- (56)

ProoF Define the function

V(z) = u(z) = ((Pa,2) + aa),
which by construction is nonnegative#Br (z¢) (see b5)). In fact, the Weak Maximum Principle implies
thatV is non negative oBg (). Then

1

<detD2 >‘ (fa () - (Do) + 1)) ™
— (falu(@) = h(@)))™ + (fo (u(@) ~ ((Par ) +aa)))
< (h(x) - (<pa, z) +aq)) ¥

K%|x—:170|N i, x € Br(zo),

—(det D2V(@)) ™ + (fo (VI >>%f

2|~

IN
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where we have used a kind of Minkovsky inequality
(a+b)v <av +bv, a,b>0, wherep> 1,

forp = % > 1, as well as$4). On the other hand, fronig) we have

2=

(ml\_IN [(UQ(M)N}/)W _ Aéq (fo(Ug(M))™, 0<r<Ry,,

for
on (2N)N(N + q)
Ualr) =r¥a, Ag = Tg—ger By = +00

ThenU(r) = CU4(r) verifies

_ (rll\_IN [(U’(T))NDN + (f4(UE))NF = [1 = A,CN79] (fq(U(r)))ﬁ |

Hence, if we takeC < A\ ¥ ° and therK such that
K¥ < CN [1-\,CN79] (57)

we obtain

2=
2=

(et DAV(@) ¥ + (fa(V() ¥ < ~(det DAU(a) ¥ + (fo(U())) ¥, & € Br(ro).
Finally, by choosingr satisfying 65) one has
V(z) <U(Jz|), € IBgr(xo),
whence the comparison principle concludes
0 < V(z) < Clz — xo|¥9, & € Br(ao),
and sou(zo) = ((Pas o) + aa)- o

Remark 10 The assumptiort@) is satisfied if we know that the baBg (xo) where 64) holds is assumed
large enough. The above result is motivated g, [Theorem 2.5]. By adapting the reasoning used in
previous results of the literature (se& B, 23)) it can be shown that the decay bfz) — (<Pa, x) + aa)
near the boundary poin, is optimal in the sense that if

h(z) = (P, %) + aa) > Clz — 20|~~~ on a neighbourhood af
then it can be shown that
u(zo) — ((Pas o) + aa)) > Cla — zo|Noa  for z nearzo.

This type of results gives very rich information on the noegeneracy behavior of the solution near the free
boundary. This is very useful to the study of the continucgisesthdence of the free boundary with respect
to the datah andy (see p3J)). o

4 Unflat solutions

Now we examine the case in which the solution cannot be flatthe free boundary cannot appear)
independent on “size” d2, obviously it requires the condition

q=>N

or the more general assumptidtQf. This will be proved by a version of the Strong Maximum Pijhe.
We shall follow the classical reasoning by E. Hopf (seg [2€]). Again, since the parametaris again
irrelevant,in this section, with no loss of generality, vésame hera = 1. So, we begin with
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Lemma 1 (Hopf boundary pointlemma)  Assume10). Letu be a nonnegative viscosity solution of
—detD?u+ f(u) >0 inQ.

Letzy € 092 be such that(zy) = lium%lfu(x) and

zeQ

i) wuachieves a strict minimum d U {x},
i) IBr(zo —Rn(zp)) C Q, (02 satisfies an interior sphere condition ag).

Then
i juf 0 — ™)
T—0 T
wheren stands for the outer normal unit vector@f? at 2o andC'is a positive constant depending only on

the geometry of<2 at x,.

>C >0, (58)

PROOF Lety = 9 — Rn(z¢) andBr = Bg(y). As it was pointed out before, equatior) (eads to the
study of the differential equation

,,,lfN

@)Y = r@w). r>0

for radially symmetric solutions. We consider now the dleedssolution of the two point boundary problem

TlfN

N
®(0) = 0, ¢<%>_¢1>0

(@@)] =r@m), 0<r<y,
(59)

The existence of solution follows from standard argumentsthe uniqueness of solution can be proved as
in Theoren2, whence

d0)>0 = d'(r)>0 = ®"(r)>0.

Then

R
0<d(r) < Py, 0<r<§.

We note that the singularity at= 0 must be removed by the condition

T‘I_N /

U@u»ﬂ —0. (60)

lim
r—0

Let o be the largest for which ®(r) = 0. We want to prove that, = 0 by proving that-, > 0 leads to a
contradiction. In order to do that we multiplgQ) by »N—1®’(r) and get

(@) = N+ DF@E) AT, 0<r <t

Next, sinced’(rg) = 0 = ®(r(), an integration betweer, andr leads to

T

(@)™ = N+ DF(@() ™" = (N+ (N - 1) / F(®(s))r~2ds

7o
< (N+ 1)F((I)(T))TN71, ro<r< %

. . R . . -
Because we assumgd), a new integration betweern andE yields the conjectured contradiction because

o ds 5 D'(r) dr < 1 5 No1
00 = == ——————dr < (N4 1)¥1 rNFidr < oo.
/0 (F(s)) N+1 /To (F(q)(r))) N+1 /To
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So that, we have proved (0) > 0 and also

R
0< ®(r) < ®y, ®(r) >0, O<r<§,

as well asb”(0) = 0 (see 60)). Hence, straightforward computations on tteconvex functionw(z) =
®(R — |z — y|), defined in the annulu® = By \ B%, prove

det D?w ) x € Q,
w(z) = <I>1, IG&B%
( )—O x € 0BR.

