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1. Results.

In this paper we infroduce two definitions of upper porosity of a measure (see
Definitions 1.3 and 1.5) which range from 0 to % and from 0 to 1 respectively, and
prove {Theorem 1.8 and Corollary 1.9) that actually the first porosity only can
take the extreme values 0 or %, and the second one takes either the value 0 or the
values % or 1. The other main result of this paper (see Theorem 1.2, Corollary 1.4
and Proposition 1.6) says that any measure g which does not satisfy the doubling
condition pr-a.e. has a maximal porosity.

1.1. Porosities of sets and the doubling condition.

Let B(x,7) be the closed ball with center # €IR" and radius r. For A CIR™,
x €IR" and r > 0, let '

p(A,z, 1) = sup{p: B(z,p) C Blx,r)\A for some z € IR"},

A,
plA ) = limsupu and

ri0 T



p(A,z) = liminf })—(M
- rl0

For « € A, p(A,z,7) takes a value in between 0 and /2, so 5(A,z) and p(A, z)
take values in between 0 and %
The upper and lower porosity of a set A are given by

p(A) = inf{p(4,2) : 2 € A} and p(A) = inf{p(A,2) : z € 4}

respectively. The set A is said to be porous if p(A) > 0 and very porous if
p(A) > 0. The set A is said to be strongly porous if p(A) = § and strongly very
porous if p(A) = L. The set A is said to be g-porous (o-very porous, o-strongly
porous, g-strongly very porous) if A is a countable union of porous (very porous,
strongly porous, strongly very porous) sets. Results on porous sets connected
with problems in analysis can be seen in [8] and {9], and results on Hausdorff
dimension of very porous sets can be found in {5] and [7].

The doubling condition is usually imposed in problems of harmonic analysis,
Vitali coverings theorems and tangent measures theory ([1],{2},{4] and [5]).
A probability measure ¢ on IR"” satisfies the doubling condition at a point a € IR®

if
limsup E(—JB-(G—’?T—))
rio p(Bla,7))

1.2. Main results.

We begin studying the Radon probability measures g on IR® which do not sat-
isfy the doubling condition p-a.e. We prove (see Theorem 1.2) that any Radon
probability measure ji gives two alternative decompositions of IR™ into three sets:

o the set where the doubling condition holds, a set with arbitrary small p-
measure and a strongly porous set. This last set is contained in a very
sparse set defined as an intersection of disjointed unions of annuli of widsh
tending to zero (see Lemma 1.1 below).

e the set of points where the doubling condition holds, a set of null p-measure
and a o-strongly porous set.

The following lemma describes the geometry of the set of points where a mea-
sure does not satisfy the doubling condition.
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Lemna 1.1, Let p be a Radon probability measure on IR" and let A be the set
of points where p does not satisfy the doubling condition. Let {A;} be a sequence
of real numbers such that liny o A; = 1 and 0 < A; < 1,4 € IN. Then for any
£ > 0, there exist a family {&;;}ijen of points in A and a family {r;;};jem of
radii, with v;; < 1/i for all j € IN, such that

" (A\ (ﬁ D W,,,-)) <e
i=1j=1

where W, ; := Bz j,7:.;)\B(®i 3, Airi ), and for any ¢ € IN the balls in the family
{B(xi,73,;)}jemn are disjointed balls.

This result gives a strong indication that the measures which do not satisfy the
doubling condition are exceptional. In particular we conjecture that a measure
invariant for a smooth hyperbolic dynamical system in a n-dimensional manifold
must satisfy the doubling condition. We have been unable to prove this conjecture
{from Lemma 1.1, which, however, gives easily the following result relating porosity
to doubling condition.

Theorem 1.2. Let u be a Radon probability measure on IR™ and let A be the
set of points where it does not satisfy the doubling condition. The following

statements hold.
i) For all e > 0, there is a strongly porous subset A* of A such that p(A\A*) <e.
ii) There exists a a-strongly porous subset C' of A such that u(A) = p(C).

This theorem suggests the following definitions of porosity of a measure.

Definition 1.3. Let g be a measure over IR". We define the upper and lower
porosity of it as

Pp) = sup{p(A) : A C IR"™ with u(A) > 0}
and
plp) = sup{p(A4) : A C IR" with p(A) > 0}

respectively. We say that pt is a porous measure if () > 0 and a very porous
measure if p(ypr) > 0. The notions of strongly porous and very strongly porous
measures are defined in the obvious way.



