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Abstract In this work we address the inverse problem of reconstructing inclusions
and their thermal parameters given temperature measurements at the accessible side
of a material. We describe an iterative descent method that combines topological
derivative computations to reconstruct the geometry of the defects with gradient
iterations to approximate the material parameters. A numerical experiment showing
the ability of the method to obtain reasonable reconstructions in a few iterations is
presented.

1 Statement of the problem

Photothermal imaging techniques are suitable means of inspecting composite mate-
rials with nondestructive tests. In this work we develop techniques to detect defects
Ω buried in a medium by surface thermal measurements. We are interested in a pho-
tothermal technique that consists in heating the surface of a semi–infinite medium
by a laser beam and recording the temperature at several receptors located on the
same surface during a time interval, see Fig. 1. Recent physical experiments using
this kind of technique can be found in [9, 18].

The forward problem is modelled by a heat diffusion equation in the half plane
R2
− := {(x,y) ∈ R2, y < 0}. The surface of the sample Π := {(x,0), x ∈ R} is

thermically excited with a delta–pulse located at a source point x0 ∈ Π , generating
a thermal wave of the form
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source point Π
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Fig. 1 Geometrical configuration. The source and observation points are located on the boundary
Π of the medium. The objects Ω and their physical parameters are the unknowns of the phothermal
imaging problem.

Uinc(x, t) = (1/t) exp
(
−ρe|x−x0|2/(4κet)

)
, x ∈ R2, t > 0. (1)

Here κe is the thermal conductivity of the exterior medium Ωe := R2
− \Ω and ρe

is the density multiplied by its specific heat. The corresponding thermal parameters
inside the inclusions Ω are κi and ρi. The temperature distribution

U(x, t) :=
{

U+(x, t), in Ωe × (0,∞),
U−(x, t), in Ω × (0,∞),

satisfies the heat equations

ρe∂tU+ = κe∆U+, in Ωe × (0,∞), ρi∂tU− = κi∆U−, in Ω × (0,∞). (2)

In the exterior domain Ωe, the total temperature Utotal = U+ +Uinc is the super-
position of U+ and the incident wave defined in (1). The temperature satisfies the
following transmission conditions at the common interface:

U−−U+ =Uinc, κi∂nU−−κe∂nU+ = κe∂nUinc, on ∂Ω × (0,∞). (3)

The forward problem is completed imposing an adiabatic boundary condition on the
upper boundary Π , and homogeneous initial conditions:

∂nU+ = 0, on Π × (0,∞), U+(x,0) =U−(x,0) = 0, ∀x ∈ R2
−. (4)

The solution U of the forward problem can be numerically approximated using
the following strategy [12, 14]: if we consider the Laplace transform of U and Uinc,
u(x,s) =

∫ ∞
0 e−stU(x, t)dt and uinc,s(x) =

∫ ∞
0 e−stUinc(x, t)dt, then, for each value of

s the function us(x) := u(x,s) is a radiating solution of the stationary problem
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u−s −u+s = uinc,s, on ∂Ω κi∂nu−s −κe∂nu+s = κe∂nuinc,s, on ∂Ω ,
∂nus = 0, on Π .

(5)

To invert the Laplace transform we choose the hyperbolic paths of the form [17]:
γ(θ) := µ(1− sin(π/4+ ıθ)), θ ∈ R, where µ > 0. Then, the solution of (2–4) is

U(x, t) =
1

2πı

∫ ∞

−∞
etγ(θ)u(x,γ(θ))γ ′(θ)dθ .

Numerical approximations of U can be calculated using a truncated trapezoidal rule

U(x, t)≈
L

∑
ℓ=−L

cℓetsℓu(x,sℓ),

sℓ = γ
(

log(L)
L ℓ

)
and weights cℓ =

log(L)
2πıL γ ′

(
log(L)

L ℓ
)

.
The inverse problem consists in finding the objects Ω and the parameters κi, ρi

such that the solution of the forward transmission problem (2–4) equals the mea-
sured values of the total wave Umeas(xi, t j) at the detector locations x1, . . . ,xM ∈ Π
at the time instants t1, . . . , tN . Since this problem is ill–posed, we consider a weaker
variational reformulation: find Ω ,κi,ρi minimizing the functional

J(R2
− \Ω ,κi,ρi) =

1
2

M

∑
i=1

N

∑
j=1

f (t j)(Utotal(xi, t j)−Umeas(xi, t j))
2 , (6)

where Utotal is the solution of the forward problem (2–4) when the object is Ω and
the interior thermal parameters are κi and ρi. The weight function f (t) normalizes
the time decay of the solutions of the heat equation. For our numerical experiment
in section 3 we select f (t) = maxx∈{x1,...,xM} |Umeas(x, t)|−1. Other possibilities were
explored in [4, 6].

