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In this note we prove that if a differentiable function oscillates between -8 and 
8 on the boundary of the unit ball then there exists a point in the interior of the 
ball in which the differential of the function has norm equal or less than 8. This 
kind of approximate Rolle's theorem is interesting because an exact Rolle's 
theorem does not hold in many infinite dimensional Banach spaces. A characteri
zation of those spaces in which Rolle's theorem does not hold is given within a 
large c1ass of Banach spaces. This question is c10sely related to the existence of el 
diffeomorphisms between a Banach space X and X\ {O} which are the identity out 
of a ball, and we prove that such diffeomorphisms exist for evel)' el smooth 
Banach space which can be linearly injected into a Banach space whose dual norm 
is locally uniformly rotund (LUR). 

1. INTRODUCTION 

Rolle's theorem in finite dimensional spaces states that for every open 
connected and bounded subset ¿¡in [Rfl and every continuous function f: 
7/--> GlI such that f is differentiable in uand constant on a U, there exists 
an x in usuch that df(x) ~ O. In a paper published in 1992, S. A. Shkarin 
[lO] proved that Rolle's theorem faHs in a large dass of infinite dimen
sional Banach spaces, including aH super-reflexive and aH non-reflexive 
Banach spaces having a Fréchet differentiable norm-although he did not 
study the reflexive but non-super-reflexive case. Other explicit examples 
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were found in Co and 12 by]. Ferrera and J. Bés [7] and independently by 
J. Ferrer [8]. On the other hand it is clear that Rolle's theorem trivially 
holds in all non-Asplund Banach spaces beca use of the harmonic be
haviour of differentiable maps in such spaces. It is natural to conjecture 
that a reasonable version of Rolle's theorem in infinite dimensional 
Banach spaces holds if and only if our space does not have a C 1 bump 
functian and we prove this conjecture to be true within the class of those 
Banach spaces X which can be linearly injected into a Banach space Y 
with an equivalent narm whose dual narm is locally uniformly rotund 
(LUR) in Y*. This geometrical condition, which we shall call (*) for short, 
is satisfied by every (WCG) Banach space, every space which can be 
injected into sorne co(r), and even by every space injectable into sorne 
C(K), where K is a scatlered compact with K(w,) ~ 0. This conjecture is 
closely related to the question posed in [4] whether for every Banach space 
X having a C 1 bump function there exists a C 1 diffeomorphism 'P: 

X --+ X\ {O} such that 'P is the identity out of a ball. We give an 
affirmative answer to this question within the class of all Banach spaces X 
verifying ( * ). 

An interesting approximate version of Rolle's theorem remains never
theless true in aH Banach spaces, as we prove in this note. By an 
approximate Rolle's theorem we mean that if a differentiable function 
oscillates between -e and e on the boundary of the unit ball then there 
exists a point in the interior of the ball in which the differential of the 
functian has narm less than or equal to E. 

The authors gratefully acknowledge their debt to Juan Ferrera, who 
called their atlention to this kind of problem. They are also grateful to 
Jesús F errer for pointing out sorne inaccuracies in the original version of 
this note. 

2. THE APPROXIMATE ROLLE'S THEOREM 

In order to prove the approximate Rolle's theorem we need the follow
ing lemmas, which are themselves interesting. 

LEMMA 2.1. Let X be a Banach space and {/ be an open bounded 
connected subset of X. Let f: ZI-+ a;R be a continuous bounded function such 
that: 

(1) f is Gíiteaux differentiable in {/ 

(2) inf f( 7J) < inf f( a ¿;j or sup f( 7J) > sup f( a ¿;j. 

