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Abstract 

In this paper we analvze the wncept of fuzzy parti- 
tion, starting b m  the C h ~ S i d  key definition given by 
Rwpini. Our main claim is that such a definition is too 
astrictive, since it assumes a particular set of C k l s s e . 9  
that in pmctice may be reached only after a long learn- 
ing p m s s .  As a wwequence, some principles to be 
taken into account in fuzzy classification methods arre 
discussed. 

1. Introduction. 

Classification and Control have been since the be- 
ginning of Fuzzy Set Theory [17] two central fields for 
their theoretical and practical developments (see, e.g., 
[3, 181). In fact, many problems within both fields 
are very naturally formalized by introducing fuzzy con- 
cepts. In some cases, a fuzzy approach seems to offer 
a useful simplification of a too complex reality. As it 
is the case for control problems. In other cases, the 
concepts that users have in mind are fuzzy in nature. 
This is the case in many classification problems, where 
the introduction of crisp classes represent an unreal- 
istic oversimplification of reality, leadiig to obviously 
wrong interpretations of direct observations. 

In many fuzzy classification applications, a set of 
classes C is assumed. The problem is then to determine 
for every object z under consideration, z E X, the 
degree pc(z) to which object z belongs to class c E C. 
In this way, a membership function p, : X + [0,1] has 
been defined for each class c E C (see, e.g., Roubens 

Such an approach seems to us still unrealistic, since 
[14). 
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most users wil l  find serious difficulties in assigning de- 
grees of membership to one class without taking into 
consideration the remaining possibilities for classifics- 
tion. Classification methods are in practice highly de- 
pendent on the closed family of classes the mer is forced 
to consider (even in a crisp context, users frequently 
look at all possible choices before choosing a particular 
class for a given object). 

A key concept in classification is therefore the notion 
of partition, since it produces a structured family of 
classes (classes are strongly related between them). 

f izzy  partitiow were introduced by Ruspini [12] 
(see also Bezdek-Harris 141): given a discrete fam- 
ily C of classes, it is assumed that for every object 
z E X under consideration CcECpc(z) = 1 always 
holds. Each object may belong to several classes -to a 
certain degree- and the total degree of membership is 
distributed among all classes. In this way, the classical 
crisp partition concept was generalized. Indeed, when- 
ever pc(z) E (0,l)  Vz,Vc holds, then each object 
will be in one and only one class: 

Ruspini’s proposal represents from our point of view 
a desirable situation in many situations, but it appears 
to be again a too restrictive definition within fuzzy 
modelling. In most cases, the fuzzy classes under con- 
sideration do not produce such a Ruspini fuzzy parti- 
tion, and it is only perhaps after a long learning process 
that users are able to get a new family of fuzzy classes, 
assuring that every object is fully explained with no 
superflous information. 
Moreover, such an ideal Ruspini’s classification sys- 

tem may be not possible, or even not desirable, when 
heed with some particular problems. Some fruit clas- 
sification problems, for example, due to market restric- 
tions use to require a large number of classes, and each 
piece of fruit is allowed to simultaneously be associated 
to several different classes. 

Some practical difficulties of Ruspini’s partitions can 



be partially overcome by a weaker approach proposed 
by some other authors (see, e.g., [13,14]). In this paper 
we propose to analize classification systems by meam 
of aggregative models, which should present Ruspini’s 
partition as a particular additive solution. Then we 
can take into Bccount some results already obtained in 
other formal contexts in order to axiomatically explain 
different classification structures, each one justised by 
means of a particular aggregation operator (see, e.g., 
[S, 7, 101 but also [IS]). 

