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2 Departamento de F́ısica Teórica II, Universidad Complutense

E28040 Madrid, Spain
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Abstract

A previously introduced scheme for describing integrable deformations of of algebraic curves

is completed. Lenard relations are used to characterize and classify these deformations in terms
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1 Introduction

Algebraic curves find important applications in the theory of integrable systems [1]-[3]. They are
particularly relevant [4]-[7] in the study of the zero-dispersion limit of integrable systems and the
analysis of Whitham equations. In [6]-[7] Krichever formulated a general method to characterize
dispersionless integrable systems underlying the deformations of algebraic curves in the Whitham
averaging method. A different scheme to determine integrable deformations of algebraic curves C of
the form

F (p, k) := pN −

N
∑

n=1

un(k)pN−n = 0. (1)

was introduced in [8]-[11]. Here the coefficients (potentials) are assumed to be general polynomials
in k. Our previous work focused on curves of degrees N = 2 and 3 and the aim of the present paper
is to complete the analysis by considering the general case of algebraic curves of arbitrary degree N .

The method proposed in [8]-[11] applies for finding deformations C(x, t) of (1) such that the
branches of the multiple-valued function p(k) = (p1(k), . . . , pN(k))T determined by (1) obey an
equation of the form

∂tpi = ∂x

(

N
∑

r=1

ar(k, u(k))p
N−r
i

)

, ar ∈ C[k], (2)

where ar are functions of k and u(k) = (u1(k), . . . , uN(k)). As a consequence of (2) the potentials u(k)
satisfy an evolution equation of hydrodynamic type and the problem is to determine expressions for
ar such that (2) is consistent with the polynomial dependence of u on the variable k. That is to say,
if (d1, . . . , dN) are the degrees of the polynomials (u1(k), . . . , uN(k)), then degree(∂tun) ≤ dn must be
satisfied for all n. At this point a Lenard relation allows us to formulate a sufficient condition for the
consistency of (2) in terms of a system of inequalities involving the degrees dn only. Thus we are led
to the problem of determining the degrees satisfying the consistency condition (consistent degrees)
for each N . In [9] it was found that for N = 2 the consistent degrees (d1, d2) are characterized by
the inequality d1 ≤ d2 + 1 . For N = 3 there is only a finite set of consistent degrees given by [11]

(0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 1, 2) (1, 0, 0) (1, 0, 1)
(1, 1, 0) (1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 2, 2) (1, 2, 3).

(3)

In the present work, we complete these results. Thus, it is first shown that for N = 4 the set of
consistent degrees is

(0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 1) (0, 1, 0, 0)
(0, 1, 0, 1) (0, 1, 1, 0) (0, 1, 1, 1) (0, 1, 1, 2),

(4)

and then it is proved that for N ≥ 5 the consistent degrees (d1, . . . , dN) are given by

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN ≤ 1. (5)

We notice the fact that no compatible degrees di ≥ 2 arise for N ≥ 5, so that the degree N = 5
represents a threshold for a change in the properties of algebraic curves. This feature is reminiscent
of the statement of the classical Abel theorem [12].
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By substituting the branches pi by their Laurent series in k into (2), infinite series of conservation
laws follow. It means that the deformations of (1) supplied by our method are integrable. In fact, the
corresponding hydrodynamic systems satisfied by the potentials un(k) represent the quasiclassical
(dispersionless) limits of the standard integrable models arising from the compatibility between
generalized (energy-dependent) spectral problems

(

∂N
x −

N
∑

n=1

un(k, x)∂N−n
x

)

ψ = 0, (6)

and equations of the form

∂tψ =
(

N
∑

r=1

ar(k, x, t)∂
N−r
x

)

ψ. (7)

The work is organized as follows. We first outline our method in Section 2. Then Section 3
is devoted to determine and classify the curves (1) which admit deformations consistent with the
degrees of their potentials. Finally, in Section 4 we characterize the hydrodynamic type systems
which govern these deformations.

2 Deformations of algebraic curves

In order to write equation (2) in terms of the potentials un we introduce the power sums

Ps =
1

s
(ps

1 + · · ·+ ps
N ), s ≥ 1. (8)

One can relate potentials and power sums through Newton recurrence formulas, the solution of which
is given by Waring’s formula [13]

Ps =

(s)
∑

1≤i≤s

1

i
(u1 + · · ·+ uN)i, (9)

where the superscript (s) in the summation symbol indicates that only the terms of weight s are
retained, with the weights being defined as

weight[uα1

1 u
α2

2 · · ·uαN

N ] :=
N
∑

j=1

jαj. (10)

Using these variables, equation (2) can be rewritten as [10, 11]

∂tu = J0a, (11)

where
J0 = T TV T∂x · V, u = (u1, u2, . . . uN)T

, a = (aN , aN−1, . . . , a1)
T
,

T :=











1 −u1 · · · −uN−1

0 1 · · · −uN−2
...

