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a b s t r a c t

Four-Fermi quantum field theories in (2+1) dimensions lie among
the simplest models in high-energy physics, the understanding of
which requires a non-perturbative lattice formulation addressing
their strongly-coupled fixed points. These lattice models are also
relevant in condensed matter, as they offer a neat playground
to explore strong correlations in the quantum anomalous Hall
(QAH) effect. We give a detailed description of our multidis-
ciplinary approach to understand the fate of the QAH phases
as the four-Fermi interactions are increased, which combines
strong-coupling and effective-potential techniques, unveiling a
rich phase diagram with large-N Chern insulators and Lorentz-
breaking fermion condensates. Moreover, this toolbox can be
enlarged with recent advances in quantum information science,
as we show that tensor-network algorithms based on projected
entangled pairs can be used to improve our understanding of
the strong-coupling limit. We also present a detailed scheme
that uses ultra-cold atoms in optical lattices with synthetic spin–
orbit coupling to build quantum simulators of these four-Fermi
models. This yields a promising alternative to characterize the
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strongly-coupled fixed points and, moreover, could also explore
real-time dynamics and finite-fermion densities.

© 2022 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

One of the main tasks in condensed-matter physics is the prediction and classification of new
hases of matter, understanding how they can transform into each other via phase transitions [1].
ymmetry has played a key role in this endeavour, [2,3], since the way in which it breaks can be
sed to understand many ordering patterns at the microscopic level. Despite decades of intense
esearch, observing how different orderings arise from the same microscopic model, and how they
an be described by emerging effective theories that cannot be predicted by simply looking at
he individual microscopic constituents [4], is still a source of much fascination. This emergence
s typically a consequence of the interplay of symmetry and strong inter-particle correlations, the
atter being induced by interactions among the microscopic constituents. In condensed matter, these
onstituents typically correspond to the ions forming the crystal structure and the valence electrons,
ll of them interacting via Coulomb forces [5,6].
Narrow-band metals have turned out to be a particularly-rich playground for this emergence.

ere, the Coulomb interaction between the electrons is screened, and can be approximated by
local four-Fermi term that leads to the Hubbard model, the archetype of strongly-correlated

ermions in condensed matter [7]. The apparent simplicity of this model is deceptive, as it can host
n interaction-induced metal–insulator transition at partial band fillings [8], which defies the naive
and-theory distinction between insulators and conductors. In fact, in the half-filled case, these
o-called Mott insulators display anti-ferromagnetic ordering as a consequence of magnetic super-
xchange interactions and a phase transition where the spin rotational symmetry is spontaneous
roken [9,10]. Moreover, as one dopes this Mott insulator away from half filling, the interplay
f anti-ferromagnetism with the dynamics of the holes has been studied as a fully-electronic
echanism that may account for high-Tc superconductivity [11,12], as the mobility of holes can

elease the anti-ferromagnetic singlets, allowing them to condense into the superconductor.
Four-Fermi models have also played an important role at much higher energies, starting with

he pioneering work of Enrico Fermi on β-decay in nuclei [13,14]; a precursor to the theory
f electroweak interactions in the standard model of particle physics. Four-Fermi terms also
ppear in the so-called Nambu–Jona–Lasinio (NJL) models [15,16], introduced as a description of
nteractions between nucleons and predating the modern theory of the strong force in the quantum-
hromodynamics (QCD) sector of the standard model. NJL models are nowadays considered as
ffective theories that capture essential properties of QCD, such as dynamical mass generation
y the spontaneous breakdown of chiral symmetry [17]. Lowering the spacetime dimension, one
inds the Gross–Neveu model in 1+1 dimensions [18], where the specific form of the Four-Fermi
erms allows to study asymptotic freedom in a renormalizable framework, capturing in this way
nother essential feature of QCD. Note that, although all these four-Fermi models are defined
y continuum quantum field theories (QFTs) of self-interacting Dirac fermions, one can always
iscretize spacetime in a lattice [19,20], which leads to lattice field theories (LFTs) that are closer
n spirit to the aforementioned Hubbard models. These LFTs yield a non-perturbative approach to
nderstand the strong-coupling nature of the fixed points governing the chiral-symmetry-breaking
ransitions [21], around which one can perform a long-wavelength approximation and connect to
he QFTs [22].

This analogy between condensed matter and high-energy physics becomes more quantitative
n the so-called Dirac matter including, as paradigmatic examples, graphene [23], Weyl semi-
etals [24], and topological insulators and superconductors [25]. These materials have band
tructures that can be ultimately understood as specific lattice discretizations of Dirac-type Hamil-
onian QFTs. The perspective, however, is rather different. Whereas the lattice is an artificial
2
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scaffolding in LFTs, and the focus lies on the critical points around which one recovers the long-
wavelength physics independent of lattice artifacts, the lattices of Dirac matter are physical and play
a crucial role in determining the special properties of the phases. In the case of topological insulators
and superconductors, these properties are a consequence of a different driving mechanism for the
ordering of matter at the microscopic scale; a mechanism where topology and symmetry intertwine
to determine the groundstate properties. Conceptually, topological phases of matter differ from
those formed by spontaneous symmetry breaking (SSB), since they cannot be characterized in
terms of local order parameters dictated by an underlying SSB process. Instead, the groundstates
are characterized by quantized topological invariants, the values of which cannot change unless
the energy gap to the lowest-lying excitations closes, and a quantum phase transition takes
place [26]. Note that these so-called topological phase transitions do not require any symmetry
breaking. On the contrary, it might actually be the preservation of certain symmetries [27–29],
which determines the form of the topological invariant, and it becomes important to understand
the robustness of these phases with respect to external perturbations. Besides their fundamental
interest, these topological phenomena can lead to novel functionalities and promising technological
applications [30].

The epitome of the aforementioned robustness to external perturbations, such as disorder, occurs
n the quantum Hall effect [31]. Remarkably, this phase of matter has an underlying topological
nvariant [32] that corresponds to the first Chern number of a fibre bundle associated to the
lectronic band structure [33]. Moreover, this description is not limited to band theory, as the
hern numbers can be adiabatically connected to a many-body topological invariant when electron–
lectron interactions or disorder are switched on [34]. In fact, this invariant is responsible for the
obust quantization of the transverse conductivity under generic weak perturbations that do not
lose the gap of the system. In this case, regardless of their symmetry properties, these perturbations
annot induce back-scattering in current-carrying edge states that propagate along the boundaries
f the system [35,36], and can thus transport charge robustly even in the presence of an insulating
ap. In this way, the naive band-theory distinction between insulators and conductors is again
efied; only this time by the introduction of topology rather than correlations.
Coming back to the context of Dirac matter, the so-called Chern insulators [37–39] can feature

he above quantum Hall effect even in absence of any external magnetic field, leading to what is
urrently known as the quantum anomalous Hall (QAH) effect [40]. In a seminal work [37], which
timulated subsequent contributions [41,42] that laid the foundations of topological insulators and
uperconductors [25,26], Haldane showed that a time-reversal-breaking discretization of the Dirac
FT on a honeycomb graphene-type lattice can support a non-zero Chern number that is related
o the parity anomaly in (2+1)-dimensional quantum electrodynamics [43–46]. The associated
ransverse conductivity can again be associated with current-carrying edge states which circulate
n a single direction along the boundaries of the system in spite of the absence of a net magnetic
ield.

From a LFT perspective, the continuum QFT that describes the Haldane model is that of a pair
f Dirac fields with a different mass. Here, the doubling is related to a fundamental theorem for
he lattice discretization of a Dirac field [47,48], whereas the mass difference is an instance of
ilson’s prescription to deal with such a doubling [49]. The parallelism becomes clearer using
square-lattice discretization [38,39], sometimes refereed to as the Qi–Wu–Zhang model of the
AH effect. This model can be readily understood as a Hamiltonian formulation of LFTs [50],
n which time remains continuous, and it is only the spatial coordinates that get discretized
n a square lattice following Wilson’s prescription [49]. From this perspective, the topological
dge states that appear at the boundaries of these Chern insulators, and carry the transverse
urrent in the QAH effect [38,39], can be understood as lower-dimensional versions of the so-
alled domain-wall fermions [51]. In this context, the aforementioned topological invariants also
ppear in other dimensions, and control a Chern–Simons-type response to additional external gauge
ields [39,52,53]. We note that the QAH effect has been realized with thin films of semiconducting
etradymite compounds doped with magnetic atoms [54,55], as first proposed theoretically [56], or
n layered compounds with intrinsic magnetic order [57]. More recently, the QAH effect has also
een observed in magnetically-doped multi-layer systems, which have higher Chern numbers and
isplay plateau-to-plateau topological phase transitions [58,59].
3
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A fundamental question that has generated considerable interest in recent years is how topolog-
cal insulators and superconductors get modified in the presence of interactions, ultimately seeking
or new phases of matter driven by the interplay of symmetry, correlations and topology [60–63].
irst of all, starting from initial studies [34], we note that topological invariants can be generalized
o the many-body case [64,65], and formulated in terms of single-particle Green’s functions that
nveil the special role played by the self energy [66–70]. Additionally, there are entanglement-
elated quantities that give an alternative route to explore topology [71–73]. Equipped with these
any-body tools for the characterization of topological phases, let us now briefly discuss some
f the possible effects brought up by the inclusion of interactions. Due to the non-zero bulk
ap, one expects that topological insulators will be generally robust to weak interactions. As first
iscussed in [42], electron–electron interactions can renormalize this bulk gap, and stabilize the
opological phase further. In other situations, this renormalization of the band structure can even
nduce transitions from a trivial phase into a topological one [74,75]. Further interaction-induced
ffects can occur by means of SSB, as time-reversal symmetry can be spontaneously broken when
he interactions increase, such that a new topological phase that cannot be understood from the
enormalization of the free-particle parameters arises [76–78]. Note that SSB of unitary symmetries
an also take place, leading to order parameters that coexist with non-zero topological invariants,
eading to the concept of symmetry-breaking topological insulators induced by interactions [79–
1]. A final possibility brought up by interactions is that new topological phases arise without any
ree-particle counterpart, such as topological Mott insulators [82] or fractional Chern insulators [83–
5].
Despite this large body of theoretical work, the vast majority of materials that have been found

o host topological phenomena in the absence of strong external magnetic fields, only display weak
lectron–electron interactions. A notable exception is bilayer graphene, either twisted at a specific
agic angle [86–90], or misaligned with respect to a substrate [91]. Let us note, however, that the
icroscopic description of these materials differs markedly from the paradigmatic lattice models

hat have been thoroughly studied in the presence of Hubbard-type interactions [63], and where
ost of the interaction-induced effects discussed above have been identified. This also occurs for the
xperimental realizations of the QAH effect in thin-film materials [54,55,57,86], in which a Haldane-
ype model [38,39] serves as a guide to build a qualitative understanding, but where many of the
icroscopic details are clearly different [40]. Moreover, since the effective spinor degrees of freedom
re related to bonding/anti-bonding states in the two opposite surfaces of the thin film, interactions
ill not be described by a simple contact Hubbard-type term.
Moving away from condensed matter into the realm of atomic, molecular and optical (AMO)

hysics, the microscopic tunability of gases of ultracold atoms trapped in optical lattices [92] allows
ne to face the quantum many-body problem from a different perspective, that of quantum simu-
ations (QSs) [93–95]. The idea here is that one can control these dilute and highly non-relativistic
ases of atoms, making them behave according to a specific model of interest at a widely-different
cale. For instance, one may use these AMO quantum simulators to explore much denser systems
n condensed matter, or much more energetic ones in particle physics. Although research on QSs
ocused for some time on condensed-matter models [96–99], applications to high-energy physics
re becoming more popular in recent years [100–108]. The present context of topological Dirac
atter actually touches both of these directions, as recent experiments with ultra-cold fermions in
haken optical lattices have allowed to realize Haldane’s model for the first time [109]. In contrast
o the previous condensed-matter realizations, where the archetype lattice models serve to build
qualitative understanding, the Haldane model is an accurate description of this AMO experiment
nd, moreover, one can control the fermion filling and microscopic parameters, and even modify
he latter dynamically and measure real-time evolution.

Beyond the interest in observing interaction-induced effects in the QAH effect, we note that the
elated (2+1)-dimensional four-Fermi LFTs are typically controlled by strongly-coupled fixed points,
he properties of which can only be accessed by non-perturbative methods, and are still a subject
f active research [21,110,111]. One can thus exploit the interdisciplinary character of this field,
nd combine the different tools developed by these communities to advance our understanding
urther. For instance, in order to understand non-perturbative phenomena, one may employ a large-
expansion through which QFTs simplify significantly and become solvable in the limit of a large
4
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number of flavours N [112]. Within this framework, it has been possible to predict some of the
undamental features of QCD in the simpler four-Fermi Gross–Neveu model in 1+1d, including
asymptotic freedom and dynamical symmetry breakdown [18]. The large-N expansion is also very
mportant in four-Fermi models in (2+1) dimensions, as it offers a renormalizable framework that
ontrast the situation of a perturbative approach. In this article, we shall exploit large-N tools to
nderstand correlation effects in a QAH effect, and combine them with strong-coupling predictions
ased on the condensed-matter concept of super-exchange to understand the full phase diagram.
inally, exploiting the third facet, we give a detailed account of a cold-atom realization of the model
or a single flavour based on a scheme for synthetic spin–orbit coupling.

From the perspective of the QS of a correlated QAH effect, the most direct route would be
o explore a spinful version of the experiment with ultra-cold fermions in shaken honeycomb
attices [109]. In this case, the Hubbard interaction is directly implemented by the low-temperature
cattering dominated by two-particle s-wave collisions [92], which can actually be tuned by addi-
ional Feshbach resonances [113]. However, the combination of Hubbard interactions with periodic
haking has been hampered, in several experimental realizations, by a larger heating mechanism
ue to a denser spectrum of excitations. Here, the atoms get excited by resonantly absorbing quanta
rom the periodic drive that shakes the lattice, a process that causes an effective heating [114–
16]. In a recent manuscript [117], we have explored a different route to explore correlated
AH insulators and their connection to strongly-coupled four-Fermi QFTs. This alternative route
onsiders Fermi gases with synthetic spin–orbit coupling [118–120] induced by a so-called Raman
ptical lattice [121,122], which has been recently demonstrated in experiments [123–126]. Although
esidual photon scattering from the Raman beams can also induce some heating, it should not be
s severe as in the shaken optical lattice if sufficient laser power is available, allowing one to work
t sufficiently large Raman detunings. In presence of interactions, correlated phenomena may need
lower experimental time scales so this heating may again become a practical limitation. In this
ase, one may consider realizations based on alkaline-earth or lanthanide atoms, where it can be
urther minimized. Below, we describe this scheme in detail.

In this work, we start from a discretized anisotropic variant of a Gross–Neveu model with N
lavours of Wilson fermion in 2+1 dimensions. In contrast to common LFT approaches to the (2+1)d
ross–Neveu model, we dispense with the notion of chirality from the outset by restricting our
ttention to two-component spinors instead of the four-component ones that permit a definition
f a non-trivial γ 5 matrix [21,110]. Since chiral symmetry and its breakdown is a fundamental
ngredient of Gross–Neveu-type models, but is lacking in our case, we prefer to refer to the
urrent discretization as a four-Fermi–Wilson model. In the single-flavour limit, this lattice model
as a neat connection to a spin–orbit-coupled Hubbard model, bringing a direct connection to
he aforementioned QSs of spin–orbit-coupled Fermi gases in optical lattices. Although the large-N
pproximation is only exact in the limit N → ∞, we provide a detailed analysis that shows that
ur large-N calculations predict the same structure of the phase diagram as the N = 1 limit, which
an be explored using a super-exchange strong-coupling approach and various variational ansätze.
This article is organized as follows. In Section 2, we introduce our four-Fermi–Wilson model, and

escribe the topological properties of the non-interacting limit, showing that the model can host
-flavoured Chern insulators and allow for various topological phase transitions as the microscopic
are parameters are modified. In Section 3, we explore the opposite limit of very strong four-Fermi
nteractions and a single fermion flavour N = 1, which we approach by deriving an effective
amiltonian using the concept of super-exchange interactions. We show that this effective model
orresponds to a quantum compass model, where symmetry-breaking orbital ferromagnets can be
dentified using a variational mean-field method, and in the framework of tensor networks using
rojected entangled pairs (PEPs). In Section 4, we derive and solve the large-N gap equations, both
n continuous time and discretized time, showing that the aforementioned orbital ferromagnets
an be interpreted as fermion condensates that spontaneously break a Z2 inversion symmetry and
orbid recovering a QFT invariant under Lorentz boosts in the continuum limit. We discuss how
n additive renormalization and a suitable re-scaling must be considered in order connect both
ontinuum and discrete-time approaches. In Section 5, we use the discrete-time approach to obtain
n effective potential, which allows us to explore not only the symmetry-broken condensates, but
5
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also to delimit the topological QAH phase at intermediate interactions. Using the large-N self-
nergy in the symmetry-preserved region, we show that this QAH regions are characterized by
arge-N Chern insulators that display a non-zero value of a non-perturbative many-body topological
nvariant. We also discuss how the effective potential allows for a neat account of first- or second-
rder nature that separate these phases from the Lorentz-breaking condensates. Finally, in Section 6,
n experimental scheme for the QS of the single-favour four-Fermi–Wilson model with ultra-
old atoms in optical lattices is presented, where we also discuss in detail how the available
easurement protocols could be used to explore this model in the laboratory.

. Four-Fermi–Wilson model in 2+1 dimensions

.1. Chiral and non-chiral four-Fermi field theories in 2+1 dimensions

The original Gross–Neveu model is a chiral-invariant QFT describing N flavours of massless Dirac
ermions, which live in one spatial and one time dimension, and interact via four-Fermi terms [18].
his model gained considerable attention in the early days of QCD, since it is a renormalizable
ield theory that shares important features with QCD such as asymptotic freedom, chiral symmetry
reaking by dynamical mass generation, and dimensional transmutation, all of which can be
xplored in a much simpler setup. In a Hamiltonian field-theory formulation, this model can be
asily extended to 2+1 dimensions, where the Hamiltonian density H (x) corresponding to the
amiltonian H =

∫
d2x :H (x) : reads

H = −

N∑
f=1

ψ f(x)(iγ
j∂j)ψf(x) −

g2

2N

(
N∑

f=1

ψ f(x)ψf(x)

)2

, (1)

here the repeated-index summation only runs over the spatial indexes j ∈ {1, 2}. Here, we have
ntroduced the field operators ψf (x), which annihilate a fermion of a given flavour f ∈ {1, 2, . . . ,N}

at a specific spatial location x = (x, y)t , and the corresponding adjoints ψ f(x) = ψ
†
f (x)γ0, which

re defined in terms of the analogous creation operators ψ†
f (x). While the first term in Eq. (1)

escribes the kinetic energy of N massless Dirac fermions, the second one represents the four-Fermi
erm responsible for intra- and inter-flavour interactions. Note that, in contrast to the (1+1)-
imensional case [18], the coupling strength g2 is not dimensionless, but has units of inverse mass
g2

] = M−1 when considering natural units h̄ = c = 1. By power counting, the four-Fermi term is no
onger marginal as in (1+1) dimensions [18], but becomes irrelevant thus forbidding a perturbative
enormalization. Remarkably, a large-N expansion provides such a renormalizable framework, and
ne can explore the nature of the strongly-coupled fixed point to different orders of O(1/Nα) [110].
In order to guarantee Lorentz invariance, the above Hamiltonian is expressed in terms of

amma matrices γ µ, such that fermionic fields become spinors with well-defined transformations
nder the Lorentz group. These matrices must satisfy Clifford’s algebra {γ µ, γ ν} = 2ηµν , where
= diag(1,−1,−1) is Minkowski’s metric, and the spacetime indexes for a (2+1)-dimensional

pacetime are µ, ν ∈ {0, 1, 2}. In 2+1 dimensions, there are two possible strategies to satisfy this
lgebra. The simplest one is to choose a set of adapted Pauli matrices, such as

γ 0
= σ z, γ 1

= iσ y, γ 2
= −iσ x, (2)

hich leads to two-component spinor fields for each of the flavours ψf(x) = (ψf,1(x), ψf,2(x))t.
he would-be chiral gamma matrix, which must be Hermitian and anti-commute with the rest,
s typically defined as γ 5

= iγ 0γ 1γ 2, which can be easily checked to be trivial in this case γ 5
= I2.

ccordingly, it does not satisfy the anti-commutation requirement {γ5, γµ} = 0, and one speaks
f the absence of chirality. This is actually a generic feature in all odd spacetime dimensions with
n irreducible representation of gamma matrices, as one already exhausts all possibilities with the
ammamatrices assigned to the spacetime indexes. An alternative is to consider higher-dimensional
epresentations of the gamma matrices, such as

γ 0
= σ z

⊗ σ z, γ 1
= I ⊗ (iσ y), γ 2

= I ⊗ (−iσ x), (3)
2 2

6
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for (2 + 1) dimensions. This representation allows for a pair of choices γ 5
∈ {σ x

⊗ σ z, σ y
⊗ σ z

}

ulfilling the Hermiticity and anti-commutation constraints. For either choice, the four-Fermi QFT (1)
s invariant under a discrete axial rotation

ψf(x) ↦→ ei
π
2 γ

5
ψf(x) = iγ 5ψf(x), (4)

and one speaks of a discrete chiral symmetry that prevents the fermions from having a mass [21,
110]. In this work, however, we stick to the lowest-dimensional representation (2), and thus
dispense with the notion of chirality and axial rotations from the outset. As discussed below,
however, there will still be remnants of dynamical mass generation and strongly-coupled phe-
nomena, although one cannot relate them to chiral symmetry breaking. We note that our model
exhibits a global U(N) flavour symmetry, which becomes apparent by expressing the fields as a
vector Ψ (x) = (ψ1(x), . . . , ψN (x))t and applying the transformation Ψ (x) ↦→ (u ⊗ I2)Ψ (x) on both
omponents of the N-flavoured Dirac spinors, where u ∈ U(N).