Corollary 1.4. Let p be a Radon probability measure on IR"™ which does not
satisfy the doubling condition pi-a.e. Then p(p) = 3.

We will use this corollary in proving that any porous measure is a strongly
porous measure (see Theorem 1.8).

We now introduce another definition of upper porosity of a measure ;¢ which
is equivalent, when the measure p satisfies the doubling condition p-a.c., to that
given in definition 1.3. We use this equivalence in the proof of Theorem 1.8,

Definition 1.5. The upper porosity por(u) of p is given by
por(p) = inf{s : por{p,z) < s, p-a.e x € IR"} (1.1)

where
poi(y, x) := limlim sup por (i, 2, 7, £)
el rl0

is the upper porosity of y at x and

por{u,a,r,e) :=sup{p: thereis a z € IR" such that B(z, pr) C B(z,r)
and p(B(z, pr)) < ep(B(z,1))}.

Notice that por(je) ranges from 0 to 1. This is the version for the upper porosity
of the following definition of lower porosity por{y) given by J-P. Eckmann, E.
Jarvenpdi and M. Jarvenpad in [3):

por(p) =inf{s : por{i, 2} < s, p-a.e. x € IR"}, (1.2)

where :
por(p, x) = limliminf por(y, x,n€),
— elo rio

is the lower porosity of pr at 2.

They prove that por{y) < p(i) holds for any Radon probability measure p,
and if y satisfies the doubling condition j-a.e. then por(p) = p(u), but por(u) >
p(se) may ocenr if the doubling condition fails to hold p-a.e. ({3], example 4).
Obvious changes in the proof of these facts give the corresponding results for the
upper porosities of the measure, that is p(p) < por(p) for any Radon probability
measure g, and if p¢ satisfies the doubling condition p-a.e. then 7(y) > por{y),
and hence por(p) = pp).

Notice that if j¢ does not satisfy the doubling condition por(p) > p(u) = 1
holds. We prove that in this case por(p) = 1.
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Proposition 1.6. Let y be a Radon probability measure on IR® which does not
satisfy the doubling condition p-a.e. Then por(u) = 1.

The next lemma characterizes strongly porous measures in terms of their tan-
gent measures.

Tangent measures, introduced by Preiss {[6]}, have turned out to be a powerful
tool for the stucdy of the local behaviour of measures. Given a locally finite Borel
meastire j¢ over IR", the measure v is a tangent measure of p at a point a if it is
a non null locally finite Borel measure and there are sequences {¢;} and {r;} of
positive numbers such that {r;} | 0 and

CiTa,rf## S

Lolds, where 7o, are the homotheties given by Top () = £22, Tor g is the

measure induced by Ty, (i.6. Topgtt(A) = pla +r;A), A CIR®) and = denotes
the weak convergence of measures. The set of all such tangent measures is denoted
by Tan{y,a) and the support of the measure g is denoted by spt{y).

Lemma 1.7. Let p be a Radon probability measure on IR satisfying the dou-
bling condition jt-a.e. Let

B = {a € IR" : there is v € Tan{p, ) such that spt(v) # IR™}.

Then .
) =5 = pu(B) >0

From this lemma easily follows the main result of this paper:

Theorem 1.8. Let p be a Radon probability measure on IR". Then p(p) is
either 0 or 32-

Corollary 1.9. Let p be a Radon probability measure on IR". Then por(p) is
0, % or 1. '

We only can obtain the lower bound % for the porosity of subsets arbitrarily
close in measwre to a given porous sef, although it seems likely that this bound
can be improved to 3.
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Theorem 1.10. Let ¢ be a Radon probability measure on IR" which satisfies
the doubling condition i-a.e. and let A < IR™. If p(A) > 0 then for any e,
0 < & < p(A), there is a set A* C A such that p(A\A*) < e and (A*) > 1.

Finally we give an example of measures with p(u) = -% . The proposition is
essentially known to hold (see Theorems 11.11 and 6.9 in [5]). However, Lemma
1.7 gives a very simple proof of this result.

Proposition 1.11. Let p be a Radon probability measure on IR" and let s < n.
If the set of points a €IR" where

.o (Ble, 1))

0 < Oy, a) :=lim 5_13(1}? @

holds has a positive jt measure then ) = 3.

< 0% (s, @) = limsup wBle,) <o (1.3)
rl0

(2r)°

Among the measures which this proposition applies to is the restriction of the
s-dimensional Hausdorfl measure H?® to a s-dimensional self-similar set & CIR”®

if 0 < H*(F) < ooand s < n.