2. Fueey Classification system. 

Let us assume af’rxed finite set of objects X. A Iiury 
ekrssifieotion @em will mean here a finite family C 
of fuzzy classes, each c E C with its associated mem- 
b e d i p  function pc : X + [0,1] together with a De 
Morgan triple (T, S, n),  where 

0 S : [0,1] x [0,1] + [O,l] is a t-umorm, i.e., an 
aesociative and commutative nondecreasing C(M- 
tinuom mapping such that S(0,l) = 1, playing 
the role of a disjunction function (ee [6, 7, lo]), 

n : [0,1] + [O,l] is a negation function, i.e., a 
strictly decreasing associative COntinUOUB function 
such that n(0) = 1 and n(1) = 0 (see [lS]),and 

T : [0,4 x [0,1] + [0,1] is the +norm defined as 

T(z ,  Y) = m z ,  Y) vz, Y 

in such a way that it plays the role of a conjune 
tion function (a commutative nondecreasing 
ciative continuous mapping such that T(O, 1) = 0). 

Then, the degree to which an object z E X behgs to 
such a family of claases C will be, depending on the par- 
ticular aggregation operator S being previously ch-, 

S(PC(Z)/C C) 
and such a value can be understood as the &pee to 
which such an object is ezpkrined by such a family of 
claseee C. The higher all these values ~ ( z )  are, the 
better. The whole W i l y  of objects should be in this 
wayeoveredbythesetoffuzzyclaases. 

But it is obvious that such an numerical analysis 
may lead to trivial paradacm, for example by replica% 
ing several times a unique claas. 

At any rate, the famiiy of classee should be as simple 
(compact) as possible, taking into 8coount only those 
relecmnt clams, but also reducing all poesible uverlap 
ping information (dunhncg) .  Let us dimuss these 
two notions in the next aectiom. 

3. Relevance 

Of course a void class c such that pc(z) = 0 Vz E 
X should be deleted from the model. 
The same happens when classes are replicated, i.e., 

when pc(z) = p&) Vz E X being c,k two different 

The above two w i s p  situations can be easily solved, 
just deleting some classes after a trivial comparison. 
The difliculty will appear when we find out that we ace 
&e to some of those two extreme (crisp) cases. In 
both two cases, a class is dmd uselees just because it 
barely help to explain anything (at least when faced 
to our particular k e d  set of objects). 

In Thiele [13, 141, for example, void classea are ex- 
cluded axiomatically. Certainly, we should tala? into 
account in our model only those classee c being d e -  
uant in the sense that p&) > 0 for some object z. But 
being relevant is a matter of degree. 

A first proposal in order to measure relevance of 
class c E C is to evaluate S(&(z)/z E X) and we can 
think that a class c is in principle less important as 
far as such a value is lower. But such an approach is 
misleading: 

classes (c # k).  

0 pc(z) may be low, but still the only thing we know 
about object z : that is the case when ~ ( z )  > 0 
and p k ( ~ )  = 0,Vk # C. 

pc(z) may be high, but still not giving us any 
information by itself: for example, if pc(z) = 

0 &(z) may be high, but still that object z is much 
better described by other classes: for example, if 

rcC(sr),b # 2. 

P d 4  > P&) and P k M  = PC(sr),Vsr # 2- 

Relevance should always be evaluated not for each im- 
lated claw c to be deleted, but for the selected set of 
clrreeee C - ( c )  to be kept in the model, by comparing 

S(PC(4/C E C) with S{P&)/k E c, k # c) 

for every object z. This approach represents the b e  
sis fbr a formal analysis of releuawe, searching for the 
smallest eet of classea which maintains the user’s de- 
@red explanatory propertim. 

The relevance issue can be therefore a d d r d  as a 
dimensiondity reduction problem. Obviously, a class 
which gives no additional information at all about how 
to dassie our objects does not desewe to be kept in 
the model. Again, the key problem is to decide how 
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many and which ones of those classes can be deleted 
still keeping enough explanatory power. In practice we 
shall always look for an appropriate number of classes 
(the lower number of classes, the better) explaining 
most of the problem we are faced to. 

Notice that the user may be willing to accept that 
objects belong to several classes, even a clear crisp over- 
laping (pc(z) = pk(z) = 1 for some c # I C ) ,  if such a 
situation is considered as relevant for the real decision 
making problem classification the user will be faced 
with. Such a relevancy issue should not be confused 
with the redundancy issue, to  be discussed in the next 
section. In fact, the goals are difflerent, mathematical 
treatments are different, and both problems are ad- 
dressed at different stages. 