2.2. Wilson-type discretizations of four-Fermi field theories and Hubbard bilayers

Let us now describe the lattice scheme chosen to regularize the QFT (1). First, spatial coordinates
are discretized by introducing an anisotropic lattice spacing, leading to a simple rectangular Bravais
lattice described by

Λs = {n1a1e1 + n2a2e2 : n = (n1, n2) ∈ ZN1 × ZN2}. (5)

This lattice is determined by the lattice spacings a1, a2, the unit vectors e1, e2, the number of
olumns (rows) N1 (N2) along the x- and y-directions, and the corresponding spatial area As =

j Njaj. In the Hamiltonian version [127] of the naive-fermion prescription [20], the Hamiltonian
ensity HN (x) in vector representation includes the following tunnelling processes in the spatial
attice

HN (x) = −

∑
j

(
Ψ (x)

i(IN ⊗ γ j)
2aj

Ψ (x + ajej) + H.c.
)
, (6)

which follow from the substitution of the spatial derivatives by forward finite differences. The
corresponding Hamiltonian is given by HN = a1a2

∑
x∈Λs

:HN (x) :, where the integrals have been
replaced by sums. We note that the lattice anisotropy a1 ̸= a2 should not lead to an anisotropic
speed of light, such that Lorentz invariance will still be recovered in the continuum limit. Note
that, from a condensed-matter perspective, the discretization anisotropy translates into anisotropic
nearest-neighbour tunnellings (6), and has thus a natural microscopic interpretation. As discussed
at length in the following sections, this anisotropy will play an important role in the correlation
effects of a QAH effect.

As is well-known in LFT [47,48], this naive-fermion approach gives rise to additional Dirac
fermions in the continuum limit, known as fermion doublers, which actually appear as long-
wavelength excitations around the boundaries of the Brillouin zone. As advanced in the introduc-
tion, we consider Wilson’s prescription [49] to deal with the doublers, which can be sent to the
UV-cutoff by introducing an additional mass term that is proportional to the inverse lattice spacings
1/aj. This is achieved through the following Wilson term

HW (x) =

∑
j

(
Ψ (x)

rj
2aj

(
Ψ (x) − Ψ (x + ajej)

)
+ H.c.

)
(7)

where rj is an anisotropic version the dimensionless Wilson parameter. This term is usually
supplemented by an additional bare mass m via

HM (x) = mΨ (x)Ψ (x). (8)

The Wilson term (7) stems from the finite-difference discretization of a second-derivative on
he fields, which would be an irrelevant perturbation in the continuum QFT. Accordingly, one may
7
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Fig. 1. Hubbard bilayer for the single-flavour four-Fermi–Wilson model: Visualization of hopping and interaction terms
in the 2+1 dimensional Hamiltonian field theory of Eq. (10) for N = 1. The two-component Dirac spinor ψf(x) =

ψf,1(x), ψf,2(x))t can be mapped onto fermionic operators for the up/down layers cn,u, cn,d . On the left panel, the intra-
ayer terms t1, t2 describe the tunnelling of fermions along the x and y directions of the rectangular lattice (3), such that
he different signs of the tunnelling strengths allow one to implement the Wilson term (7). For our choice of gamma
atrices, the bare mass (8) corresponds to an energy imbalance ±∆ϵ/2 between the two layers. On the right panel,
e depict the inter-layer terms t̃1, t̃2 corresponding to the tunnelling of fermions along the x and y directions with the
imultaneous change of layer. Finally, the four-Fermi term (9) can be described as an inter-layer Hubbard interaction of
trength Vv along the vertical direction. The correspondence of the microscopic parameters is derived in Section 3.

xpect that the doublers shall not influence the universal low-energy properties in the continuum
imit, which can be recovered around certain critical points of the lattice model. Let us emphasize,
owever, that this expectation can be a drastic oversimplification, especially in the presence of
dditional four-Fermi terms

Vg (x) = −
g2

2N

(
Ψ (x)Ψ (x)

)2
. (9)

As already noted in the introduction, the critical points of the Wilson-discretized model can
actually separate topological from trivial phases, where the relative signs of the doubler masses
play a crucial role. Such phases have widely different low-energy behaviours, as is the case of the
QAH effect. This phase of matter can support a non-zero topological invariant [39,52,53], and a
transverse current in spite of the bulk gap [37–39], which is carried by mid-gap current-carrying
edge states that may be understood as (1+1)-dimensional versions of domain-wall fermions [51].
In fact, from this perspective [128–135], topological insulators in different symmetry classes and
dimensions [136] correspond to lower-dimensional versions of these domain-wall fermions [51]
with different representations of the Clifford algebra. In the trivial phase, on the other hand, these
edge states are absent, and the long-wavelength description of the model is that of a trivially gapped
phase. These differences can be formalized quantitatively in the presence of interactions by means of
the renormalization group [137,138], as explicitly shown for lower-dimensional instances in [133].
The other possibility, also found in lower-dimensional models [130,131], is that the interplay of
interactions and topology leads to critical lines in the phase diagram that contain continuum QFTs
defining different universality classes.

The full Hamiltonian of the four-Fermi–Wilson model [117] can be defined by summing up the
four terms defined above

H = a1a2
∑
x∈Λs

:HN (x) + HW (x) + HM (x) + Vg (x) : . (10)

As displayed in Fig. 1 for the single-flavour limit N = 1, and discussed in more detail in the following
section, the discretized model can be regarded as a bilayer model, where the upper (lower) plane
belongs to the first (second) component of the Dirac spinor. Within this picture, and in light of
our choice of gamma matrices (2), the first contribution (6) describes inter-layer tunnellings. The
Wilson term (7) contributes to intra-layer tunnellings of opposite strengths for each of the layers
and, together with the bare mass (8), determines the energy imbalance between the upper and
8
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lower layers. Finally, the four-Fermi coupling (9) is depicted as spring that describes the interactions
of two fermions that occupy simultaneously the same site of the upper and lower layers, and can
be seen to correspond to a Hubbard-type density–density interaction.

This representation can be interpreted as a (2+1)-dimensional generalization of Creutz’s cross-
link ladder [139], a paradigmatic model of topological insulators in the AIII class that has been
he subject of intensive studies in recent years [130,140–147]. If we now introduce more flavours
> 1, the picture would be that of stacked bilayers that get coupled among each other via the four-

ermi term. This perspective can be understood in light of the synthetic dimensions [148,149], and
ill offer valuable insight when exploring the phase diagram of the model in the strong-coupling

imit. Let us note, however, that we can interpret this model as a Fermi–Hubbard model with a
eneralized spin–orbit coupling, which also yields valuable insight as it underlies the proposal for
he QS cold-atom scheme, briefly presented in [117], and described in detail below.

.3. N-flavoured Chern insulators and the quantum anomalous Hall effect

Due to the discrete translation symmetry introduced by the lattice (5), it is natural to Fourier
ransform the fields

Ψ (x) =
1

√
As

∑
k∈BZ

eik·xΨ (k) (11)

where the momenta k = (k1, k2)t are restricted to the first Brillouin zone BZ = {kj = −π/aj +

πnj/Njaj : nj ∈ ZNj , j ∈ {1, 2}}, and we assume periodic boundary conditions such that the BZ is
2-torus. After this Fourier transform, and in the absence of the four-Fermi term (9), the quadratic
ree Hamiltonian obtained by restricting the sum in Eq. (10) to the naive, Wilson and bare mass
erms, can be rewritten as

HF =

∑
k∈BZ

Ψ †(k)hk(m)Ψ (k). (12)

ere, the single-particle Hamiltonian reads

hk(m) = dk(m) · (IN ⊗ σ), (13)

where we have introduced the vector of Pauli matrices σ, and the following mapping of the BZ to
a real vector

dk(m) =

⎛⎝ sin(k1a1)
a1

,
sin(k2a2)

a2
,m +

∑
j

rj
aj

(
1 − cos(kjaj)

)⎞⎠ . (14)

This can be readily diagonalized yielding 2N energy bands, a pair ϵ±(k) = ±ϵ(k) = ± ∥ dk(m) ∥

or each flavour. These bands display a relativistic dispersion at small momenta δkj ≪ 1/aj, namely
(δk) ≈ (δk2

+ m2)1/2, where we find an effective speed of light c = 1 in accordance with natural
nits and the emergence of Lorentz invariance. Note that there are additional points in k-space,
nd = (πnd,1/a1, πnd,2/a2) for nd = (nd,1, nd,2) ∈ {0, 1}×{0, 1}, around which the energy dispersion
orresponds again to that of a continuum Dirac equation with a non-zero mass. These fermion
oublers can thus be described by a collection of Dirac spinors {Ψnd (x)}nd with N flavours, which
re governed by the following long-wavelength quantum field theory in the free case

HF =

∫
d2x

∑
nd

Ψ nd (x)
(
−i
(
IN ⊗ γ j

nd

)
∂j + mnd

)
Ψnd (x). (15)

ere, depending on the particular doubler, the corresponding representation of the gamma matrices
ay involve different signs with respect to that of the original QFT (2), namely

γ 0
= γ 0, γ 1

= (−1)nd,1γ 1, γ 2
= (−1)nd,2γ 2. (16)
nd nd nd

9



L. Ziegler, E. Tirrito, M. Lewenstein et al. Annals of Physics 439 (2022) 168763

B
s
w
e
h
h
v
t
q

v

E
a

Likewise, the effective mass depends on the particular doubler, and is usually referred to as a Wilson
mass

mnd = m +
2r1
a1

nd,1 +
2r2
a2

nd,2. (17)

We thus see that, in addition to the Dirac fermion of mass m(0,0) = m around the centre of the
rillouin zone, the so-called Γ point for nd = (0, 0); there are three additional fermions at high-
ymmetry points, such as the corner R for nd = (1, 1), and the edge centresM for nd ∈ {(1, 0), (0, 1)},
hich have Wilson masses that scale with the inverse lattice spacings. If the bare mass is small
nough maj ≪ 1, and one takes the continuum limit aj → 0, these doublers become infinitely
eavy and are naively expected to decouple from the universal long-wavelength physics. Note,
owever, that the bare mass is simply a lattice parameter and could also take large negative
alues maj ≈ −2rj, such that some of the Wilson masses (17) flip their sign. This connects to
he band-inversion that leads to topological insulators [25,26], and is responsible for the non-zero
uantization of the transverse conductivity in the QAH effect [37–39].
In the non-interacting regime, the Thouless–Kohmoto–Nightingale–den–Nijs formula [32] pro-

ides a direct link of such a transverse conductivity σxy with the Chern numbers {NCh,b} that
characterize the band structure. Mathematically [33], these correspond to the topological invariants
associated to the fibre sub-bundles for each occupied energy band. In the present context, N bands
get fully occupied in the half-filled groundstate, such that the transverse conductivity reads

σxy =
e2

2π h̄
NCh, NCh =

N∑
b=1

NCh,b. (18)

These Chern numbers turn out to be proportional to the Berry phase γb defined as the integral of the
Berry curvature in momentum space F

ij
b (k) = ∂kiA

j
b(k)−∂kjA

i
b(k), where A b(k) = ⟨ϵb(k)|i∇k |ϵb(k)⟩

is the Berry connection [150]. In the present context, and considering periodic boundary conditions
to explore the bulk band structure, the Brillouin zone corresponds to a toroidal manifold acting as
the base space of the principal U(1) bundle associated to the eigenstates where the Chern invariants
are defined

NCh,b = −
1
2π
γb = −

1
4π

∫
BZ

dki ∧ dkj F
ij
b (k). (19)

As neatly discussed in [151], this topological invariant can be rewritten as the Pontryagin index,
the winding number of the mapping between the momentum-space 2-torus and the unit 2-sphere
d̂ : T2

→ S2, given by the unitary vector field d̂k(m) = dk(m)/∥ dk(m) ∥ obtained by normalizing
q. (14). This winding number counts how many times the mapping wraps around the unit sphere,
nd yields

NCh,b =
1
4π

∫
BZ

d2k d̂k(m) · (∂k1 d̂k(m) ∧ ∂k2 d̂k(m)). (20)

As one can numerically check, this integral can be accurately evaluated using the long-wavelength
approximation (15). Each of the N-flavour massive Dirac fermions, including the doublers, may be
considered as a monopole for the Berry curvature with a non-zero contribution to the winding
number

NCh =
N
2

∑
nd

(−1)(nd,1+nd,2)sign(mnd ). (21)

Assuming that the Wilson parameters are rj = 1, the lattice constants are a1 ≤ a2, and introducing
their anisotropy ratio

ξ2 =
a1 (22)

a2

10



L. Ziegler, E. Tirrito, M. Lewenstein et al. Annals of Physics 439 (2022) 168763

m
i
o
e
a
t

f

l
t
T
a
q
s
v
p
m
n
t

a
i
b
f
a
n
r

Fig. 2. Phase diagram and non-interacting QAH phases: We define parameter space as {ma1, ξ2, g2/2a1}, such that the
free-fermion case g2

= 0 corresponds to the base plane where one can depict the Chern numbers (21) in a contour plot.
In this limit, one finds quantum anomalous Hall (QAH) and trivial band insulating (TBI) phases separated by topological
quantum phase transitions. For spatial anisotropy ξ2 =

1
2 , there are four critical points which, according to Eq. (23), lie at

a1 ∈ {−3,−2,−1, 0} and are marked with green dots in the figure where the Wilson mass (17) of a single fermion gets
nverted by changing m. In the isotropic case ξ2 = 1, there are only three critical points depicted by red dots. The central
ne at ma1 = −2 marks the mass inversion of a couple of fermions, and thus connects two different QAH phases with
dge currents circulating in opposite directions. In the sections below, we shall explore the vertical direction as g2 > 0
long the two planes ξ2 ∈ {

1
2 , 1} shaded green/red. (For interpretation of the references to colour in this figure legend,

he reader is referred to the web version of this article.)

ulfilling ξ2 < 1, we find that the Chern numbers are

NCh =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 0 < ma1,

−N, if − 2ξ2 < ma1 < 0,
0, if − 2 < ma1 < −2,

+N, if − 2(1 + ξ2) < ma1 < −2ξ2,
0, if ma1 < −2(1 + ξ2).

(23)

As advanced previously, as the bare mass takes negative values proportional to the inverse
attice spacings, the groundstate of the system can support a non-zero Chern number (23), and thus
ransport current transversally (18). We shall refer to these states as N-flavoured Chern insulators.
he specific values of the dimensionless parameter −ma1 where the Chern number undergoes
n abrupt change are associated with the closure of the energy gap and, thus, to a second-order
uantum phase transition that cannot be characterized by an order parameter or any spontaneous
ymmetry breaking. On the contrary, there is an observable (18) that displays robust quantized
alues depending on an underlying topological invariant (21) that changes across these critical
oints and leads to a topological quantum phase transition (TQPT). Each of the TQPTs in Eq. (23) is
arked by the mass inversion of one of the emerging Dirac fermions (15). Only when the number of
egative Wilson masses (17) is odd, does the groundstate lead to a Chern insulator with a non-zero
ransverse conductivity.

For instance, in the single-flavour case, there are topological phases with NCh ∈ {1,−1} char-
cterized by either 1 or 3 Dirac fermions with a negative Wilson mass, respectively. As depicted
n Fig. 2, for spatial anisotropies ξ2 ̸= 1, these Chern insulators are separated in parameter space
y an intermediate trivial phase with NCh = 0, which is characterized by the same number of Dirac
ermions with negative and positive Wilson masses. In the isotropic limit a1 = a2, the Wilson masses
t the edge centres M of the Brillouin zone become degenerate m(1,0) = m(0,1), such that there is
o intermediate trivial phase separating the two QAH phases with NCh = ±1. We note that the
egime of opposite anisotropy ξ > 1 has a completely analogous description (23), where one must
2

11
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only exchange a1 ↔ a2 in the expressions above. Also, although we have set rj = 1, we note that
ifferent values of the Wilson parameters would simply lead to rescalings of the bare mass axis to
a1 → ma1/r1, and the spatial anisotropy ξ2 → ξ2r2/r1, without changing the overall structure of
he phase diagram. In the following, we will set rj = 1. The question to be answered below is to
hat extent these topological phases survive for substantial non-zero interactions g2 > 0, as one

explores the parameter space in the vertical direction of Fig. 2.

3. Strong couplings and orbital magnetism

In this section, we explore the strong-coupling limit where the four-Fermi term (9) dominates.
We note that, as discussed below Eq. (1), the four-Fermi coupling strength g2 is not dimensionless,
as for the Gross–Neveu model in (1+1) dimensions where dynamical mass generation yields an
example of dimensional transmutation [18]. In (2 + 1) dimensions, the coupling strength has units
of inverse mass, and we can define the strong-coupling regime of the four-Fermi–Wilson model by
letting the bare parameters g2/aj ≫ 1, ∀j.

3.1. Super-exchange and quantum compass models

Let us start by discussing the single-flavour limit N = 1. To find the explicit connection with
the Hubbard bilayer depicted in Fig. 1, let us note that the lattice field operators in Eq. (11) have
dimensions of mass, and can be thus rescaled to define the upper- and lower-layer ℓ ∈ {u, d}
fermionic operators

cn,u =
√
a1a2ψ1(x), cn,d =

√
a1a2ψ2(x), (24)

for the anisotropic rectangular lattice (5). These operators satisfy the standard anti-commutation
relations used in condensed matter {cn,ℓ, c

†
n′,ℓ′

} = δℓ,ℓ′δn,n′ . This rescaling leads directly to the
following free Hamiltonian

HF = −

∑
n,j

(
tj
(
c†
n,ucn+ej,u − c†

n,dcn+ej,d

)
+ H.c.

)
−

∑
n,j

(
ij t̃j
(
c†
n,ucn+ej,d + (−1)jc†

n,dcn+ej,u

)
+ H.c.

)
+

∑
n,j

∆ϵ

2

(
c†
n,ucn,u − c†

n,dcn,d
)
,

(25)

here we recall that j = 1, 2. Here, we have introduced the intra- tj and inter-layer t̃j tunnellings
long the jth axis in the first two lines, depicted by black arrows in Fig. 1

t1 =
1
2a1

, t2 =
1
2a2

, t̃1 =
1
2a1

, t̃2 =
1
2a2

. (26)

The third line of the above Hamiltonian contains an energy imbalance∆ϵ between the layers, which
s depicted by the energy scale in Fig. 1, and corresponds to

∆ϵ

2
= m +

1
a1

+
1
a2
. (27)

In addition, up to irrelevant quadratic terms that only contribute with a constant shift of the
energies for a fixed number of particles, the single-flavour four-Fermi term (9) can be rewritten as
a density–density Hubbard interaction between the two layers

Vg =

∑
n

Vvc†
n,ucn,uc

†
n,dcn,d, (28)

here the Hubbard interaction strength is repulsive

Vv =
g2

. (29)

a1a2

12
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Fig. 3. Super-exchange processes in the strong-coupling limit: For g2/aj ≫ 1, the half-filled groundstate corresponds to
Mott insulator where fermions occupy single sites of each layer, avoiding double occupancies of neighbouring sites

long the vertical direction (i.e. doublons). This is can be achieved by different fermion configurations corresponding to
ndividually half-filled layers, as depicted in the left schemes of (a) and (b). Sequential tunnelling processes can virtually
reate doublons with an energy cost proportional to the Hubbard interaction strength Vv and, as depicted by the central
anels, connect to a different groundstate configuration that is consistent with the Mott-insulating constraint. The depicted
uper-exchange processes correspond to (a) single spin-flip along the y axis, and (b) double spin-flip along the x axis.