1.3. Complementary results.

We give other results related to very porous measures and to the doubling condi-
tion. The next lemma is used to characterize very porous measures in terms of a
porosity property of their tangent measures. We denote by U(x, r) the open ball
centered at @ and with radius .

Lemma 1.12. Let it be a Radon probability measure on IR?, let A ¢ IR"™ and
let a be a constant with 0 < a < 3. The following statement holds for p-a.e.
a € A

If p(A, a) > «, then for every v € Tan{y, a) there is a point y € B(0,1 — «) such
that v(U{y, «)) = 0.
From this lemma the following property follows.

Proposition 1.13. Let u be a Radon probability measure on IR", let o be a
constant with 0 < a < % and let

C:={a € IR" : Vv € Tan(y, a) there is an y € B(0, 1—a) such that v(U(y,a)) = 0}.
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Then,
p() > a = p(C) >0

and if i satisfies the doubling condition ji-a.e. then
#(C) > 0=>p(p) > a.

Finally, we state another property of measures which do not satisfy the dou-
bling condition at a point a € IR". Given A C IR", we denote by p|A the
restriction of the measure p to the set A.

Proposition 1,14, Let ¢ be a Radon measure which does not satisfy the dou-
bling condition at a point a € IR". Then, there is a sequence {r;} | 0 such that
the measures )

7 (Bla, 1)
converge weakly to a probability measure on 88(0, 1).

Tﬂ,f‘i# (“ |B(a‘1 7‘1'))

2. Proofs.

2.1. Proof of Theorem 1.2,

Proof of Lemma 1.1.
It is casy to see that p satisfies
p(B(z,r))

lim S:lll(l]) m =0 (21)

forall A € (0,1) and all w € A. Let {A;}iev be any sequence such that liny;_ e Ay =
LwithO <A <1foranyi€IN. Givene > 0and z € A, by (2.1)

p(Blr) | 2

(B, M) = e

holds for arbitrarily small values of ». Let V; be the Vitali class given by

w(B(z,7)) _ 2 1
= (Bla,r)rwe A, 200 5 2 d e < 2}
Vi={Blz,r):z€ A W(Bw ) 2 e and r < z}



By Vitali covering theorem (see Theorem 2.8 in [5]), there is a sequence of dis-
jointed balls {By;} ey C Vi, Bij = B(wi4,71;), such that

o0 .
#A\ U Bij) = 0. (2.2)
=1
For all 4,7 € IN, let B} ; = B{w;;, Ary;) and Wej = By \B{ ;. Then

Bij) 2 !i(B 4)

for all 4, § € IN which, together with (2.2), gives

(s (22) (B2 <o)

£ (1001) <550 () -

i=1 j=1
Proof of Theorem 1.2,
i) Fore > 0,let C = (72, U2, Wi; be the set used in Lemma 1. 1 and A* = ANC.
Then A* C A and p(A\A*) <. We now check that p(A*) = . If @ € A* then
x € U2, 1y for all ¢ € IN. Therefore, for all ¢ € IN, there is a umque index ()
such that. & € Wi = Bijy\Bi j5)- Obviously Bj ;i) C B2, 2r4,5:)\A* so that

p(A* 2,21 560) = A (2.3)

holds for all ¢ € IN. Consider the sequence of radius given by {2r J(!)},el\r Since
rig is the radius of the ball B; ;) we have that 7 ;4 < 1 for all 4, and by (2.3)
ﬁ—’x—m'—ﬂﬁ > L. Thus, limsup, M >4 anci since L’i——’—m <3,

oo ey rio
the resnlt follows,

it) Let A” be as in part i) and let Aj = A*. The argument used in Lemma 1.1 gives
the existence of sets A7 ¢ A\(Ujzh A7), ¢ = 1 such that p(A\Uj_, A7) < ¢/2
and P(Af) = 3. Thus the set C = U2, Af C A is a o-strongly porous set and
p(C) = limyogo p{ Upg Af) = p(A) — limioo & = p(A). W

lim sup;

Proof of Corollary 1.4.
The set A* of pmt (i) in Theorem 1.2 has a positive measure and its upper
porosity is equal fo . H



Proof of Proposition 1.6.