Based on the Laplace–transform strategy described above, we proposed in [4, 6]
to substitute the cost functional (6) by the approximated funcional

J(R2
− \Ω ,κi,ρi) =

1
2

M

∑
i=1

N

∑
j=1

f (t j)

(
L

∑
ℓ=−L

cℓet jsℓu(xi,sℓ)−Umeas(xi, t j)

)2

, (7)

having now 2L+1 stationary constraints.

2 Iterative method to reconstruct inclusions and parameters

To solve the optimization problem we combine gradient and topological derivative
(TD in the sequel) methods to generate sequences of parameters and objects in such
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a way that the cost functional decreases throughout the iterative procedure. Our
choice of a TD strategy is based on the following advantageous features:

• Without a priori information, the TD provides a good first guess of the num-
ber, size and location of the inclusions. This has been tested in a wide range of
physical settings, including acoustics, electromagnetism, elastodynamics, electri-
cal impedance tomography, fluorescence optical tomography, and photothermal
imaging [1, 5, 7, 8, 10, 15, 20].

• Iterative TD methods allow for topological changes during the iterations, in con-
trast to classical shape deformation strategies [11,13,19] that require knowledge
of the number of objects from the start. Using iterative TD based methods, new
objects may be created in the course of the iterations, existing contours may
merge and holes inside existing objects may be detected, see [2,3]. Furthermore,
even if the number of inclusions is known (assumption that in most practical
applications is not realistic), TD–iterative methods are a powerful alternative to
these classical methods, providing accurate reconstructions at a low computa-
tional cost, as extensively checked by the authors in different contexts (see [2–6]
and references therein).

• In comparison with other strategies allowing for topological changes (as i.e. level
set methods [16, 21]), the number of iterations with respect to the domain is
usually much smaller.

In our previous papers [4, 6] we used a non–standard formulation of the pho-
tothermal problem (2–4), involving two interior parameters related with κe,κi,ρe,
and ρi with no physical meaning. In this paper we adapt the results in [4, 6] to deal
with the reconstruction of defects and of their physical parameters κi and ρi.

The TD of a shape functional J (R) is a pointwise function defined as [22]:

DT (x,R) = lim
ε→0

J (R \Bε(x))−J (R)

πε2 , x ∈ R, (8)

where Bε(x) is a ball centered at x with radius ε . Then, it follows the expansion:

J (R \Bε(x)) = J (R)+DT (x,R)πε2 +o(ε2), as ε → 0.

This motivates the key idea for the reconstruction technique: if we locate small
objects Bε(x) at the points x∈R where DT (x,R) is negative, then J (R \Bε(x))<
J (R), that is, the value of the functional decreases. Hence we will identify the
points where the TD attains the larger negative values with the regions where it is
more likely to have an object.

The next result can be proved following Theorem 3.2 in [4].

Theorem 1. The TD of the functional J(R2
− \Ω ,κi,ρi) defined in (7) is

DT (x) = Re
( L

∑
ℓ=−L

2κe(κe −κi)

κe +κi
∇utotal,sℓ(x)∇psℓ(x)+(ρe −ρi)sℓutotal,sℓ(x)psℓ(x)

)
(9)
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for x ∈ R2
− \Ω , where utotal,sℓ = uinc,sℓ +usℓ and usℓ is the solution of (5) for s = sℓ.

The adjoint fields psℓ are solutions of:
κe∆ psℓ − sℓρe psℓ = gsℓ , in Ωe, κi∆ psℓ − sℓρi psℓ = 0, in Ω ,
p−sℓ − p+sℓ = 0, on ∂Ω κi∂n p−sℓ −κe∂n p+sℓ = 0, on ∂Ω ,
∂n psℓ = 0, on Π ,

(10)

with gsℓ(x) := ∑M
i=1 ∑N

j=1 f (t j)csℓe
t jsℓ
(

Umeas(xi, t j)−∑L
k=−L cket jsk usk(xi)

)
δxi(x).

By iteratively applying Theorem 1, we construct a monotone sequence of ap-
proximate domains Ωd ⊂ Ωd+1 adding to the current approximation Ωd the points
where the TD attains pronounced negative values. To be able to remove points from
Ωd , we need to compute the TD inside the inclusions. The definition (8) can be ex-
tended to the points inside Ω [3], and an analogous expression to (9) can be found
for x ∈ Ω [5, 6]. This extension is the basis to develop iterative strategies able to
correct an approximation of Ω by removing the points where the TD attains pro-
nounced positive values.