According to the strong-coupling condition g2/aj ≫ 1, we see that the Hubbard interactions
re much larger than any of the intra- or inter-layer tunnellings in this particular regime, since
v ≫ 1/aj = |tj| = |t̃j|. Accordingly, the half-filled groundstate corresponds to a Mott insulator
ithout any pair of fermions occupying simultaneously both layers at the same site (see Fig. 3).
ollowing the condensed-matter nomenclature, we call such high-lying excitations doublons, which
ecessarily appear as we dope the system away from half-filling, where a non-zero charge gap
ppears. The remaining question to address is if this Mott insulator is featureless, or if there is
ome ordering with respect to the orbital/layer degrees of freedom and a non-zero orbital gap.
Although the tunnelling of fermions is inhibited in the half-filled Mott insulator, as it leads

o the creation of doublons with a very large energy cost, there can be second-order processes
here such doublons are virtually created and annihilated. These virtual tunnellings, also known as
uper-exchange processes [9,10], are the leading perturbative corrections and become responsible
or the antiferromagnetic ordering of Mott insulators in the strong-coupling limit of the standard
ubbard model, as discussed in the introduction. In the present context, analogous super-exchange
13
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mechanisms can be formalized using the language of SU(2) orbital spin operators

τ xn = c†
n,ucn,d + c†

n,dcn,u,

τ yn = ic†
n,dcn,u − ic†

n,ucn,d,

τ zn = c†
n,ucn,u − c†

n,dcn,d,

(30)

nd a Schrieffer–Wolff transformation [152] with the following graphical interpretation. Let us start
rom a common situation that is also found in the standard Hubbard model if we consider that
he spin up/down states of the electrons correspond to the two layers. In this process, a pair of
ermions occupying neighbouring sites in different layers tunnels, creating a virtual doublon, and
hen annihilates it through a second tunnelling event. This may lead to an effective swap of the
ermions that can be interpreted as a spin-flip exchange |↑n,↓n+ej⟩ → |↓n,↑n+ej⟩ along any of
the two spatial directions (see Fig. 3(a) for such an spin-flip exchange along the y axis). We note
that, due to the anisotropic fermion tunnellings (see Fig. 1), these spin-flip exchanges will have
different strengths along the two axes, the specific value of which can be obtained through the
Schrieffer–Wolff formalism J⊥,1 = −1/g2ξ2, J⊥,2 = −ξ2/g2.

A new virtual process allowed by the pattern of inter-layer tunnellings, with no counterpart in
the standard Hubbard model, occurs for a pair of fermions occupying neighbouring sites within
the same layer. These fermions can tunnel to the adjacent site by simultaneously changing layer,
virtually creating a doublon, and then annihilate it through a second inter-layer tunnelling event.
This can lead to an effective pair-tunnelling between the different layers that is consistent with
the Mott-insulating state, and may be interpreted as a double-spin-flip exchange |↑n,↑n+ej⟩ → |↓n
,↓n+ej⟩ along any of the two spatial directions (see Fig. 3(b) for such a double-spin-flip exchange
along the x axis). In this case, the anisotropy and the different phases of the inter-layer tunnellings
conspire to yield spin flips of a different strength, but also of an opposite sign depending on direction
J̃⊥,1 = +1/g2ξ2, J̃⊥,2 = −ξ2/g2. This sign difference is crucial, as the combination of the two types
of spin-flip process can be rewritten as the following effective spin model with direction-dependent
interaction:

Heff =

∑
n

(
Jxτ xnτ

x
n+e2 + Jyτ ynτ

y
n+e1 − hτ zn

)
, (31)

here we have introduced the following coupling strengths

Jx =
−a1
2g2a2

, Jy =
−a2
2g2a1

, h = −m −
1
a1

−
1
a2
. (32)

Let us note that, in contrast to the original lattice model (10) we started from, the above model
only contains nearest-neighbour quartic terms, and must be supplemented by a so-called Gutzwiller
projector PG = Πn(1 − c†

n,ucn,uc
†
n,dcn,d) onto the no-doublon subspace. Accordingly, at half filling,

very site labelled by n is filled with a single fermion that may occupy either layer, such that the
rojected orbital four-Fermi operators (30) can be represented in a tensor-product Hilbert space
eff = ⊗nC2

= ⊗nspan{|↑n⟩, |↓n⟩} using the standard Pauli matrices

τ αn = I2
m−1
· · · ⊗I2 ⊗ σ α ⊗ I2⊗

N1N2−m
· · · ⊗I2, (33)

where m = (n2 − 1)N1 + n1 labels the sites of the rectangular lattice from east to west and
south to north. In the rest of this section, we use this tensor-product description of the strong-
coupling Hilbert space. This allows us to interpret Eq. (31) as a spin model with ferromagnetic
couplings (32), such that the original fermionic statistics no longer apply. We note that, by
performing a unitary operation flipping the operators τ xn, τ

y
n →, (−1)(n1+n2)τ xn, (−1)(n1+n2)τ

y
n in a

checkerboard pattern, the ferromagnetic couplings become anti-ferromagnetic Jx, Jy → −Jx,−Jy,
while the transverse field is preserved. There is thus no fundamental difference between the
ferromagnetic or anti-ferromagnetic spin models.

Notably, this spin model (31) belongs to the family of quantum compass models [153]. In
comparison to the Heisenberg model [154], which arises in the strong-coupling limit of the
standard Hubbard model [155], there are no τ zτ z interactions. Moreover, τ xτ x interactions only
14
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Fig. 4. Scheme of the 90◦ quantum compass model in a transverse field: The orbital spins are arranged on the sites of
rectangular lattice, where the inset depicts the mapping of the spin states to the two possible distribution of fermions
voiding doublons. The energy difference between these two spin states is proportional to the transverse field h. The spin–
pin interactions can be depicted by blue (red) links forming 90◦ , which represent a τ yτ y (τ xτ x) coupling of strength Jx
Jy). The wavy lines represent the two types of sliding symmetry described in the text. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)

ouple neighbouring sites along the y-direction, whereas the τ yτ y interactions do so along the
x-direction, as depicted in the scheme of Fig. 4. Up to an irrelevant relabelling, this corresponds
to the anisotropic 90◦ compass model in a square lattice [156], since Jx ̸= Jy in general (32). This
characteristic directionality of the spin–spin interactions, which are no longer invariant under C4
rotations of the spatial lattice, evokes a compass that distinguishes north/south from east/west
directions. In the honeycomb lattice [157], a similar directionality is responsible for the appearance
of intrinsic topological order in a spin-liquid groundstate [158,159]. Again, this ordering cannot
be understood by the spontaneous breakdown of symmetry or by the onset of a non-zero order
parameter, all of which are absent in spin liquids even down to zero temperature. Instead, intrinsic
topological order hosts long-range entanglement in the groundstate and anionic excitations, which
differs from the QAH phases that have been discussed so far.

In the case of the square lattice, the anisotropic 90◦ compass model for a vanishing trans-
verse field h = 0 (31) has been thoroughly studied from both condensed-matter and quantum-
information perspectives. This model is invariant under the so-called sliding symmetries [156,
160], which lie midway between a local gauge symmetry and a purely global one. These sliding
symmetries consist of strings formed by the product of τ xn, τ

y
n operators along rows and columns

Xn2 =

∏
n1

τ x(n1,n2), Yn1 =

∏
n2

τ
y
(n1,n2)

which, due to the interaction directionality, clearly commute

with the Hamiltonian [Xn2 ,Heff] = [Yn1 ,Heff] = 0, but anti-commute with each other {Xn2 , Yn1} = 0,
∀n1, n2. In Kitaev’s toric [161] and surface [162–164] codes for quantum error correction (QEC),
where the spins are arranged on the lattice links rather than the sites and interact via four-body
terms instead of two-body ones, these sliding symmetries also appear along rows and columns
of the real and reciprocal lattices, and can be related to Dirac’s electric and ’t Hooft’s magnetic
field lines of a Z2 lattice gauge theory [165–167]. This underlying gauge symmetry allows one to
identify an extensive set of local operators that commute with the Hamiltonian and with each
other, and generate the so-called stabilizer group [168] under which the groundstate manifold
remains invariant. Moreover, these stabilizers also allow one to connect the sliding symmetries
acting on different rows (columns), such that they have the same effect on the groundstate
manifold. In this way, one can use the sliding symmetries as unitary operations on logical qubit(s)
encoded in the groundstate manifold. Although these logical qubits are not inherently robust to
noise, one can perform QEC by measuring the local stabilizers, inferring the most likely error and,
subsequently, correcting it by applying simple unitaries to bring the system back to the groundstate
manifold, withstanding a considerable amount of physical errors [169]. From a condensed-matter
15
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perspective, the groundstate of the toric/surface-code Hamiltonian is a quantum spin liquid with
intrinsic topological order rather than symmetry-breaking long-range order, such that the encoded
logical qubits and QEC codes are typically referred to as topological qubits and topological codes,
respectively.

For the 90◦ compass model (31), on the contrary, there is no Z2 gauge symmetry and the
commuting set of stabilizers is no longer formed by local observables. Instead, one defines the
stabilizers by taking the product of two sliding symmetries along a neighbouring pair of rows
(columns) Xn2Xn2+1

(
Yn1Yn1+1

)
, which leads to the so-called subsystem Bacon–Shor codes [170].

Although gauge symmetry is no longer present in these codes, the underlying notion of redundancy
that underlies such local symmetries still appears in a different guise. These codes host additional
gauge qubits, the state of which is irrelevant, and can be manipulated using certain gauge operations
without affecting the encoded logical information [171]. This can be exploited to improve the
QEC routines. For instance, QEC based on the Bacon–Shor code can still be performed by the
sequential measurements of a set of local gauge operators corresponding to some of the compass-
model pairwise interactions (31), such that their product yields the measurement outcome of the
desired non-local stabilizer. This approach lowers the overhead and complexity with respect to
fault-tolerant protocols for the toric/surface code [172,173] but, on the other hand, can only attain
a bounded reduction of the logical error rate with respect to the physical one, which is achieved for
intermediate optimal lattice sizes [174]. Interestingly, one may also use these pairwise interactions
to modify the stabilizers by a so-called gauge fixing, making the encoded logical qubits more robust
to certain types of biased errors. This leads to the so-called two-dimensional compass codes which,
in contrast to Bacon–Shor codes, have a non-zero error threshold, below which the protection of
the logical qubits can be improved arbitrarily by steadily increasing the lattice size [175,176].

Regardless of the relevance of the 90◦ compass model for QEC, the limit of zero transverse field
h = 0 has also received considerable attention from the condensed-matter community. Note that
the total number of sliding symmetries Xn2 , Yn1 scales with half of the perimeter of the square lattice
N1 +N2, which could lead to exponentially-large groundstate degeneracies as occurs for classically-
frustrated magnets. Since these symmetries anti-commute with each other {Xn2 , Yn1} = 0, while
the aforementioned stabilizers satisfy [Xn2Xn2+1, Yn1 ] = 0 = [Xn2 , Yn1Yn1+1], ∀n1, n2, one can indeed
prove rigorously that all of the eigenstates are at least two-fold degenerate, independently of the
specific system size [160]. This does not preclude, however, that higher degeneracies exist. In
fact, it has been argued numerically that there are exponentially-many low-lying excitations that
collapse exponentially fast to the groundstate as the lattice size increases [177], leading to the
aforementioned analogue of frustrated magnets with an exponentially-large groundstate manifold.
This connects to the quantum-mechanical version of the mechanism of order by disorder [178]
whereby quantum fluctuations, which typically tend to destroy a possible long-range order, instead
induce it by selecting a particular groundstate from the exponentially-large manifold of possible
candidates. In fact, instead of a quantum spin-liquid phase, one finds two different ferromagnetic
orders in the groundstate, which are connected by a first-order phase transition [177,179,180] as
the ratio of the exchange couplings is varied across the self-dual point Jx = Jy [156].

To the best of our knowledge, the 90◦ compass model in a non-vanishing transverse field (31)
remains largely unexplored in comparison to the zero-field limit discussed above. The transverse
field is a source of additional quantum fluctuations, which favours a paramagnetic phase where all
spins align in the direction of the transverse field. In our recent work [117], we briefly discussed
how the competition with the magnetic phases can give rise to second-order phase transitions at
finite ratios of the transverse-field to exchange couplings. In the two following subsections, we
shall give a detailed exposition of our findings using variational mean-field and tensor-network
approaches. Since either magnetic or paramagnetic phases are ultimately different from the QAH
phase discussed in the previous section, our results show that the fate of this topological phase is to
disappear in the strong-coupling limit. Equipped with the lessons learned from the strong-coupling
limit, and in particular the identification of the magnetic orders that compete with the topological
phase, we will analyse in the next section how large the interactions can be before the correlated
QAH phase gives way to the (para)magnets. Before turning to this discussion, let us note that the
effective spin models will be modified when other choices of the Wilson parameters r ̸= 1 are
j
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Fig. 5. Spin coherent states and mean-field solutions: (a) The variational ansatz (34) is built from a tensor product of
pin coherent states characterized by a unit vector un with polar and azimuthal angles θn, φn . For spin S = 1/2, the
nit sphere is commonly referred to as Bloch’s sphere. (b) Paramagnetic PM phase, where each of the spins points along
he north or south pole depending on the sign of the transverse field h. (c, d) Ferromagnetic phases where all spins are
arallel and point in two possible directions within the xz (FMx) or yz (FMy) plane.

xplored. By simple inspection of Fig. 3, it is clear that the intra-layer second-order processes (a)
nd the inter-layer ones (b) have different strengths even when acting along the same axis, which
ill lead to perturbations breaking the perfect directionality of the spin–spin interactions. However,
hese perturbations should preserve the underlying global symmetry, and we believe that unless
ne focuses on very large values of the Wilson parameters, they will not modify the nature of the
ritical lines. This question will be studied in the future.

.2. Variational mean-field description

Let us now describe a variational mean-field approach to the groundstate of the 90◦ compass
odel in a non-vanishing transverse field (31). There are a variety of methods for obtaining
mean-field approximation in a many-body problem [181], all of which share the common

spect of addressing non-perturbative phenomena, such as criticality and phase transitions, by
nderestimating the effect of inter-particle correlations. Although mean-field methods have their
wn well-known limitations, they typically give a correct qualitative picture of effects that cannot be
aptured by perturbation theory. In this subsection, we focus on variational mean-field theory [181],
here one constructs a variational ansatz by a family of fully-uncorrelated tensor product states.
In the present context, we define the variational ansatz as |ΨMF({θn, φn})⟩ = ⊗n|ψMF(θn, φn)⟩,

here the state of each of the lattice spins |ψMF(θn, φn)⟩ is described by a spin coherent state
ointing along the unit vector un = (sin θn cosφn, sin θn sinφn, cos θn) within the 2-sphere [182].
ere, θn ∈ [0, π] and φn ∈ [0, 2π ) are the so-called polar and azimuthal angles depicted in Fig. 5(a),
hich can in principle be inhomogeneous across the lattice. However, given our previous discussion
f the zero-field limit, where we remarked on the competition of two possible ferromagnetic orders,
e shall assume that all spins point in the same direction θn = θ, φn = φ, ∀n, such that translational

nvariance is maintained in the groundstate. By selecting the state where all spins point to the north
ole as a fiducial state, the spin coherent state can be written as

|ΨMF({θ, φ})⟩ = ⊗ne
i
2 θ
(
sinφτ xn−cosφτ yn

)
|↑n⟩, (34)

hich leads to the following set of expectation values

⟨ΨMF({θ, φ})|τ αn |ΨMF({θ, φ})⟩ = uαn,

⟨ΨMF({θ, φ})|τ αn · τ
β

n′ |ΨMF({θ, φ})⟩ = uαnu
β

n′ .
(35)

e can now calculate the variational energy through the expectation value of the effective compass
amiltonian on these coherent states ϵ(θ, φ) = ⟨ΨMF|Heff|ΨMF⟩/N1N2, yielding

2 2 2 2
ϵ(θ, φ) = Jx sin θ cos φ + Jy sin θ sin φ − h cos θ. (36)
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In a variational approach, the groundstate can be found by calculating the partial derivatives
f the variational energy with respect to θ , φ and setting them equal to zero, which leads to the

non-linear system of equations

sin(2θ )(Jx cos2 φ + Jy sin2 φ) + h sin θ = 0, (37)

sin(2φ) sin2 θ (Jx − Jy) = 0. (38)

There are three different types of solution. If θ = p · π with p ∈ Z2, all the terms in (37) and (38)
are zero for arbitrary φ. In this case all the spins point along the poles of the 2-sphere, as depicted
in Fig. 5(b) such that the energy is

ϵ(pπ, φ) = ±h. (39)

The two possible states represent paramagnetic states with the spins either aligned or anti-aligned
with respect to the transverse magnetic field. We shall refer to this phase as PM.

The second set of possible solutions is found for φ = p · π with p ∈ Z2, such that Eq. (38) is
always zero. In this case the first equation reduces to 2Jx cos(θ ) + h = 0, and the solution is found
for the groundstate polar angle

θ0x = arccos
(⏐⏐⏐⏐ h

2Jx

⏐⏐⏐⏐) . (40)

The particular ground state energy is given by

ϵ(θ0x , pπ ) = −|Jx|
(
1 −

h2

4J2x

)
. (41)

onsidering the expectation values in Eq. (35), these solutions describe a ferromagnetic state where
ll spins have a non-zero magnetization along the x-z plane (see Fig. 5(c)). We shall refer to this

phase as FMx.
The third type of solution occurs for φ = (2p + 1) π2 with p ∈ Z2, where equation (38) is again

ero. Then, the first equation reduces to 2Jy cos(θ ) + h = 0. It follows that the groundstate polar
angle is given by

θ0y = arccos
(⏐⏐⏐⏐ h

2Jy

⏐⏐⏐⏐) , (42)

nd the corresponding energy per spin is

ϵ

(
θ0y , (2p + 1)

π

2

)
= −|Jy|

(
1 −

h2

4J2y

)
. (43)

Considering the expectation values in Eq. (35), these solutions describe a ferromagnetic state where
all spins have a non-zero magnetization along the y-z plane (see Fig. 5 (d)). We shall refer to this
phase as FMy.

Let us now discuss the possibility of finding also a mean-field solution with mixed magnetization
along both the x and y directions. As one can see, the condition Jx = Jy =: J solves directly the second
equation (38) for all possible angles. Similarly, all the dependence of Eq. (37) on φ disappears, such
that one can find solutions for arbitrary azimuthal angle provided that 2J cos θ + h = 0, all of
which have the same energy (36). These solutions contain the previous second- and third-type
ferromagnetic solutions discussed previously, and will be referred to as FMφ . For zero transverse
field, this is the mean-field account of the special isotropic point of the 90◦ compass model, where
we recall that an exponentially-large groundstate degeneracy was predicted in the thermodynamic
limit [177]. Although the variational mean-field does not capture the exponentially-fast clustering
of the low-lying excitations with the system size, it identifies the isotropic regime Jx = Jy as a
special point. Let us note that, contrary to the standard situation in Heisenberg (XY ) models, the
independence on the azimuthal angle does not derive from a global SU(2) (U(1)) symmetry, where
spontaneous symmetry breaking would in principle select only a specific groundstate angle. For
the compass model, this independence is instead related to the intermediate sliding symmetries. By
18
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inspecting the two solutions in Eqs. (41)–(43), one can also see that the point Jx = Jy corresponds to
a level crossing, such that the mean-field analysis also captures the first-order nature of the phase
transition at zero transverse field. At this point, the spins change their orientation abruptly from x-
to y-direction.

It is now a matter of comparing the energies of all the possible mean-field solutions in Eqs. (39),
(41) and (43) to find the groundstate and possible quantum phase transitions for a non-vanishing
transverse field. Note that the compass Hamiltonian (31) in the limit |Jx| ≫ |Jy|, |h| corresponds to
a set of decoupled Ising columns with a ferromagnetic ground state where all spins point along the
x-direction. From our mean-field solution, this phase turns out to be the low-energy configuration
for weaker exchange couplings Jx whenever |Jx| > |Jy|, which requires a1 > a2 in light of Eq. (32),
and

⟨τ xn⟩ = sin(θ0x ) =

√
1 −

h2

4J2x
, if |Jx| ≥

|h|
2
. (44)

ote that this leads to a quantum phase transition towards the second type of solution (44) at
h| = 2|Jx|, where the global Z2 symmetry generated by U = Πnτ

z
n is spontaneously broken.

his symmetry can also be combined with inversion symmetry of the spins about the centre of
he rectangular lattice n → (N1,N2) − n. For smaller transverse fields, the order parameter (44)
ecomes non-zero, and can be attained by two possible azimuthal angles φ = pπ with p ∈ {0, 1},
orresponding to the two possible ferromagnetic arrangements, which are degenerate due to the
pontaneous breaking of the Z2 symmetry. For larger transverse fields, the spins align with the
transverse field, pointing along the ±z axis for positive/negative values of h, and the spontaneous
agnetization along the x axis vanishes exactly. Note that only one of the paramagnetic configu-

ations is the low-energy state, and there is thus no degeneracy as the Z2 symmetry is preserved
n this case. This critical point thus represents a second-order quantum phase transition between a
erromagnet along the x axis (FMx) and a paramagnet (PM), in contrast to the first-order nature of
he self-dual critical point Jx = Jy for vanishing transverse field. We emphasize that the symmetry
being broken is not related to the internal U(N) symmetry, but is instead a combined spatial and
spin inversion symmetry in the language of the quantum compass model. In the following sections,
we shall re-interpret this discrete symmetry in the language of the Dirac spinors and the emerging
continuum QFTs.