...
...

0 0 · · · 1











V :=











1 p1 · · · pN−1
1

1 p2 · · · pN−1
2

...
...

...
1 pN · · · pN−1

N











.
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The elements of J0 can be easily written in terms of the power sums as

(J0)11 = N∂x,

(J0)i1 = (i− 1)Pi−1∂x −
i−1
∑

l=2

ui−lPl−1∂x −Nui−1∂x, if i 6= 1,

(J0)ij = (i+ j − 2)Pi+j−2∂x + (j − 1)Pi+j−2,x

−
i−1
∑

k=1

ui−k [(k + j − 2)Pk+j−2∂x + (j − 1)Pk+j−2,x] , if j 6= 1.

(12)

The problem now is to determine expressions for a (in (11)) depending on k and u, such that the
flow (11) is consistent with the polynomial dependence of u on the variable k. That is to say, if
dn := degree(un) are the degrees of the coefficients un as polynomials in k, then

degree(J0a)n ≤ dn, n = 1, . . .N,

must be satisfied. The strategy [9]-[11] for finding consistent deformations is to solve Lenard type
relations

J0r = 0, r := (r1, . . . , rN)⊤, ri ∈ C((k)), (13)

and take a := r+, where ( · )+ and ( · )− indicate the parts of non-negative and negative powers in k,
respectively. Now from the identity

J0a = J0r+ = −J0r−,

it is clear that a sufficient condition for the consistency of (11) is that

max
m=1,...,N

{degree(J0)nm} ≤ dn + 1, n = 1, . . . , N. (14)

This condition for consistency only depends on the curve (1) and does not refer to the particular
solution of the Lenard relation

In the subsequent discussion we will use an important result concerning the branches pi(k): Let
C((λ)) denote the field of Laurent series in λ with at most a finite number of terms with positive
powers, then we have [14, 15] :

Newton Theorem There exists a positive integer l such that the N branches

pj(z) :=
(

pj(k)
)∣

∣

∣

k=zl

, (15)

are elements of C((z)). Furthermore, if F (p, k) is irreducible as a polynomial over the field C((k))
then l0 = N is the least permissible l and the branches pj(z) can be labelled so that

pj(z) = pN (ǫjz), ǫ := exp

(

2πı

N

)

.
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Notation convention Henceforth, given an algebraic curve C we will denote by z the variable
associated with the least positive integer l0 for which the substitution k = zl0 implies pj ∈ C((z)), ∀j.
We refer to l0 as the Newton exponent of C.

It was proved in [10]-[11] that the solution of the Lenard relation J0r = 0 is given by

r = T∇uR, R =
N
∑

i=1

gi(z)pi, ∇uR =

(

∂R

∂u1

, . . . ,
∂R

∂uN

)T

, (16)

with gi ∈ C((z)). The problem of choosing the functions gi such that R ∈ C((k)) (and consequently
r ∈ C((k))) was solved in [11] by introducing the element σ0 of the Galois group of the curve

σ0(pj)(z) := pj(ǫ0 z), ǫ0 := exp

(

2πı

l0

)

. (17)

Thus it is clear that the requirement of R ∈ C((k)) is equivalent to the invariance of R under σ0 i.e.

R(ǫ0 z, σ0 p) = R(z,p). (18)

The scheme now consists in using the Lagrange resolvents [12]

Li :=

N
∑

j=1

(ǫi)j pj , i = 1, 2, . . . , N, (19)

to construct functions R satisfying (18) and such that R ∈ C((k)).
The case N = 3 was completely solved in [11]. There arise twelve possible choices (3) which are

classified in terms of σ0 and l0 according to

Table 1: Classification of (3) according to σ0 and l0.

σ0 l0 (d1, d2, d3)
(

p1 p2 p3

p2 p3 p1

)

3 (0, 0, 1) (0, 1, 2)
(

p1 p2 p3

p2 p1 p3

)

2
(0, 1, 0) (0, 1, 1)
(1, 0, 0) (1, 1, 2)

(

p1 p2 p3

p1 p2 p3

)

1
(1, 0, 1) (1, 1, 0)
(1, 1, 1) (1, 2, 1)
(1, 2, 2) (1, 2, 3)

and the invariant functions R in (16) are given by

l0 = 3, R = zf1(z
3)L1 + z2f2(z

3)L2 + f3(z
3)L3,

l0 = 2, R = f1(z
2)(L1 + L2) + zf2(z

2)(L1 − L2) + f3(z
2)L3

l0 = 1, R = f1(z)L1 + f2(z)L2 + f3(z)L3,

(20)

with f1, f2 and f3 being arbitrary analytic functions of k.
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3 Solutions of the consistency condition

Let us first consider condition (14) for N = 4. Taking into account (12) we find that the elements of
J0 are given by

