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ABSTRACT

The Spanish Treasury is the only one in the world that uses a hybrid system of discriminatory
and uniform price auctions to sell bonds. In the Spanish auction, winning bidders pay their bid
price if it is lower than the weighted average price of winning bids, while all other winning
bidders pay the weighted average price of winning bids. We adapt Gordy’s (96} model of the
discriminatory auction to the Spanish auction. The model is a diserete model of multiple bids in
a multiple-unit commen value auction. We use numerical simulations to find equilibria for the
Spanish, the uniform and the discriminatory auction. Our results show that bidders in the
Spanish and discriminatory auctions use bid spread to cover themsclves against uncertainty, and
that expected seller”s revenue is larger on average in the former.

RESUMEN

El Tesoro espaficl es el tnico en el mundo que wsa uo sistema hibrido de subastas
discriminatoria y uniforme para subastar Letras del Tesoro. En la subasta Espafiola, las pujas
panadoras papan su precio si estin por debajo del precio medio ponderado de las pujas
ganadoras {(WAP) v el WAP en ofre caso. Adaptamos un modelo de Gordy(96) de subastas
discriminatorias al caso espaiiol. Ef modelo es de multiples pujas, discretas, con miltiples
unidades y valoracién comin. Usamos simulaciones para encontrar equilibrios en la subasta
Espatiola, discriminatoria y uniforme. Nuestros resuliados muestran que los pujadores en las
subastas Espafiola y discriminatoria usan bid spread para cubrise contra la incertidumbre, y que
los ingresos esperados del vendedor son, en media, mayores en la primera.
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1. INTRODUCTION

One of the most important auction markets in the world is the market for government debt.
Treasuries apply mainly two auction formats: discriminatory and uniform price auctions. In a
discriminatory auction, used by the majority of the Treasuries around the world, winning
bidders pay their bid price. A few Treasuries use uniform price auctions, where all winning
bidders pay the same price for each unit, the minimum accepted price. But the Spanish
Treasury is the only one that uses a hybrid system of discriminatory and uniform price
auctions; winning bidders pay their bid price i it is lower than the weighted average price of
winning bids, while all other winning bidders pay the weighted average of winning bids. With
the Spanish format, the price that some bidders have to pay for certain units depends on the
bids of all other winning bidders, including his own bids. This fact increases the players’
strategic considerations with respect to discriminatory and uniform auctions, even in the more
simple models.

The general director of the Spanish Treasury, Jaime Caruana, mentioned that “the adeption
of the euro will establish & more effictent market, in which the Spanish debt will have to
compete with other countries’ debt on interest rates, credit quality and calendar” (El Pais,
April 14, 1998). He did not mention that it has to compete with a different auction
mechanism. But his statement calls attention to the fact that competition bas increased after
January 1999, and it is important fo establish the characteristics of the Spanish auction
mechanism, both from the point of view of the seller and the buyers.

This paper studies the Spanish Treasury auctions, and compares them with the discriminatory
auctions, the format that is used by most Treasuries around the world. We consider two
aspects of the Spanish auction. First, in Treasury auctions bidders are allowed to submit
multiple bids, and they do. In Spain, the average number of bids per competitive bidder is 2.7,
and both in the United States and Portugal, the median number of bids per bidder is three'.
Gordy (96) conjectures that in discriminatory auctions, multiple bids can be used to hedge
against winner's curse, as well as to express downward sloping demand due to risk aversion.
We study the use of multipte bids in the Spanish auction, and whether Gordy’s conjecture
also holds for the Spanish auction. Second, a principal aim of auction theory is the ranking of
different types of auctions with respect to the expected seller’s reverue. We consider the
ranking of the Spanish and the discriminatory auctions in tesms of revenue.

We adapt Gordy’s model for the discriminatory auction to the Spanish auction. The model is
a discrete model, that allows explicitly for the use of multiple bids in 2 multiple-unit auction.
Tt models Treasury auctions as common value auctions with asymmetric information, Using
numerical simulations, we find all (if any) Bayesian Nash symmetric equilibria for the
Spanish, the discriminatory and the uniform auctior, for a wide range of parameter
combinations.

Qur main findings can be summarized as follows. First, Gordy’s conjecture holds for the
Spanish auction: multiple bidding in the Spanish auctions is used to hedge against the
winner’s curse, as well as to express downward sloping demand due to risk aversion. We find
that this hedging against the winner’s curse is stronger in the Spanish than in the
discriminatory auction. There are two contributing factors, On the one hand, bidders can

! See Mazdn and Nufiez (99) regarding Spain, and Gordy (96) regarding the U.S. and Portugal,




increase their bid on the first unit at a lower expected cost for the Spanish auction than for the
discriminatory auction: if they have overvalued the good and they win, they only pay the
weighted average price instead of their bid, as they do in the discriminatory case. On the other
hand, they have an incentive to lower their bid for the second unit, since for the Spanish
auction the low bid determines the price the bidder has to pay on the first unit if he wins two
units: the lower his bid on the second unit is, the lower is the price that the bidder has to pay
for the first unit. Second, it is not possible to offer a complete ranking of the Spanish and the
diseriminatory auctions with respect to expected seller’s revenue. First of all, the ranking
varies with the values of the parameters. And for some parameter values there are multiple
equilibria, and the ranking depends upon which of the equilibria is examined. Nevertheless,
on average across the multiple equilibria, the Spanish auction gives higher expected seller’s
revenue than the discriminatory auction. Note that, as we have argued, bidders bid more
aggressively for the first unit in the Spanish than in the discriminatory auction, which tends to
increase expected seller’s revenue; but if they win with the highest bid, they only pay the
weighted average price, lower than their bid that they pay on the discriminatory auction. Our
results suggest that the first effect is higher than the second.