The same type of argument holds in the opposite direction of the exchange-coupling anisotropy,
where the model becomes a set of decoupled Ising rows in the limit of very large anisotropy
|Jy| ≫ |Jx|, |h|. We find that for |Jy| > |Jx| and |Jy| > |h|/2, the non-zero order parameter is

⟨τ yn ⟩ = sin(θ0y ) =

√
1 −

h2

4J2y
, if |Jy| ≥

|h|
2
. (45)

nd corresponds to the third type of variational solutions discussed above. In this case, the critical
oint |h| = 2|Jy| describes a second-order quantum phase transition between an ferromagnet along

the y axis (FMy) and a paramagnet (PM).
At this point it is worth taking a step back to understand these phases from the perspective of

the orbital spin operators (30) and the Hubbard bilayer interpretation. The PM corresponds to a
density-imbalanced Mott-insulating phase, where one finds the fermions occupying all of the sites
of a single layer. Depending on the sign of the effective transverse field (32), the upper (h > 0) or
lower (h < 0) layers will be the preferred choice. The FMx (FMy) phases represent a long-range order
whereby the fermions equally populate both layers, avoiding double occupancies, and delocalizing
over the two vertically-neighbouring sites of the bilayer. This establishes a real (complex) non-zero
bond density ⟨τ xn⟩ ∝ Re{⟨c†

n,ucn,d⟩}
(
⟨τ

y
n ⟩ ∝ Im{⟨c†

n,ucn,d⟩}
)

that preserves translational invariance

and long-range order ⟨τ xnτ
x
n+r⟩ → ⟨τ xn⟩

2
(
⟨τ

y
nτ

y
n+r⟩ → ⟨τ

y
n ⟩

2
)
as |r| → ∞. We will generally refer to

these phases as orbital ferromagnets and orbital paramagnets.
Let us now rewrite the equations for the critical lines separating these orbital phases in terms

of the original microscopic parameters of the four-Fermi–Wilson model (32). We find two different
19
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Fig. 6. Orbital ferromagnetism for strong couplings and N = 1: In the limit of large interactions g2/aj ≫ 1, we have
identified orbital paramagnetic (PM) and ferromagnetic (FMx ,FMy , separated by the critical lines in Eq. (46). The inner
volume, coloured with a light orange, contained within these lines corresponds to a ferromagnetic phase where the orbital
spins point along the x axis for spatial anisotropies ξ2 > 1, or along the y axis for ξ2 < 1. In the isotropic limit ξ2 = 1,
the spins van order along any azimuthal angle φ ∈ [0, 2π ), leading to the FMφ phase contained in the area within the
critical lines in Eq. (46). All the surrounding region in white for g2 > 0 corresponds to the paramagnet. We also plot the
symmetry plane that divides the ferromagnets into two equal halves, given by the condition of a vanishing transverse
field h = 0, i.e. ma1 = 1 + ξ2 . (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

critical lines depending on the anisotropy

g2
=

a1

a2
⏐⏐⏐m +

1
a1

+
1
a2

⏐⏐⏐ , if a1 > a2,

g2
=

a2

a1
⏐⏐⏐m +

1
a1

+
1
a2

⏐⏐⏐ , if a1 < a2.
(46)

These critical lines are depicted as green solid lines in Fig. 6, and delimit a volume in parameter
space where one expects to find the symmetry-broken orbital ferromagnets. We are thus certain
that the QAH phases described in the previous section will disappear when the interactions g2

are sufficiently strong. However, the variational mean-field approach for the strong-coupling limit
has its own limitations. First of all, being a strong-coupling limit that is exact in the strict limit
g2/aj → ∞, we cannot predict what happens at intermediate interactions, nor locate the critical
lines separating the QAH phase from the ferromagnets and paramagnets. In addition, being a mean-
field approximation, we expect that the exact location of the critical lines and the scaling of the
order parameter will differ from the correct critical phenomena, which would require other methods
that can better accommodate for inter-particle correlations. We will address both limitations in the
following sections.

3.3. Variational tensor-network description

In this section, we benchmark the results of the mean-field approximation for the 90◦ com-
pass model presented in the previous section by means of a variational algorithm based on a
projected entangled-pair state (PEPS) [183–186]. The PEPS represents a natural generalization of
the one-dimensional variational ansatz based on matrix product states (MPS) [184,187] to two, or
even higher, spatial dimensions. These variational states improve upon the separable mean-field
ansatz (34) by including inter-particle correlations, and can be understood in terms of pairs of

maximally-entangled states describing auxiliary degrees of freedom on neighbouring lattice sites,
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Fig. 7. PEPS representations: Diagrammatic representations of PEPSs corresponding to different lattice patterns: (a) a
triangular lattice, (b) a hexagonal lattice, (c) a square lattice, and (d) infinite square lattice PEPS with a two-site unit cell.

hich are locally projected onto the lower-dimensional subspace of physical spins residing at
ach lattice site. This construction can be mathematically expressed as a network of tensors with
ultiple indexes corresponding to the physical and auxiliary degrees of freedom, such that those
orresponding to the auxiliary ones are contracted. Accordingly, the PEPS belongs to the family of
ensor-network variational algorithms.

To study groundstate properties of quantum lattice Hamiltonians in two spatial dimensions,
ne can (i) variationally optimize the PEPS tensors, so as to minimize the expectation value

of the corresponding Hamiltonian [188,189]. Alternatively, in analogy to spectroscopic methods
that determine the particle spectrum via the imaginary-time evolution of correlators in Euclidean
LFTs [20], (ii) one may evolve the system in imaginary time until a stationary state corresponding to
he groundstate is reached. This assumes that this groundstate is unique, and that the energy gap
s non-zero, as done in the time-evolving block-decimation method (TEBD) for one-dimensional
hains [190–192]. In the following, we will use this second method in the thermodynamic limit, for
he infinite PEPS state (iPEPS), which we describe briefly in the next section.

.3.1. Projected entangled pair states (PEPS)
Here, we briefly review the notation and fundamental properties of projected entangled pair

tates. Let us consider a two-dimensional spatial lattice consisting of N1N2 sites, each of which
osts a quantum sub-system with a d-dimensional local Hilbert space Cd, e.g. d = 2 for a spin-
/2 lattice model. The full Hilbert space of the system is thus H = Cd

⊗
N1N2−2
· · · ⊗Cd, such that the

imension grows exponentially with the number of lattice sites, and the problem quickly becomes
ntractable, already for moderately low values of N1N2. In order to avoid this problem, we use a
EPS to represent a pure state.
The PEPS describes a state through interconnected tensors. As in Eq. (33), we use an integer m ∈

{1, . . . ,N1N2} to label the lattice sites ordered from east to west and south to north xm = (xm, ym),
and define the PEPS variational ansatz as

|ψ⟩ =

∑
{sxm}

F
(
A[x1]

sx1
, A[x2]

sx2
, . . . , A

[xN1N2 ]

sxN1N2

)
|sx1 , sx2 . . . , sxN1N2 ⟩, (47)

where we sum over all possible states in the basis of the local Hilbert space, labelled by {sxm}. This
PEPS is represented by a network of N1N2 tensors A[xm]

sxn , some of which are connected according
to the geometry of the lattice and the notion of neighbouring lattice sites. Each tensor of the PEPS
has n so-called bond indices of dimension D, which describe the aforementioned auxiliary degrees
of freedom, and a single physical index of dimension d. The choice of n in the tensor network
depends on the geometry of the lattice and can be chosen arbitrary. The function F contracts all
the tensors A[xm]

sxm , according to this pattern, and then performs the trace to obtain a scalar quantity
such that Eq. (47) can be understood as a parametrization of a particular set of states in the
exponentially-large physical Hilbert space H. In Fig. 7, we show diagrammatically several PEPSs for
systems corresponding to different geometries with open boundary conditions (OBC). The spheres
21
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represent the tensors, with solid lines depicting the auxiliary and physical indexes. The vertical ones
stand for the physical indexes, whereas the planar ones that connect neighbouring tensors stand for
the contracted auxiliary indexes. In the case of the system geometry being a square lattice pattern
with OBC, the PEPS consists of tensors in the bulk A[xm], which have four bond indices connecting
neighbouring tensors, and one physical index sm (Fig. 7(c)). Overall, the PEPS depends on O(N1N2D4d)
variational parameters.

If we assume a translationally-invariant state with bond dimension D = 1 and spin-1/2 physical
states d = 2, we are left with only two variational parameters, corresponding to our previous mean-
field ansatz. Accordingly, for any D > 1, the PEPS captures inter-particle correlations and improves
upon the mean-field variational family. The accuracy of the ansatz can be systematically controlled
by the bond dimension D of the auxiliary indices. This parameter is related to the maximum
entanglement content that can be handled by the simulations [183]. In practice, increasing the value
of D leads to a better description of the groundstate and, therefore, to more accurate estimations of
the different observable quantities. It turns out that the PEPS parametrization can describe very well
the entanglement structure of many interesting two-dimensional quantum systems, including low-
energy eigenstates of gapped Hamiltonians with local interactions. More specifically, PEPS satisfy
the entanglement area law and the scaling of entanglement entropy of an L × L block within the
larger N1 × N2 lattice of a PEPS scales with O(L logD).

This construction can be generalized to any lattice shape and dimension and one can show
that any state can be written as a PEPS if we allow the bond dimension to become very large.
In the thermodynamic limit, an efficient variational tensor network ansatz is the iPEPS. It consists
of a rectangular unit cell of tensors with one tensor per lattice site, A[x,y] where [x, y] label the
coordinates of a tensor relative to the unit cell of size Lx ×Ly = NT , as shown in Fig. 7(d) for a 4-site
cell.

3.3.2. Infinite PEPS ansatz and optimal update
In order to get an approximate representation of the groundstate of a given Hamiltonian H , the

tensors of the PEPS in Eq. (47) need to be optimized. This is typically obtained by minimizing the
expectation value of ⟨ψ |H|ψ⟩, or by simulating an evolution in imaginary time |ψ⟩ ≃ e−βH

|ψ0⟩,
where |ψ0⟩ is some initial state. In either case, the tensors that define the iPEPS are optimized
iteratively.

In this work, this optimization has been performed based on the imaginary-time evolution of the
initial state. In particular, we use the full update introduced in Refs. [193,194]. Indeed, for a given
Hamiltonian H , and for a given initial state described by an iPEPS with a unit cell composed of two
tensors A and B, the ground state of the system can be obtained by evolving an initial state |ψ0⟩ in
imaginary time β as

|ψGS⟩ = lim
β→∞

e−βH
|ψ0⟩

∥e−βH |ψ0⟩∥
(48)

This imaginary-time evolution is achieved in practice by breaking the evolution operator e−βH into
a sequence of two-body gates, using a Suzuki–Trotter decomposition expansion. To this end, the
Hamiltonian H is rewritten as

H = Hl + Hr + Hu + Hd, (49)

where each term Hi is the sum of commuting Hamiltonian terms for links labelled as (left l, right r ,
up u, and down d). Using the first order Suzuki–Trotter decomposition, the time-evolution operator
is split into

e−βH
=
(
e−Hδ)M

≃
(
e−Hlδe−Hr δe−Huδe−Hdδ

)m
, (50)

where we have divided the total evolution time into M = β/δ steps, where δ represents the
infinitesimal imaginary-time step. Each term of the Hamiltonian Hi is a sum of commuting terms,
so that, we can rewrite eHiδ in Eq. (50) as a product of two-site operators

eHiδ =

∏
e−h[x,x′]δ

=

∏
g [x,x′

]. (51)
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Fig. 8. Effective environment in the iPEPS algorithm: (a) Left: 2d lattice of tensors formed from a and b; right: contractions
o obtain tensors a and b. (b) Environment of the two-site unit cell for a specific r link. (c) Effective environment of a
iven link on the lattice (here an r link). It is formed by twelve tensors. (d) two new columns are inserted, absorbed

towards the left, and renormalized individually. (e) Eigenvalue decomposition for the sum of the squares of CTMs. (f)
Eigenvalue decomposition for the sum of the squares of Q tensors. (g)–(h) The CTMs C̃1 , and C̃4 are renormalized with
isometry Z . (i) Two isometries Z and W are used to obtain the renormalized half-row transfer matrices T ′

a4 and T ′

b4
. (For

nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

e start by addressing only the update of the tensors A and B defining a r link, after applying
−δHr to |ψ⟩, which can then be generalized to all of the remaining links. We thus assume that the
ate g is applied on just one of the r links. After applying the gate, we obtain a new iPEPS |ψA′,B′⟩

hich is characterized by a tensor A and B everywhere except for the two tensors connected by
he link where the gate acted. The effect of the gate g is to increase the bond dimension of the
PEPS. For this reason, the iPEPS |ψA′,B′⟩ needs to be approximated by a new one defined by two
approximated tensors Ã and B̃, where these two tensors again have the same bond dimension D
fixed at the beginning of the algorithm. In particular, the new PEPS is calculated by minimizing the
distance to |ψA′,B′⟩

minÃ,B̃∥|ψA′,B′⟩ − |ψÃ,B̃⟩∥
2

= minÃ,B̃d
(
Ã, B̃

)
, (52)

where we have introduced

d
(
Ã, B̃

)
= ⟨ψA′,B′ |ψA′,B′⟩ + ⟨ψÃ,B̃|ψÃ,B̃⟩ − ⟨ψÃ,B̃|ψA′,B′⟩ − ⟨ψA′,B′ |ψÃ,B̃⟩. (53)

Therefore, in order to optimally update the iPEPS, minimizing the distance d
(
Ã, B̃

)
in Eq. (53), we

need to (i) compute the environment for that specific r link following the corner transfer matrix
(CTM) scheme, which was originally derived by Baxter [195,196]. This leads to an approximate
representation of the environment in terms of corner matrices and transfer tensors [193]. After this
step, we need to (ii) determine the optimal new tensors Ã and B̃ for the link, using the optimization
techniques proposed in [192,194], which are referred to the full update scheme. This represents a
clean and accurate protocol for performing the tensor update during the imaginary time evolution
in which the effect of the entire wave function on the bond tensors is considered including the
environmental tensor network. Let us now discuss some further important details of the algorithm.
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(i) Environment approximation: To compute the environment approximation, we contract the
PEPS using the corner transfer matrix renormalization group (CTMRG), as suggested in [197]. To
explain this method, let a and b be the reduced tensors

a =

d∑
s=1

As ⊗ A⋆s , (54)

b =

d∑
s=1

Bs ⊗ B⋆s , (55)

with double bond indices such as ū = (u, u′). Then, the scalar product ⟨ψ |ψ⟩ can be expressed
as a two-dimensional network ϵ(x1, x2) made of infinitely many copies of a and b (see Fig. 8(a)).
he exact environment of sites x1 and x2 is obtained for ϵ (x1, x2) by removing the tensors a and

b, as shown in Fig. 8(b). The goal of the CTM method is to compute an approximation G (x1, x2) to
ϵ (x1, x2) by finding the fixed point of the four CTMs. This effective environment is given in terms of
a set of four χ ×χ corner transfer matrices {C1, C2, C3, C4}, eight half transfer row/column tensors
Ta1 , Ta2 , Ta3 , Ta4 , Tb1 , Tb2 , Tb3 , Tb4

}
and the two tensors a and b (see Fig. 8(c)). The twelve tensors of

G (x1, x2) are updated according to four directional coarse-graining moves, namely left, right, up and
down moves, which are iterated until the environment converges. Given an effective environment
G (x1, x2) a move, e.g. to left, consists to the following three main steps:

• Insertion: Insert a new column made of tensors Tb1 , a, b and Ta3 (see Fig. 8(d)).
• Absorption: Contract tensor C1 and Tb1 , tensor C4 and Ta3 , tensor Tb4 and a, and also the tensor

Ta4 and b, resulting in two new CTMs C̃1 and C̃2 and two new transfer tensors T̃a4 and T̃b4 ,
represented by shaded green areas in Fig. 8(d)).

• Renormalization: The renormalization step requires introducing two isometries Z and W . This
produces renormalized CTM’s C ′

1 = Z†C̃1, C ′

4 = Z†C̃4 and half-raw transfer matrices T ′
a4 and T ′

b4
(see Figs. 8 (g)–(i)).

A proper choice of the isometries Z in the renormalization step is of great importance. Here, we
consider instead the eigenvalue decomposition of C̃1C̃

†
1 + C̃1C̃

†
1 = Z̃Dz Z̃† (see first equation of

Fig. 8(e)), and use the isometry Z that results from keeping to entries of Z̃ corresponding to the χ
largest eigenvalues of Dz . Instead, for the isometry W , we decompose Q̃1+ Q̃ †

1 + Q̃4+ Q̃ †
4 = W̃DwW̃ †

(see second equation of Fig. 8(f)). The numerical cost of implementing these steps scales with D and
χ as O(D6χ3). The net result is a new effective environment G ′ for sites x1 and x2. By composing
the four moves of the directional CTMs, we can recover one iteration of the CTMRG.

(ii) Tensor optimization: To find the optimal tensors Ã and B̃ after a single step of imaginary-time
evolution, we have to minimize the distance in Eq. (53). We proceed as follows:

• We fix tensor B̃ to some initial tensor or, alternatively, to the tensor obtained from the previous
iteration. In order to find Ã, we rewrite Eq. (53) as a quadratic scalar expression for the tensor,
namely

d(Ã, Ã†) = Ã†RÃ − Ã†S − S†Ã + T (56)

where R, S, and T can be obtained from the appropriate tensor contractions including the
effective environment around the r-link.

• We then find the minimum of d(Ã, Ã†) with respect to Ã†, which is given by Ã = R−1S.
• Next, we fix the tensor Ã, and search for an optimal B̃ using the corresponding procedure

described in the two previous steps.

The above steps are iterated until the cost function d
(
Ã, B̃

)
converges to a sufficiently small value,

which can be set to a specific desired value in the algorithm. Once the optimal tensors are found,
these are replaced over the entire lattice considering the four-site unit cell layout, which thus
approximates simultaneously the effect of all the gates g acting over the infinitely-many links of
24
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Fig. 9. Magnetizations and magnetic susceptibilities: (a) Ferromagnetic magnetization along the y direction for fixed
oupling strength Jy = 1, and for different couplings Jx and magnetic fields h. The system develops a non-zero expectation
alue for transverse fields below a critical value h < hc . In the inset, we show the magnetic susceptibility χMx for the
ame parameters, which develops peaks at those critical points. (b) Paramagnetic magnetization along the z direction. In
he inset, we show the magnetic susceptibility χMz , which shows peaks that coincide with those of (a).

he same type, here r links. Such a procedure defines the updated infinite PEPS |ψÃ,B̃⟩ in terms of
he two new tensors. Finally, the same procedure is repeated for the l-, u- and d-links to complete
ne full step of imaginary-time evolution. These steps can then be concatenated until we reach the
tationary state that approximates the groundstate within the PEPS family with a specific accuracy.

.3.3. Quantum compass phase transitions
In this section, we show the results obtained by using the above iPEPS algorithm to compute the

roundstate |ΨGS⟩ of the 90◦ compass model Heff (31) in a non-vanishing transverse field, working
irectly in the infinite-lattice limit. In particular, we have computed the ground state wave function
ψGS⟩ of the system by performing the imaginary-time evolution for different values of the spin
ouplings Jx, Jy and the transverse magnetic field h, and then evaluated observable quantities on
t, such as the groundstate energy and the local order parameters related to the aforementioned
erromagnetic phases.