(J0)11 = 4 ∂x,

(J0)12 = u1 ∂x + u1x,

(J0)13 = (u2
1 + 2u2)∂x + (u2

1 + 2u2)x,

(J0)14 = (u3
1 + 3u1 u2 + 3u3)∂x + (u3

1 + 3u1 u2 + 3u3)x,

(J0)21 = −3u1 ∂x,

(J0)22 = 2u2 ∂x + u2x,

(J0)23 = (u1 u2 + 3u3) ∂x + 2(u2 u1x + u3x),

(J0)24 = (u2
1 u2 + 2u2

2 + u1 u3 + 4u4)∂x + 3(u4x + u2 u2x + u2 u1 u1x + u3 u1x),

(J0)31 = −2u2 ∂x,

(J0)32 = 3u3 ∂x + u3x,

(J0)33 = (4u4 + u1 u3)∂x + 2(u4x + u3 u1x),

(J0)34 = (u1 u4 + 2u2 u3 + u2
1 u3)∂x + 3(u4 u1x + u3 u1 u1x + u3u2x),

(J0)41 = −u3 ∂x,

(J0)42 = 4u4 ∂x + u4x,

(J0)43 = u1 u4 ∂x + 2u4 u1x,

(J0)44 = (u2
1 u4 + 2u2 u4)∂x + 3u4(u1 u1x + u2x).

Thus, the compatibility condition (14) reduces to

d1 = 0, d2 ≤ 1, d3 ≤ 1,

d4 ≤ d2 + 1, d4 ≤ d3 + 1,

which leads to the proposition
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Proposition 1. For N = 4 the degrees (d1, d2, d3, d4) satisfying the compatibility condition (14) are

(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),

(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (0, 1, 1, 2).
(21)

In order to derive our general result for N ≥ 5, we start by proving

Proposition 2. For each N ∈ N (N ≥ 5) the degrees:

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN = 0, 1, (22)

satisfy the compatibility condition (14).

Proof. We extend recursively the definition of the weights (10) by

weight[(∂n
xuj) P(u,ux, . . .)] = j + weight[P(u,ux, . . .)],

where P(u,ux, . . .) denotes any differential polynomial in u. Taking into account (9) and (12), we
find that the elements of J0 are weight homogeneous with respect to the scaling:

(u1, u2, . . . , uN) → (λu1, λ
2u2, . . . , λ

NuN),

and their weights are given by
weight[(J0)ik] = i+ k − 2.

For the case i+ k < 2N − 2 we have weight[(J0)ik] < 2N − 4 and, as a consequence, if the indexes
(i, k) satisfy i+k < 2N −2 then (J0)ik does not involve neither terms of the form u

j+1
N−2, u

j+1
N−1, u

j+1
N ,

u
j
N−2u

l
N−1, u

j
N−2u

l
N , uj

N−1u
l
N , j, l ≥ 1 nor similar terms containing derivatives. Thus,

degree[(J0)ik] ≤ max {[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3],
dN−1 + [d1, . . . , dN−3], dN + [d1, . . . , dN−3]},

(23)

where [d1, . . . , dN−3] stands for degrees of terms appearing in (J0)ik which are linear combination of
d1,...,dN−3 with entire coefficients.

Now we examine the remaining elements (J0)ik, i.e.

(i, k) ∈ {(N − 2, N), (N − 1, N − 1), (N − 1, N), (N,N − 2), (N,N − 1), (N,N)}.

• weight[(J0)N−2,N ] = 2N−4, so that (J0)N−2,N may contain terms of the form u2
N−2, uN−2uN−2,x

and we have

degree[(J0)N−2,N ] ≤

max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3], dN−1 + [d1, . . . , dN−3],

dN + [d1, . . . , dN−3], 2dN−2}.

(24)
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• weight[(J0)N−1,N−1] = 2N − 4. This weight allows the presence of terms such as u2
N−2∂x and

uN−2uN−2,x, which arise multiplied by the coefficients:

coeff[(2N − 4)P2N−4∂x, u
2
N−2∂x] = N − 2,

coeff[uN−k−1(N + k − 3)PN+k−3∂x, u
2
N−2∂x] =

{

N − 2 if k = 1,
0 if k 6= 1,

⇒ coeff[(J0)N−1 N−1, u
2
N−2∂x] = 0.

coeff[(N − 2)P2N−4,x, uN−2uN−2 x] = N − 2,

coeff[uN−k−1(N − 2)PN+k−3,x, uN−2uN−2x] =

{

N − 2 if k = 1,
0 if k 6= 1,

⇒ coeff[(J0)N−1 N−1, uN−2uN−2 x] = 0.

Thus, (J0)N−1 N−1 does not contain terms in u2
N−2, uN−2uN−2x and consequently

degree[(J0)N−2,N ] ≤

max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3], dN−1 + [d1, . . . , dN−3],

dN + [d1, . . . , dN−3]}.

