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Abstract 

Different types of inexactness can be represented by 

fuzzy sets: vagueness, where there are no precise boun-

daries, ambiguity, when more than one distinguishable 

concept is described, generality, such that a word ap-

plies to a variety of situations, and ambivalence, where 

conflicting valuations can coexist. Different measures 

of ignorance can be used in order to grade the distinct 

attributes of inexact information. Here we explore some 

of these measures from a relational point of view. 

Keywords: Ambiguity, Ambivalence, Vagueness, Fuz-

ziness, Ignorance, Relational structures 

1. Introduction  

The examination of ignorance as an epistemic state 

[3],[9] often considers ignorance in its most general 

form, as the absence of knowledge. But the concept of 

ignorance has many faces. The complexity of under-

standing ignorance involves on one hand, its representa-

tion, and on the other, its different manifestations.   

In its most general form, ignorance as absence of 

knowledge can be understood as a primary type of un-

certainty [13], while other manifestations like e.g., false 

belief, vagueness, inexactness, ambiguity or ambiva-

lence, seem of a more specialized type, more likely be-

longing to a more elaborated state of mind. Basically, 

ignorance, as primary uncertainty, implies all other ma-

nifestations, but all other manifestations do not imply 

lack of knowledge. This was an underlying argument in 

[9], where ignorance was associated to a first stage of 

knowledge, previous to any kind of measurement. 

The intuition here is that the simplest epistemic attri-

bution for ignorance refers to the absence of relevant 

knowledge, such that the word ignorance refers to a sit-

uation where there is no precise knowledge about a set 

of objects of interest [15]. Under this view, ignorance 

can be classified into two epistemic categories, one 

concerned with the validity of information, i.e., uncer-

tainty, and the other concerned with the exact meaning 

of information, i.e., ambiguity. 

In this paper we explore distinct notions of ignor-

ance, such as ambiguity, ambivalence, vagueness and 

generality, examining their differences and similarities, 

and showing that a number of measures used to study 

ignorance satisfy the conditions that characterize ambi-

guity relational structures. In order to do so, we now 

introduce relational structures as it has been done in 

[15]. For some universe X, where  P X  is the set of all 

subsets of X, i.e., the power set of X, and ¬A stands for 

the complement of A  P X , let  be a relation on 

 P X  and f a numerical measure of ignorance, i.e., a 

function 

 

   : 0,1f P X  . 

 

The quantitative measure f fully agrees with  if, for 

all  ,A B P X , 

 

   A B f A f B  . 

 

In this sense,   ,
f

P X  is a relational structure de-

fined by f, if this measure fully agrees with . Notice if 

 A B  and  B A , then A B , and if A B  

or A B  then A B .  

2. Ambiguity 

A characterization for ambiguity functions has been 

given in [4], following some original insights from 

[7],[8]. Under this particular interpretation, an ambigui-

ty function  

 

   : 0,1P X   

 

is a mapping satisfying the following axioms for all 

 ,A B P X  [4]: 

 

A1.   0   ,   0A   

A2.    A ¬A  , 

A3.        A B A B A B        . 

 

Ambiguity is presented here as a comparative rela-

tion between sets or events A,B, such that A B  if and 

only if A is at least as ambiguous as B. Notice that A1 

and A2 imply that   0X  . Condition A2 states that 

ambiguity is the same for any set and for its comple-

ment, while condition A3, expresses that the union of 

two sets A, B may reduce or cancel ambiguities 

associated to each one (considered separately), but 

never increase them.  
Ignorance due to ambiguity has been examined as an 

epistemic state that affects uncertain beliefs based on 

world knowledge (see e.g., [5]), in such a way that it 

stands out when subjects evaluate crisp-clear and vague 

prospects jointly. Consequently, ambiguity of the vague 

prospect greatly diminishes when it is evaluated in iso-

lation. Under this perspective (referred to as the com-

parative ignorance hypothesis [5]), ambiguity is an in-

herently comparative effect representing the reluctance 
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to act on inferior knowledge, a situation that becomes 

evident when comparing with superior knowledge. 

Thus, if it is possible to compare a vague event A with a 

certain event B, the original intuition in A3 [4] should 

be replaced by: 

 

AC3.        A B A B A B        . 

 

But an absolutely certain event is not always avail-

able. Moreover, from a subjective viewpoint, the a-

priori specification of an individual’s state of knowl-

edge is not always possible. Therefore, in case the state 

of knowledge regarding the events in question can be 

specified and a certain event is available, AC3 seems to 

be a good alternative to be taken into account when 

studying ambiguity in decision making contexts. Else-

where, under more general and vague situations, the 

characterization of ambiguity as given by A1-A3 seems 

most appropriate.  