In the following, we benchmark our PEPS numerical routine by fixing the bond dimension to D =

and setting h = 0. As shown in [180] for the zero-field limit h = 0, iPEPS with D = 2 already yields
etter results than those obtained by combining fermionization with mean-field theory [179]. As
iscussed in this reference, the values of the groundstate energy per bond agree with those obtained
hrough a rough extrapolation to the thermodynamic limit of exact diagonalization and Green’s
unction Monte Carlo results for finite systems presented in [177]. In the limit h = 0, as one tunes
he couplings across the symmetric self-dual point Jx = Jy, a first-order phase transition between
two gapped ferromagnetic orders occurs, i.e. Mx = ⟨τx⟩ ̸= 0, when Jx > Jy and My = ⟨τy⟩ ̸= 0 when
Jy > Jx. To study this phase transition, we will consider adimensional couplings, and restrict them to
the range Jx, Jy ∈ [0, 1] by the parametrization Jx = cos(sπ/2) and Jy = sin(sπ/2) with s ∈ [0, 1]. In
ig. 10(a), we show the ground state energy per lattice link e(s) = ⟨ΨGS |Heff|ΨGS⟩/2N1N2. Our results

show the presence of a sharp kink at s = 1/2, which is compatible with the existence of a first order
phase transition at Jx = Jy, and agrees with the numerical results presented in [180]. Other indicators
for this phase transition are the magnetization Mx = ⟨ΨGS |τ

x
|ΨGS⟩ and My = ⟨ΨGS |τ

y
|ΨGS⟩ displayed

n Fig. 10(b)–(c), which show a clear discontinuity at s = 1/2 that separates the FMx and FMy phases
hat where identified with our mean-field ansatz. We interpret this fact as conclusive evidence of
he existence of a first order phase transition, which agree with the results presented in [180],
nd thus gives compelling evidence for the validity of our iPEPS routine. Having benchmarked this
imit, let us now switch on the transverse magnetic field to a non-zero value h > 0, which favours
a paramagnetic phase PM with all spins pointing along the z-axis.

In contrast to the h = 0 limit, the transverse-field compass model has not been studied so
thoroughly. In the previous section, we used a mean-field ansatz to predict a critical line (46)
separating the symmetry-broken orbital ferromagnets from this paramagnet via second-order phase
transitions. These critical lines are represented by green lines in Fig. 6. In order to test the validity
25
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Fig. 10. First-order phase transition in the zero-field 90◦ compass model: (a) Energy of the groundstate per link e(s) on
an infinite square lattice obtained by using the iPEPS algorithm with D = 2. The energy e(s) has a sharp kink with a
discontinuous first derivative, signalling the first-order nature of the transition. (b)–(c) Expectation values of the local
order parameters Mx = ⟨τ x⟩ and My = ⟨τ y⟩ for the ground state |ψGS (s)⟩, which clearly display a discontinuity at the
self-dual point Jx = Jy for s = 1/2, marking the occurrence of a first-order phase transition.

of these mean-field predictions, we use our iPEPS algorithm for D = 2 with the hope that, as occurs
for the h = 0 limit, it will also give a quantitatively-better account of this second-order phase
transition than the previous mean-field ansatz. By measuring the paramagnetic and ferromagnetic
magnetizations, we confirm that these quantities can be used to identify the critical points also
for a non-zero magnetic field h > 0. In Fig. 9(a), we present the magnetization My = ⟨τ y⟩ as
a function of the transverse magnetic field h, setting Jy = 1 and exploring different values of
Jx < 1. This figure shows that, for weak transverse fields, the magnetization attains a non-zero
value that signals a symmetry-broken FMy. In the inset, we show that the corresponding magnetic
susceptibility χMy = ∂My/∂h peaks at a specific value of the transverse field, which can be used to
locate the corresponding critical points. This flow of the FMy-PM critical point h/Jy|c as a function
of Jx is to be expected, as the Jx → 0 limit corresponds to a set of decoupled rows, each of which
chain with a well-known critical point h/Jy|c= 1 [198]. We find that, as Jx → Jy = 1, the critical
point shifts towards h/Jy|c= 0.7. In Fig. 9(b), we depict the transverse magnetization Mz = ⟨τ z⟩,

which is not an order parameter of the model, and can display a non-zero value for arbitrary value

26



L. Ziegler, E. Tirrito, M. Lewenstein et al. Annals of Physics 439 (2022) 168763

I
a

c
c

i

of the couplings, saturating at Mz = 1 when all spins are perfectly aligned with the z axis for h ≫ 1.
n the inset, we represent the susceptibility χMz = ∂Mz/∂h, which peaks at the transition points, in
nalogy to the transverse-field Ising chain.
Let us now discuss how these results can be applied to recover the iPEPS analogue of the strong-

oupling mean-field critical lines in Eq. (46). Note that, according to Eq. (32), the ratio of the spin
ouplings is set by the lattice anisotropy Jx/Jy = (a1/a2)2 = ξ 22 . In Fig. 2, we consider the planes in
parameter space for ξ2 = 1, and ξ2 = 1/2, such that Jx/Jy = 1, and Jx/Jy = 1/4 respectively. For
this particular ratio, our iPEPS algorithm for D = 2 estimates the critical points at h/Jy|c ≈ 0.7 and
h/Jy|c ≈ 1.07, respectively. Note that there is a large deviation in both cases with respect to the
corresponding mean-field prediction h/Jy|c= 2. Using the expressions for the transverse field and
spin coupling strength in terms of the microscopic parameters of the four-Fermi–Wilson model (32),
we obtain a pair of critical lines that are represented by the red lines in Fig. 17 (a)–(b) below. As can
be seen from these results, although the analytical mean-field predictions (46) capture the correct
parametric dependence of the critical lines, the iPEPS predicts a smaller region for the symmetry-
broken FMy phase. Given the fact that iPEPS treats correlations more accurately, we believe that
these iPEPS result capture the correct trend and, although better estimates will be achieved by
increasing the bond dimension beyond D = 2, the extend of the FMy will in any case be smaller
than that predicted by the mean-field ansatz. Moreover, we have checked that, for h ̸= 0, iPEPS
also provides significantly-lower variational energies than the one obtained by the separable-state
mean-field ansatz, which typically under-estimates the effect of the transverse field. Future studies
may take these results as a starting point, and study the specific scaling relations, shedding light
into the universality class of the 90◦ compass model in a transverse field.

4. Auxiliary-field gap equations at large N

In the following two sections, we use an alternative tool to characterize the phase diagram of
the four-Fermi–Wilson model (10). This technique will allow us to connect our discussion of the
N-flavoured Chern insulators and the trivial band insulators of Section 2.3 with the ferromagnetic
FMx, FMy and paramagnetic PM phases discussed in Sections 3.2 and 3.3. As described below, the
number of flavours N will play a key role in this endeavour. We note that the inclusion of N flavours
permits building QFTs with internal symmetries, as for example the U(N) global symmetry of our
four-Fermi QFT (1). One may expect that including more flavours would lead to further complexity
and modify the properties of the QFT, as the number of coupled degrees of freedom increases with
N . What can be surprising at first sight is that the limit of a very large flavour number N → ∞ can
actually turn out to simplify the theory and allow to explore non-perturbative effects in a controlled
and well-defined framework.

A paradigm in this regard is the scalar O(N) model, which generalizes the λ0φ4 field theory
to N flavours interacting through a rotationally-invariant quartic term λ0

N

(∑
f φfφf

)2. Here, the
ncreased number of flavours N > 1 changes the physics substantially, as the breakdown of the O(N)
symmetry is accompanied by the appearance of N − 1 massless excitations above the symmetry-
broken groundstate, the Goldstone bosons [199]. In the symmetric phase, the flavour number also
changes crucial aspects of this QFT, such as the renormalization-group (RG) fixed points, which yield
scaling dimensions and critical exponents that generally depend on N [200,201]. This dependence
is a consequence of the increased complexity: Feynman diagrams arising in perturbative RG
calculations, the so-called radiative corrections [202], can have different contributions depending on
how one decorates the graph with different flavour indexes. In the simplest case, one finds loops
where the internal flavour index is summed over yielding a contribution that scales with N , but
also other single-flavour loops with exactly the same graph structure that do not scale with N .
Although this increases the complexity a priori, since different contributions cannot be distinguished
by the topological structure of the diagrams, it is also the key for the development of large-N
techniques where these QFTs actually become simpler [112]. When this scaling is combined with
that of the interaction vertex, which scales with 1/N , one can group the Feynman diagrams by
their order O(1/Nα), and retain only the leading ones for α = 0 in the limit N → ∞, and calculate
corrections to this limit systematically for α ∈ {1, 2, . . .}. It is in this particular limit where the
27
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Fig. 11. Auxiliary field and large-N diagrams: (a) The four-Fermi vertex g2/2N (red dot) can be rewritten in terms of an
auxiliary field of mass maux ∼ N/g2 and no kinetic energy that mediates the interaction with new vertices of order O(N0)
(blue dots). (b) 1-particle irreducible diagrams with more internal auxiliary lines, such as the second one, involve extra
powers of the inverse auxiliary mass, and thus contribute with higher powers of 1/N that can be neglected for N → ∞.
(c) The effective potential in the large-N limit can be obtained by resumming all the Feynman diagrams obtained by a
single fermion loop, and an even number of external auxiliary lines. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

QFT becomes simpler than any finite-N instance. Moreover, these large-N methods allow one to
go beyond ordinary perturbation theory in the coupling λ0, addressing strong-coupling phenomena
such as the quantum-mechanical contributions to spontaneous symmetry breaking [203,204].

For QFTs with four-Fermi terms, such as the Gross–Neveu model in (1+1) dimensions [18], the
situation gets richer as, in addition to the U(N) flavour symmetry, one also has chiral symmetry.
Once again, Feynman diagrams in general depend on N , which can modify a perturbative RG
approach [200]. However, the fermionic case introduces further possibilities, as the breakdown of
chiral symmetry can occur by the process of dynamical mass generation [15]. In 1+1 dimensions,
the vacuum of massless Dirac fermions is unstable towards a scalar condensate, which forms
at any non-zero coupling strength g2 > 0. As a consequence, the fermions acquire a mass
that depends non-analytically on the coupling strength g2, and cannot be thus captured to any
finite order of perturbation theory [18]. In (2+1) dimensions, a chiral-invariant (3) Gross–Neveu
model (1) still displays such a chiral symmetry breaking which, in contrast, takes place at a non-zero
coupling strength g2

→ g2
c . It is in the vicinity of this strong-coupling point where one obtains a

renormalizable large-N QFT, allowing for estimates of the scaling dimensions and critical exponents
that improve as one increases the order α [21,110].

A convenient starting point for the large-N analysis is the introduction of an auxiliary field
with zero kinetic energy and a mass that scales linearly with N . The bare propagator, represented
by a dotted line in Fig. 11(a), scales with 1/N and serves to mediate the four-Fermi terms via
new interaction vertices that do not scale with N . Thanks to these auxiliary fields, the Feynman
diagrams with a distinct N-scaling can be readily identified, as they are now endowed with a
different topological structure. For instance, the leading-order one-particle irreducible diagrams,
which cannot be split in two disconnected pieces by cutting an internal line (see Fig. 11(b)), must
inimize the number of internal propagators of the auxiliary field, as each of these is suppressed by
n additional power of 1/N , yielding sub-dominant terms in the large-N limit. As discussed in more
etail below, the leading-order radiative corrections are thus formed by a single fermion loop which,
ue to the algebraic properties of the gamma matrices, can only be dressed by an even number of
xternal auxiliary lines [112] (see Fig. 11(c)). Remarkably, the large-N radiative corrections can be
esummed to all orders of the coupling strength g2, which allows one to address non-perturbative
henomena [112], such as dynamical mass generation, chiral symmetry breaking, and dimensional
ransmutation in (1 + 1) dimensions [18].

We note that in the continuum QFT (1), it suffices to introduce a single auxiliary σ field, which
cquires a non-zero vacuum expectation value proportional to the scalar condensate and contributes
o the fermion mass. This auxiliary σ field is an instance of the so-called Hubbard–Stratonovich
ields [205,206], which allow for various mean-field approximations with applications in condensed
28
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matter [207]. From this perspective, one typically needs to explore a variety of possible symmetry-
breaking channels, which requires introducing multiple Hubbard–Stratonovich auxiliary fields. In
the rest of this section, we use the results from the strong-coupling analysis to guide our choice
of auxiliary fields, and show how a large-N method can provide a detailed account of the phase
iagram of our four-Fermi–Wilson model (10) by functional-integral techniques. We obtain a set of
on-linear equations, the gap equations, the solution of which gives access to the critical lines, as
ell as the symmetry-broken phases with non-zero order parameters. In the following Section 5,
e shall exploit the above resummation of the leading Feynman diagrams to calculate the effective
otential, which also gives us access to the symmetric regions, and in particular to a characterization
f the correlated QAH phase, and the equivalence of the PM and TBI phases.

.1. Hamiltonian field theory and gap equations

Let us start by focusing on the canonical partition function Z = Tr(e−βH ) of the four-Fermi–
ilson Hamiltonian (10), where β = 1/T is the inverse temperature in natural units, and rewrite

t as a functional integral in Euclidean time τ ∈ [0, β) [208]. We use the over-complete basis
f fermionic coherent states at each point of the Brillouin zone k ∈ BZ, and introduce a set of
nti-commuting Grassmann vectors Ψk(τ ), Ψ ⋆

k (τ ), each of which contains 2 spinor and N flavour
components, and satisfies anti-periodic boundary conditions in the imaginary-time direction Ψk(τ+

β) = −Ψk(τ ), Ψ ⋆
k (τ+β) = −Ψ ⋆

k (τ ). The partition function can be expressed as a functional integral
over these Grassmann variables

Z =

∫
[dΨ ⋆dΨ ]e−SE [Ψ ⋆,Ψ ], (57)

where we have introduced the functional integral measure [dΨ ⋆dΨ ], and the Euclidean action

SE =

∫ β

0
dτ

(∑
k∈BZ

Ψ ⋆
k (τ )

(
∂τ + hk(m)

)
Ψk(τ ) + Vg [Ψ

⋆,Ψ ]

)
. (58)

Here, we have used the single-particle Hamiltonian hk(m) of Eq. (13), and introduced Vg [Ψ
⋆,Ψ ] as

the expectation value of the four-Fermi interaction (9) in such a coherent-state basis. Let us now
describe how to rewrite this interaction in terms of auxiliary fields, using the strong-coupling results
as a guide.

First of all, we need to consider the auxiliary σ field which, as discussed above, can attain a
non-zero value proportional to the scalar condensate in a continuum QFT

Σ ∝ ⟨Ψ (x)Ψ (x)⟩. (59)

Considering the discretized model in the single-flavour N = 1 limit, and the bilayer perspective of
Fig. 1, this scalar condensate is simply proportional to the magnetization of the orbital spins (30)
along the z-axis Σ ∝ ⟨τ zn⟩. We know from the previous section that, for any non-zero transverse
field h ̸= 0, this magnetization is always non-vanishing, and there is thus no spontaneous symmetry
breaking associated with its non-zero value. From the perspective of relativistic LFTs, the fermion
masses introduced by the Wilson-type discretization (7)–(8) are responsible for the non-zero value
of the σ field, and the spontaneous condensation is only expected to be recovered in the vicinity of
a critical point where a continuum QFT emerges. For the particular choice of gamma matrices (3),
this QFT would be endowed with an emergent chiral symmetry, and the formation of the scalar
condensate is related to chiral symmetry breaking via dynamical mass generation. On the other
hand, for the current choice (2), although chiral symmetry cannot be defined, the emergent QFT will
have important connections to the QAH effect and the nature of the topological phase transitions
discussed in Section 2.3 as one enters the strong-coupling regime.

As discussed in the previous section, regardless of the absence of chiral symmetry, there are other
possible symmetry-breaking channels that can be activated by increasing the interactions of the
four-Fermi–Wilson model (10). In the N = 1 limit, this occurs due to the spontaneous breakdown of
a Z symmetry, and the appearance of the ferromagnetic long-range orders, either along the x-axis
2
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⟨τ xn⟩ (44), or the y-axis ⟨τ
y
n ⟩ (45). In light of Eqs. (2) and (30), these order parameters can be readily

generalized to the N-flavour case by introducing two additional auxiliary π fields Π1(x),Π2(x) and
wo possible π-condensates

Π1 ∝ ⟨Ψ (x)(IN ⊗ γ 1)Ψ (x)⟩, Π2 ∝ ⟨Ψ (x)(IN ⊗ γ 2)Ψ (x)⟩. (60)

Once again, these condensates are not related to the spontaneous breakdown of the continuous
internal symmetry U(N) but, instead, to inversion symmetry on the discrete lattice

Ψ (x) ↦→
(
IN ⊗ γ 0)Ψ (−x), ∀x ∈ Λs. (61)

Let us note that this transformation resembles the parity symmetry of Dirac fermions in even-
dimensional spacetimes [209], the breakdown of which may occur via the pseudo-scalar condensate
Π5 ∝ ⟨Ψ (x)(iIN⊗γ 5)Ψ (x)⟩ [210,211]. In our case, however, Eq. (61) corresponds to a planar rotation
f angle θ = π and, as discussed in Section 6, thus belongs to the Lorentz group of continuous

transformations SO(1, 2). To define parity in odd-dimensional spacetimes, one can search for a
transformation that flips an odd number of spacetime axes, e.g. Ψ (x1, x2) ↦→ (IN ⊗ γ 2)Ψ (x1,−x2)
n our case, such that the Σ and Π2 condensates are parity-odd while Π1 is parity-even, which
follows from the Clifford algebra fulfilled by the gamma matrices. In contrast, using the inversion
symmetry of Eq. (61), the homogeneous scalar condensate (59) is invariant Σ ↦→ Σ , whereas a
non-zero value of any of the π condensates (60) breaks it Πj ↦→ −Πj, such that the π fields are
treated on equal footing.

In comparison to the pseudo-scalar condensate that may arise in chiral-invariant lattice mod-
els [210,211], we find that the number of possible symmetry-breaking channels is doubled when
chiral symmetry is absent from the outset (2). Moreover, at exact isotropy, any combination of
the condensates cosφΠ1 + sinφΠ2 can be stabilized in the groundstate. Let us note that either
of these π condensates not only breaks inversion symmetry, but also forbids the recovery of
invariance with respect to specific Lorentz boosts in the long-wavelength limit. We shall thus refer
to them as Lorentz-breaking condensates. Accordingly, when approaching the critical point from the
symmetry-broken phases to recover the continuum QFT, the effective QFT would not be Lorentz-
invariant unless we precisely hit the critical point. This would obviously change if we approach the
critical point from the symmetry-preserving phase.

Before proceeding with the large-N approximation, let us discuss these auxiliary fields from the
perspective of the Hubbard bilayer. Having N flavours is equivalent to stacking N Hubbard bilayers
on top of each other, which only get coupled through the quartic Hubbard-type interactions. From
the perspective of mean-field theory, the σ field is related to the so-called Hartree decoupling of the
interactions, which introduces terms that are proportional to the densities and is thus responsible
for a shift of the bare mass in Eq. (66). On the other hand, the π fields include the so-called Fock
contributions, since they lead to terms that modify the inter-layer tunnelling, which is equivalent to
the exchange spin-flip terms induced by the γ 1 and γ 2 matrices in the language of the orbital spins.
Therefore, our large-N formalism is related to a self-consistent Hartree–Fock method in condensed-
matter Hubbard-type models, and becomes exact in the limit of an infinite number of bilayers
N → ∞.

Once we have identified the relevant auxiliary fields, we should apply a Hubbard–Stratonovich
transformation to rewrite the action (58) in terms of them. In Appendix A we show that, except
for the isotropic limit a1 = a2, the two π fields cannot condense simultaneously. We can thus
introduce these fields by two separate Hubbard–Stratonovich transformations, and compare the
corresponding energies to determine which Πj condensate corresponds to the groundstate in the
event of a spontaneous breakdown of inversion symmetry. We thus consider the transformations
of the four-Fermi term

(Ψ (x)Ψ (x))2 →
1
2

(
(Ψ (x)γ 1Ψ (x))2 + (Ψ (x)Ψ (x))2

)
, (62)

(Ψ (x)Ψ (x))2 →
1
2

(
(Ψ (x)γ 2Ψ (x))2 + (Ψ (x)Ψ (x))2

)
, (63)
30



L. Ziegler, E. Tirrito, M. Lewenstein et al. Annals of Physics 439 (2022) 168763

w
t

m
Z
f

s
v
‘

s
c

both of which are exact identities in the single-flavour N = 1 limit. In the following calculations,
e assume that the lattice translational invariance is preserved in the event of condensation, and
hus consider that the auxiliary fields are homogeneous, i.e. Σ(x) = Σ , Πj(x) = Πj.

Tied to the condition that, after integrating over these auxiliary fields, the original action (58)
ust be recovered with the corresponding four-Fermi term (63), the transformed partition function
=
∫
[dΨ dΨ ⋆dΣdΠj] exp(−SE[Ψ ⋆,Ψ ,Σ,Πj]) leads to an action that depends on the auxiliary

ields

SE =

∫ β

0
dτ
(

NAs

g2

(
Σ2

+Π2
j

)
+

∑
k∈BZ

Ψ ⋆
k (τ )

(
∂τ + hk(m +Σ,Πj)

)
Ψk(τ )

)
, (64)

where the single-particle Hamiltonian (13) gets modified to

hk(m) → hk(m +Σ,Πj) = IN ⊗
(
dk(m +Σ,Πj) · σ

)
. (65)

Here, the vector (14) whose winding is related to the Chern number of the QAH phase (20), also
gets modified dk(m) → dk(m +Σ,Πj) due to the presence of the auxiliary field

dk(m +Σ,Πj) = dk(m) +Πjej +Σe3, (66)

where we remark that the two cases j = 1, 2 are considered separately since, as shown in
Appendix A, the π fields do not condense simultaneously for generic anisotropies.