(25)

• weight[(J0)N−1,N ] = 2N−3. Terms of the form u2
N−2u1, uN−2uN−1, or similar terms containing

derivatives may arise. A direct computation, similar to the one in the previous case proves that
there are no terms u2

N−2u1, u
2
N−2u1,x, uN−2uN−2,xu1 in (J0)N−1,N−1. Then we have that

degree[(J0)N−1,N ] ≤

max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3], dN−1 + [d1, . . . , dN−3],

dN + [d1, . . . , dN−3], dN−2 + dN−1}.

(26)

• weight[(J0)N,N−2] = 2N − 4. A direct computation shows that there are no terms u2
N−2,

uN−2uN−2,x in (J0)N,N−2, so that

degree[(J0)N,N−2] ≤

max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3], dN−1 + [d1, . . . , dN−3],

dN + [d1, . . . , dN−3]}.

(27)
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• weight[(J0)N,N−1] = 2N − 3. One can see that (J0)N,N−1 has no terms u2
N−2u1, uN−2uN−1 or

similar terms containing derivatives. Consequently

degree[(J0)N,N−2] ≤

max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3], dN−1 + [d1, . . . , dN−3],

dN + [d1, . . . , dN−3]}.

(28)

• weight[(J0)NN ] = 2N − 2. This element may involve terms uN−2uN , uN−2 xuN or uN−2uN x.
On the other hand, it can be checked, as in the previous cases, that terms u2

N−2u2, u
2
N−2u

2
1,

uN−2uN−1u1, u
2
N−1 or similar ones containing derivatives cannot arise. Consequently

degree[(J0)N,N−2] ≤

max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3], dN−1 + [d1, . . . , dN−3],

dN + [d1, . . . , dN−3], dN−2 + dN}.

(29)

In summary, by taking into account (23)-(29), we conclude that (14) is satisfied provided that

[d1, . . . , dN−3] ≤ 1, 2dN−2 ≤ dN−2 + 1,

dN−2 + [d1, . . . , dN−3] ≤ 1, dN−2 + dN−1 ≤ dN−1 + 1,

dN−1 + [d1, . . . , dN−3] ≤ 1, dN−2 + dN ≤ dN + 1.

dN + [d1, . . . , dN−3] ≤ 1,

(30)

Thus, any choice of the degrees verifying

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN ≤ 1

satisfies (30) and in consequence it verifies (14).

We next show that (22) constitutes the complete set of degrees satisfying (14).

Proposition 3. For each N ∈ N (N ≥ 5) the compatibility condition (14) implies

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN ≤ 1.

Proof. The cases N even or odd must be considered separately. Suppose first that N = 2M with
M ∈ N (M ≥ 3). From (12) we have that

(J0)1 2M = (2M − 1)P2M−1∂x + (2M − 1)P2M−1,x.

9



Thus, it is clear that (J0)1 2M contains terms in

u2M−1
1 ∂x, u2

ju
2M−2j−1
1 ∂x, j = 2, . . . ,M − 1,

u2M−1∂x, u2M−2u1∂x,

and consequently, the condition (14) with n = 1 implies that

(2M − 1)d1 ≤ d1 + 1, 2dj + (2M − 2j − 1)d1 ≤ d1 + 1, j = 2, . . . ,M − 1,

d2M−1 ≤ d1 + 1, d2M−2 + d1 ≤ d1 + 1,

or equivalently
dj = 0, j = 1, 2, . . . ,M − 1, d2M−2, d2M−1 ≤ 1. (31)

By taking now i = 2l, j = 2M (l < M) in (12) we have that

(J0)2l 2M = 2(l +M − 1)P2(l+M−1)∂x + (2M − 1)P2(l+M−1),x

−
2l−1
∑

k=1

u2l−k [(k + 2M − 2)Pk+2M−2∂x + (2M − 1)Pk+2M−2,x] .

Then, we have that (J0)2 2M contains a term u2M∂x so that

d2M ≤ d2 + 1.

Since according to (31) (M ≥ 3) d2 = 0, we have that

d2M ≤ 1. (32)

On the other hand, we also see that (J0)2l 2M contains a term u2
l+M−1∂x. Hence, the condition (14)

with n = 2l implies
2dl+M−1 ≤ d2l + 1, for each l < M. (33)

Now from (33) we deduce:

• By setting l = 1 in (33), we get 2dM ≤ d2 + 1, but d2 = 0 so that dM = 0. Thus,

M ≥ 3 ⇒ dj = 0, j = 1, 2, . . . ,M.

• Suppose that M ≥ 4, and put l = 2 into (33), then we have that 2dM+1 ≤ d4 + 1. But under
our hypothesis d4 = 0, so that

M ≥ 4 ⇒ dj = 0, j = 1, 2, . . . ,M + 1.