Such characterization A1-A3 of ambiguity has been 

proved useful with respect to some concepts of Demp-

ster-Shafer’s theory of evidence [12],[15], as in the fol-

lowing example. A belief function is a mapping 

 

   : 0,1Bel P X   

 

satisfying the following axioms, for every positive inte-

ger n and every collection 
1 2, ,..., nA A A X : 

 

Bel1.   0Bel   , 

Bel2.   1Bel X  , 

Bel3.    1 2... n i

i

Bel A A A Bel A     

     
1

1 2... 1 ...
n

i j n

i j

Bel A A Bel A A A




     

 

Given a belief function Bel, its corresponding plausi-

bility function, Pl, is defined for all  A P X , as 

 

   1Pl A Bel A   . 

 

Following [15], there exists a belief function satisfy-

ing the condition 

 

   A B Bel A Bel B  , 

 

i.e., Bel fully agrees with , if and only if the relation 

 satisfies the following axioms: 

 

B1. X  , 

B2.  A B B A , 

B3.      ,A B B C A C   , 

B4.  A B B A  , 

B5.    ,A B A C A B A C B C       . 

 

In the same way [15], there exists a plausibility func-

tion 

 

   : 0,1Pl P X   

 

satisfying the condition 

 

   A B Pl A Pl B  , 

 

i.e., Pl fully agrees with , if and only if the relation 

 satisfies the following axioms: 

 

P1. X  , 

P2.  A B B A , 

P3.      ,A B B C A C   , 

P4.  A B B A  , 

P5.    ,A B A C A B A C B C       . 

 

Then, the function defined by 

 

     A Pl A Bel A     (1) 

 

is an ambiguity function [15]. Hence, the greater the 

interval between plausibility (the amount of information 

that potentially supports A) and belief (the amount of 

information that surely supports A), the greater the ig-

norance due to ambiguity on A there will be.  

Notice that (1) can be rewritten as 

 

      1A Bel A Bel A     , 

 

where the nature of ambiguity can be directly grasped, 

as everything that is not believed about A or its com-

plement ¬A. In other words, if there is ignorance on the 

boundaries of A, i.e., on the precise meaning of the con-

cept represented by the set A, then there is presence of 

ambiguity. As a result, ambiguity easily resembles with 

the basic idea underlying fuzziness, as it focuses on the 

lack of distinction between a set A and its complement 

or strong negation ¬A [16].    

The extension of ambiguity measures [4] to fuzzy set 

theory [17] is straightforward using traditional defini-

tions for the complement of a set and intersection and 

union between sets [16]. For any fuzzy set A defined on 

a set X, where the degree of membership of any 

x X in A is denoted by A(x), taking its values from 

any partially ordered structure L (see [6]), as e.g., 

 0,1L  , ambiguity measures can be defined for any 

 , fA B P X , where  fP X  is the set of all fuzzy 

sets of X, as a function 

 

   : 0,1fP X   

 

satisfying A1-A3, such that A B A B   , 
A B A B    and 1¬A A  , where   represents 

some continuous triangular conorm (t-conorm) S, and 

  represents some continuous triangular norm (t-norm) 
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T [11]. Some examples for T and S are, for any 

 , 0,1x y , the minimum and maximum,  

 

T(x,y)=min(x,y), 

S(x,y)=max(x,y), 

 

the product, 

 ' , ·T x y x y , 

 ' ,S x y x y x y    , 

 

or Lukasiewicz’s, 

 

   , max 1,0LT x y x y   , 

   , min ,1LS x y x y  . 

 

Following [4],[15], where crisp ambiguity relations 

have been defined, an ambiguity relation can be ex-

tended to a fuzzy environment as follows. Let  be a 

relation on  fP X . There exists an ambiguity function  

 

   : 0,1fP X   

 

for all  , fA B P X  satisfying the condition 

 

   A B A B   , 

 

i.e.,   fully agrees with , if and only if the relation 

 satisfies the following axioms: 

 

AR1.  is a weak order (complete and transitive), 

AR2. A  ,  

AR3. A A , 

AR4. If  1 2, ,..., mB B B  is a rearrangement of 

        
1 2 1 2 3 4 3 4( , , , ,...A A A A A A A A     

   
1 1..., , )m m m mA A A A    

 

where m is a positive integer and  f

iA P X , 

1,2,...,i m , then it is false that j jB A  for j=1,…,m 

and j jB A  for at least one 1, ,j m  . 