Let A be the set of points where the doubling condition does not hold, let
{£;} be a sequence in (0,1) such that lim;_.o £; = 0, and let z € A. Using
(2.1) for A = 1~ g; we get that p(B(z, (1 — &;))) < g;u(B(z,7)) holds for
arbitrarily small values of r. Then por(p,z,7,¢;) > (1 — €;) for such values of r
and Hm sup, o por{p, ©, 1, €;) 2 1—¢;. Thus, lim;_,o limsup, g por{p, z,r,6;) 2 1
and then por(y,z) =1 for any @ € A. Therefore por(p) = 1. R

2.2. Proof of Theorem 1.8.

We first introduce results on tangent measures that we need later on. In {6] it is
proved that if p is an ahmost finite measure over IR", then Tan{y, a) # 0 for i
almost every a €IR”. If p satisfies the doubling condition at a, then any sequence
{r;} | 0 contains a subsequence {r,} such that

1
[1.(8((1‘, Tij))

([5],Theorem 14.3). Turthermore, for all v € Tan{y,a) there are a sequence
{rs} | 0 and a positive number ¢ such that v = clim; e mTw;#ﬂ (5],
Remark 14.4).

We denote by A the boundary of the set A. Recall that U(x,r) is the open ball
with center at  €IR” and radius 7.

Ty, 1t % v € Tan(u, a)

Lemma 2.1, Let jt be a Radon probability measure on IR?, let D be the set of
points where the doubling condition holds and A C D. The following statement

holds for p-a.e. a € A.
IFp(A, ) > 0, then there exist a v* € Tan{y,a) and an open half-space H such
that 0 € 8H and v*(H) = 0.

Proof.
Let @ € A be a p-density point of A, that is

W0 p(Bla,r))

let a = B(A,a) > 0 and 0 < e < /2. We may select a sequence of radii {r;} | 0
such that p(A,a,ri) = (@ — €)ri for all ¢ and grpr=sTorap — v € Tan(p,a).
Furthermore, since p(A, a, 7;} > (& — &)r;, there is a sequence {z;} of points such
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that B{z;, (a — €)r;) C B(a,m;)\A for all 4. Let y; = %2, By the compactness of
B{0,1—a+¢), there is a subsequence of {y;}, which for simplicity we also denote
by {5}, snch that im0 9 = y € B(0,1 - a + ¢). Thus,

v(U(y,a — 2¢)) < lim nf Toreat{U{y, o — 2€)) <

i
{00 ;,L(B(G,?,))
1 1
I inf ————<Thrpit(U(yi, 0 — €)) = lim inf —————p{U(z;,7i(a —
HAU = €)= T ol s U i )

2L w(Bla )
. K A
< lim inf M =0.
too [,t.(B((l-,?‘,'))
Thus spt(r) # IR aud there exists v* € Tan{y, ¢) and an open half space H (see
the proof of part (3) of Theorem 14.7 in [5]) such that 0 € 8H, and v*(H) =

Remark 1. This lenuna was initially formulated stating that if p(A,a) = a > 0,
then there exist y € B(0,1 — a) and v € Tan(yu,a) such that v(U{y,a)) = 0.
The present forniulation has been possible thanks to an anonymous referee who
gave us the reference of Theorem 14.7 in [5]. This, together with Theorem 1.10,
allowed us to obtain firstly that p(p) > 0 implies p(p) > 1, and afterwards we
improved this result with Theorem 1.8.

Proof of Lemma 1.7.

We first prove that p(p) = § == p(B) > 0.
If 35(se) = % then for any € > 0 there is a set I with p(E) > 0 such that p(E) >
% —¢: Then Lemma 2.1 gives (((B) > u(B*) = p(E) > 0 where B* = {z € END :
there is v € Tan{y, ¢} such that spt(v) # IR"}.
We now prove that j(B) > 0 = p() = 1.
By Theorem 14.7 in [5], we know that for any @ € BN D there are a measure
v* € Tan(pt, a) and an open half-space H such that 0 € 0H and v*(H) = 0. Since
a € D there exist a positive constant ¢ and a sequence {#;} | 0 such that v* =
cm li o0 Topygept- Since v*(H) = 0, there exists a point y € HN3B(0, 1)
such that for any 6 > 0

. #‘(B(a + 1Y, T !'('" B 6)))
= climsup 2
o Bl )

