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ABSTRACT

In this contribution we study the relation between the second order intensity moments and the Goos-Hänchen
shift for partially coherent totally polarized beams. The results are applied to a type of partially coherent beams,
the Cosine-Gaussian Schell-model beams with rectangular symmetry.
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1. INTRODUCTION

A beam reflected off an interface experiences spatial and angular shifts from the geometrical-optics picture which
depend on the polarization and the beam profile. Displacements in the plane of incidence are known as the
Goos-Hänchen (GH) shift whereas the Imbert-Fedorov (IF) shift occurs in the plane orthogonal to the plane of
incidence. Both shifts have been extensively studied theoretical and experimentally for a wide number of beam
configurations and interfaces.1–20 In the present work we obtain closed and simple expressions that provide the
relation between the GH shift and the global spatial structure of a totally polarized partially coherent beam,
within the framework of the second-order irradiance moments.21–26 This paper is organized as follows. In section
2, the formalism and the key definitions of second order intensity moments are introduced. The relation between
the GH shift and the second order intensity moments is investigated in section 3. Finally, in section 4, we analyze
the GH shift for a Cosine-Gaussian Schell-model beam with rectangular symmetry.

2. INTENSITY SECOND ORDER MOMENTS FORMALISM

It has long been established that the second-order coherence properties of a beam can be described by means
of the cross-spectral density (CSDF) function W (r1, r2, z), where rj , j = 1, 2 represent the two-dimensional
position vectors at two points over the beam cross-section, transverse to the propagation direction z. Since we
will consider quasi-monochromatic fields, explicit dependence on frequency ω will be omitted in our expressions
for simplicity. Instead of analysing the structure of the light field by means of the function W here we are
interested on the global behaviour of the beam described by certain overall parameters that propagate according
to simple laws. Let us then introduce the Wigner distribution function (WDF) associated with the CSDF
function through a Fourier transform relationship:

h(r,η, z) =

∫
W
(
r +

s

2
, r− s

2

)
exp(ikη · s)ds (1)

where the dot symbolizes the inner product and kη = (ku, kv) provides the wavevector components along
the x and y-axes (accordingly, u and v represent angles of propagation, without taking the evanescent waves
into account). In terms of the WDF, the so-called beam irradiance moments (denoted by sharp brackets) can
be defined as follows22
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where m, n, p and q are integer numbers and I is proportional to the total beam power. The four first-order
moments,

〈
x
〉
,
〈
y
〉
,
〈
u
〉

and
〈
v
〉
, characterize the centre of the beam and its mean direction while the resulting

ten different second-order moments allow a global and meaningful characterization of the spatial structure of a
partially coherent quasimonochromatic beam. For instance,

〈
xy
〉 (〈

uv
〉)

gives the orientation of the principal

axis (absolute axis) through the condition
〈
xy
〉

= 0
(〈
uv
〉

= 0
)
27–29 and the crossed moments

〈
xv
〉

and
〈
yv
〉

carry out information about the twist and the orbital angular momentum of the beam.22,28,29 Taking into
account that in paraxial approach the Wigner function satisfies h(r,η, z) = h(r− zη,η, 0) the free propagation
law of the second-order moments is very simple and enables us to obtain the information at any z from the
knowledge of the second-order moments at arbitrary but fixed initial plane namely z = 0. At this point it is
interesting to note that this parameters can be directly written in terms of the CSDF, for instance we have

〈
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〉

=

∫∫ (
∂2W (r1, r2)

∂x1∂x2
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dxdy

2ik
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W (r, r)dxdy

(3)

The advantage of the above expressions is that they enable us to obtain the second order intensity moments
from the knowledge of the CSDF without using any modal beam expansion.30–33

3. GOOS-HÄNCHEN SHIFT MODEL

We examine optical reflection at a planar interface, z = 0 separating two media. Let us consider a quasi-
monochromatic totally polarized coherent beam, the electric field of such beam referred to a Cartesian frame
attached to the incident beam (xI , yI , zI) can be written as

E(rI , zI) = E0A(rI , zI) (4)

Where E0 = (a1, a2) is a complex vector carrying the information of the state of polarization and A(rI , zI)
is the amplitude of the beam at point r I belonging to a transverse plane perpendicular to zI axis. It has been
demonstrated13 that when a totally polarized coherent field is reflected off the surface each vector field EI(rI , zI)
(referred to the Cartesian frame (xR, yR, zR) attached to the reflected beam) transforms into

ER(rR, zR) = (a1r1A(−xR + x1, yR − y1, zR), a2r2A(−xR + x2, yR − y2, zR)) (5)

In the above equation rj , j = 1, 2, are the Fresnel reflection coefficients evaluated at the incident mean
angle θ0 for parallel and perpendicular polarization, while xj , yj are the four possibly-complex shifts defined as

xj = − i
k

(
∂ ln rj
∂θ

)
θ=θ0

, j = 1, 2 (6)
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Accordingly, the intensity distribution of the reflected beam becomes

IR(rR, zR) =

2∑
j=1

|ajrj |2 |A(−xR + xj , yR − yj , zR)|2 (8)

Then, the spatial ∆ and angular Θ GH shifts are defined13 in terms of the first order moment of the reflected
intensity in the following way

∆GH = 〈xR〉 (0)

ΘGH =
∂ 〈xR〉 (z)

∂z

(9)

Let us now consider a partially coherent totally polarized uniformly beam propagating along the axis zI , such
a beam is represented by his 2x2 cross-spectral density matrix (CSDM), ŴI(r1I , r2I , zI), of the form

ŴI(r1I , r2I , zI) = E†0E0W (r1I , r2I , zI) (10)

Where E0 = (a1, a2) contains the information of the state of polarization as before and the cross-spectral
density function (CSDF) of the beam W (r1I , r2I , zI), determines the coherence between two points (rjI , j = 1, 2)
belonging to a transverse plane perpendicular to zI axis.