To determine the thermal parameters we proceed as follows. If κ̃i, ρ̃i are ap-
proximate values of κi and ρi, and Ω̃ is an approximation of Ω , then we correct
the values κ̃i, ρ̃i by a gradient method. The idea is to define κi = κ̃i +ηϕ , ρi =
ρ̃i +ηψ , where η > 0 is small and ϕ ,ψ are selected calculating the derivative of
J(η) := J(Ω̃ , κ̃i +ηϕ , ρ̃i +ηψ) with respect to η to ensure that J′(0)< 0. A proce-
dure to obtain explicit formulae in terms of forward and adjoint fields for this kind
of functionals is explained in [3, 6]. In our case, it can be proven that the choice

ϕ = Re
(∫

Ω̃

L

∑
ℓ=−L

∇usℓ∇psℓ

)
, ψ = Re

(∫
Ω̃

L

∑
ℓ=−L

sℓ usℓ psℓ

)
, (11)

makes J′(0)< 0. Here usℓ , psℓ are solutions of (5) and (10), respectively, with Ω =

Ω̃ , κi = κ̃i and ρi = ρ̃i.
Finally, our procedure is as follows. In a first step we consider initial guesses of

the parameters κi = κ0
i , ρi = ρ0

i and compute the TD in R2
− for these parameters,

that is, the TD of J(R2
−,κ0

i ,ρ0
i ). We find then a first approximation Ω1 of Ω as the

union of all the points where the TD is smaller than a negative constant (see [3,4] for
guidelines of the selection of such constant). Once Ω1 is set, we update the values
of the parameters performing Q iterations of the gradient method (Q = 8 in our
numerical example in Section 3) as explained above:

κq
i = κq−1

i +ηϕ q, ρq
i = ρq−1

i +ηψq, q = 1, . . . ,Q,

with ϕ q,ψq defined as in (11) with Ω̃ = Ω1, κ̃i = κq−1
i and ρ̃i = ρq−1

i . Once the
parameters are corrected, we compute the TD of J(R2

− \Ω1,κQ
i ,ρ

Q
i ) to update the

domain Ω1 by adding to it the points x ∈ R2
− \Ω1 where the TD attains the larger

negative values, and removing from Ω1 the points inside it, if any, where the TD
attains the larger positive values. Once the approximation of the domains is im-
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(a) (b)

(c) (d)

Fig. 2 (a) Topological derivative when κ0
i = 3/4, ρ0

i = 1/3 and Ω = /0. (b)–(d) Approximated
domains Ωd , d = 1,2,3, superimposed to the TD computed for Ω = Ωd and the corresponding
updated values of the thermal parameters κi and ρi.

proved we perform further gradient iterations to update the parameters and so on.
The algorithm stops if any of the following stopping criteria is satisfied:

• meas(Ωd \Ωd−1) is small,
• |κq

i −κq−1
i |+ |ρq

i −ρq−1
i | is small and ∥Umeas −Utotal∥ is small,

• J(R2
− \Ωd ,κ

q
i ,ρ

q
i ) is small.

3 A numerical example

In this section we present a numerical example to illustrate the feasibility of our
reconstruction algorithm. We consider a simple geometry where Ω is the ellipse
Ω = {(x,y) ∈ R2, x2/0.552 +(y+ 1)2/0.352 < 1}, with thermal parameters κi =
1/2 and ρi = 1. In the exterior medium the values of the parameters are κe = 1 and
ρe = 1/5.

Synthetic data are created solving (2–4) by means of the Laplace transform with
respect to time and a boundary element formulation in space (see [4, 12] for de-
tails). A relative 1% Gaussian error was added at each observation point to both
avoid inverse crimes and to simulate measurement errors. We have considered six
incident waves of the form (1) generated at the uniformly distributed source points
represented in all the plots in figure 2 by ’•’ marks. Measurements of the temper-
ature were taken at the seven observation points represented by ’×’ marks at 10
uniformly distributed times in the time interval [0.05,0.5].

We started the algorithm by choosing the initial values κ0
i = 3/4 and ρ0

i = 1/3.
To obtain an initial guess for the domain, we computed the TD in the sampling
region [−3,3]× [−2.5,0]. This yields the colormap represented in figure 2(a). Dark
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Fig. 3 Final reconstrucion after 10 iterations with respect to the domain. (a) Initial (green dashed
line), predicted (red dashed line) and true (blue solid line) objects. (b) Values of the thermal pa-
rameters κi and ρi versus the number of iterations.