Since we are interested in quantum phase transitions, we consider the zero-temperature limit
in which τ ∈ [0,∞). By using a Fourier transform in imaginary time, we introduce the so-called
Matsubara frequencies ωn0 =

(2n0+1)π
β

with n0 ∈ Z, which become continuous variables in this limit,
panning the range ω ∈ (−∞,∞). Performing a series of Gaussian integrals over the Grassmann
ariables [208], the Euclidean action can be expressed as SE = βAsNsE , where the action per unit
volume’ and fermion flavour is

sE =
1
g2

(
Σ2

+Π2
j

)
−

∫
ω,k

log
(
ω2

+ ϵk(m +Σ,Πj)2
)
. (67)

Here, we have introduced
∫
ω,k =

∫
ω

∫
k =

∫
R

dω
2π

∫
BZ

d2k
4π2 , and the dispersion relation modified by the

auxiliary fields

ϵk(m + σ ,Πj) =∥ dk(m +Σ,Πj) ∥ . (68)

We thus observe that the Euclidean action is proportional to the flavour number, which plays
the role of an inverse Planck’s constant h̄eff ∝ 1/N . Accordingly, the large-N limit implies h̄eff → 0,
uch that the quantum fluctuations of the auxiliary fields are suppressed, and the partition function
an be approximated by its saddle point, and determined by

∂sE
∂Σ

⏐⏐⏐⏐
Σ,Πj

=
∂sE
∂Πj

⏐⏐⏐⏐
Σ,Πj

= 0. (69)

These saddle-point equations lead to the so-called gap equations, a system of non-linear equations
which, upon using contour-integration over the Matsubara frequencies, read

Σ

g2 =
1
2

∫
k

m +Σ + mW (k)
ϵk(m +Σ,Πj)

, (70)

Πj

g2 =
1
2

∫
k

1
aj
sin(kjaj) +Πj

ϵk(m +Σ,Πj)
, (71)

where the contribution of the Wilson term (7) to the mass is encoded in the following expression

mW (k) =
1
a1

(
1 − cos(k1a1)

)
+

1
a2

(
1 − cos(k2a2)

)
. (72)

In this section and the following one, the main goal is to determine the phase boundary
separating the various phases of matter that have been discussed so far, namely the QAH, TBI, FM ,
x
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Fig. 12. Preferred Lorentz-breaking channel: The groundstate energies (73) for the two possible symmetry-breaking
hannels are represented as a function of the spatial anisotropy ξ2 = a1/a2 for ma1 = −2 and g2/a1 = 5. For a1 > a2 ,
the Π1 condensate is preferred, whereas for a2 > a1 , the Π2 condensate dominates. These correspond, respectively, to
the FMx and FMy phases identified in the strong-coupling limit.

FMy and PM phases. As will be discussed below, the TBI and PM phases are actually adiabatically
connected, and can thus be described as different limits of the same phase. To determine the
critical lines delimiting the ferromagnetic phases, we would need to find the points where the
above equations are fulfilled, and the π fields go to zero Πj = 0 starting from the corresponding
symmetry-broken phases. Note that, in practice, one divides Eq. (71) by the corresponding value of
the Πj condensate, such that there are divergences associated to the Πj = 0 point. However, one
can get as close to this point as required by the accuracy with which the critical points are to be
determined. In order to draw the (ma1, ξ2, g2/a1) phase diagram in analogy to Fig. 6, we perform
the integrals that appear in the gap equations numerically, and vary the vacuum expectation
values of the auxiliary fields Σ,Πj until the above equations are fulfilled. Since we always get the
combination M = m +Σ in the equations, we start by assigning a value to M for a given coupling
strength g2 and lattice anisotropy ξ2 = a1/a2, and then solve the self-consistent equations (71) to
find the values of Πj.

Once this is done, we can solve Eq. (70) to find the scalar condensate Σ , and finally extract
the corresponding mass m. Note however that we have two potential solutions (Π1, 0) and (0,Π2),
and we must determine which of the two possible π-condensates occurs depending on the specific
anisotropy, i.e. a1 > a2 or a2 > a1. The preferred symmetry-breaking channel can be determined by
comparing the two groundstate energies j ∈ {1, 2} per unit area and flavour number at a certain
point in the (ma1, ξ2, g2/a1) parameter space

E(σ ,Πj) =
1
g2

(
Σ2

+Π2
j

)
−

∫
k
d2kϵk(m +Σ,Πj). (73)

his energy consists of the single-particle terms integrated over the Brillouin zone, and thus assumes
half-filled system with homogeneous auxiliary-field terms. By finding the two solutions for a

hosen anisotropy, one can evaluate equation (73) numerically in both cases, and figure out which
hannel has the lower groundstate energy. We note that this procedure is non-trivial since the
ma1, ξ2, g2/a1) point of parameter space is not completely set from the start, but found recursively
rom the numerical routine just discussed. The numerical comparison of both channels requires
n exhaustive numerical analysis to find sufficient solutions to densely cover the parameter space,
hich can then be compared. As shown in Fig. 12, we have found that the dominant order parameter

sΠ1 ∝ ⟨Ψ (x)(IN⊗γ 1)Ψ (x)⟩ if a2 < a1, andΠ2 ∝ ⟨Ψ (x)(IN⊗γ 2)Ψ (x)⟩ if a2 > a1, which is consistent
ith the results found for the variational mean-field and iPEPs methods applied to the quantum
ompass model in the strong-coupling and single-flavour regimes.
Let us now present a detailed discussion of our findings by analysing the two exemplary plots of

he critical lines presented in Fig. 13, which explore the role of interactions along the two vertical
32
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Fig. 13. Phase diagram with Lorentz-breaking condensates: The left figure represents the critical points predicted by
he large-N calculation (black), and those obtained by the variational mean-field ansatz (green), both of which display a
ertical symmetry line at ma1 = −2 for the isotropic case ξ2 = 1. The right figure represents the critical points in the
nisotropic case ξ2 = 0.5 with the vertical symmetry line at ma1 = −1.5. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)

lanes of Fig. 2. In these plots, the black solid lines correspond to the critical points obtained from
he solution of the gap Eqs. (70)–(71). The region inside this black line represents the inversion-
roken phases. The left black solid line in Fig. 13 corresponds to the isotropic case a1 = a2, where
o comparison is required as both equations–(71) for j = 1, 2 are equivalent. In close similarity to
he variational compass-model result, this point is special in the sense that we cannot determine
hich linear combination cosφΠ1 + sinφΠ2 is the correct order parameter, which is the situation

found in Eqs. (37)–(38) by setting the exchange couplings (32) to Jx = Jy for equal a1 = a2. This
hus corresponds to the large-N version of the FMφ phase. In contrast, the right black solid line
of Fig. 13 represents the critical line for lattice spacings a1 = a2/2, where we have found that the
enclosed region hosts a non-zero value of the Π2 condensate, energetically preferred with respect
to theΠ1 condensate (see Fig. 12). As we keep on decreasing the ratio ξ2 = a1/a2, this region moves
rogressively to the upper right, such that the appearance of the inversion-broken regions occurs
or smaller absolute values of the bare mass and larger interaction strengths. Although not shown
n this figure, for opposite anisotropies a2 < a1, this behaviour is reversed, as we have found that
he symmetry-broken Π1 condensates move to the left, and thus seek larger absolute values of the
are mass and smaller interaction strengths.
We note that both ordered phases reflect mirror symmetry of the gap equations around the

ymmetry axis m = −
1
a1

−
1
a2
, which is depicted by a dashed line. In the language of the strong-

coupling compass model (32), this symmetry corresponds to the vanishing of the transverse field
h = 0, which is achieved within the symmetry plane of Fig. 6. We note that the σ field and,
with it, the scalar condensate vanish along this symmetry line ⟨ΨΨ ⟩ ∝ Σ = 0. As discussed
in more detail below, this cancels the additive mass renormalizations arising from the fermion
doublers. This feature is not a large-N artefact, but actually connects to the so-called central-
branchWilson fermions, which have interesting implications for Monte Carlo studies of lattice gauge
theories [212,213].

In Fig. 13, we also represent in green solid lines the critical points (46) obtained by the
variational mean-field ansatz of the 90◦ compass model in a transverse field (31) with microscopic
parameters (32). It is quite remarkable to see that these two predictions match so well as one
increases the interactions, since they emerge from completely different mean-field perspectives. In
order to compare them, let us rewrite the strong-coupling 90◦ compass model (31) as an effective
action that depends solely on the auxiliary fields. Considering the corresponding Euler–Lagrange
33
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equations

σ (x) = −
g2

2
Ψ (x)Ψ (x), πj(x) = −

g2

2
Ψ (x)γ jΨ (x), (74)

the compass Hamiltonian leads to an action with nearest-neighbour couplings

Seff =

∫
dx0a1a2

∑
x∈Λs

(
J̃1π1(x)π1(x + a2e2)

+ J̃2π2(x)π2(x + a1e1) + hσ (x)
)
,

(75)

where we have introduced the adimensional nearest-neighbour couplings for the π fields J̃1 =

(a1/g2)2 and J̃2 = (a2/g2)2, whereas the coupling h to the σ field has the dimension of mass and
corresponds directly to the transverse field in Eq. (32). This action clearly differs from the effec-
tive Euclidean action obtained in the large-N approximation after integrating over the fermionic
fields (67). To compare both expressions on equal footing, we note that the real-space version of
Eq. (67) would be expressed in terms of the logarithm of a fluctuation determinant, which is highly
non-local in contrast to Eq. (75). On other hand, the Euler–Lagrange constraints (74) together with
the Gutzwiller projector onto singly-occupied sites mentioned below Eq. (32), imply that the σ and
π fields in Eq. (75) are not independent, but rather constrained to

σ 2(x) + π2
1 (x) + π2

2 (x) =

(
g2

a1a2

1
2
τn

)2

=
3
4

(
g2

a1a2

)2

. (76)

A simple rescaling of these auxiliary fields shows that, for the compass model, they are constrained
to lie on the unit sphere S2. Note that this type of strong-coupling constraint also arises in the
aforementioned O(N) models [200,201], which in the case of N = 3 flavours leads to the O(3)
non-linear sigma model as one takes the strong-coupling limit λ0 → ∞. By contrast, the compass
ction (75) can be understood as an anisotropic discretized version of a non-linear sigma model with
Z2 inversion symmetry (σ (x),π(x)) ↦→ (σ (−x),−π(x)) instead of the continuous O(3) symmetry.
his is a generalization of the rotationally-invariant Heisenberg spin model, which is known to be
iscretizations of the O(3) non-linear sigma model [214,215].
The agreement of these two different mean-field methods serves as a partial benchmark of both

pproaches, and hints to the validity of the conclusions drawn from Fig. 13: the non-interacting
AH and TBI phases of Section 2.3 will eventually disappear in favour of the symmetry-broken
erromagnetic phases or the paramagnetic phases of Sections 3.2 and 3.3. The solution of the gap
quations tells us precisely for which bare parameters the spontaneous breakdown of inversion
ymmetry, and the formation of the condensates, will take place. As shown in the figure, we can
hus extend the strong-coupling predictions to the regime of intermediate interactions, and find the
hole extent of the critical line that surrounds the orbital FMx and FMy phases. Additionally, since
here is no critical line that separates the orbital PM and the TBI, we can conclude that both states
re limiting cases of the same phase.
Let us note that, in contrast to our previous results for the Gross–Neveu–Wilson model in (1+1)

imensions [131], the critical lines obtained from the gap equations do not extend towards the
egion of low interactions g2/a1 ≈ 0, where the weakly-correlated QAH phase is expected to be.
herefore, we cannot use them to delimit the regions with different topological phases characterized
y opposite Chern numbers (23), nor the transitions to the disordered PM or the trivial band
nsulating TBI phases. In order to overcome these limitations, we need to explore regions of the
hase diagram where the π fields are zero, and estimate the topological invariant for this large-N
pproximation. We will show in Section 5 that the effective potential [203,204] plays a key role in
his regard. Moreover, it will allow us to explore the small lobe that forms in the symmetry-broken
egion around the symmetry axis for a1 = a2 which, although not shown in the figure, persists
or small spatial anisotropies a1 ≈ a2. The effective potential will allow us to explore this region
urther, and connect it to a first-order phase transition rather than a second-order one.

However, the effective potential is most naturally formulated for a Euclidean lattice where
maginary time is also discretized. In the following subsection, in order to know how to recover the
34
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continuum-time limit from this Euclidean-lattice formulation, we will analyse the results of the gap
equations for a Euclidean lattice, and show that there can be additional additive renormalizations.
These contributions must be carefully accounted for if one aims to describe the physics of a
correlated QAH effect, which is ultimately defined in the continuum-time limit. Equipped with these
results, we will be able to formulate in Section 5 a description for the effective potential that allows
us to fully characterize the phase diagram.

4.2. Large-N gap equations on the Euclidean lattice

In the LFT community, the discretization is an artificial scaffolding for the fields that serves
o regularize the QFT, but has no physical reality. Accordingly, the imaginary time can also be
iscretized, such that spacetime coordinates are treated on equal footing [19,20]. In the present
ontext, the rectangular spatial lattice (5) must be upgraded to include the discretized time with
et another lattice spacing. This leads to a simple orthorhombic Bravais lattice defined by

ΛE = {(n0a0, n1a1, n2a2) : nα ∈ ZNα , ∀α ∈ {0, 1, 2}} (77)

here Nα is the number of sites along the α-axis with lattice spacing aα , such that the Euclidean
volume’ is Q =

∏
α Nαaα . We note that higher-dimensional versions of these anisotropic lattices

ave been exploited in the context of lattice gauge theories. If one is interested in the time-
ontinuum limit and the connection to Hamiltonian field theories, as in our work, the temporal
nisotropy is mandatory [216,217]. Moreover, using a smaller temporal lattice spacing sometimes
llows for a higher precision in Monte Carlo calculations [218–223]. Interestingly, one can also get
mprovements by exploiting the anisotropy along the spatial directions [224]. In the context of
he domain-wall-fermion approach [51], one of the spatial directions is considered as an auxiliary
imension, such that a pair of distant domain-wall profiles of the bare mass allows one to recover
QFT of chiral fermions for anisotropic volumes in which the wall separation is sufficiently

arge, which can be exploited for studies on chiral-invariant four-Fermi models [225–227]. If the
nisotropy occurs at the level of the lattice spacings rather than the volume, one can also formulate
omain-wall fermions by abruptly changing the lattice spacing values in a particular location of the
uxiliary dimension [135].
A possible advantage of formulating the four-Fermi–Wilson model with a discrete time is

hat future studies may use the extensive LFT machinery based on Monte Carlo simulations to
orroborate our predictions beyond the large-N or strong-coupling limits. Despite the infamous
sign problem for fermions, which plagues many Monte Carlo simulations, unless one is interested
in doping our system above/below half filling, the Monte Carlo update schemes should give reliable
results. However, one should be careful with the interpretation of these results in the context of
QAH phases and the phase diagram of topological materials. Whereas the spatial discretization
is imposed by the underlying crystal, the time discretization is a computational artifact, and the
physics should be extracted by taking a continuum-time limit. This limit is not recovered by simply
sending the corresponding lattice spacing a0 → 0, as the time discretization introduces spurious
(time)doublers [20]. These will affect the theory, as they carry their own Wilson masses, such that
one would expect the topological invariant (21) to be modified if this continuum-time limit is
not considered carefully. As will be shown in this section, in order to recover the results of the
continuum-time gap Eqs. (70) and (71), there are additive renormalizations that must be carefully
considered.

Let us start by formulating the problem on the Euclidean cubic lattice (77). Here, we use
fermionic coherent states and Grassmann vectors Ψx,Ψ x for all Euclidean spacetime points x ∈

ΛE , each containing both flavour and spinor components, and respecting periodic (antiperiodic)
boundary conditions along the spatial (time) directions. The partition function can be expressed by
a functional integral Z =

∫
[dΨ ⋆dΨ ]e−SE [Ψ ⋆,Ψ ] with the following Euclidean action

S [Ψ ⋆,Ψ ] = a a a
(
S0[Ψ ⋆,Ψ ] + V [Ψ ⋆,Ψ ]

)
. (78)
E 0 1 2 E g
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The free Wilsonian action in the Euclidean lattice reads

S0E [Ψ
⋆,Ψ ] =

∑
x∈ΛE

Ψ x

(
m +

∑
α

1
aα

)
Ψx

+

∑
x∈ΛE

∑
α

∑
s=±1

Ψ x

(
s(IN ⊗ γ̃α)

2aα
−

1
2aα

)
Ψx+saαeα ,

(79)

where the Euclidean gamma matrices are

γ̃0 = γ 0
= σ z, γ̃1 = −iγ 1

= σ y, γ̃2 = −iγ 2
= −σ x, (80)

and satisfy Clifford’s algebra {γ̃α, γ̃β} = 2δαβ for the Euclidean metric δ = diag(1, 1, 1). In order to
introduce the auxiliary fields, we consider the results of the previous section, and only consider a
single π-channel. In the following, all calculations are presented for the γ̃2 interaction corresponding
to the Π2 condensate, as this is the symmetry-breaking channel for ξ2 < 1. Note, however, that
there is no conceptual difference for the calculations for the γ̃1 channel. The four-Fermi term on
the Euclidean lattice reads

Vg [Ψ
⋆,Ψ ] =

−g2

4N

∑
x∈ΛE

(
(Ψ xΨx)2 + (Ψ xiγ̃2Ψx)2

)
. (81)

We now formulate this problem using dimensionless fields Ψ̃x, which can be defined as

Ψx = (a0a1 + a1a2 + a0a2)
−

1
2 Ψ̃x, (82)

and likewise for the adjoints ˜Ψ x. This makes direct contact with the standard formulations based
n Wilson fermions in LFTs [20,228]. Similar to the continuous-time field theory (58), the quadratic
erms can be diagonalized by going to k-space, S0E =

∑
k

˜Ψ kS0k (m̃)Ψ̃k , where

S0k (m̃) = IN ⊗

(
m̃ + 1 −

∑
α

2καe−ikαaα γ̃α

)
. (83)

Here, we introduced the dimensionless mass and tunnellings

m̃ =
ma1

1 + ξ1 + ξ2
, κα =

a1
2aα

1
(1 + ξ1 + ξ2)

, (84)

which, in addition to the spatial anisotropy ξ2 defined in Eq. (22), also depend on the temporal
anisotropy

ξ1 =
a0
a1
. (85)

n addition, due to the anti-periodicity in the time direction, the momenta k = (k0, k1, k2)t in the
rillouin zone are

k0 = −
π

a0
+

2π (n0 +
1
2 )

N0a0
, kj = −

π

aj
+

2πnj

Njaj
, (86)

where we recall that j ∈ {1, 2}, and nα ∈ ZNα .
Following the previous section, we can introduce dimensionless versions of the auxiliary

ubbard–Stratonovich fields Σ̃ , Π̃2. The action corresponding to the partition function Z =

d ˜Ψ dΨ̃ dΣ̃dΠ̃2 exp(−SE[ ˜Ψ , Ψ̃ , Σ̃, Π̃2]) now reads

SE = N
Q̃
g̃2

(
Σ̃2

+ Π̃2
2

)
+

∑
˜Ψ kS0k (m̃ + Σ̃, Π̃2)Ψ̃k, (87)
k
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A
m

where we have assumed homogeneous auxiliary fields, and introduced the dimensionless volume
and coupling strength

Q̃ = N0N1N2, g̃2
=

g2

a1

ξ1ξ2

(1 + ξ1 + ξ2)2
. (88)

dditionally, in analogy to the continuum-time case in Eqs. (64) and (66), the free action in
omentum space (83) gets modified by the presence of the auxiliary fields to

S0k (m̃ + Σ̃, Π̃2) = S0k (m̃) + IN ⊗ (Σ̃ + Π̃2γ̃2). (89)

One now proceeds by integrating out the fermions to find an effective action for the auxiliary
fields Z =

∫
dΣ̃dΠ̃2 e−NQ̃ sE [Σ̃,Π̃2], where the action per unit volume and flavour number is

sE[Σ̃, Π̃2] =
1
g̃2 (Σ̃

2
+ Π̃2

2 ) −
1

Q̃

∑
k

log
(
s̃2k(m̃ + Σ̃, Π̃2)

)
. (90)

In this expression, we have introduced the function

s̃2k(m̃ + Σ̃, Π̃2) =
(
m̃ + Σ̃ + m̃E(k)

)2
+

∑
α

(
2κα sin(kαaα) + Π̃αδα,2

)2
,

(91)

and the dimensionless Euclidean version of the Wilson-term contribution to the mass in Eq. (72),
namely

m̃E(k) = 1 −

∑
α

2κα cos(kαaα). (92)

Let us also note that for the γ̃1 channel, one simply changes δα,2 → δα,1 in Eq. (91).
As occurred for continuous time, the flavour number N plays the role of an inverse Planck’s

constant heff ∝ 1/N , and the large-N limit is controlled by the semi-classical limit where the
auxiliary fields do not fluctuate around the saddle-point configurations heff → 0. The gap equations
corresponding to this Euclidean saddle point are

Σ̃

g̃2 =
1

Q̃

∑
k

m̃ + Σ̃ + m̃E(k)
s̃2k(m̃ + Σ̃, Π̃2)

, (93)

Π̃2

g̃2 =
1

Q̃

∑
k

2κ2 sin(k2a2) + Π̃2

s̃2k(m̃ + Σ̃, Π̃2)
. (94)

Note that the structure resembles that of Eqs. (70) and (71), allowing us to use the same algorithm
for their numerical solution, albeit having an extra mode sum for the time-like direction stemming
from the Euclidean discretization. In the continuum-time case, this mode sum would correspond
to the integration over the Matsubara frequencies, which was performed analytically to arrive at
Eqs. (70) and (71).