4. Redundancy 

Once the initial set of classes has been analyzed 
and non-rekuant classes have been suppresed from the 
model, we can assume that every class is giving us some 
kind of useful information. But classes may still over- 
lap. 

Rom a pure representation point of view, the less 
overlapping the better. This redundancy property 
refers to a certain orthogonality of the family of classes, 
which is then viewed as a representation system of the 
set of objects. Redundancy suggests the possible exis 
tence of an alternative representation, to be found by 
redefining our classes. It must be taken into account 
how difficult is to re-define classes or define extra ones. 
In general, classes need to have some real meaning for 
decision makers: otherwise they will not be able to 8% 

sign degrees of membership. 
Once relevancy has been studied at a first stage, 

class overlapping will be searched by means of the 
above t-norm T (see [lo]). In fact, the value 

can be understood BS the overlapping degree between 
classes c, k E C, c # k (with respect to object 2). 

In particular, when dealing with crisp partitions for 
each object z it is assumed the existence of a unique 
class c such an object belongs to, in such a way that 
/A&) = 1 and c(~(z) = 0 f a  all k # C. So, 

1. S{pc(z)/c E C} = max{p&)/c E C} = l,Vz, and 

2. T{PC(Z),Pk(Z)} = min{Pc(z),Pk(z)} = 0,Vz E 
X,Vc # k 

(we know the only available crisp t-conorm is the maz 
operator). 

Analogously, when dealing with Ruspini partitions, 

pc(z) = a  + C p k ( z )  = 1 - a  
k#c 

and, by choosing Luckasievich's t-conorm as the aggre- 
gation function S, we have 

1. S { P c ( 4 }  = min{Cc,cPC(4,1} = 1, Vs, and 

2. TtPC(Z> ,Pk(4}  = J - { O , P C ( 4  + Pk(Z) - 1) = 
0, Vz,Vc# k 

A fizzg classification system can be therefore denoted 
bY 

(C; s, T, .I 
Covering and overlapping as introduced in this pa- 

per allow a theoretical framework based upon aggrega- 
tion rules. All previous already known results from ag- 
gregation functions can be taken into account, not only 
restricted to t-conorms but more general approsches 

A more general model for to fuzzy classification sys- 
tems, which avoids associativity as a basic theoretical 
hypothesis, would require for the basic assumptions an 
approach closer to the preference model developed in 
[lo]. Such a more general approach will be addressed 
in the future. 

([e, 77 10, 57 161). 

5. Fuzzy partition systems 

A f izzy classication system (C;S,T,n) will be ob- 
viously meaningless in some casea, whenever it does 
not allow any discrimination among objects. This may 
happen either because no explanation is attained, or 
because all classes fully overlap. 

DEFINITION 6.1 
A fuzzy classication system (C;S,T,n) will be menn- 
in@ if and only if 

1. S{pc(x)/c E C }  > O,Vz, and 

2. T { P c ( Z ) , P & ( ~ ) }  1,vz E X,VC# k 

Whenever 

for some z, or 
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for some c # k, it means, respectively, that object z is 
out of our classification system (at least one extra class 
is needed), or those classes c, k are fdly redundat (at 
least one class can be deleted). 

As a general criterion, the higher all values 

and the lower all values 

the better. The closer we are to this extreme situation, 
taking the above indexes values 1 and 0 mpectively, 
the cloeer we are to the true notion of padition 

DEFINITION 6.2 A fuzzy partition system ie a 
fuzzy classication system (C; S, T, n), such tlrat the as- 
sacMted membership &nctions urn’& the fillowing two 
conditions: 

1. S{pc(z)/c E C} = l,Vz, and 

2- T{pc(z),pk(z)}) = 0,Vc # k,vz m 

Obviously, the values 

become, respectively, a measure of how explanatory our 
classification system is and how redundant our c b i i  
fication system is (about object 2). 