1 1
= —_— 2 —_— . —_
0 v (B(y, 6)) 2 clim sup (B(a,r,-))Ta’r‘##(B(y’ 5 6))
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holds. Thus, for any € > 0, ¢ lif(z;g?;(”))é) D < ¢ holds for sufficiently large ¢, where
= a +1;y. Therelore for any 6, € and @ € BN D, we have that por(i, a,ri,€) >
3 —6 for sufficiently large ¢. This implies (see 1.1) that por por(p) > . Since 4 satisfies

the doubling condition j-a.e. and p{p) < 1 we obtain § < por (,u) =p(p)<i W

Proof of Theorem 1.8,

If ;v does not satisfy the doubling condition p-a.e then Corollary 1.4 gives
(1) = 3-

Assume now that o satisfies the doubling condition p-a.e. Let o be any con-
stant with 0 < o < p(u) and let A be a set with u{A) > 0 and p(4) > a. Using
Lemma 2.1 we get that the set

A" = {a e A: there is v € Tan(y, a) such that spt(v) # IR"}
satisfies that j(A*) = p(A) > 0, and Lemma 1.7 gives the claim. B

Proof of Corollary 1.9.

If jr satisfies the doubling condition p-a.e then P(p) = por(i) and the above
theorem gives that por(y) only can take the values 0 or % If ¢ does not satisfy
the doubling condition pi-a.e then Corollary 1.9 gives por(p) =1. &

Notice that actually par(u) can take this three values: if p does not satisfy
the doubling y-a.e. then por(e) = 1; if (1.3) bolds p-a.e. then 1 = p(u) = por(y);
and if the doubling condition holds and p(x) = 0 then por{u) = 0.

2.2.1. Proofs of Theorem 1.10 and Proposition 1.11.

Proof of Theorem 1.10.

Since A 1= P(A) > 0, the set B = {a € AN D : there is v € Tan(y, a) such
that spt(r) # IR"} satisfies u(B) = pu(A) (see Lemma 2.1). We now prove that
for any €, 0 < £ < p(A), there exists a set A* C B such that p{B\A*) < e and
P(A*) = 1. Since p(B) = pu(A) this gives the claim.

Let ¢ € B and v € Tan{p,a) such that spt{r) # IR". Then, there exists
vt € Tan{p,a) and an open half-space H such that 0 € 8H and v*(H) ==
Since a € D, there exist a positive constant ¢ and a sequence {r;} | 0 such that
vt = climy_ee WT" regieft. Since v*(H) = 0, there is a point y € HNGB(0,1/2)
such that for any 6 >0

1 1 1
0 = * _— e i —_—— re Y&
v (B(y, 5 6)) = Clllllf_l:zg) o (a,r,-))Ta’ i (Bly 5 8))
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. w(Bla + riy, (3 — 8)))
= c¢limsu
camry w(B(a, 7))

holds, Then, given an € > 0 and a &k > 0, there is an 4, such that

pBlatray il —279)) _
1{Ba,7)) 2

for i > 4.

Let V. be the Vitali class given by

Vi = {B(a,r): a€ B, r <y and there is an y € 8B(0,1/2) such that

{Blatry,r(3-27%))
W_“__L.___
r(Bla,r)) < oK }

By Vitali covering theorem, there is a sequence of digjointed balls { By ;}52, C Vi,
By; = Blayj, 7 ;). satisfying

w8\ U Big) =0, (2.4

Since cach ball By ; € Vg, there is an yi; € 8B(0, ) such that

j(Bry) 28 '

where B ; = Blaw; + eyny » (3 — 27%)my). Let Wiy = By \Bj.; and A* =
BN (ﬂﬁil Uz, H’},._J-) . Using (2.4) and (2.5) we obtain jl-(A*) > p(B)—e = p{A)—
. Let v € A*, then for all & € IN, 2 € U32; Wi ; holds. Thus, there is an unique
index j(k) such that @ € Wy ;4. Since By j4y C B, 2rk,ji0))\A* we have that
P(A™ @, 2r509) = (3 — 2790y and then (A%, z) > forallw € A* W

Remark 2. Let D be the set of point where the doubling condition holds. If
(D) < 1 then, for any ¢, 0 < € < p{An D®), there is a set A* C AN D° such
that p(A*) > (AN D®) — ¢ and p{A*) = 1

Proof of Proposition 1,11.