4.3. Time doublers and mass renormalizations

As advanced at the beginning of the previous subsection, the spurious time doublers must be
carefully accounted for in order to recover the correct phase diagram in the continuum-time limit.
This situation was first noted for the (1+1) Gross–Neveu model with a Wilson-type discretiza-
tion [131]. In the present context, by inspection of Eq. (83), one can readily see that the expansions
around k0 ∈ {0, π/a0} yield long-wavelength actions that resemble those of a continuum massive

Dirac fermion. Parallelling the discussion around of the long-wavelength Hamiltonian QFT (15),
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there are points in k-space, K nd = (πnd,0/a0, πnd,1/a1, πnd,2/a2) for nd = (nd,0, nd,1, nd,2) ∈

{0, 1}×{0, 1}×{0, 1}, around which we can define a set of Dirac spinors {Ψnd (k)}nd with N flavours
governed by the long-wavelength Euclidean action

SF =

∫
d3k
(2π )3

∑
nd

Ψ nd (k)
(
i
(
IN ⊗ γ̃ µnd

)
kµ + mnd

)
Ψnd (k). (95)

Here, the repeated-index sum is performed with respect to the Euclidean metric, and the Euclidean
gamma matrices for each Dirac fermion are labelled by nd ∈ Z3

2 and read

γ̃ 0
nd = (−1)nd,0 γ̃0, γ̃ 1

nd = (−1)nd,1 γ̃1, γ̃ 2
nd = (−1)nd,2 γ̃2, (96)

whereas the corresponding Euclidean Wilson masses are

mnd = m +
2nd,0

a0
+

2nd,1

a1
+

2nd,2

a2
. (97)

As we can see, in addition to the fermion doublers for nd,0 = 0, which correspond precisely to
the physical spatial doublers obtained in the long-wavelength Hamiltonian QFT from the model
defined on the physical lattice (15), we get extra doublers at nd,0 = 1, which are an artifact of the
discretization of time, and we refer to them as spurious time doublers.

Let us now discuss how these time doublers affect the phase diagram, and how one can recover
the correct continuous-time limit. Although one may expect that sending a0 → 0 makes these
spurious doublers very massive (97), such that they have no effect on the low-energy physics,
it turns out that they can induce additive renormalizations that do not vanish as we approach
such a continuous-time limit. As detailed in Appendix B, this renormalization can be obtained by
comparing the gap equations of the discrete-time Euclidean formulation, in the limit a0 → 0, with
those of the Hamiltonian approach that are directly derived for continuous times.

In particular, we find that the gap equation for the Lorentz-breaking Πj condensates become
equal in this limit, but those of the scalar Σ condensate differ by an additive term that scales with
the coupling strength g2 and does not vanish when a0 → 0. As discussed in the Appendix, such a
term can be identified with the contribution of the spurious time doublers at nd,0 = 1, and leads
to an additional shift of the bare mass. Hence, if we want to recover the correct phase diagram of
the model by solving the dimensionless version of the Euclidean-lattice gap equations in Eqs. (93)–
(94), we need to combine this renormalization with the rescalings of Eqs. (84) and (88). This can
be summarized in the redefinition of the phase-diagram axes

g2

a1
=

(1 + ξ1 + ξ2)2

ξ1ξ2
g̃2,

ma1 = (1 + ξ1 + ξ2)m̃ +
(1 + ξ1 + ξ2)2

2ξ1
g̃2.

(98)

Likewise, the condensates from the Hamiltonian and Euclidean-lattice approached are connected as
follows Σa1 = (1 + ξ1 + ξ2)Σ̃ and Π2a2 = (1 + ξ1 + ξ2)Π̃2.

In summary, we see that discretization of the time-like direction introduces spurious doublers
that would lead to a modified phase diagram if left unnoticed. This is not so important for LFTs, as
one typically concentrates on the properties of the continuum QFT that arises around the critical
line, but its specific location in terms of the bare parameters is not of relevance. However, for
the application of this method to understand the phase diagram of an interacting QAH phase,
e.g. understanding the robustness of the Chern insulator to interactions, it is crucial to keep track
of these renormalization effects. In Fig. 14, we represent the phase diagram obtained by solving
the discrete-time gap Eqs. (93)–(94) using the re-scalings and renormalizations of Eq. (98). We
explore different temporal and spatial anisotropies ξ1 = {10, 20, 40, 64}, ξ2 = 1 (left panel), and
ξ1 = {20, 40, 64}, ξ2 = 0.5 (right panel). Note that the time-continuum limit corresponds to
ξ1 = a1/a0 → ∞, while the spatial anisotropies translate into a1 = a2 (Fig. 14(a)) and a1 < a2
(Fig. 14(b)). The corresponding critical lines are depicted by dashed lines, where the grey scale
becomes darker for increasing temporal anisotropy. The black solid lines correspond to the results
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Fig. 14. Phase diagram with Lorentz-breaking condensates on the Euclidean lattice: The critical lines obtained by the
solution of the large-N gap Eqs. (70) and (71) in continuous time (black solid line) and those in Eqs. (93)–(94) for
discrete time (dashed lines with grey scale). The later require using the rescalings and renormalizations of Eq. (98),
and correspond to temporal anisotropies ξ1 = {10, 20, 40, 64}. In (a) we present the results for ξ2 = 1, whereas (b)
orresponds to ξ2 = 0.5. In both cases, as the temporal anisotropy increases, the discrete-time critical lines tend towards
he continuum ones, and we expect a perfect agreement for ξ1 → ∞.

epicted in Fig. 13, and thus to the numerical solution of the Hamiltonian-field theory gap Eqs. (70)
nd (71), which have no contribution from spurious time doublers. Both figures show how the
esults obtained from the Euclidean-lattice formulation with a discrete time, and both dimensionless
ields and couplings, converge to the time-continuum phase diagram as one increases the temporal
nisotropy ξ1 → ∞.
The advantage of the Euclidean-lattice formulation is now two-fold. On the one hand, Monte

arlo techniques developed in the LFT community that employ Wilson fermions in the fermionic
ector of QCD could be readily applied to go beyond the current gap equations, provided that one
akes the lesson learned from the parameter rescaling and renormalizations (98). On the other hand,
e can use the Euclidean-lattice formalism to calculate the effective potential, as discussed in the

ollowing section and, by virtue of the relations (98), also explore the regions of the phase diagram
here the correlated QAH phase is expected to be found.

. Effective potential and large-N Chern insulators

As briefly discussed in the introduction of Section 4, the large-N radiative corrections of four-
ermi QFTs can be represented by a collection of one-particle irreducible (1PI) amputated diagrams
omposed of a single fermion loop and an even number of external auxiliary lines (see Fig. 11),
ll of which have zero external momenta and no external fermion lines, i.e. amputated. This type
f Feynman diagrams appears naturally in the context of the so-called effective action Seff, which
cts as the generating functional of proper vertex functions, defined as the inverse of the dressed
-point propagators [209]. For instance, the 2-point vertex function contains all the non-perturbative
nformation encoded in the self-energy Σs(k), which will play a key role in the description of
orrelation effects in the QAH phases. Let us now discuss why these are the relevant diagrams
n the large-N limit, and how they can be resummed to obtain the effective potential.

In general, the effective action Seff[ϕc(x)] is a functional of the symmetry-breaking order param-
ter, which can be seen as a classical field ϕc(x). In the context of chiral-invariant four-Fermi QFTs,
his order parameter is the aforementioned scalar condensate (59), which we recall is proportional
o the vacuum expectation value of the σ (x) field playing the role of ϕc(x). In a translationally-
nvariant situation ∂µϕc(x) = 0, analogous to the case σ (x) = Σ, ∀x explored in the previous
ection, this effective action can be expressed as the spacetime integral of an effective potential
eff[Σ] =

∫
dDxVeff(Σ). We note that, by going to momentum space, this effective action can

nly generate vertex functions with zero external momentum. Accordingly, the effective action
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for a translationally-invariant classical field is built from all the amputated 1PI Feynman diagrams
evaluated at zero external momentum. These diagrams allow one to understand how the radiative
corrections of a purely quantum-mechanical origin affect the process of spontaneous symmetry
breaking in scalar QFTs [202,229]. Moreover, the effective potential also allows to go beyond
perturbation theory, providing a neat instance of large-N methods [112,203].

The standard discussion of the effective potential for four-Fermi QFTs [112] must be reconsidered
n our case (10), as we have already argued that, for our choice of gamma matrices (2), chiral
ymmetry is absent from the outset. In fact, we have also noted that, except for the specific
ouplings corresponding to the symmetry line of Fig. 13, the σ field displays a non-zero vacuum
xpectation value that is not connected to any spontaneous symmetry breaking. Therefore, the σ (x)
ield cannot play the role of the classical field ϕc(x) in our case. On the other hand, as discussed in
he previous section, there are two alternative symmetry-breaking channels in which inversion (61),
nstead of chirality (4), is the symmetry that is actually broken at the phase transition. We recall
hat these channels were activated by non-zero values of the auxiliary π fields (60) rather than
he σ field (59). From this perspective, we need to revisit the discussion of the resummation of
he leading-order Feynman diagrams to obtain an adequate effective potential. In this subsection,
e present the details corresponding to the Π̃2 channel, giving a detailed account of the effective
otential Veff(Π̃2) in the large-N limit, although we also note that the calculations for the Π̃1 channel
re completely analogous. Armed with this effective potential, we can now explore the regions
here inversion symmetry remains intact, and use the effective potential to characterize the extent
f the QAH phase as interactions are increased.

.1. Fermion condensates and the effective potential

Let us consider the anisotropic regime a1 < a2, which allows us to focus on a single Lorentz-
reaking field Π̃2. We recall that, by introducing the auxiliary field via a Hubbard–Stratonovich
ransformation, one sees that the field does not have kinetic energy and is subjected to a classical
otential

Vcl(Π̃2) =
N
2g̃2 Π̃

2
2 . (99)

his expression accounts for the g̃2/N scaling of the auxiliary-field lines/propagators mentioned in
he introduction of Section 4. In the present subsection, we use the adimensional formulation of
he model (87), so that all adimensional quantities appear with a tilde, and we should apply the
equired rescalings and renormalizations in Eq. (98) at the end.

At the classical level, this potential (99) finds its minimum at Π̃2,c = 0, such that there is no
spontaneous breakdown of inversion symmetry. However, this is not the full picture, as one should
also introduce quantum-mechanical corrections, leading to the full effective potential

Veff(Π̃2) = Vcl(Π̃2) + δVq(Π̃2) (100)

In the N → ∞ limit, these quantum corrections δVq(Π̃2) correspond to all of the amputated 1PI
iagrams at zero external momentum which, after introducing the auxiliary field (see Fig. 11), can
e constructed by combining fermion loops and auxiliary Π̃2 lines. Note we can decorate these

diagrams with any number of external auxiliary lines and still obtain contributions to the vertex
functions with zero external momentum. These external lines must be connected to a fermion loop
via the coupling term Π̃2( ˜Ψ γ̃2Ψ̃ ), which does not scale with 1/N in comparison to the original
our-Fermi term (9). We can thus introduce an arbitrary number of external auxiliary fields without
ltering the scaling O(Nα) of the specific order α in a large-N expansion. On the contrary, inserting

internal auxiliary lines, as in Fig. 11(b), is penalized by an extra 1/N scaling for each auxiliary-field
ropagator, as the mass of this auxiliary field scales with N (see Fig. 11(a)). Likewise, since extra

fermion loops can only be introduced in 1PI diagrams by means of additional internal lines of the
auxiliary field, they will also give sub-leading contributions. The leading-order contribution in the
N → ∞ limit can thus be obtained by resumming the series of Feynman diagrams with a single
fermion loop and increasing numbers of external auxiliary lines (see Fig. 11(c)).
40
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In Appendix C we show how, in analogy to the chiral-invariant case, one only needs to decorate
his single fermion loop with even numbers of external auxiliary lines. These large-N diagrams
ontribute to the effective potential as

δVq(Π̃2) = N
∞∑
n=1

1
2n

∫
p
Tr

(
−iγ̃2

Π̃2

(i/p + m̃(k))

)2n

, (101)

here we have introduced /p = γ̃ αpα , and

pα = 2κα sin kα, m̃(k) = m̃ + Σ̃ + m̃E(k), (102)

where m̃E(k) is the Euclidean Wilson-type contribution to the mass that already appeared in
Eq. (92). For a continuum QFT, pα would be the Euclidean momentum with an ultra-violet cutoff,
e.g. p ≤ Λc, and m̃ the adimensional bare mass. We also note that the repeated-index summation
is performed using the Euclidean metric, and we use a mode-sum discretization of the integral∫
p =

1
Q̃

∑
k over the reciprocal BZ (86).

In addition to these straightforward differences due to the lattice regularization, the above
expression (101) differs from the standard effective potential of continuum QFTs like Eq. (1) by
the appearance of the γ̃2 matrix. As discussed in Appendix C, this complicates considerably the
resummation method with respect to the standard calculations [112], and leads to new quantum-
mechanical sources of radiative corrections δVq(Π̃2) = δVq,1(Π̃2)+ δVq,2(Π̃2), which will play a key
role below. In addition to the standard contribution

δVq,1(Π̃2) = −N
∫
p
log

(
1 +

Π̃2
2

p2 + m̃2(k)

)
, (103)

hich is also found for chiral invariant QFTs in the continuum by simply letting Π̃2 → Σ̃ [112],
e find that the new Lorentz-breaking channel has new radiative corrections given by

δVq,2(Π̃2) = −
N
2

∫
p
log

(
1 −

4p22Π̃
2
2(

p2 + m̃2(k) + Π̃2
2

)2
)
. (104)

Let us now connect to our discussion of the gap equations in Section 4. Note that both the
classical and quantum contributions to the effective potential scale with N at this leading order,
such that an effective Planck’s constant h̄eff ∝ 1/N shall vanish in the large-N limit. Accordingly,
the leading-order solution is found by searching for the minima of Veff(Π̃2) at different points in
the (m̃, g̃2)-plane. With respect to the classical case (99), which only allows for a zero Lorentz-
breaking condensate, the quantum corrections can lead to new minima in which a non-zero value
of Π̃2 develops. Although not apparent at first sight, these minima correspond to the saddle points
of the action per unit volume and number of flavours sE[Σ̃, Π̃2] introduced in Eqs. (90)–(91),
hich was obtained by integrating over the fermionic Grassmann variables after the Hubbard–
tratonovich transformation, and led to the previous gap Eqs. (93)–(94). Although not directly
pparent in Eqs. (90)–(91), the action sE[Σ̃, Π̃2] is invariant under the transformation Π̃2 → −Π̃2,

which can be seen by making k2 → −k2 in the momentum integrals, and thus amounts to inversion
symmetry (61). Using the notation of the present Eq. (102), we could rewrite this action as

sE[Σ̃, Π̃2] =
1
2

(
sE[Σ̃, Π̃2] + sE[Σ̃,−Π̃2]

)
=

1
g̃2
(
Σ̃2

+ Π̃2
2

)
+

1
2

∫
p log

[(
p2

+
+ m̃2(k)

) (
p2

−
+ m̃2(k)

)] (105)

here we have introduced the displaced momenta p± = (p0, p1, p2±Π̃2). Using the properties of the
ogarithm, one can then express the effective potential with the radiative corrections of Eqs. (103)
nd (104) as

Veff(Π̃2) = N(sE[Σ̃, Π̃2] − sE[Σ̃, 0]) (106)

here we subtract sE[Σ̃, 0] = Σ̃2/g̃2
−
∫
p log

(
p2 + m̃2(k)

)
. Since this last term does not depend on

˜
he symmetry-breaking order parameter Π2, this subtraction does not modify the position of the
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Fig. 15. Effective potential and the spontaneous breakdown of inversion symmetry: We represent the numerical values
f Veff(Π̃2) obtained by evaluating Eq. (107) for different couplings g̃2 (solid line) and the isolated quantum corrections

labelled by g̃−2
= 0 (dashed line). (a) For g̃2 < g̃2

c , the minimum occurs for Π̃2 = 0. (b) For g̃ = g̃c , the effective potential
hanges from a quadratic to a quartic dependence for small values of the symmetry-breaking Π̃2 field. (c) For g̃2 > g̃2

c ,
a minimum with non-zero value of Π̃2 appears, signalling the breakdown of inversion symmetry.

minima, and the current diagrammatic derivation (103)–(104) and the effective action obtained by
integrating out the fermions (90)–(91) are thus consistent. The diagrammatic derivation, however,
separates novel quantum corrections (104) from those appearing in chiral-invariant QFTs (103), and
thus allows to identify new effects that can be brought up by these radiative corrections. As explored
below in Section 5.3, an important consequence of these additional radiative corrections is both to
displace critical lines, and moreover to change the nature of the inversion-breaking phase transition
in the neighbourhood of the line of symmetry ma1 = −2 from second to first order.

It is important to stress that the effective potential (100) provides similar information to the
gap Eqs. (93)–(94), while not being restricted to a non-zero value of Π̃2. This will be crucial to
explore the full phase diagram of the model. Let us now describe our numerical method to obtain
the minima of the effective potentials, which can be explicitly written as

Veff(Π̃2)
N

=
Π̃2

2

2g̃2 −
1

Q̃

∑
k

log

[
1 +

Π̃2
2

m̃2(k) +
∑

α 4κ2
α sin

2(kαaα)

]

−
1

2Q̃

∑
k

log

[
1 −

16κ2
2 sin2(k2a2)Π̃2

2(
m̃2(k) +

∑
α 4κ2

α sin
2(kαaα) + Π̃2

2

)2
]
.

(107)

s occurred for the gap equation (94), the effective potential only depends on the combination of
arameters M = m̃+Σ̃ , as one readily finds by inspecting Eq. (102). We can thus fix the value of M ,
valuate the mode sums of Eq. (107) for a given lattice volume Q̃ , and use a numerical minimization
lgorithm to find the value of the Lorentz-breaking condensate Π̃2. In Fig. 15, we represent the
ffective potential as a function of the Lorentz-breaking condensate for three different values of
he adimensional coupling strength g̃2, after fixing M = −1.8. Since the potential is symmetric
nder Π̃2 → −Π̃2, we only represent it for positive-valued condensates. In all three figures, we
epresent with a dashed line the quantum corrections in Eqs. (103)–(104), which are labelled as
˜−2

= 0. When adding these radiative corrections to the classical potential, we observe three
ifferent regimes. In Fig. 15(a), we observe that the effective potential has single minimum at
˜ 2 = 0, such that the discrete inversion symmetry is preserved. As we keep on increasing the
oupling g̃2, the curvature of the potential changes in Fig. 15(b), until the potential develops a
ouble-well structure with a minimum at a non-zero value of the condensate, corresponding the
pontaneous breakdown of inversion symmetry (see Fig. 15(c)). We can thus identify a critical
nteraction g̃2

c , which defines a critical point and indicates the location of the phase boundary.
According to our previous discussion, this critical point must coincide with the corresponding

oint on the phase boundary predicted by our numerical solution of the gap Eqs. (93)–(94). In
rder to compare both methods, we need to extract the bare mass m̃, which can be determined
y plugging the value of the minimum Π̃ into Eq. (93), and then solving it numerically to
2
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Fig. 16. Phase diagram predicted by the large-N effective potential: (a) We represent in dashed coloured lines the
onstant-M trajectories describing the bare parameters (ma1, g2/a1) where one obtains a minimum of the potential (107)
or a fixed value of M = m̃+ Σ̃ , but varying bare parameters. In a black solid line, the results based on the discrete-time
ap Eqs. (93)–(94) for the same temporal anisotropy ξ1 = 64 are presented. (b) Zoom into the trajectories shown in (a),
hich shows the kinks of the dashed coloured lines precisely at the critical line where the inversion-breaking condensate

orms. For this spatial isotropic case ξ2 = 1, this condensate corresponds to the orbital FMφ phase.

find the value of the scalar condensate Σ̃ , after which one simply subtracts m̃ = M − Σ̃ . By
epeating this algorithm for different couplings g̃2 one can draw trajectories of constant M in
he (ma1, g2/a1)-plane, remembering that the dimensionless couplings have to be rescaled and
enormalized according to Eq. (98). Each of the trajectories can be labelled by the input parameter
, which corresponds physically to the bare mass m̃ at zero coupling g̃2 = 0, since the scalar
ondensate can only become non-zero as one switches on the interactions. For a1 > a2, the
umerical routine is similar, but we need to exchange Π̃2, p2Π̃2 → Π̃1, p1Π̃1 in Eqs. (103)–(104).