Then, for every a > O there exists x E {/such that Ildf(x)11 ~ a. 
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Proo! We may suppose inf [(Z/) < inf [(a ¿;j. Let us choose Xo E U 
such that [(xo) < inf [(a ¿;j, and let a, A be such that O < a < inf [(a ¿;j 
- [(xo) and O < A < a/R, where R ~ sup{llx o - xii: x E Z1 + 1. Fram 
Ekeland's Variational PrincipIe (se e Lemma 3.13 in [9], or [5]) it follows 
that there exists XI E 1/ such that 

[(XI) <[(X) + Allx -xIII (1) 

for all X * X l' In particular 

and therefore XI E !/ On the other hand, inequality (1) implies that for 
every h such that Ilhll ~ 1, 

d[(xl)(h) ~ lim [(XI + th) - [(XI) ;> -A, 
t---+ 0+ t 

which praves Ild[(xl)11 ~ A < a. I 
LEMMA 2.2. Let X be a Banach space and U be an open bounded 

connected subset o[ X. Let [: 1/--+ a;R be a continuous bounded function such 
that: 

(1) [is Gíiteaux differentiable in U 

(2) [( Z/) c; [a, b l. where a < b. 

Then, [or evay Xo E U and R > O such that B(xo, R) c; !/, there exists 
XI E B(xo, R) such that Ild[(xl)11 ~ (b - a)/2R. 

Proo! We may suppose that [a, b] ~ [ - e, el. Two cases will be consid
ered. 

Case 1. [(xo) * O. We may suppose [(x o) < O (the case [(xo) > O is 
analogous). Fram Ekeland's Variational PrincipIe (see Lemma 3.13 in [9], 
or [5]) it follows that there exists XI E I/such that 

(1) Ilxo - xIII ~ (j(xo) + e)/(e/R) < R, and 

(2) [(XI) <[(x) + (e/R)llx - xIII for all X * XI' 

Fram (1) we get XI E uand (2) implies that for every h with Ilhll ~ 1 

d[(xI)(h) ~ lim [(XI + th) - [(XI) ;> -e/R, 
t---+ 0+ t 

which praves Ild[(xl)11 ~ e/R. 
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Case 11. [(Xo) ~ O. We may suppose Ild[(xo)11 > e/R, since we would 
have finished otherwise. If Ild[(xo)11 > e/R there exists h with Ilhll ~ 1 
such that d[(xoXh) < -e/R and therefore there exists o> O such that 
[(xo + oh)/o < -e/R. Applying Ekeland's Variational PrincipIe again we 
obtain Xl E Usuch tha!: 

(1) Ilxl - (x o + oh)11 ~ (j(xo + oh) + e)/(e/R) < (-eo/R + 
e)/(e/R) ~ R - o and 

(2) [(Xl) <[(X) + (e/R)llx - xIII for all X * Xl' 

From (1) it follows that Ilxl - xoll ~ Ilxl - (x o + oh)11 + 0< R, so that 
Xl E B(xo, R) c; ti, and (2) implies Ild[(xl)11 ~ e/R. I 

The following result is immediately deduced as a consequence of Lem
mas 2.1 and 2.2. 

THEOREM 2.3 (Approximate Rolle's Theorem). Let X be a Banach 
space and tibe an open bounded connected subset o[ X. Let [: U --+ a;R be a 
continuous bounded function. Suppose that [ is Gíiteaux dif[erentiable in ti 
and [( a O) c; [a, b l, with a < b. Then, [or evay R > O and X o E ti such 
that B(xo' R) c; ti, there exists Xl E tlsuch that 

b - a 
Ild[(xl)11 ~ ----;¡¡¡-

From this we can immediately deduce the following 

COROLLARY 2.4. Let ti be an open connected bounded subset o[ a 
Banach space X. Let [: ¿; --+ a;R be continuous, bounded, and Gíiteaux 
dif[erentiable in {/ Suppose that [ is constant on a {/ Then, 

inf II['(x)11 ~ O. 
xE t/ 

It is easy to see, using Ekeland's Variational PrincipIe, that if X is a 
Banach space and [: X --+ a;R is continuous, Gateaux differentiable, and 
bounded below (or bounded above), then inf, EX 11['(x)11 ~ O. Alterna
tively, ir we assume that f is bounded, this is an immediate consequence of 
Theorem 2.3. 