• Suppose that M ≥ 5, and put l = 3 into (33), then 2dM+2 ≤ d6 + 1. Again, under our actual
hypothesis d6 = 0, we have that

M ≥ 5 ⇒ dj = 0, j = 1, 2, . . . ,M + 2.
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Let us now use induction to prove

M ≥ k + 3 ⇒ dj = 0, j = 1, 2, . . . ,M + k. (34)

We have already proved (34) for k = 1, 2. Assume that it holds for k ≤ k0 − 1 and let us check it for
k = k0:

Take M ≥ k0 + 3, and put l = k0 + 1 in (33), then we have that

2dM+k0
≤ d2k0+2 + 1.

As 2k0 + 2 ≤M + k0 − 1 it follows that d2k0+2 = 0, so that dM+k0
= 0 which proves (34).

Finally, for a given M , take k = M − 3, then

dj = 0, j = 1, 2, . . . , 2M − 3.

Hence, by taking (31) and (32) into account, we have proved that (14) implies

dj = 0, j = 1, 2, . . . , 2M − 3, d2M−2, d2M−1, d2M ≤ 1.

We consider now the case N = 2M + 1 with M ∈ N (M ≥ 2). From (12)

(J0)1 2M+1 = 2MP2M∂x + 2MP2M,x.

Consequently (J0)1 2M+1 contains terms in

u2M
1 ∂x, u2

ju
2M−2j
1 ∂x, j = 2, . . . ,M, u2M∂x, u2M−1u1∂x,

and the condition (14) with n = 1 implies that

2Md1 ≤ d1 + 1, 2dj + (2M − 2j)d1 ≤ d1 + 1, j = 2, . . . ,M,

d2M ≤ d1 + 1, d2M−1 + d1 ≤ d1 + 1,

or equivalently
dj = 0, j = 1, 2, . . . ,M, d2M−1, d2M ≤ 1. (35)

On the other hand, by setting i = 2l + 1, j = 2M + 1 (l < M) in (12) we have that

(J0)2l+12M+1 = 2(l +M)P2(l+M)∂x + 2MP2(l+M),x

−
2l
∑

k=1

u2l+1−k [(k + 2M − 1)Pk+2M−1∂x + 2MPk+2M−1,x] .

Thus, (J0)2l+12M+1 contains the term u2
M+l∂x, so that the condition (14) with n = 2l + 1 implies

2dM+l ≤ d2l+1 + 1. (36)

By putting l = 1, 2, 3 in (36)it follows
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• For l = 1 we have that 2dM+1 ≤ d3 + 1. Thus,

M ≥ 3 ⇒ dj = 0, j = 1, 2, . . . ,M + 1.

• For l = 2 it follows that 2dM+2 ≤ d5 + 1. Consequently

M ≥ 4 ⇒ dj = 0, j = 1, 2, . . . ,M + 2.

• For l = 3 the inequality (36) reads 2dM+3 ≤ d7 + 1 so that

M ≥ 5 ⇒ dj = 0, j = 1, 2, . . . ,M + 3.

Let us now use induction to show that

M ≥ k + 2 ⇒ dj = 0, j = 1, 2, . . . ,M + k. (37)

We have proved (37) for k = 1, 2, 3. Suppose that it holds for k ≤ k0 − 1 and let us check it for
k = k0. Take M ≥ k0 + 2 and l = k0 in (36), we find

2dM+k0
≤ d2k0+1 + 1.

But 2k0 + 1 ≤ M + k0 − 1, then d2k0+1 = 0, dM+k0
= 0 and (37) follows. Thus, for a given M , if we

take k = M − 2 we have that

dj = 0, j = 1, 2, . . . , 2M − 2. (38)

Finally, from the expression

(J0)2 2M+1 = (2M + 1)P2M+1∂x + 2MP2M+1,x

−u1 [2MP2M∂x + 2MP2M,x] ,

we have that (14) implies d2M+1 ≤ d2 + 1, and consequently d2M+1 ≤ 1. This fact, together with
(35) and (38) lead us to

dj = 0, j = 1, 2, . . . , 2M − 2, d2M−1, d2M , d2M+1 ≤ 1.

From propositions 2 and 3 it follows that

Theorem

For each N ∈ N (N ≥ 5) the degrees (d1, . . . , dN) satisfy the compatibility condition (14) if and
only if

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN ≤ 1. (39)
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4 Hierarchies of consistent deformations

Our next task is to classify all the compatible cases in terms of the corresponding Newton exponent
and the element σ0 (17) of the Galois group of the curve.