 

If  satisfies AR1-AR4, then it is called an ambiguity 

relation and   ,fP X


 is called an ambiguity struc-

ture. 

 

Remarks 

1. If we take into consideration the comparative ig-

norance hypothesis [5] expressed by AC3, i.e., in case 

the state of knowledge regarding the events in ques-

tion can be directly specified, condition AR4 can be 

reformulated as: 

 

AR4*. If  1 2, ,..., mB B B  is a rearrangement of 

1 2 1 2 3 4 3 4( , , , ,...A A A A A A A A     

1 1..., , )m m m mA A A A   , 

 

then it is false that 
j jA B  for j=1,…,m and 

j jA B  

for at least one 1, ,j m  . 

 

2. Given the ambiguity structure   ,fP X


, 

where fuzzy sets may describe more than one distin-

guishable concept, ambivalence can be examined 

where conflicting meanings or opposite interpreta-

tions coexist. Have in mind that ambiguity relations 

measure the extent in which an element x can be both 

member of a set A and its complement, being defined 

as a property for the pairs  ,A ¬A  of complementary 

sets on  fP X .  

On the other hand, ambivalence refers to which 

extent an element x can be both member of a set A 

and its opposite. This is why ambivalence is a prop-

erty defined for the pairs {A,Aª} of antagonistic sets 

on  fP X , where Aª is the antonym or opposite of 

the underlying concept represented by A [9],[10],[14]. 

In this way, ambivalence can be examined by some 

measure defined for an antagonist type of negation, 

instead of a complemented or classical strong nega-

tion (i.e., a strictly decreasing and involutive func-

tion).  

3. Ambiguity, ambivalence and measures of fuzzi-

ness 

Measures of fuzziness have been studied since [2], 

where a first characterization for measures of fuzziness, 

 A , is given for any  , fA B P X , such that  A  

satisfies the following properties: 

 

F1.   0A   if and only if A is a crisp set, i.e., 

  0A x   or   1A x  . 

F2.  A  has one maximal value for the fuzzy set A 

such that   0.5A x   for all x X . 

F3. If     0.5A x B x   or    0.5 B x A x   then 

   A B  . 

 

Another suggestion for examining fuzziness focuses 

on the lack of distinction between a set A and its com-

plement or strong negation ¬A [16]. If the intersection 

set I is defined as 

 

     I x A x A x   

 

then a measure of fuzziness, that also satisfies F1-F3, 

can be defined as [16], 

 

   
1

2 n
Y

i

i

A I x
n




  . 
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These two different approximations to fuzziness can be 

also studied through ambiguity measures (as it is shown 

in [16]).  

Now, recalling our remark on ambivalence, a differ-

ent kind of fuzziness can be examined if, instead of fo-

cusing on the lack of distinction between A and its 

complement, we focus on the lack of distinction be-

tween A and its opposite or antagonistic counterpart A
a
 

(for a detailed discussion on the semantics defined by 

opposite or polar terms the reader is referred to [10]). 

Therefore, if we define the intersection set as 

 

     aK x A x A x  , 

 

a measure of polar-fuzziness can then be defined as, 

 

   
1

2 n
a

i

i

A K x
n




  . 

 

The extension from one kind of measure to the other is 

direct just by taking the set A
a
 instead of ¬A, but the 

axioms characterizing the new measure have to be re-

considered.
 
 

The intuition behind this approach can be summa-

rized by the following properties,  

 

V1.   0A   if and only if   0A x   or   0aA x   

for all x X . 

V2.  A  has one maximal value for the fuzzy set A 

such that     1aA x A x   for all x X . 

 

This type of measure can then be studied as an ambiva-

lence measure. 

 

Definition 1: An ambivalence measure is characterized 

as a function  

 

     : 0,1
af fP X P X   , 

 

where  
afP X  is the set of all antagonistic fuzzy sets 

for  fP X , satisfying the following axioms for all 

 , fA B P X ,  
aa fA P X : 

 

AV1.   0   ,  

AV2.    aA A  , 

AV3.        A B A B A B        . 

 

Notice that the definition of ambivalence includes the 

comparative ignorance hypothesis, AV3, in such a way 

that when two fuzzy sets representing different states of 

nature, i.e., fuzzy events, are compared, ambivalence 

tends to increase. Besides, if    A B  , then 

aB A  and the inequality in AV3 can be replaced by 

equality, such that  

 

       a a aA A A A A A        . 