2. SURVEY OF THE LITERATURE

An abundani literature exits on uniform and discriminatory auctions, and general results are
established for the auctioning of a single, indivisible item, results that can be extended to
settings with multiple units, if each bidder has a taste for only one item. But as Asubel and
Cramton (98) mention, “in environments with multiple units and bidders who each may
desire muitiple units, general results about even the most cormon auction forms remain
elusive”. The reason is that the problem is very complicated. First of all, bidders have a very
large strategy space. Second, there is a strategic component in bidding: in a uniform auction,
bids on later units might determine the price the bidder pays for earlier units, And third,
Treasury auctions are assumed to be common-value auctions, where there is a true value of
each unit, unknown to the bidders at the time of the auction, and bidders receive private
signals concerning the value of the asset. If bidders receive different signals, that is, if the
model allows asymmetric information, equilibrium bids must address not only the strategic
component of bidding, but the inference problem due to asymmetric information.

Most authors that study multiple-unit auctions where bidders demand more than one unit,
follow the “share auctions” approach, proposed by Wilson (79), where the good is assumed
to be perfectly divisible and a bid is a smooth demand schedule. Wang and Zender (98)
characterized the equilibria for both the discriminatory and the uniform auction, when bidders
possess private information, and conclude that the equilibrium bidding strategies take explicit
account of the winner’s curse. If all the bidders have the same information, they obtain an
analytical solution and fully characterized the set of equilibria under risk neutrality and risk
aversion utility, assuming a specific functional form for noncompetitive demand. They obtain
2 continuum of equilibria for the uniform auction, and only one: equilibriam’ for the
discriminatory auction if a reserve price of zero is imposed:. Given thé multiplicity of
equilibria for the uniform auction, they conclude that it is not possible to:rank both'auction
formats in terms of expected sellers’ revenue, Asibel and Cramton (98) also follow the “share
auction” approach, and provide several examples to-demonstrate that auctions results are
inefficient, and that the ranking of uniform and diseriminatory actions is ambiguous; they

provide examples with reasonable specifications of demand where the uniform auction
dominates the discriminatory auction on expected seller revenues, and equally reasonable
specifications where the reverse is true.

A different approach is taken by Gordy (96), which offers a discrete counterpart of Wilson's
(79) continuous “share auction” model. He uses numerical simulations to find equilibria for
the discriminatory auction, when two units of an indivisible good are auctioned to N bidders.
He finds evidence that supports the conjecture that multiple-bidding can be used to hedge
winner’s curse, when bidders are risk averse.

Compared to the overwhelming amount of work about uniform and discriminatory auctions,
very little has been said about the Spanish auction format. To our knowledge, the properties
of the Spanish anction mechanism have been studied only by Salinas (90), Mazdn and Nujiez
(99), and Alvarez, Cerd and Mazon (99). Salinas (90) presents a model where demand is
restricted to one unit per bidder, and values are private. He uses the results of Maskin and
Riley (89) to argue that the Spanish mechanism generates the same expected revenue as
uniform and discriminatory auctions. Mazon and Nufiez (99) presents a stylized game
theoretical model that captures the two distinct features of the Spanish auction: the hybrid
system of uniform and discriminatory auctions used; and the uncertainty about the amount fo
be issued. They show that, under the assumptions of the model, the auction format used in
Spain is equivalent in terms of revenue to the seller to the discriminatory format, and that
both formats maximize the seller’s revenue. And they present an empirical analysis, using
data of Spanish bond suctions between 1993 and 1997, They find evidence of the good
functioning of the market, and the relatively low price differentials paid by accepted bids,
which is consistent with the results of the model But the model assumes that demand
functions are common knowledge, and a bid is a price-quantity pair; therefore, the model
altows multiple-unit demands, but at the same price. Alvarez et al. (99) follow the “share
auction” approach and characterize the set of linear equilibria for the Spanish auction.

3. MULTIPLE BIDS: THE DISCRIMINATORY AND THE SPANISH CASE

3.1 The model

We follow Gordy {96) and adapt his mode] for the discriminatory auction to the uniform and
to the Spanish auctions. N bidders compete for two indivisible and identical units of a good.
Each bidder submits two sealed bids, specifying a price, but not a particular unit. The two
units are awarded to the two highest bids, and if there is a tie, there is randomization among
the tie bids®. Payments depend on the auction type. In the discriminatory anction, winning
bids pay the bid price. In the uniform auction, all winning bids pay the same price for each
unit, the minimum accepted bid. Tn the Spanish auction, winning bids pay the bid price if it is
lower than the weighted average of winning bids (WAP), and pay the WAP if the bid price is
higher than the WAP.