We start by considering the case N ≥ 5. In order to find l0 and σ0 for each one of the seven
nontrivial choices (39), we study the asymptotic behavior of the N branches pi, i = 1, 2, . . . , N as
k → ∞. By writing the potentials as

un =

dn
∑

j=0

un jk
j

we have:

• (0, . . . , 0, 0, 0, 1). In this case (1) can be written as

k =
1

uN 1

(

pN −

N
∑

l=1

ul 0p
N−l

)

,

so that
pN

j ∼ uN1 k as k → ∞, j = 1, 2, . . . , N.

Consequently, pj ∈ C((k
1

N )), j = 1, 2, . . . , N and

l0 = N, σ0 =

(

p1 p2 · · · pN−1 pN

p2 p3 · · · pN p1

)

.

• (0, . . . , 0, 0, 1, 0). Now, (1) takes the form

k =
1

uN−1 1

(

pN−1 −
N
∑

l=1

ul 0p
N−l−1 −

uN 0

p

)

.

Thus, the roots satisfy

pN−1
j ∼ uN−1 1 k as k → ∞, j = 1, 2, . . . , N − 1,

pN ∼ −
uN 0

uN−1 1

1

k
as k → ∞,

and we find

l0 = N − 1, σ0 =

(

p1 p2 · · · pN−1 pN

p2 p3 · · · p1 pN

)

.

• (0, . . . , 0, 0, 1, 1). From (1) we can write

k =

N−1
∑

j=0

cjp
j +

c−1

uN−1 1p+ uN 1
,

13



for certain coefficients cj, j = −1, 0, 1, . . . , N − 1. Hence

pN−1
j ∼

1

cN−1
k as k → ∞, j = 1, 2, . . . , N − 1,

pN ∼ −
uN 1

uN−1 1
+

c−1

uN−1 1

1

k
as k → ∞,

so that

l0 = N − 1, σ0 =

(

p1 p2 · · · pN−1 pN

p2 p3 · · · p1 pN

)

.

• (0, . . . , 0, 1, 0, 0). The equation (1) of the curve implies

k =
1

uN−2 1

(

pN−2 −
N−2
∑

l=1

ul 0p
N−l−2 +

uN−1 0

p
+
uN 0

p2

)

.

Then,
pN−2

j ∼ uN−2 1 k as k → ∞, j = 1, 2, . . . , N − 2,

p2
j ∼

uN 0

uN−2 1

1

k
as k → ∞, j = N − 1, N.

Thus, the corresponding Galois group element is given by

σ0 =

(

p1 p2 · · · pN−2 pN−1 pN

p2 p3 · · · p1 pN pN−1

)

,

and the Newton exponent is

l0 =







N − 2 if N is even,

2(N − 2) if N is odd.

• (0, . . . , 0, 1, 1, 0). From (1) we have

k =

N−2
∑

j=0

cjp
j +

d1

p− b1
+
d2

p
,

for certain coefficients cj, j = 0, 1, . . . , N − 2, b1 and dk, k = 1, 2. The branches satisfy

pN−2
j ∼

1

cN−2
k as k → ∞, j = 1, 2, . . . , N − 2,

pN−1 ∼ b1 +
d1

k
as k → ∞,

pN ∼
d2

k
as k → ∞,

14



so that

l0 = N − 2, σ0 =

(

p1 p2 · · · pN−2 pN−1 pN

p2 p3 · · · p1 pN−1 pN

)

.

• (0, . . . , 0, 1, 0, 1) and (0, . . . , 0, 1, 1, 1). In these cases (1) implies

k =
N−2
∑

j=0

cjp
j +

d1

p− b1
+

d2

p− b2
,

for certain coefficients cj, bk, dk, j = 0, 1, . . . , N − 2; k = 1, 2. Therefore

pN−2
j ∼

1

cN−2
k as k → ∞, j = 1, 2, . . . , N − 2,

pN−1 ∼ b1 +
d1

k
as k → ∞,

pN ∼ b2 +
d2

k
as k → ∞,

so that

l0 = N − 2, σ0 =

(

p1 p2 · · · pN−2 pN−1 pN

p2 p3 · · · p1 pN−1 pN

)

.
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These results are summarized in the following table

Table 2: Classification of (39) according to σ0 and l0.

σ0 l0 (d1, . . . , dN)
(

p1 p2 . . . pN−1 pN

p2 p3 . . . pN p1

)

N (0, . . . , 0, 0, 0, 1)
(

p1 p2 . . . pN−1 pN

p2 p3 . . . p1 pN

)

N − 1
(0, . . . , 0, 0, 1, 0)
(0, . . . , 0, 0, 1, 1)

(

p1 . . . pN−2 pN−1 pN

p2 . . . p1 pN−1 pN

)

N − 2
(0, . . . , 0, 1, 1, 0)
(0, . . . , 0, 1, 1, 1)
(0, . . . , 0, 1, 0, 1)

(

p1 . . . pN−2 pN−1 pN

p2 . . . p1 pN pN−1

)