 

An ambivalence relation is characterized as follows.  

 

Definition 2: Let  be a relation on  fP X . There 

exists an ambivalence function 

 

     : 0,1
af fP X P X    

 

for all  , fA B P X ,  
aa fA P X  satisfying the 

condition 

 

   A B A B   , 

 

i.e.,   fully agrees with , if and only if the relation 

 satisfies the following axioms: 

 

AVR1.  is a weak order (complete and transitive), 

AVR2. A  , 

AVR3. aA A , 

AVR4. If  1 2, ,..., mB B B  is a rearrangement of  

          1 2 1 2 3 4 3 4( , , , ,...A A A A A A A A     

      1 1..., , )m m m mA A A A   , 

 

where m is a positive integer and for  f

iA P X , 

1,2,...,i m , then it is false that 
j jA B  for j=1,…,m 

and j jA B  for at least one 1, ,j m  . 

 

If  satisfies AVR1-AVR4, then it is called an ambi-

valence relation and     , ,
af fP X P X


 is called an 

ambivalence structure. 

4. Ambiguity and interval structures 

An interval fuzzy structure  *

*,F F  is defined by a pair 

of lower and upper mappings representing the member-

ship of the elements of a universe to a fuzzy set. In this 

sense, membership is characterized by an interval-

valued function and such characterization models an 

epistemic state commonly referred to as vagueness [3]. 

Following [15], where qualitative interval structures are 

defined, a lower mapping    * : 0,1fF P X   satisfies 

the following axioms for all  , fA B P X : 

 

*1.F   *F   , 

* 2.F   * 0F X  , 

*3.F       * * *F A B F A F B   . 

 

The corresponding upper mapping *F  is defined by 

   *

*F A F A   , such that    *

*F A F A  for all 
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 fA P X . The upper mapping    * : 0,1fF P X   

satisfies the following axioms for all  , fA B P X : 

 
*1.F   *F   , 

* 2.F   * 1F X  , 

*3.F       * * *F A B F A F B   . 

 

Theorem 1: Given the interval fuzzy structure 

 *

*,F F , the mapping    : 0,1fP X   defined for 

all  fA P X  by, 

 

     *

*A F A F A    

 

is an ambiguity measure.  

 

Proof: Axiom A1 follows directly from 
*1F  and *1F : 

 

     *

*F F       . 

 

Axiom A2 holds, by the definition of the upper map-

ping: 

 

     

         

*

*

* * *

*           

A F A F A

F A F A F A F A A





    

      
 

 

Without any loss of generality, assume A<B, then, 

for min   and max  , 

 

     

     

*

*

*

*              

A B F A B F A B

F A F A A





    

  
 

 

and 

 

     

     

*

*

*

*              

A B F A B F A B

F B F B B





    

  
 

 

hence axiom A3 holds, 

 

       A B A B A B        .  

 

As a result, vagueness or imprecision, expressed by 

interval fuzzy structures, can also be examined through 

ambiguity measures.  

 

Theorem 2: The mapping    : 0,1fP X   defined 

for all  fA P X  by, 

 

       *

*

1

1 n

i i

i

A F A x F A x
n




   

 

where n is the cardinality of X, is an ambiguity measure 

(this expression is the indetermination index used for 

measuring entropy for interval valued fuzzy sets [1]). 

 

Proof: Axiom A1 follows directly from 
*1F  and *1F : 

 

       *

*

1

1 n

i i

i

F x F x
n




      . 

 

Axiom A2 holds, by the definition of the upper map-

ping: 

 

       *

*

1

1 n

i i

i

A F A x F A x
n




      

  

     

     

     

* *

1

* *

1

* *

1

1

1
1

1
1

n

i i

i

n

i i

i

n

i i

i

F A x F A x
n

F A x F A x
n

F A x F A x
n







    

   

   







 

  

     

       

* *

1

*

*

1

1

1
.

n

i i

i

n

i i

i

F A x F A x
n

F A x F A x A
n







   

  




 

 

Without any loss of generality, assume 

   i iA x B x , then, for min   and max  , 

 

    i iA x B x     

                     *

*

1

1 n

i i i i

i

F A x B x F A x B x
n 

     

                   *

*

1

1 n

i i i

i

F A x F A x A x
n




    

 

and 

 

    

         

        

*

*

1

*

*

1

1
        =

1
        =

i i

n

i i i i

i

n

i i i

i

A x B x

F A x B x F A x B x
n

F B x F B x B x
n









 