2 Pro rata distribution is used in real auctions. But we follow Gordy, that mentions that “the loss in realism is
more than offset by a loss in computational efficiercy”, and that “limited exploration of the model suggest very
stmilar resnlts” with pro rata distribution rather than randomization among tie bids.




As an example, consider two bidders, A and B, bidding (4,1) and ¢3,2) respectively. That is,
bidder A bids 4 for one unit and 1 for the other. Winning bids are 4 and 3, and hence each
bidder gets one unit in the three auction formats. In the discriminatory auction, A pays 4 and
B pays 3; in the uniform auction, both bidders pay 3; and in the Spanish auction A pays
0.5(4+3)=3.5, the WAP, and B pays 3.

The true unit value of the good for sale, v, is unknown to the bidders at the time of the
auction. The prior distribution of v is F(¥), and it is public information, We assume F{¥) to be
beta (o, a{1-p)); this distribution has mean p and variance decreasing in o. Hence, the
larger o is, the more accurate is public information. Furthermore, each bidder draws a signal
from the finite set X={0,1,...K}, with X>0. The probability distribution of the signal
conditional on v is assumed to be binomial (K,¥)’. Signals are independent across bidders and
are private information: each bidder only observes his own signal. Bidders combine public
information (the prior on v) and private information (the signal received) using Bayes rule.
The posterior distribution of v, F(w/x), is beta (xtap, K-acta(1-)), where x is the signal that
the bidder has received (xeX), see DeGroot (70). The posterior distribution has conditional
expected value E(wix)=(ct+cu)/(K+o), and its variance is decreasing in K and o,

One possible interpretation of E(wx) is the following H can be rewritten as:
E(vx)=5(x/K)+(1-8)u, where 5=(1+c/K)". Furthermore ¥/K is the maximum likelihood
estimator for v based only on private information. Therefore, E(wx) is a strictly convex
combination of p {public information) and x/K (private informaiion), where the former
receives more weight as o (accuracy of public information) increases or K (accuracy of
private information) decreases.

Prices are restricted to a finite set A={0, 1/A, 2/}, ...1}, & being some positive integer. The
prices are restricted to the interval (0,1) because the support of F(v/x) is the interval (0,1), We
allow only for a finite number of prices for two reasens. First, in practice, Treasury auctions
in Spain (and in most countries) have restrictions on the set of bids permitted. Second, if the
set of permitted bids is dense, pure strategy equilibria does not exist, as in Gordy (96).

Bidders are assumed to be risk averse, and to have a constant absolute risk aversion (CARA)
utility function, U{z)=-exp(-pz), where p, strictly positive, is the coefficient of absolute risk
aversion, comtnon to all bidders.

A strategy for bidder / is a function $:.X—>AxA. That is, a sirategy is a fiinction that defines a
pair of bids, (si(),5:(x)), for every possible signal x. Let 2={5',..5", and Z.=I-{5).
Without loss of generality, we assume 5,(x)25(x) and we refer to s1(x) (s2(x)) as the high
{low) bid for signal x.

In the Spanish auctio}l, given a signal x, and a strategy profile for all bidders but bidder #, X,
bidder / chooses the pair of bids (51,5) to maximize his expected utility. There are four
possible outcomes. He can win both units, and given the auetion rules, he will pay the average
price, {s1+s; )/2, for the first unit, and his fower bid, s,, for the second unit; since the v is the
true value of the good, his profit if he wins two units is 2v- (s1+s, }/2-52. He can win one unit

* With a binomial distribution, the probability of a high signal increases with v, and the pfobability of alow
signal decreases with v, Lo

with a bid lower or equal to the other winning bid, so that he pays his high bid, 5, and his
profit is v s1. He can win one unit with a bid higher than the other winning_ bid, so that he
pays the average price of his high bid and the other winning bid, denoted by s, and his profit
is ¥-(s1+5 )/2. And he can win zero units. Define /() as the probability of winning exactly
two units, /() as the probability of winning one unit and that the other unit is not awarded at
a lower price, #>(.) as the probability of winning one unit and that the other unit is awarded at
a lower price 5, and A(.) as the probability of winning zero units. These probabilities depend
on the i-th bidder bids, (s),5), rivals’ strategies, I, and the true value of the good“, v, The
expected utility of bidding (s1,52) is given by the following expression:

EU (51,8 1= ﬂ;(U(z"'Sl;n'Sz)hzfm-sz-z-,--") +

+OW-5 )l s1550.2.0, + L U(V'Sigs}hl'(sl-sz-s-z—ir")“L ey
seh

+UQ} hol 51,53, 2, v dF(v)

Analogously, in the discriminatory auction, it is:

E(Ud(-ﬂ-s2))=ﬂ)(Uf2V'Si“sz)k1(s1-nnE“i’VJ + )
+ U5 ) e € 51,82, 25,0+ U0} hol 51,52, Z. ¥} dF (W)

where fi(.) and #o(.) are defined as above, and /y»()) is the probability of winning one unit.
Contrarily to the Spanish case, the payment for one unit in the discriminatory case does not
depend on whether the other unit is awarded at a lower price or not, hence i~ J=hr( Jthn(.).