6. About the learning process 

It is clear that a nice set of classes will only be a 
result of a sometimes long learning proms, deleting, 
modifjing or introducing new classes. 

The above indices give us some key hinta for the 
nece88alry learning procesei about our clasaea behaviour, 
which in turn should lead to a better c&assi’ion qs- 
tern. A fiuq partition qptena is just a fully explanatory 
and non-redundant j k z g  class$catkm system. 

Natural learning processes that search for a bet- 
classification system suggest the above covering, d e -  

plain as much as you can, not taking into account the 
most irrelevant and redundant classes. 

Of course each one of those three key arguments 
(covering, relevance and redundancy) allows degreea of 
verification, and decision makers should make up their 

WM and & U ~ ~ C Y  arguments: try to ex- 

mind about the right levels they are willing to accept. 
Let us have a look at some other basic properties we 
all are willing to impose to our classification model. 
Submque!nt j k z q  praperties should hold the c l m r  we 
are to such a situation. 

1. 

2. 

3. 

4. 

If a class c is void, i.e., pc(z) = 0, Vz E X, then the 
explanatory level must not change if such a class 
is deleted. If a class is close to this situation, the 
explanatory level should be accordingly modified 
when the class is suppressed. 

If two classes c,k are such that pc(z) = 
pk(z),Vz E X, then the explanatory level must 
not change if one of those classes is deleted. It two 
classes are close to this situation, the explanatory 
level should accordingly be modified when one of 
them is suppressed. 

If there is an object z such that pc(z) = 0,Vc E 
C (i.e., S{pc(z)/c E C} = 0), then there is an 
absolute need for at least one extra class. If we are 
cloee to this situation, we should start a search for 
new extra classes. 

IfT{p&),pk(z)} = 1 for some object, then there 
is some averlaping and depending on the other ob- 
jects we may think of reddning the set of classes. 
The closer to this situation the stronger the need 
for a redefinition of the classes under considera- 
tion. 

In general, once a set of poorly informative classes have 
been eliminated, if 

S{pc(z)/c E C} c 1 

we should think of introducing eztna classes. Anale 
gody, if 

T(Cle(4, P k W  > 0 
we should be thinking of redefining previous classes. 

Learning procedures represent indeed a complex 
problem, since they require not only the above U& 

hints but some m t i v e  abilities. 
Another key point which will be addressed in the 

future is the dependency of the obtained fuzzy classifi- 
cation system on the history of the learning process. 
For instance, deleting first one class c instead of d 
and readjusting the explanatory level, may force us to 
delete other classes or to introduce new classes. Will 
we obtain the same reault when we start by deleting 
first the class d ? 
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7. Final comments 

The approach proposed in this paper is actually b e  
ing tested in a particular Remote Sensing classification 
problems (see [l] for a first approach), taking into ac- 
count the above three different characteristics: cover- 
ing (leading to the deletion of some classes), relevancy 
(leading to the introduction of some extra classes), and 
redundacy (leading to a redefinition of classes). 

It is important to realize that a Ruspini partition 
may be not a good classification system for the deci- 
sion maker. Some classification problems do require 
a family of classes with clear overlaping, even allow- 
ing objects fully belonging to several classes (pc(s) = 
p&) = 1 for some c # k). Global indexes for cover- 
ing, relevancy and overlaping can be obtained by direct 
aggregation along objects in X. 

F’uture research should allow an axiomatic justifica- 
tion of the model not directly assuming the existence 
of a De Morgan triple, but a more meaningful set of rn 
sumptions under this particular context (even consid- 
ering aggregation rules not based upon t-conorms and 
that need some extra mathematical formalization in or- 
der to ensure some sort of associativity property [5]). 
Moreover, as pointed out in [8, 91, the operation rules 
within objects may be not the same as the operation 
rules within classes, as we have imposed here. Several 
disjunction operators may wexist in the model. 
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