blue colors indicate the regions where the TD takes large negative values, at which
the objects should be located. The boundary of the true defect is represented by a
solid white line in all plots in figure 2. Our initial guess Ω1 is represented in figure
2(b). We set now Ω = Ω1 and perform eight iterations with the gradient method
to correct the values of κi and ρi. In the next step, the values of the parameters are
fixed and the TD is again computed. In figure 2(c) we represent the updated object
Ω2. The hybrid algorithm alternates eight iterations with the gradient method with
one TD computation. It stopped at the tenth iteration with respect to the domain.
The first three approximated domains are represented in figure 2. In figure 3(a) we
show the true object (solid blue line), the initial guess Ω1 (dashed green line), and
the final reconstruction Ω10 (dashed red line). The values of κi and ρi throughout
the iterations are given in figure 3(b). Two identical values mark a TD computation
to update the domain. The final approximations were κ f inal

i = 0.5703 (recall that the
true value is 0.5), and ρ f inal

i = 0.8266 (while the true value is 1). We have obtained a
satisfactory reconstruction taking into account that no a priori knowledge about the
number, size or location of the objects is assumed, and that few data were available.

In our example, we found a sequence of enlarging sets, i.e., satisfying Ωd ⊂
Ωd+1. An example where the TD provides a sequence of defects where Ωd * Ωd+1
for some values of d ∈ N can be found in [6]. The interested reader may find some
reconstructions with other geometries, multiple objects and different weight func-
tions f (t) in [4, 6]. Furthermore, a gallery of comparisons varying the different pa-
rameters of the problem, namely, the number of source points and/or observation
points, the number of time observations, etc, can be found in [4] for a simplified
situation where the interior parameters are assumed to be known and in [6] for a
related problem with unknown domains and parameters.

Acknowledgements The authors are partially supported by the Spanish Government research
project TRA2010–18054 and the Spanish Ministerio de Economı́a y Competitividad Grants No.
FIS2011–222888–C02–02 and FIS2010–22438–E.



8 Ana Carpio and Marı́a–Luisa Rapún

References

1. Bonnet, M., Constantinescu, A.: Inverse problems in elasticity. Inverse Problems, vol. 21, pp.
1–50 (2005)

2. Carpio, A., Rapún, M.–L.: Topological derivatives for shape reconstruction, In: Inverse Prob-
lems and Imaging, Lecture Notes in Mathematics, pp. 85–134. Springer (2008)

3. Carpio, A., Rapún, M.–L.: Solving inhomogenous inverse problems by topological derivative
methods. Inverse Problems vol. 24, art. num. 045014 (2008)

4. Carpio, A., Rapún, M.–L.: Domain reconstruction using photothermal techniques. J. Comput.
Phys. vol. 15, pp. 8083–8106 (2008)

5. Carpio, A. Rapún, M.–L.: Hybrid topological derivative and gradient based methods for non–
destructive testing. Abstract and Applied Analysis 2013, art. num. 816134 (2013)

6. Carpio, A., Rapún, M.–L.: Parameter identification in photothermal imaging. J. Math. Imaging
Vis. vol. 49, pp. 273–288 (2014)

7. Feijoo, G.R.: A new method in inverse scattering based on the topological derivative. Inverse
Problems, vol. 20, pp. 1819–1840 (2004)

8. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE sistems: the
elasticity case. SIAM J. Control Optim., vol. 39, pp. 1756–1778 (2001)

9. Garrido, F., Salazar, A.: Thermal wave scattering by spheres. J. Appl. Phys. vol. 95, pp. 140–149
(2004)

10. Guzina, B.B., Bonnet, M.: Small–inclusion asymptotics of misfit functionals for inverse prob-
lems in acoustics. Inverse Problems, vol. 22, pp. 1761–1785 (2006)
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17. López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of
ertain holomorphic mappings. Appl. Numer. Math. vol. 51, pp. 289–303 (2004)

18. Mendioroz, A., Castelo, A., Celorrio, R., Salazar, A.: Characterization of vertical buried de-
fects using lock–in vibrothermography: I Direct problem. Meas. Sci. Technol. vol. 24, art. num.
065601 (2013)

19. Potthast, R.: Fréchet differentiability of the solution to the acoustic Neumann scattering prob-
lem with respect to the domain. Journal of Inverse and Ill–Possed Problems, vol. 4, pp. 67–84
(1996)

20. Samet, B., Amstutz, S., Masmoudi, M.: The topological asymptotic for the Helmholtz equa-
tion. SIAM J. Control Optim. vol. 42, pp. 1523–1544 (2003)

21. Santosa, F.: A level–set approach for inverse problems involving obstacles. Optimisation et
Calcul des Variations, vol. 1, pp. 17–33 (1996)

22. Sokolowski, J., Zolésio, J.P.: Introduction to shape optimization. Shape Sensitivity Analysis.
Springer, Heidelberg (1992).