In the uniform auction, it is:
EU" (s1,82)) = [o(Uf 20250 51,80, 5y V) +
+Uv-5 ) Inf 51,82 2.V +_E;\U(V'E)hl'(sl'32'glz—i R (3}
L=

+U(D) hol 51,52, T, vii dFfvin)
where f;(.), f11-{.) and Ay () and hio(.) ave defined as above.

The model we just presented is a simulianeous pame of incomplete information, and the
equilibrium concept we use is Bayesian Nash equilibrium. We only consider pure sirategy
equilibrium. An equilibrium is a set of N strategies, £={5".....5"%, such that for all bidders and
each signal x, bidder / maximizes his expected utility with bids {s1(x), s2(x)), given that all
other bidders™ strategies are Z.=Z-{5'}. We restrict our analysis to symmetric equilibria, that
is, equilibria of the form £={5,..,5}. Note that this does not imply that all bidders bid the
same prices in equilibrium, but that all bidders #hat receive the same signal bid the same -
prices.

The model is intractable anaiytically, even in the simplest cases. Hence we solve the model
numerically for different parameter values. The details on the numerical implementation are
left to the Appendix.

4To sec the dependence on v, note that rivals’ bids depend on X.; and on rivals’ signals, which in tum
depend on v,




3.3 Equilibria of the madel

The vector of parameters of the model is (V,1,0,p,A,K). We present results for a selection of
parameter combinaticns that we consider reasonable, given the computational limitations we
have. With respect to the number of bidders, N, since there are only two indivisible units for
sale, to consider N>4 means that, in any symmetric equilibrium, the probability that a single
bidder gets at least one unit is very small. For this reason, we present results with & in
{2,3,4}, We have set the a priori expected value of v, u, equal to 0.75. Note that p must lie in
(0,1), and that if p were too small, the a posterior? expected value of v would be too small for
bidders te bid strictly positive bids for every possible signal. For the parameter of accuracy of
prior information, «, we have selected values in {2,4,6,...,20}. For a=2, that is, the maximum
uncertainty case within the previous set, the standard deviation of the prior distribution on v is
0.25 (recall that this distribution is defined on (0,1} and that its average, u, is 0.75). For a=20,
the standard deviation is approximately 0.1, For the parameter of risk aversion, p, we have
selected values in {1,5,10}. We consider p=1 close to the risk neutral case, and consider
higher values of p to study the effect of increasing risk aversion. Finally, the required
computation time makes it unfeasible to explore a number of possible prices, A+1, higher
than 12, or a number of private signals, K+ /, higher than 5. Thus, we have selected the
combinations (A,K) in {(5,2),(5,4),(5,2)}. Hence, for every auction format, we have explored
270 combinations of parameters’.

Figure 1 shows an example of an equilibrium bidding strategy for the Spanish auction, when

there are 2 players (V=2), the accuracy of private information is low (0=4), risk aversion is
low (p=1), there are 6 possible prices (A=5), and there are five possible signals (K=4).

Figure 1: An equilibrium for the Spanish auction

Given =5, the possible prices are A={0,1/5,2/5,3/5,4/5,1}, which are represented in the
vertical axis; and given K=4, the possible signals are X={0,1,2,3,4}, which are represented in
the horizontal axis. We plot the bids, si(x) and s(¥), circles and squares respectively, for
every signal x in X,

® Gordy (96) uses simitar parameter values for the model except for K, for which he nses values up to 7,
The algorithm he uses requires a shorter computation time than ours, which in turn allows him to fake larger
values for X. However, given a vector of parameter values, he only finds an arbiirary subset of the equilibria
while we find all. For a comparison of both algorithms, see the Appendix.

We characterize equilibria using two summary statistics. Let the bid spread, denoted by A(S),
be the expected difference between a bidder’s high and low bid, e

A(S)= }E{sl (x)—5, (x))Prx) . Since we have taken s:(x)>s3(x), A(S) is positive. In addition, since
x=0

si{(x) and s(x) le in (0,1), its difference also does. Hence, A(S) is a strictly convex
combination of values in (0,1), and therefore A(S) is also in (0,1) for every §. For the example
given in Figure 1, A(S)y=0.07.

Let R(S) be the expected seller’s revenue if all bidders play S, ie., R(S)=2r(p,S)Pr(y) where
¥

r(y,5) is the seller’s revenue if bidders play § and the N-dimensional vector of private signals
is y. The summation on the latter expression is over all possible vectors of signals. Since
every bid kes in (0,1} and two units are awarded, R(5) lies in (0,2) for every S, independently
of the auction format®, For the example given in Figure 1, R(S)=1.08.

Next, we summarize the main findings.