N − 2 if N even
2(N − 2) if N odd

(0, . . . , 0, 1, 0, 0)

We end this section by completing the previous table for N = 4. Only the special set of degrees
(0, 1, 1, 2) remains to be analyzed. The corresponding branches can be expanded as

pi = ai 1k
1

2 + ai 0 +
ai−1

k
1

2

+ · · · , i = 1, 2, 3, 4,

where

ai 0 =
ai 1

2 u1 0 + u3 1

4 a2
i 1 − 2 u2 1

,

ai−1 =
1

8 ai 1 (2 a2
i 1 − u2 1)

3

[

a6
i 1

(

6 u2
1 0 + 16 u20

)

+a4
i 1

(

−5 u2
1 0 u2 1 + 4 u1 0 u3 1 + 16 (−u2 0 u2 1 + u4 1)

)

−2 a2
i 1

(

−2 u2 0 u
2
2 1 + 3 u1 0 u2 1 u3 1 + u2

3 1 + 8 u2 1 u4 1

)

+u2 1

(

−u2
3 1 + 4 u2 1 u4 1

)

]

,

...
...

and ai 1, i = 1, 2, 3, 4 are the solutions of the equation:

a4
1 − u2 1a

2
1 − u4 2 = 0.

By labeling its solutions so that a2 1 = −a1 1, a4 1 = −a3 1, we obtain

p2(z) = p1(−z), p4(z) = p3(−z), k = z2.
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Thus it follows that

l0 = 2, σ0 =

(

p1 p2 p3 p4

p2 p1 p4 p3

)

.

Therefore, the table for N = 4 is

Table 3: Classification of (4) according to σ0 and l0.

σ0 l0 (d1, d2, d3, d4)
(

p1 p2 p3 p4

p2 p3 p4 p1

)

4 (0, 0, 0, 1)
(

p1 p2 p3 p4

p2 p3 p1 p4

)

3
(0, 0, 1, 0)
(0, 0, 1, 1)

(

p1 p2 p3 p4

p2 p1 p3 p4

)

2
(0, 1, 1, 0)
(0, 1, 1, 1)
(0, 1, 0, 1)

(

p1 p2 p3 p4

p2 p1 p4 p3

)

2
(0, 1, 0, 0)
(0, 1, 1, 2)

Let us now turn our attention to the problem of obtaining the hierarchy of integrable deformations
(11). It is required to determine the function R of the form (16) satisfying the invariance condition
(18). In view of (18) we discuss the different cases according to the corresponding element σ0 of the
Galois group of the curve.

• σ0 =

(

p1 p2 . . . pN−1 pN

p2 p3 . . . pN p1

)

.

From the tables 1, 2 and 3 we have that l0 = N , (ǫ0 = ǫ = e
2πı

N ). For N ≥ 4 the only choice
of degrees corresponding to σ0 is (0, . . . , 0, 0, 0, 1). We look for functions Rk =

∑N

j=1 αjpj such that

σ0(Rk) = ǫN−k
0 Rk, k = 0, 1, . . . , N − 1. It is easy to check that

σ0(Rk) = αNp1 +
N
∑

j=2

αj−1pj,

so that the condition σ0(Rk) = ǫN−k
0 Rk implies that

αj−1 = ǫN−k
0 αj, j = 2, . . . N − 1, N ;

αN = ǫN−k
0 α1.

This system admits the nontrival solutions

αj = ǫ
(N−k)(N−j)
0 αN = ǫ

j k
0 αN .
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Thus the functions R of the form (16) which satisfy (18) can be written as

R =

N−1
∑

k=0

zkfk(z
N )

N
∑

j=1

ǫ
j k
0 pj , (40)

with fk ∈ C((zN )), k = 0, 1, . . . , N − 1. Taking into account that ǫ0 = ǫ and recalling (19), we see
that the functions R can also be written in terms of the Lagrange resolvents as

R = f0(z
N )LN +

N−1
∑

k=1

zkfk(z
N )Lk,

which coincides with the first equation for N = 3 in (20).

• σ0 =

(

p1 . . . pN−2 pN−1 pN

p2 . . . pN−1 p1 pN

)

.

The corresponding Newton exponent is l0 = N − 1 (ǫ0 = e
2πı

N−1 ) and for N ≥ 4 the degrees of
the potentials are (0, . . . , 0, 0, 1, 0) and (0, . . . , 0, 0, 1, 1). In this case we have that σ0(pN) = pN , or
equivalently pN ∈ C((k)). Moreover, we need N − 1 additional functions R verifying the invariance
condition (18). Proceeding as in the previous case we look for functions of the form

Rk =

N−1
∑

j=1

αjpj , such that σ0(Rk) = ǫN−1−k
0 Rk, k = 0, 1, . . . , N − 2.