Moreover, by construction
u(z) >0, z€dBr = u(z) > w(z), =z € IBg,
for ®; small enough. Then the Weak Maximum Principle of Propasitiomplies
(u—w)(x) >0, xcO.

that leads to

u(rg —mm) _ P(R—R(1—17))

> 1
. > - : (r1<1)
whence
iminf “E0 ™ S 0y > 0
T—0 T
m]
Remark 11 In fact, above result implies
minf —“%) > 5/(0) > 0 :

Our main result proving the absence of the free boundaryeigattowing

Theorem 8 (Hopf’'s Strong Maximum Principle) Assumg10). Letu be a nonnegative viscosity so-
lution of
—detD?u+ f(u) >0 inQ.

Thenu cannot vanish at soma, € €2 unlessu is constant in a neighborhood af).

PrROOF Assume that: is non—constant and achieves the minimum val( ) = 0 on some balB C €.
Then we consider the semi-concave approximatiom, éfe.

lz —y|?
2¢e2

w(z) = inf {u(y) +

inf } , xeB. (e >0), (61)

whereB, = {x € B : dist(z,0B) > /1 + 4supg |u|}. Fore small enough we can assumg € B..
Thenu® achieves the minimum value B., with u(zy) = u®(xo) = 0. Moreoveru* satisfies

—detD?u. + f(us) >0 onB.. (62)

(see, for instance3B, Proposition 2.3] or§, 13] for general fully nonlinear equations). By classic argu-
ments, if we denote
Bl = {r € B.: u(z) > 0},

there exists the largest bdlig (y) C B (see p€]). Certainly there exists som® € dBg(y) N B. for
whichu®(zp) = 0 is a local minimum. Then, LemmBimplies

Du®(z9) # 0
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contrary to
Dus (20) = 0, (63)

as we shall prove in Lemniabelow. Thereforey® is constant o C (, i.e.
u®(y) = u'(x0) = u(xg), ye€B.
Finally, for everyy € B we denote by the point ofQ2 such that
1
£ _ o~ _ _ 2
u(y) = u(y) + 55y — ¥l

whence

<)
|
<

1 N 1 %
u(zo) = u(wo) = u(y) = u(y) + 2—€2|y —J1* = u(wo) + 2—€2|y —J1* > u(w) =
So that, one concludes
u(y) = u(y) = u®(x0) = u(xo), y € B.
O

Corollary 2 Assumé10). Letu be a generalized solutianof (7). Thenifu(zg) > h(zo) or det Dzh(xo)
0 at some pointz, of a ball B C Q thenu, > h on B, consequently the equatidf) is elliptic in B. In
particular, if (o) > h(zo) at somery € 99 or det D*h(zg) > 0 at some point € 2 the problen(20)
is elliptic non degenerate in path-connected open Setsrovided the compatibility conditiof3) holds.

PROOF From Theoren8, both cases imply. > h onB. Finally, a continuity argument concludes the
proof. o

Remark 12 Straightforward computations enable us to extend Lerimeheorem8 and Corollary? to
the general casg(|p|) > 1, since we know that € W°°(2) (see the comments of Rema8k o

We end this section by proving the proper®g)f used in the proof of Theorefh

Lemma 2 Let be a function achieving a local minimum at somec O. Assume that there exists a
functlonzp defined inO such thatzp(zo) =0, ¥ =9+ ¢ is concave o) and

1/)(:17) > K|z — 2>, z €O, with |z — 2| small,
for some constari > 0. Then the functior is differentiable at, andD(zy) = 0.

PrROOF By simplicity we can takey = 0 € O. By applying the convex separation theorem there exists
p € RN such that

U(z) < W(0)+ (p,z) = ¥(0) + (p,x), =z € O, with |z| small

Then we have

) = U(a) — () < (0) + (p.a) + Kal’ (64)
<(x) + (p,z) + K|z|?, =€ O, with |z| small
whence
—(p,z) < Klz|>, x € O,with |z| small
Forr > 0 small enough we can choose= —7p € O and7K < 1, for which
7lp[* < K7|p|*.
Thereforep = 0. Finally, (64) leads to
0 < 9¢(z) —¥(0) < Klz|?, € O, with || small
and the result follows. o

Remark 13 The result is immediate i) is concave, in this case we can choafsez— 0. The convex
version follows by changing and« by —¢ and—, respectively (see Remagkabove). o

Note that since the functiowr defined in £1) is semi concave, the propert§3) holds.
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