Existence of equilibria. We check if every possible pure strategy is part of a symmetric
Bayesian Nash equilibrium, and find that for the three auction formats, there is not a
symmetric equilibrium for some sets of parameter values. The existence of equilibrium varies
with the auction format: the model has at least an equilibrium in 51% of the cases for the
Spanish auction, in 96% for the discriminatory auction, and only in 10% for the uniform
auction. The non existence of equilibria is probably due to the discrete nature of the model,
and we concentrate in comparing equilibria for sets of parameters for which we have at least
an equilibrium for the Spanish and the discriminatory auction. In what follows, we do not
report resulis on the uniform auction, given that it only exists for a few parameter
combinations,

Why these differences ot existence among auction types? We think that it is due to strategic
considerations. In both the uniform and the Spanish auction, given that all other bidders are
playing the same strategy, S, if bidder 7, instead of responding with S, increases his high bid
for a given signal, he increases the probability of winning at a ow cost both for the uniform
(the cut-off price is either his bid or does not change) and the Spanish auction (he pays his bid
or the WAP, that may change slightly), and therefore increases his expected utility. This is
not the case for the discriminatory auction. The profitability of such a deviation increases
with the number of players, N, since the probability of winning at least ane unit by playing
the same strategy as all other players, in general, decreases with N. Thus, for all auction types,
the number of parameter combinations for which there exist equilibria decreases with N. In
particular, in the uniform format, there exist equilibria onty for N=2.

Uniqueness of equilibria. When equilibrium exist, we often find more than one for both the
Spanish and the discriminatory auctions. We think that multiplicity of equilibria is also due to
the discrete nature of the model. The equilibrium is unique in 68% of the cases for the
Spanish auction, and in 41% for the discriminatory auction. Multiple equilibria for the same
parameter combination differ from one another in terms of bid spread and seller’s expected

® The extreme case isa strategy S in which 51 (<)=$;(x)=1 for all x, this leads to R(S}=2 in any auction. In
general, as mentioned, given a steategy S, R(S) depends on the auction format since #(».5) does,




revenue.

As N and A increase, we observe other kinds of multiplicity of equilibria. For example, for
N=4, 3=9, k=2, a=16 and p=10, there are 45 equilibria both for the Spanish and the
discriminatory auction, but there are only three different values for expected seller’s revenue
across the 45 equilibria. Equilibria with identical expected seller’s revenue are characterized
by a high bid that is identical across equilibria, and they differ only on the low bids, which are
such that for any bidder, the probability of winaing two units is zero (any low bid across all
signals is fower than any high bid); as a consequence all combinations of low bids that are
lower than any high bid are part of an equilibrium. Note that the probability of winning two
bids, and hence the relevance of the low bid, decreases with &, and thus we observe more
multiple equilibria of this kind for large &. Also, the number of possible combinations of
irrelevant low bids increases with A, and therefore multiple equilibria also increase with A.

Bid Spread. Diagrams 1 to 3 present bid spread for the Spanish and discriminatory auction
for the 270 combinations of parameters considered. Diagram 1 shows bid spread for A=5 and
K=2; each of the ¢ figures on Diagram 1 represents a combination of p and ¥, and shows bid
spread as a function of . Diagrams 2 and 3 show the same information for A=5 and X=4, and
for A=9 and K=2, respectively. Bid spread for the Spanish auction is represented by a square,
and for the discriminatory auction by a circle. When there are multiple equilibria, we present
the average value. Missing dots represent non-existence of equilibria for the corresponding
auction format and combination of parameters,

Gordy (96) conjectures that multiple bids can be used to hedge against winner’s curse, as
well as to express downward sloping demand due to risk aversion, and finds that results for
the discriminatory auction are, in general, consistent with the conjecture. He measures the use
of muitiple bids by bid spread. Our results show that the conjecture is also valid for the
Spanish auction: bidders use bid spread to cover themselves against uncertainty. By spreading
bids over a range of prices, bidders hedge against the risk of winning due to a misestimation
of the value of the security. When they have overestimated the value of the good auctioned,
they win at a lower average price than expected, when they have underestimated the value,
they win at a higher average price than expected. To support this idea, note that on the
diagrams, both for the discriminatory and the Spanish auction, there are many equilibria
where bid spread is equal fo 0, ie, bidders submit the same bid for both units, when the
parameter of risk aversion is low (p = 1), and the number of equilibria with zero bid spread
decreases as p increases. Also zero bid spread occurs more often for larger values of o, that
is, as public information becomes more accurate. Therefore, both in the discriminatory and
the Spanish auction, as bidders are more risk averse and there is less public information,
bidders spread their bids to cover themselves against uncertainty.

The diagrams also show that, on average, bid spread is higher or equal for the Spanish auction
than for the discriminatory anction. There are two contributing factors. First, for the Spanish
auction, bidders can increase the bid on the first unit at a lower cost than for the
discriminatory auction: if they have overvalued the good and they win, they only pay the
WAP instead of their bid as in the discriminatory case. Second, for the Spanish auction the
low bid determines the price the bidder has to pay on the first unit if he wins two units’; the

" As mentioned, the probability of this event decreases with & and 1.

lower his bid on the second unit is, the lower is the WAP that the bidder has to pay on the
first unit. Note that this strategic effect is not present in the discriminatory case, where the bid
on the second unit has no effect on the price the bidder pays on the first unit. Since the high
bid tends to be higher, and the lower bid lower in the Spanish than in the discriminatory case,
bid spread is higher in the Spanish than in the discriminatory auction.