3. DIFFEOMORPHISMS BETWEEN X ANO X\ {O} 

We use in this section Bessaga's non-complete narm technique to prove 
that every Banach space X verifying the condition 

( * ) There exists a Banach space Y with an equivalent norm 11.11 
whose dual norm 11.11* is locally uniformly rotund (LUR) in y* and a 
continuous linear injection T : X -----c> y 
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is el diffeomorphic to X\ {O}. If moreover X has a differentiable bump 
function then there exits a el diffeomorphism <p: X --+ X\ {O} such that 
<p is the identity out of a baH centered at O. 

It is not difficult to see that condition (*) is equivalent to saying that X 
admits a continuous (not necessarily equivalent) narm whose dual narm is 
(LUR). RecaH that a norm p in a Banach space (X, II.ID is said to be 
non-complete provided the normed space (X, p) is not complete. 

THEOREM 3.1. Let X be an infinite dimensional Banach space that verifies 
condition (*). Then 

(1) X admits a el(X\ (O)) non-complete nonn w; 

(2) there exists a el diffeomorphism <p: X --+ X\ {O} such that <p(x) 
~ x if w(x) ;> 1. 

Proo! First of aH let us see that every Banach space Y with an 
equivalent norm 11.11 whose dual norm 11.11* is (LUR) admits a el(y\ (O)) 
non-complete narm w. It is known that every infinite dimensional Banach 
space admits a continuous non-complete norm (se e [2, Chapo 111, Lemma 
5.1 D. Let g : Y --+ a;R be such a norm in Y. Define 

w(y) ~ [inf{g2(u) + Ily - u11 2: u E y}t 2
, y E Y. 

It is easy to check that w is a continuous norm in Y. As w(y) ~ g(y) for 
aH y E Y and g is non-complete, it is obvious that w is also non
complete. On the other hand, it is known (see [6, Proposition 2.3D that if 
(Y, II.ID is a Banach space such that the dual norm 11.11* is LUR then for 
every proper convex Isc function f: Y --+ ( - 00, + 00 1 the infimal convolu
tion with the squared narm 

My) ~ inf{t(u) + nlly - u11 2: u E Y}, y E Y, 

is el smooth and con ve x (and ir moreover f is bounded on bounded sets, 
then f, --+ f uniformly on bounded sets as n --+ 00). Taking f ~ g2 and 
n ~ 1, from this result we obtain that w 2 is el(y), so that w is el(y\ (O)). 

Now we should note that every subspace Z in Y has an equivalent narm 
whose dual norm is LUR. Indeed, considering the projection 7T: y* --+ Z*, 
7T(Y*) ~ YIZ' and using Theorem 2.!(ii) of[3, Chapo 1Il. we get that Z* has 
an equivalent LUR dual norm. Therefore, if y* has an equivalent LUR 
dual norm, then every closed subspace of Y admits a el non-complete 
narm. 
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So let X, Y, and T: X --+ Y be as in condition (*) and consider 
Z ~ T( X). If T(X) ~ Z, since Z has a el non-complete norm w and 
T: X --+ Z is a linear isomorphism, wo(x) ~ w(T(x» defines a el non
complete norm on X. ]f, on the contrary, T(X) is a dense but not closed 
subspace of Z, it is clear that wo(x) ~ IIT(x)11 defines a el non-complete 
narm on X. In any case we get a el non-complete narm on X. This 
proves (1). 

Now one can prove (2) using Bessaga's non-complete narm technique as 
T. Dobrowolski does in [4]. In fact (Z) is immediately deduced from 
Theorem 3.3 in [4]. Nevertheless we will saya few words about the way one 
can construct the diffeomorphism <p. There exists a linearly independent 
sequence (Yk}:::~2 in X such that L:::~I Zk+6w(Yk+1 - Yk) < l/Z, where 
YI ~ O, and a point y in the completion of (X, w) such that y $ X and 
lim k w(Yk - y) ~ O. Let ,,: a;R --+ [O, 1] be a ew function with ,,~ 1 in 
(-00, l/Z], ,,-1(0) ~ [1,00), and 11,,'llw ~ 4. Define p: (0,00) --+ X by 