Since the action of σ0 on the function Rk is given by

σ0(Rk) = αNp1 +
N−1
∑

j=2

αj−1pj ,

the condition σ0(Rk) = ǫN−1−k
0 Rk leads to

αj−1 = ǫN−1−k
0 αj, j = N − 1, N − 2 . . . , 2

αN−1 = ǫN−1−k
0 α1,

so that αj = ǫ
(N−1−k)(N−1−j)
0 αN = ǫ

j k
0 αN , and

R =

N−2
∑

k=0

zkfk(z
N−1)

N−1
∑

j=1

ǫ
j k
0 pj + fN−1(z

N−1)pN . (41)

Example For N = 4

R = f0(z
3)(p1 + p2 + p3) + zf1(z

3)(e
2πi

3 p1 + e
4πi

3 p2 + p3)

+z2f2(z
3)(e

4πi

3 p1 + e
2πi

3 p2 + p3) + f3(z
3)p4.
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• σ0 =

(

p1 . . . pN−2 pN−1 pN

p2 . . . p1 pN−1 pN

)

.

In this case σ0, l0 = N − 2, (ǫ0 = e
2πı

N−2 ). For N ≥ 4 it corresponds to the sets of degrees
(0, . . . , 0, 1, 0, 1), (0, . . . , 0, 1, 1, 0) and (0, . . . , 0, 1, 1, 1) . Notice that pN−1, pN ∈ C((k)). Let us look
for functions

Rk =
N−2
∑

j=1

αjpj, verifying σ0(Rk) = ǫN−2−k
0 Rk, k = 0, 1, . . . , N − 3.

We find that
αj−1 = ǫN−2−k

0 αj, j = N − 2, N − 3 . . . , 2

αN−2 = ǫN−2−k
0 α1,

then αj = ǫ
(N−2−k)(N−2−j)
0 αN−2 = ǫ

j k
0 αN−2, and

R =
N−3
∑

k=0

zkfk(z
N−2)

N−2
∑

j=1

ǫ
j k
0 pj + fN−2(z

N−2)pN−1 + fN−1(z
N−2)pN . (42)

• σ0 =

(

p1 . . . pN−2 pN−1 pN

p2 . . . p1 pN pN−1

)

.

This element corresponds to the sets of degrees (0, . . . , 0, 1, 0, 0) and, in the particular case N = 4,
to the special choice (0, 1, 1, 2) too. From the discussion in Section 3 it follows that the Newton
exponent of σ0 depends on whether N is even or odd.

* N even: l0 = N−2 (ǫ0 = e
2πı

N−2 ). It is easy to see that pN−1+pN ∈ C((k)) and σ0(−pN−1+pN) =
−(−pN−1 + pN). On the other hand since σ0 acts on pj, j = 1, 2, . . . , N − 2 and ǫ0 coincides
with the previous one, we have again that

Rk =

N−2
∑

j=1

ǫ
j k
0 pj , k = 0, 1, . . . , N − 3,

satisfy σ0(Rk) = ǫN−2−k
0 Rk. Thus R is now given by

R =

N−3
∑

k=0

zkfk(z
N−2)

N−2
∑

j=1

ǫ
j k
0 pj + z

N−2

2 fN−2(z
N−2)(pN−1 − pN−1)

(43)

+fN−1(z
N−2)(pN−1 + pN).

Example For N = 4

R = f0(z
2)(p1 + p2) + zf1(z

2)(−p1 + p2) + zf2(z
2)(−p3 + p4) + f3(z

2)(p3 + p4).
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* N odd: l0 = 2(N−2) (ǫ0 = e
πı

N−2 ). Again in this case pN−1+pN ∈ C((k)) and σ0(−pN−1+pN) =
−(−pN−1 + pN ). Moreover, if we look for functions Rk =

∑N−2
j=1 αjpj such that

σ0(Rk) = ǫ
2(N−2−k)
0 Rk, k = 0, . . . , N − 3,

by proceeding as in the previous cases, we find that αj = ǫ
2(N−2−k)(N−2−j)
0 αN−2 = ǫ

2j k
0 αN−2, so

that

R =

N−3
∑

k=0

z2kfk(z
2(N−2))

N−2
∑

j=1

ǫ
2j k
0 pj + zN−2fN−2(z

2(N−2))(pN − pN−1)

(44)

+ fN−1(z
2(N−2))(pN−1 + pN).

Example For N = 5

R = f0(z
6)(p1 + p2 + p3) + z2f1(z

6)(e
2πi

3 p1 + e
4πi

3 p2 + p3)

+z4f2(z
6)(e

4πi

3 p1 + e
2πi

3 p2 + p3)

+z3f3(z
6)(−p4 + p5) + f4(z

6)(p4 + p5).

Thus, the integrable deformations (11), (16) are determined by the expressions of R in (40), (41),
(42), (43) or (44) depending on σ0 and the Newton exponent l0.
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