In 71% of the cases when there is equilibria for both the discriminatory and the Spanish
auction, at least one of the equilibria is identical (same bids for each signal) for both
auctions. In general, it occurs for higher values of o, that is, as public information becomes
more accurate. We interpret this result as an indication that the Spanish auction works
differently to the discriminatory auction when there is more uncertainty (small o), and
therefore, more potential for the winner’s curse.

Seller’s Revenue. Table 1 illustrates how average expected seller’s revenue changes with the
different parameters. For each of the vaiues considered for K, A, p, N and o, the table shows
average (across equilibria) expected selfer’s revenue both for the Spanish (S) and the
discriminatory (D) auction formats. For example, for K=2 the average expected seller’s
reveme is 1,159 for the Spanish auction and 1.119 for the discriminatory auction. The
averages are computed for the parameter combinations for which at least one equilibrium for
bhoth the Spanish and the discriminatory auctions exists. There are 136 such combinations.

Table 1: Average expected seller’s revenue

K A D N

Par. Valug| 2 4 5 9 1 5 10 2 3 4
§/1.159 1.136(1.128 1.213]1.229 1,175 1.100|1.071 1.207 1.253
D|1.119 1.121{1.090 1.187|1.158 1.157 1.069|1.034 1.177 1.217
o

Par. Value} 2 4 & 8 10 12 14 16 18 20
$i0.956 1.005 1,090 1.120 1.168 1.180 1,199 1.211 1.217 1.230
D;{0.854 0.974 1.029 1.101 1.124 1.144 1.167 1.183 1.206 1.207

The expected seller’s revenue increases for both auction formats as the number of possible
prices, A, the number of players, N, and the accuracy of public information, o, increases; and
as the parameter of risk aversion, p, decreases. The results on N and o conform with the
results for the Milgrom and Weber (82) single-unit model; also, as risk aversion decreases,
bids are more aggressive and expected seller’s revenue increases. The effect of increasing the
number of possible signals, X, is ambiguous. Note that increasing the number of possible
signals, on the one hand decreases i-th bidder’s uncertainty on the true value of the good, but
on the other hand increases his uncertainty on the other bidders’ signals.

How do both auction formats compare in terms of expected seller’s revenue? For all the
parameters considered in Table 1, average expected seller’s revenue is higher for the Spanish
than for the discriminatory auction. However, thers are many parameter combinations for
which the ranking of equilibria is ambiguous, because there are multiple equilibria for one or
both auction formats. For example, we can find parameter combinations for which there are
two equilibria in the discriminatory case, with expected seller’s tevenue R and Ry
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respectively, and one in the Spanish case, with &°, and such that R;"< R® <R,%; note that it can
also be the case that R0.5(R,” +R;"). Considering the expected seller’s revenue for each
parameter combination instead of averages, the Spanish format dominates the discriminatory
one in 39% of the cases, out of the 136 parameter combinations where at [east one
equilibrinm exist for both auction formats®, Note also that as mentioned earlier, in 71% of the
cases when there is equilibria for both auction formats, at least one equilibria is identical for
both auctions; in this case, expected seller’s revenue is higher for the discriminatory auction,
since the winner with the highest bid pays his bid, while in the Spanish one he only pays the
WAP; but the difference in expected seller’s revenue is small. What can we conclude then
from the evidence? First, that the ranking of both auction formats on terms of expected
sefler’s revenue is impossible, because there are many cases of multiple equilibria such that
some equilibria for one auction format has a higher expected sefler’s revenue than some
equilibria for the other, but the reverse holds for other equilibria. Second, that on average the
Spanish auction gives higher expected seller’s revemue: there are equilibria for the
discriminatory auction that give low expected seller’s revenue. Note that there are two
different facts that could explain the different expected seller’s revenue in the Spanish and the
discriminatory auction: on the one hand, bidders in the Spanish auction bid more aggressively
on the first unit, since they only pay the WAP instead of their bid if they win with the highest
bid, which tends to increase expected seller’s revenue; on the other hand they only pay the
WAP, which tends to decrease expected seller’s revenue. The results are consistent with the
first fact dominating the second, on average.

For what parameter combinations does the Spanish auction dominate in terms of expected
seller’s revenue the discriminatory auction? Table 2 presents the percentage of parameter
combinations for which the Spanish auction dominates the discriminatory. For example, in
42% of the parameter combinations with K=2 where there are equilibriz for the Spanish and
discriminatory auctions, the former dominates”.