p(t) ~ YI + L ,,(Zk-It)(Yk+1 - Yk) 
k= 1 

for t;> O. p is a ew path satisfying w(p(t) - p(s» ~ l/Zlt - si, 
limt~ op(t) ~ y, w(p'(t» < l/Z for all t > O and p(t) ~ O if and only if 
t ;> l. Let x be an arbitrary vector in X and let F: [0,00) --+ [0,00) be 
defined by F(OI) ~ w(x - p(OI» for 01 > O and F(O) ~ w(x - y). We have 
IF( (1) - F( MI ~ 1 /ZI 01 - 131, so from Banach's contraction principIe ap
plied to the interval [0,00), it follows that the equation F(OI) ~ 01 has a 
unique solution. This means that for any x E X, a number OI(X) with the 
property 

w(x - p( OI(X») ~ OI(X) 

is uniquely determined. Moreover, since x, being in X, cannot be equal to 
y, we have OI(X) * O. This implies that the mapping 

1j;(z) ~p(w(z» +z 

is one-to-one from X\ {O} onto X, with 

As w and p are el, so is 1j;. Let <t>(x, (1) ~ 01 - w(x - p(OI». Since for 
any x E X we have x - p( OI(X» * O, the mapping <t> is differentiable on a 
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neighbourhood of any point in X X (0,00). On the other hand, 

a<t>(x,a) 
;> 1 - 1/2 > O aa 
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because lF(a) - F(j3)1 ~ 1/21a - J3I. So, using the implicit function 
theorem we obtain that 1j; : X\ {O} --+ X is a el diffeomorphism. Finally, 
it is clear that 1j;(z) ~ z whenever w(z) ;> 1. I 

THEOREM 3.2. For a Banaeh spaee X satisfYing eondition (*), the [ollow
ing are equivalent. 

(1) X has a el bump funetion. 

(2) There exists a el dif[eomorphism <p: X --+ X\ {O} sueh that <p is 
the identity out o[ a ball eentered at O. 

Proo! If <p: X --+ X\ {O} is a el diffeomorphism such that <p(x) ~ x 
whenever Ilxll ;> r for sorne r> O, then, taking p E X* such that p( <p(0» 
* O and defining [(x) ~ p(<p(x) - x) we obtain a el bump function [ 
such that [(O) * O and [(x) ~ O if Ilxll ;> r, which praves that (2) implies 
(1) 

Now suppose that X has a el bump function. Praposition 5.1 in [3, 
Chapo II] gives us a function 1j; on X such that 1j; is el smooth on X\ {O}, 
1j;(tx) ~ Itl1j;(x) for x E X and tER and there are constants a > O and 
b > O such that allxll ~ 1j;(x) ~ bllxll for x E X. Let A: (0,00) --+ (0,00) be 
a non-decreasing ew function such that A(t) ~ O for t ~ 1/2 and A(t) ~ 1 
for t ;> 1. Let 

[ 
1j;( x) 1 H(x) ~ A(1j;(x»-- + 1 - A(1j;(x» x, 
w(x) 

for x * O, and H(O) ~ O. H is a one-to-one mapping fram X onto X 
transforming the set (x E X: 1j;(x) ~ l) onto (x E X: w(x) ~ l), and H is 
el, Using the implicit functian theorem as in the preceding theorem we 
obtain that H- l is also el By composing this diffeomorphism with that of 
Theorem 3.1 we get a el diffeomorphism between X and X\ {O} that is 
the identity out of a ball centered at O. I 

Now we can prave as in [1] the following 

COROLLARY 3.3. J[ a Banaeh spaee X verifies eondition (*) and has a 
Fréehet smooth equivalent norm then the sphere S x is el dif[eomorphie to 
eaeh hyperplane in X. J[ moreover X is isomorphie to one o[ its hyperplanes, 
then X is el diffeomorphie to its sphere. 
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Remark 3.4. All the results in this section remain true if we replace 
condition (*) by the following one 

(* *) There exist a Banach space Y with an equivalent differentiable 
norm 11.11, an infinite-dimensional reflexive closed subspace Z c; Y, and a 
continuous linear injection T : X --+ Y such that Z c; T(X) c; y. 