Let D D A be the set of points where the doubling condition holds. Theorem
14.7 in [5] guarantees that for p-a.e. a € A and every v € Tan(p, e), there is a
positive number ¢ such that

ter® <v(B(a,r)) < e, for x € spt(v), 0 <r < o0,

12



where t = t{a) == ©3(y, a}/O**(y, a). Therefore, since s < n we have that spt(v)
IR™ for every v € Tan(pt, @) and p-a.e. a € A (see [5], Chap. 14, exer. 4). Thus
the set A; = {a € A : there exists v € T'an(g, a) such that spt{(v) # IR"} satisfies
that p(A;) = p(A) > 0, and Lemma 1.7 gives p(p) = 1 provided p(D) = 1. If
1#(D) < 1 then Corollary 1.4 gives the result. W

2.3. Proofs of complementary results.

Proof of Lemma 1.12.
Let a be a p-density point of A, that is

Bla,T\A)
rid ]J(B((l,?')) ’

and let v = Hnyeo ¢iTeupt € Tan(p,a). Then (see Remark 14.4, part (1),
in [5]) there are a subsequence {r;} of {r;} and a constant R > 1 such that
Y= iy e WT"*"‘;#!‘[' Let {er} be a decreasing sequence tending to zero.
Since p(A,a) > a, for a given g, there is an 1 such that p(4, a,7y;) > (a— Er)Ti;
for all i; > {;. The argument used in Lemma 2.1 gives a point ¢, € B(0,1—-a+-¢;)
such that

; WBla\A)

... p(Bla,r \A) L
Uy, a — 281)) < clim inf ! < eclim in
Uy V) < elin i—eo p{Bla, Ry, )y — imoo p(Bla,ry;))
The sequence {y.} has a subsequence which converges to a point y € B(0, o). Let
6 > (. There is an index & such that

I”(U(% a— 6)) < U(U(yk, - 28;;)) =)
and letting § | 0 the claim follows. B

Proof of Proposition 1.13.

We first prove p(p) > a == p(C) > 0.
Since p(p) > o there is a set F with p(E) > 0 such that p(F) > . Lemma 1.12
gives that the set E* == {a € E : for any v € Tan(y, a) there exists y € B(0,1—a)
such that v{U(y, a)) = 0} satisfies that p(E*) = p(E) > 0 so that ;(C) > 0.
We now prove p(C) > 0 = p(ir) > a.
Let D be the set of points where the doubling condition holds. Since p(D) = 1

13



then p(p) = por{p) holds (see 1.2). Then, it is sufficient to prove that for any

zelCnDande >0,
lim i1l1§ por(p,x,re) > .
.

If this is not the case, there are x € CN D, & > 0, a sequence of radii {r;} | 0

such that +a
por{p,®,ri,€) < p_i_ (2.6)
where p := liminf, g por(s, z,7,€). Since x € D there exist a subsequence {ry,}
of {r;} and a point y € B(0,1 — «) such that meﬂj#u = v € Tan{u, a)

and v{U{y,a)) = 0. Let § be a constant with 0 < 6 < (o — p}/2. Then,

(B + ryy, 1y {a — 6))
= v(Blya=0) 2 im sy = )

holds. Hence for any £ > 0 there are jo and z; 1= x+ry,y such that u(B(z;, 7y, (a—
§) < en(Blr,ry)) and B(z}, ;la —6)) C Bla, ?Tj) for 5 > jo. Therefore
por(j,a,ri,€) Z o — 6 > wluch (011t1adlcts (2.6). =

Proof of Proposition 1.14.
For i € IN, let A; = 1 — 27, Since x does not satisfy the doubling condition

at a, it follows that
p(Ba, 7))

{(Bla, A\ir))
for arbitrarily small values of 7. Thus, we may select a sequence {r;} | 0 such
that p(B(a,r;)) > 27p(B(a, \jr;)). Let {v;} be the sequence of measures given
by v; = mTﬂ,,.j#(p. {B{a,r;)) and take R > 0. Then,

> 2!

1#{B(a,r;} 0 Bla, Rry))
#(B(a; 7)) =t

and sup{v;(K) : j = 1,2,..} < co for all compact sets ){ C IR". Therefore
there is a subsequence {v;,} of {v;}, which converges weakly to some measure
v. 1t is easy to sec that v is a probability measure on B(0,1). We now see that
v(@B3(0,1)) = 1. Let C; = B(0, 1)\U(0, A;), then

v;(B(0, R)) =

(Y — p(B(a,r;,)\U(a, Airi)) o p(Bla, 3 \U e, Asri)) ok p .
7 (%) B X R

14



so v{C;) > limsupy_, ¥, (C) 2 1, and we get v(9B(0,1)) = lim;_,, v(C;) = 1. &
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