Table 2: Dominance in terms of expected seller’s revenue for the Spanish auction

K A p N

Par, Value| 2 4 5 9 1 S 10 2 3 4

042 029041 0341082 033 024]031 047 044
o

Par. Value| 2 4 6 8 10 12 14 16 18 20

063 025 040 027 033 023 041 029 044 069

The table shows that, in general, the Spanish auction dominates the discriminatory auction
when risk aversion is low (for p=1, the Spanish auction dominates the discriminatory one in
82% of the cases). The intuition is simple. Bidders bid more aggressively in the Spanish case
for the first unit than in the discriminatory auction since they only pay the WAP if they
happen to win with the higher bid. This effect is specially strong if bidders have low risk
aversion (small p). Despite the fact that bidders only pay the WAP for the higher bid, this
more aggressive bidding gives higher expected revenue to the seller. The change in
dominance with the other parameters is not clear.

¥ Dominates means that the worst Spanish equilibrium (in terms of expected seller’s revemue) is not worse than
the best discriminatory one.
? Recatl that it does not imply that the latter dominates in the Temaining 58%.
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4. CONCLUSION

This paper develops a model of multiple bids in a common value auction for the Spanish
auction format, following Gordy (96), that develops the model for the discriminatory auction
format. The Spanish auction is a hybrid system of discriminatory and uniform price auctions:
winning bidders pay their bid price if it is lower than the weighted average price of winning
bids, while all other winning bidders pay the weighted average of winning bids. There are two
units for sale, and bidders bid for both units. Both signals and bids are restricted to a finite set,
which makes the problem solvable by simulations, We find equilibria for the Spanish, the
uniform and the discriminatory auction, and compare them. Of course, we solve a special
case, assuming functional forms for utility and distributions. But given the little that is known
gbout the Spanish auction, we think that our results offer interesting insights about how it
works.

Our main findings are the following. First, both in the Spanish and in the discriminatory
auctions bidders use bid spread to cover themselves against uncertainty. Second, bid spread is
higher in the Spanish auction for two reasons: on the one hand, since the cost of overbidding
is lower due to the fact that a winning bidder with the highest bid only pays the weighted
average price, while he pays his bid in a discriminatory auction, bidders bid more
ageressively on their first unit; on the other hand, since the bid on the second unit could
change the price paid on the first unit in the Spanish auction, bidders have an incentive to
lower their second bid that is not present in the discriminatory auction. Third, expected
seller’s revenue for the seller is on average higher for the Spanish auction than for the
discriminatory auction. As we have argued above, bidders bid more aggressively for the first
unit on the Spanish auction, and expected revenues are higher as a result even if bidders only
pay the weighted average of winning bids for the first unit.

Should the Spanish Treasury maintain the auction format they use? The answer is not clear.
Even if revenue is on average higher for the Spanish auction, strategic considerations are
more complicated, and this could imply that less participation occurs, specially since foreign
bidders usvally bid mainly in discriminatory auctions. This could lower participation and, as a
consequence, decrease expected seller’s revenue. Given that the discriminatory and the
Spanish formats are similar when uncertainty decreases, a change to a discriminatory format
at the same time as a commitment fo betier public information about the value of the good,
could increase the Spanish Treasury’s revenue,
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Appendix: Computational notes for the model

In this Appendix, we first present an overview of the algorithm we have used in the simulations™.
Second, we concentrate on soms mathematical results which simplify the calcufations for the Spanish
auction. We treat the discriminatory case as i Gordy (96), and adapt the uniform and the Spanish
auctions from it; so we present results without proofs.

A.1 General framework

The key question to solve with the simulation is how to explore the set of all possible strategies,
denoted by 0, to find an equilibrium. Gordy suggests a titonemment algorithm: (1) take arbitrarily an
element in Q, say 5; (2) assume that N-1 bidders play § and find the best reply of the M-th bidder to 5,
say 87 (3) if 5=5" then S is an equilibrium, go to (1), else set $=5" and go to (2). As Gordy points out,
this algorithm might enter in a loop of the form: S+ §'—...—8. Furthermore, the fact that 8" is the
best reply to S does not imply that 5 is more likely to be an equilibrium than any other strategy.

We take a different approach. We list, in an arbitrary order, all the cloments (strategies) in £, say
Q={50,51,5,-...%}. Notice that, given the characteristics of the model, £2 is a finite set. ‘We check
whether each element is an equilibrium or not following the previous order. Hence we check first Sy,
second 8y, and so forth up 1o 5. In particular, after checking, say S, we check §) independently of
whether S, is an equilibrium or not. In other words, the order in which we check the elements is fixed
arbitrarily and independently of what the equilibria are,

T we list, withows repetition, all the elements in £, all its elements are checked. Hence all equilibria (if
any) are found, and each element is checked only once, The main problem with this approach is the
computation time it requires”’. We reduce it in two ways. First, when checking a strategy, we do not
look for the best reply, Notice that, given a strategy S in which (s1(x),5(x)) are the bids when the
signal is x, finding beiter bids than (s1(x),s2(x} is, in general, computationally faster than finding the
best bids for signal x, Second, Gordy (96) only finds equilibria in which the high bid, 5(x), is non-
decreasing in x (recall that E(v/x) increases with x), and we only check for strategies with that
property.