Indeed, if X, Y, and Z are as in this condition, let us consider any 
continuous non complete narm W o on Z and let liS define 

XEX. 

Since Z is reflexive the infimum defining w(x) is atlained and using the 
differentiability of 11.11 it is easy to see that the norm w is differentiable in 
y. Moreover w is non-complete because w(z) ~ wo(z) for all z E Z and 
W o is non-complete on the closed subspace Z c; y. Now define wl(x) ~ 
w(T(x» for each x E X. It is clear that W 1 is a differentiable non
complete narm in X, and so we can construct the diffeomorphisms 
between X and X\ {O} in the same way as before. 

4. AN EXACT ROLLE'S THEOREM IN INFINITE 
DIMENSIONAL BANACH SPACES FAILS 

In this section we use the preceding results to prove that an exact 
Rolle's theorem either fails or trivially holds in infinite dimensional 
Banach spaces verifying (*). The following result, whose proof is clearly 
motivated by Shkarin's ideas in [lO], provides a characterization of spaces 
that do not verify Rolle's theorem within the class of those spaces verifying 
(* ). 

THEOREM 4.l. Jf a Banach space X verifies condition (*), the following 
are equivalent: 

(1) X has a el bump function. 

(2) There exists an open connected bounded subset {/ and a continuous 
bounded function f: 7/--+ a;R such that f is C l ( ¿;j, f = O on a ti, and yet 
df(x) * O for all x E ti, that is, Rolle' s theorem fails in X. 

(3) There exists a CI(X) bounded function f: X --+ a;R and an open 
connected bounded subset {/ in X such that f = O on X \ {/ and yet 
df(x) * O for all x E {/ 

Proo! It is obvious that (3) implies (2) and one can easily check that (2) 
implies (1). Let us prove that (1) implies (3). By Proposition 5.1 in [3, Chapo 
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IIl, there exists a function 1j; on X such that 1j; is el smooth on X\ {O}, 
1j;(tx) ~ Itl1j;(x) for x E X and tER and there are constants a > O and 
b > O such that allxll ~ 1j;(x) ~ bllxll for x E X. From Theorem 3.2 we get 
a el diffeomorphism ip: X --+ X\ {O} such that ip is the identity out of a 
ball centered at O. Let 8: a;R --+ a;R be an even ew function such that 
8(0) ~ 1, 8 '(t) < O for all t E (O, 1) and 8(t) ~ O for all t ;> 1. We define 
t: X --+ a;R by t ~ 8 o 1j; o ip. Since t is the composition of the el functions 
ip: X --+ X\ {O}, 1j;: X\ {O} --+ a;R and 8, t is el, and t is bounded 
because so is 8. Moreover, we have t(x) ~ O if 1j;( ip(x» ;> 1. However, 
['(x) * O for all x such that 1j;( ip(x» < 1, because 

[,(x)(y) ~ 8'( 1j;( ip(x»)d1j;( ip(x»)( ip'(x)(y» * O 

for sorne y E X since ip'(x) is a linear isomorphism, d1j;(z) * O for all 
z EX\ {O} and 8'(1j;(ip(x») < O whenever 1j;(ip(x» < 1. So, taking {/~ 

(x E X: 1j;( ip(x» < !}, (!) implies (3) is proved. I 
Remark 4.2. Rolle's theorem trivially holds in non-Asplund Banach 

spaces: ir x is a non-Asplund Banach space, {/ is an open connected 
bounded subset in X, and we have a continuous bounded functian f: 
7/--+ a;R that is Fréchet differentiable in {/ and t = O on a ti, then 
necessarily t = O on {/(see [3, Chapo I1I, p. 97]). 
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