  

 





 

 

hence axiom A3 holds, 

 

         i i i iA x B x A x B x      

     i iA x B x    

 

As it has been seen, ambiguity measures are valid for 

measuring entropy (theorem 2), as they are also valid 

for measuring the type of generality and vagueness cha-

racteristic of interval structures [15] and interval fuzzy 

sets (theorem 1). 
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5. Ignorance and ambiguity 

Recently (see [1]), a characterization for ignorance has 

been given for any  , 0,1x y  by a function  

 

   
2

: 0,1 0,1G   

 

that satisfies the following conditions: 

 

G1.    , ,G x y G y x  for all  , 0,1x y , 

G2.  , 0G x y   if and only if x=1 or y=1, 

G3. If x=0.5 and y=0.5, then  , 1G x y  , 

G4. G is decreasing in  
2

0.5,1 , 

G5. G is increasing in  
2

0,0.5 . 

 

This function has the purpose of modeling the lack of 

knowledge when determining the membership degrees 

of some pixels of an image Q to the fuzzy set 

representing the background of the image, QB, and to 

the fuzzy set representing the object in the image QO. 

Although this approach [1] was originally designed for 

recognizing pixels in an image, where the pixel either 

belongs to the background or to the object, the ignor-

ance measure G can be examined as a general ignorance 

function for any pair of fuzzy sets.  

Axiom G1 characterizes G as a symmetric function, 

where ignorance does not depend on which member-

ship, to the background (QB) or to the object (QO), is 

considered first. The second axiom, G2, refers to the 

representation of complete knowledge as the situation 

where at least one of the membership intensities is 1. 

The third axiom, G3, states that if the quantification of 

the expert knowledge that the pixel with intensity q be-

longs to the background is   0.5
BQ q   and to the ob-

ject is   0.5
OQ q  , then total or maximum ignorance 

exists.  

The two axioms G2 and G3 characterize G as a func-

tion that examines the exact meaning of the informa-

tion, where complete knowledge and complete ignor-

ance are defined, and G3-G5 assure that G has a maxi-

mum in 0.5. Therefore, if x and y are 1 (x=y=1), then G 

is 0, but if x and y are 0 (x=y=0) then G is any value 

less than 1. Notice that if such value is 0, then G holds a 

direct relation with measures of fuzziness (F1-F3), in 

the sense that if x=y=0 then     0x y   . 

But the model for which G is originally thought for 

(its field of application and purpose is to binarize an 

image) considers the situation of perfect or total know-

ledge as the case where membership of a pixel (e.g., to 

QB) is null if and only if the other membership (e.g., to 

QO) is maximum. In such case, G should return 0 only 

in the case where just one of the membership values is 0 

(justification behind the formal definition of G [1]). 

This condition, different from G2, implies that if one of 

them is 0, then the other has to be 1, or in other case 

there is presence of ignorance, up to a certain degree. 

Now, notice that an ambiguity measure (in the same 

way as a measure of fuzziness) returns 0 when, for any 

element x X , A(x)=0 or A(x)=1. In this sense, the bi-

nary restriction commented above can be added to the 

characterization of the ignorance function, G, using 

ambiguity measures, for any pair of fuzzy sets A,B, 

such that     , 0G A x B x   if and only if 

   0A x  ,    0B x   and A(x)=1-B(x). 

Following the classification of ignorance into uncer-

tainty and ambiguity [15], the ignorance function G 

seems to fall directly under the second category, as it 

measures the exact meaning of the available informa-

tion. But apart from the cases considered by such ignor-

ance function, there exist other cases where the inexact-

ness of information expresses distinct states of know-

ledge. Such cases represent different expressions of ig-

norance, as e.g., when there is no available information 

[9] (case where A(x)=B(x)=0) or when there are con-

flicting pieces of information (ambivalent case where 

A(x)=B(x)=1).  

6. Final remarks 

As an expression of inexactness, ambiguity is related 

with vagueness, generality and fuzziness, among others. 

Under this approach, it represents a certain kind of ig-

norance over the exact meaning of information, differ-

ent from the other kind of ignorance over the validity of 

the information, referred to as uncertainty. This classifi-

cation is useful for distinguishing different attributes of 

ignorance, examining their similarities and also their 

differences. For any model it is of interest to deal with 

one or the other type of ignorance, but notice that ig-

norance is a complex epistemic state that has many fac-

es, and as such, can be classified in different ways. This 

paper has shown that ambiguity relations are useful to 

properly identify some of ignorance’s faces.    
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