When we deal with partially coherent beams, it has been proved31–33 that a genuine, i.e., non-negative definite
cross-spectral density function can be expressed in the form

W (r1I , r2I , zI) =

∫
L∗(r1I ,σ, zI)L(r2I ,σ, zI)dσ (11)

where function L(r,σ, z) satisfiesthe paraxial wave equation for each σ. Eq. (11) has an interesting physical
interpretation: Since the integrand has a factorized structure, it can be thought as the CSDF of a completely
coherent field and consequently the overall CSDF is the continuous superposition of uncorrelated coherent con-
tributions. By using Eq. (11) The CDSM of incident field becomes

ŴI(r1I , r2I , zI) =

∫
U†(r1I ,σ, zI)U(r2I ,σ, zI)dσ

Where the row vector U is given by

U(rI ,σ, zI) = (a1, a2)L(rI ,σ, zI) (12)

Given a fixed σ, Eq. (12) is analogous to Eq. (4) and the formalism developed for totally coherent beams
can be applied. Therefore, when the field is reflected off the surface, each vector field U(rI ,σ, zI) transforms
into
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U(rR,σ, zR) = (a1r1L(−xR + x1, yR − y1,σ, zR), a2r2A(−xR + x2, yR − y2,σ, zR)) (13)

Accordingly, the intensity distribution of the reflected beam becomes

IR(rR) =

2∑
j=1

|ajrj |2
∫
|L(−xR + xj , yR − yj ,σ, zR)|2 dσ (14)

Starting from Eq. (14), after having performed the integration in the transverse spatial coordinates and taken
into account Eq. (11) and the definition of second order intensity moments we obtain the following expression
for the GH shift34

∆GH =

2∑
j=1

wj (Re(xj) + 2k 〈xu〉 (0) Im(xj) + 2k 〈xv〉 (0) Im(yj)) (15)

ΘGH = 2k

2∑
j=1

wj
(〈
u2
〉

Im(xj) + 〈uv〉 Im(yj)
)

(16)

where wj is the fraction of the reflected intensity with polarization j,35

wj =
|ajrj |2∑2
j=1 |ajrj |

2 (17)

4. GOOS-HÄNCHEN SHIFT OF COSINE-GAUSSIAN SCHELL-MODEL BEAMS
WITH RECTANGULAR SYMMETRY

In this section we consider a recently introduced new type of partially coherent beams, the Cosine-Gaussian
Schell-model beams with rectangular symmetry36(CGSM), the CSDF of such beam reads

W (x1, y1, x2, y2) = Fx(x1, x2)Fy(y1, y2) (18)

The explicit expression of Fx and Fy being

Fx(x1, x2) = exp

(
−x

2
1 + x22
4σ2

0

)
exp

(
− (x2 − x1)2

2δ2x

)
cos

(√
2πm(x2 − x1)

δx

)

Fy(y1, y2) = exp

(
−y

2
1 + y22
4σ2

0

)
exp

(
− (y2 − y1)2

2δ2y

)
cos

(√
2πm(y2 − y1)

δy

)

Here σ2
0 denotes the r.m.s. transverse beam width, δx, δy denote the transverse coherence widths along the

x and y directions and m is the beam order parameter. When m = 0 this source reduces to the conventional
Gaussian-Schell model source37,38

For this kind of beam it can be proven that the second order intensity parameters reads

〈xu〉 = 〈xv〉 = 〈yu〉 = 〈yv〉 = 〈uv〉 = 0 (19)

and
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(20)

Therefore by applying the model developed in section 3, we obtain the following expressions for the GH shifts

∆GH =

2∑
j=1

wj Re(xj) (21)

ΘGH = 2k
〈
u2
〉 2∑
j=1

wj Im(xj) (22)

From the above expressions along with Eq. (20) we conclude that for this kind of beams and for a given
interface the spatial GH shift only depends on the mean angle θ0 and the polarization characteristics of the
beam. On the other hand, the angular GH shift depends on the polarization characteristics, the mean angle θ0
the transverse coherence width along the x direction and the beam order parameter. In figure 1 the behaviour
of ΘGH is plotted as a function of the degree of coherence β = δx/σ0 assuming an incidence angle greater than
the Brewster angle. For both paralell and perpendicular polarization, the angular GH shift is greater in the case
of a coherent incident beam (β = 0.1) than for low coherence (β = 10) or incoherent beams (β = 100) which was
to be expected14 . Furthermore, this model predicts increasing shifts for higher values of the order parameter m
if the incident beam is coherent and equal non-zero shifts if the incident beam is incoherent. The dependence of
ΘGH on the incidence angle when β is fixed is illustrated in figure 2. It is observed that the order of the beam
m only involves a proportionality factor.

(a) Perpendicular polarization

(b) Parallel polarization

Figure 1: Angular GH shift of CGSM beams
with rectangular symmetry (m = 0, 1, 2) en-
tering a planar interface with incidence angle
greater than the Brewster angle. Refraction
indices n1 = 1, n2 = 1.514. Incidence angle:
θ0 = 70◦.

Figure 2: Angular GH shift dependence of
CGSM beams with rectangular symmetry
(m = 0, 1, 2) with the incidence angle θ0.
Parallel polarization (perpendicular is dot-
ted), fixed coherence β = 1, refraction in-
dices n1 = 1, n2 = 1.514. Higher values of
m involve greater angular shifts.
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