How to list all the efements in Q which are non-decreasing in the high bid? We have programmed a2
function, ¢, presented below, which maps 2 into itself. Denote as & the strategy; 5){x)= 5;{x)=0 for al
x, then ¢ satisfies that all the elements in O satisfying the previous property can be listed, without
repetition, as {So, $(Sh), $*(So},..., $°(50)}, where ¢/ denotes the composition of ¢ with itself 7 times,
ie: ¢2(So)m<§»(¢(30)). The last element, $°¢Sy), is the stratogy: 5,()=sx(x)=1 for all x. So, to generate
these elements we use the algorithm: (i) set $=8; (H) if S=¢°(S,), then stop; (iii) set S=¢(5) and go to
step (if).

To present the function ¢, let us rewrite a strategy S as {55}, where s;=(5,{0),...s,(K))" and

575200, ....5:(K)Y, such that s,(x) and s,(x) are, as before, the high and the low bid, respectively,
when the observed signal is x, Let {s1,5:} be given, and set:

_[bisne.o) i€ s=s
s, 1) { 51,8205} othervwise

1% The final version was written in Turbo Pascal. The exe file will be provided by the authors upon request.

' The computation time depends on: i} the aumber of elements in £ fo be checked, which is determined by A
and X, ii) the average time required to check if an element is an equilibrivm, which is deterrsined by A . X and
. Combinations with Az10, k=3 and N25 simultanecusly are unfeasible.
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where the functions ¢, and ¢, are defined below. In words, when generating §{{s,,52}), if s175;, we
update s; using ¢, and we set the new vector of low bids to {0,....0)". 1 515, we update 5, using ..
Dengte the x-th component of $:i{s:) as ¢1{1)(x), and analogously for §alsz), we set:

) . 0 # x">0 and x<x”
. if x= _ : -
¢|(51)(I)E{S|(X)+l th x' ¥ hals® = s e if x=x
a6 otherwise 54(%) otherwise

where x"=min{x : 5,(x)<1} and x ' =min{x : sa(0)<si(x)}.

A.2 An algorithm to evaluate bidder’s utility in the Spanish auction

As we have mentioned above, this part follows trivially from Gordy(96), so we present the results
without proofs.

Given a signal, x, for the N-th bidder, the wfility of a bid depends on rivals’ signals. Furthermore,
since bidders are anonymous, the relevant fact is the vector of rivals’ signals but not who receives
cach signal. For example, if N=4, the vectors of rivals’ signals (3,y25)=(5,1,0) and (h,y28)= (1,5,0)
are observationally equivalent for the other bidder. So, when computing the expected utitity of a bid, it
suffices to distingmish between vectors of rivals' signals that are different after ordering the
components within each vector in decreasing order (112y:2ys). The probability function for vector y of
rivals® signals {after ordering decreasingly), conditional on A-th bidder’s signal x, g{p/x), is:
H YV KAB(x+op, K -x+ro(l-n)
&G ID=Mw B(y.) Bog, ol - )
where M{) and B() are the multinomial and the beta function respectively, see DeGroot (70).

Assume that all bidders except the i-th play S, that is, Z.={S,...,5}. For bidder i, the expected utility of
the pair s=(s,82), in the Spanish case, given a signal x, is given by equation (1). We decouple the right
hand term in (1} as:

EU (sN=U, (5,8, +U, (5,5, ) +Us(5,8, 1)+ Uy (5,5, %) (A1)

where, for instance, Uy(s/S,%) is the expected utility of winning exactly zero units by the probability of
that event, that is:

o (5,8, %)= [ U®) bo (510521800, 5% V) dF(v/x)

The other terms in the right side of (A1) are analogous for the events 1,17 and 2, defined in the model.
Proceeding as Gordy (96), we have:

Up(,8,)= =2 pols, S g, (p/ %)
>

where the summation js over all possible decreasingly ordered vectors of N-1 rivals’ signals, and
Pols,Sy) is the probability of winning exactly zero units given s, rivals” signals y and that rivals play Z.
={8,...,.5}. Analopgously:

U1(s,8, x) = ~explp(l~ 5, WE Py (5,5, ph F (WK ~ Z(p, ) +ol—p), NK +a.p)g,, (3/ %)
¥

where |F1() is the confluent hypergeometric function, see Abramowitz and Stegun (72), and Z(p,x) is
the summation of the components of the vector y and the signal x. Also:
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Uy(s,S, 5} = —_a exp(p(l-0.5(s) +PT 2y (s, S, ¥), F (NK —E(p, )+ {1 - 1), NK +a., g, (3 /%)
E ¥
Uy (5,8, %) = —exp(p(2 - 1.55 =055, DT p2 (s, S, ph Fy (NK - Z(y, )+ o (l— ), NK +o,2p)g, (v /%)
¥
Notice that the terms p{.) are easily computable. More importantly, the terms () and g,() do not

depend on the steategy, that is, they can be computed at the start of the program and then used
repeatedly when checking every strategy.

Gordy (96) derives expressions for (2), the discriminatory auction. Expressions for (3), the uniform
case, are straightforward from it.
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