For a1 = a2, both corrections give the same result, signalling that the symmetry-breaking can occur
for any linear combination cosφΠ̃1 + sinφΠ̃2.

In Fig. 16(a), some of these trajectories are plotted for the isotropic case a1 = a2, using dashed
lines with different colours for the different values ofM . In this figure, we also plot with a solid black
line the critical points predicted by the solution of the gap Eqs. (93)–(94) for the same volume Q̃ . The
structure of the trajectories is clear, they are straight lines until hitting the critical line, where they
bend backwards before entering the symmetry-broken phase. By zooming into the critical region, as
presented in Fig. 16(b), this bending becomes clearer, and one sees that it is actually preceded by a
kink that coincides exactly with the parameters where Veff(Π̃2) develops a non-zero condensate
Π2 > 0. By inspecting Eq. (93) in light of the function (91), it is clear that the spontaneous
formation of a non-zero condensate Π̃2 results in a decreased value of the |Σ̃ |, such that m̃ changes
abruptly from increasing(decreasing) with g̃2 into decreasing (increasing), depending on the side of
the symmetry axis at m̃ = −2 in which the trajectory resides. Therefore, the kink can be directly
associated with the spontaneous breakdown of inversion symmetry, which allows us to identify the
critical line delimiting the Π̃2 condensate. As shown in this figure, this critical line agrees perfectly
with the solutions predicted by the gap equations, which serves as a benchmark of our numerical
method for the effective potential. Once the validity has been demonstrated, we can now exploit the
effective potential to get insights in the symmetry-preserved region, going beyond the information
that can be extracted from the gap equations.

5.2. Scalar condensate and topological invariants

In the subsection above, we have seen how the effective potential can be used to determine
the Lorentz-breaking condensate which, as argued previously, is the large-N version of the orbital
erromagnet FMφ in the isotropic case a1 = a2. In contrast to the gap equations, however, we
an also explore regions of parameter space where this condensate is zero. We have also noted
hat the effective action, obtained by the spacetime integral of the effective potential, serves as the
43
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generating functional of any n-point proper vertex functions [209]. In this section, we focus on the
-point function in momentum space Γ (2)(p), which contain information about all the intermediate
cattering processes in which particle–antiparticle pairs are virtually created, and can be expressed
y a sum of 1PI diagrams leading to the self energy Σ̃s(p). From the perspective of Euclidean QFTs of
irac fermions in the continuum, the 2-point proper vertex is the inverse of the dressed Euclidean
ropagator Γ (2)(p) = i/p+m+Σ̃s(p). Within the realm of the large-N approximation, the self energy
s easily expressed in terms of the condensates as

Σs(p) =
(
Σ + γ 1Π1 + γ 2Π2)δ3(p), (108)

here the homogeneity of the condensates is responsible for the momentum independence of the
elf energy.
In order to make a connection of these concepts with the topological characterization of the

AH phase, we need to rephrase this discussion in the context of condensed matter, where one
efines the Euclidean-time single-particle Green’s function in terms of the creation-annihilation
perators G(x1 − x2) = ⟨T {Ψ †(x1)Ψ (x2)}⟩ for two spacetime points x1 = (it1, x1), and x2 = (it2, x2).

In a translationally-invariant setting, one can perform Fourier and Matsubara transforms to spatial-
momentum k = (k1, k2) and frequency k0 = ω representations [207,208], such that the inverse
Green’s function can be expressed as

G−1(ik0, k) = ik0 − hk +Σs(ik0, k), (109)

where hk is the single-particle Hamiltonian, like Eq. (13) in our case, and Σs(ik0, k) is also called the
self energy. Within the large-N approximation, it can be readily connected to Eq. (108) by simple
algebra

Σs(ik0, k) = IN ⊗

(
γ 0Σ + γ 0γ 1Π1 + γ 0γ 2Π2

)
δ3(k), (110)

hich results from the different definition of the propagator (Green’s function) in terms of the
djoint (creation) operator.
As advanced in the introduction, topological invariants such as the Chern numbers (20) can be

eneralized to the many-body case by means of these Green’s functions [64,65]. As discussed in [66–
0], the static part of the self-energy Σs(0, k) plays a key role in this topological characterization,
s it offers a practical route for the calculation of topological invariants beyond the non-interacting
imit. Focusing on the inversion-symmetric phase, where we only have a non-zero value of the
calar condensate, we can define the so-called topological Hamiltonian that contains these static
ontributions

ht = hk(m) +Σs(0, k) = hk(m) + γ 0Σ . (111)

t is then a simple matter to realize that the calculation of the Chern number in Eq. (20) can be
epeated with the bare mass being renormalized by the static self energy, i.e. m+Σ , which changes
he mapping from the torus onto the unit sphere in Eq. (14) by dk(m) → dk(m) +Σe3. Following
he same calculation, the topological invariant in the presence of interactions is given by

NCh(g2) =
N
2

∑
nd

(−1)(nd,1+nd,2)sign(Mnd ), (112)

here we have introduced the masses of the spatial doublers renormalized by the scalar condensate

Mnd = m +Σ +
2nd,1

a1
+

2nd,2

a2
, (113)

nd we recall that nd = (nd,1, nd,2) ∈ {0, 1} × {0, 1}.
Note that on a Euclidean lattice, the discretization of the time axis introduces the spurious time

oublers previously discussed. However, if we take the limit a0 → 0 with the appropriate rescaling
nd renormalization of the bare couplings (98), the model reduces to a two-dimensional large-N
hern insulator, and these spurious time doublers have no influence on the long wavelength physics.
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Fig. 17. Full phase diagram with correlated large-N QAH phases: We represent, on a blue scale, a contour plot of the
opological invariant in Eq. (112) that allows to locate the correlated QAH phase, and the phase transition to topologically-
rivial phases. We also include for comparison, all of the results of the previous sections. The large-N calculations of the
ontinuum-time gap Eqs. (70) and (71) obtained via a Hamiltonian field theory for a single channel, are represented by
solid black line. The discrete-time gap Eqs. (93)–(94) obtained via a Euclidean field theory are represented by dashed

ines in a grey scale of increasing temporal anisotropy. The orange-scale contour plot of the symmetry-broken region
s obtained by varying the non-zero value of the condensate in those gap equations. The green line shows the critical
oints (46) predicted by the variational mean-field ansatz in the compass model that emerges at strong couplings. The
ed dashed–dotted lines correspond to the critical points obtained by the iPEPS variational ansatz of the same compass
odel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

his article.)

n particular, given the discussion of the previous section, these time doublers have a mass with a
ontribution on the order of 1/a0, which becomes very large in the time-continuum limit and is
esponsible for the fact that the Wilson masses of these spurious time doublers always carry the
ame sign. As a consequence, not only do they lie at very high energies and thus not appear in the
ong wavelength limit, but also their contribution to the topological invariant vanishes exactly since
e have an even number of them, i.e. 4, giving cancelling contributions to the Chern number.
With these formulas at hand, the previous numerical algorithm that calculates the trajectories

isplayed in Fig. 16 is very useful, as the input parameter is the renormalized mass M = m̃ + Σ̃ .
his means that one can assign a constant topological invariant to each of these trajectories using
q. (112), and delimit the phase boundaries separating correlated QAH phases from trivial band
nsulators within the symmetry-preserved region. In Fig. 17, all of the predictions for the phase
iagram are presented together for temporal anisotropy ξ1 = 64, and two spatial anisotropy ratios,

namely ξ2 = 1 for Fig. 17(a) and ξ2 = 0.5 for Fig. 17 (b). These two anisotropy values correspond
to the shaded planes of parameter space depicted in Fig. 2. The blue-scale contour plot was created
by generating a dense set of trajectories like those presented in Fig. 16 for different values of M
along the x-axis, and then calculating their topological invariant with Eq. (112).

Let us start by focusing on Fig. 17(a), recalling that the topological invariant of the non-
interacting QAH effect (23) changes when the mass of an odd number of spatial doublers is inverted,
which occurs atma1 ∈ {0,−2,−4} in the isotropic case a1 = a2. For the large temporal anisotropies
used, the spurious time doublers with masses proportional to 1/a0 would lead to additional phase
transitions for very large negative values of the bare mass, eventually disappearing completely from
the phase diagram when ξ1 → ∞. This reflects Wilson’s idea of turning the doublers into very
heavy fermions that do not contribute significantly to the relevant physics. Let us note that, since
M collapses to m in the non-interacting limit g2

= 0, as the scalar condensate vanishes Σ = 0,
the trajectories for input values Ma1 ∈ {0,−2,−4} (black dashed lines in the figure) turn out to be
the ones that separate the correlated topological phases with N (g2) = ±N from the trivial band
Ch
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insulators with a vanishing Chern number as one increases the interactions g2. Remarkably, we
ind that these critical lines touch exactly the corners of the solid black line, which represents our
umerical solution of the gap equations obtained via the Hamiltonian formalism. For completeness,
e also represent with dashed grey-scale lines the results obtained by solving the gap equations in
n Euclidean lattice, as one increases the temporal anisotropy towards ξ1 = 64. According to these
esults, the lines of topological phase transitions meet the line of the symmetry-breaking phase
ransition, above which the π condensate forms and inversion symmetry is spontaneously broken.
Regarding the latter, an orange-scale contour plot was added, which was created by solving the gap
equations for different non-zero values ofΠ2, bearing in mind that the π condensate can actually be
ny linear combination of the Π1 and Π2 fields in this isotropic limit. The resulting lines of constant
alues of this condensate retreat to the interior of the phase boundary with increasing Π2, which
ould be found out by analysing the scaling of the condensation of the Π2-field. Let us finally note
hat the green solid line depicts the critical lines obtained by the variational mean-field calculation
f the compass model (46), whereas the red dashed–dotted line is obtained by solving the compass
odel using the iPEPS variational algorithm for Jx = Jy.
In Fig. 17(b), which corresponds to the spatial anisotropy ξ2 = 0.5, a trivial phase arises

separating the two correlated QAH phases that have an underlying large-N Chern insulator. The
trajectories that correspond to these topological phase transitions, represented again using dashed
black lines, are obtained by setting Ma1 ∈ {0,−1,−2,−3}, which connect to critical points for
the non-interacting Chern number (23) for ma1 ∈ {0,−1,−2,−3} as g2

→ 0, as displayed in
Fig. 2. The behaviour is very similar to that found in the isotropic case with the novelty that a
trivial band insulator now separates the two correlated QAH phases all the way up to the region
where the Lorentz-breaking condensate appears. Once again, the critical lines that mark these
topological phase transitions extend as straight lines as the interactions g2 are increased, until
they meet the symmetry-breaking critical line precisely at four symmetric corners. In this figure,
we also depicted in a red dashed–dotted line the results obtained by solving the compass model
using the iPEPS variational algorithm for Jx = Jy/4. We see that the region of a non-zero Lorentz-
breaking condensate shrinks with respect to the mean-field-type methods, which is a general
feature of the latter since the role of super-exchange interactions is typically overestimated, leading
to larger regions with magnetic long-range orderings than those predicted by other methods that
can better with correlations. The unification of the results exhibits a coherent picture showing that
the methods used have been consistent, and can be applied to other similar models.

5.3. First- and second-order phase transitions

As advanced at the end of Section 4.1, the small lobe containing a Lorentz-breaking condensate in
the isotropic limit a1 = a2 (see Figs. 13(a) and 14(a)) actually persists for weak spatial anisotropies
ξ2 ≈ 1. As argued in this section, thanks to the formulation based on the effective potential, we can
identify the additional radiative corrections (104) as the underlying source of this lobe structure.
In Fig. 18, we represent various non-zero values of the Π2 condensate as a function of the bare
parameters ma1, g2/a1. The Lorentz-breaking condensate in red is obtained by solving the gap
equations that correspond to an effective potential that only considers the radiative corrections
common to chiral-invariant theories (103). The blue surface represents the Π2 condensate when
the new radiative corrections (104) are also considered. By comparing both plots, one readily sees
that the loop-structure disappears if these novel radiative corrections (104) are not accounted
for. Moreover, as one increases the value of the Lorentz-breaking Π2 condensate, the symmetry-
broken phase in blue extends to a larger area in the (ma1, g2/a1) sections until the lobe eventually
disappears. In the following, we present a more in-depth study of this re-entrant region via the
effective potential, and show that the order of the phase transition can change from second to first
order.

Let us now discuss how the effective potential can yield information on the nature of the
inversion-breaking phase transition, which we will illustrate for the isotropic case ξ2 = 1 so that
the broken phase is labelled FMφ , and the condensate for any particular φ will be labelled as Π .
Fig. 19 plots V (Π ) for mass values 1.5 < −ma < 2.5, corresponding to trajectories similar
eff 1
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Fig. 18. Comparison of Lorentz-breaking condensates: The red (blue) surfaces represent the Lorentz-breaking condensates
as a function of (ma1, g2/a1) for ξ2 = 1, which are obtained by solving the gap equations corresponding to the effective
otential with radiative corrections in Eq. (103) (Eqs. (103)–(104)). (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)

Fig. 19. Critical effective potential near the line of symmetry: Veff(Π ) is plotted for ξ1 = 64, ξ2 = 1 for selected values
.5 < −ma1 < 2.5 corresponding to constant-M trajectories intersecting the lobe shown in Fig. 16. Colours have been
hosen to emphasize the symmetry under ma1 ↦→ −ma1 − 4 expected to become exact as ξ1 → ∞.

o those shown in Fig. 16, but focusing only on those that intersect the lobe of the gap-equation
olution. In each case, the coupling is tuned to the critical value g2

c (m) yielding two degenerate
inima of the effective potential. As shown in Fig. 19, at this point, groundstates with two distinct
ondensates Π = 0 and Π ̸= 0 co-exist. This contrasts the behaviour presented in Fig. 15 where,
ecalling the symmetry Π → −Π , the effective potential changes from a single- to a double-well
tructure. This is the standard scenario for a second-order phase transition, whereby condensates
ith a different value of |Π | never co-exist. On the contrary, within the current range of bare masses
.5 < −ma1 < 2.5, the inversion-breaking transition is first-order. In this figure, we use solid and
ashed lines with the same colours to emphasize that, to very good approximation, the effective
otentials calculated for ma1 and −ma1 − 4 are equal; this symmetry should become exact in the
ime-continuum limit ξ1 → ∞. It is also apparent that the strength of the first-order transition
efined by the barrier height separating the two minima at Π = 0 and Π ̸= 0, which corresponds
hysically to the interface tension, initially grows as m approaches the line of symmetry ma = −2,
1
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where Σ vanishes from either direction, but then dips so that the barrier height at the symmetric
point actually lies in a local minimum.

As discussed above, the constant-M trajectories shown in Fig. 16 exhibit a sharp kink precisely
t the critical g2

c (m). However, a closer inspection of the figure reveals that this kink actually occurs
ithin the symmetric phase, and thus before the phase boundary predicted by the gap Eqs. (93)–
94) is reached. In the neighbourhood of the lobe, therefore, the gap equation is not finding the
rue transition, but rather tracing the locus of a local minimum of Veff. By contrast, in the regions
< −ma1 < 1.5, 2.5 < −ma1 < 4, Veff(Π ) has a unique minimum for all g2. Accordingly, there is
o discontinuity in the value of the condensateΠ (g2)|Veff=Vmin , which is consistent with a continuous
econd-order phase transition. In this case, the constant-M trajectory kinks of Fig. 16 lie precisely
n top of the phase boundary predicted by the gap equations. Following the kink, the trajectory
pparently remains for a while in the symmetric phase before curving upwards; however it can
e shown that in this region the surface generated by contours of constant Π in the broken phase

actually curves back to overhang the symmetric phase (this can just be discerned in Fig. 18). Every
point in the phase diagram lying beneath the overhang is therefore intersected by two constant-
M trajectories, one corresponding to Π = 0 and the other to Π ̸= 0, in apparent contradiction
with the predicted second-order nature of the transition, it will require a more refined calculation
of the full effective potential Veff(Σ,Π ), i.e. including loops with scalar auxiliary legs, to resolve
this ambiguity; indeed, such a calculation will inevitably be needed to examine the nature of the
topological phase transitions between the QAH and TBI phases shown in Fig. 17.

6. Spin–orbit-coupled fermi gases

In the previous sections, we have presented a thorough study of the phase diagram of the
four-Fermi–Wilson model (10), combining various tools developed by the condensed-matter, high-
energy physics and quantum-information communities. We have seen that large-N methods yield
a powerful tool to identify how the QAH phases are modified by interactions, and to understand
the nature of the topological and symmetry-breaking phase transitions. By focusing on the strong-
coupling limit, we have also shown that the effective super-exchange interactions leading to a
quantum compass model (31) can yield more accurate estimates of the position of the critical
lines and, eventually, the corresponding scaling of the underlying strongly-coupled fixed point. This
follows from our comparison of the large-N predictions with two different variational methods for
the compass model, which shows a clear deviation of the critical lines using the more-accurate iPEPS
algorithm. Thus, it would be interesting if future work could apply this method to the full fermionic
model, rather than the effective compass model, in order to explore arbitrary couplings. Another
promising approach in this direction would be to use the discrete-time formulation based on
Euclidean LFT (79)–(81) with dimensionless fields (82), in combination with Monte Carlo sampling
techniques. In this way, one may evaluate thermodynamic observables based on the partition
function of the model (57) beyond the large-N limit. In this section, we discuss yet another
lternative, that of quantum simulations (QSs) [93,94], where one exploits quantum-mechanical
ardware to simulate a specific quantum many-body problem. We emphasize that these QSs have
he potential of overcoming some of the limitations of the above alternatives to large-N methods, as
hey could probe real-time dynamics regardless of entanglement growth, and would not be limited
y any sign problem as one explores finite fermion densities.
In this section, we focus on QSs based on ultracold atoms in optical lattices [92]. We present

detailed scheme for the QS of the four-Fermi–Wilson model using the so-called Raman optical
attices [121–126]. These quantum simulators can be considered as Fermi gases with a specific
ynthetic spin–orbit coupling [118–120], mimicking the coupling of the intrinsic angular momen-
um of the electron with its own motion [230] in the solid state [231,232]. Spin–orbit coupling has
urned out to be a source of important recent developments in condensed matter, as it underlies
he experimental discovery [233,234] of a new mechanism for the ordering of matter [41,42,235]
n topological insulators and superconductors [25,26,29]. Given the special role of Chern insulators
nd the QAH effect within these topological phases, it does not come as a surprise that spin–orbit
oupling is somehow disguised in our four-Fermi–Wilson model (10). Additionally, given that the
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spin–orbit coupling is directly accounted for by the Dirac equation [236,237] and, ultimately, by
quantum electrodynamics [238], it is natural that our discretization of a QFT of self-interacting Dirac
fermions is also connected to spin–orbit coupling. Let us now discuss this connection in detail for
our representation of the Clifford algebra (2).

Note that in (2 + 1) spacetime dimensions, one can define rotations R of angle θ around the
ormal vector of the spatial plane, which are generated by

x → Rx = eθMx, M =

(0 0 0
0 0 −1
0 1 0

)
. (114)

or our particular choice of gamma matrices (2), the spinor representation of this rotation, which
elongs to the Lorentz group R ∈ SO(1, 2), is generated by S =

1
4 [γ

1, γ 2
] = −

i
2γ

0, such that the
ields transform as

Ψ (x) → S(R)Ψ (Rx) = IN ⊗ ei
θ
2 γ

0
Ψ (Rx). (115)

s noted in Section 4.1, the θ = π rotation leads, up to an irrelevant phase, to the inversion
ymmetry defined in Eq. (61). Since this transformation can be generated infinitesimally, it does
ot correspond to parity symmetry.
In light of Eq. (115), the two spinor components for each flavour ψf,1(x), ψf,2(x) in the original

QFT (1) can be identified with the spin up/down states of the fermions, respectively. From this
perspective, the tunnellings of the naive discretization of the Hamiltonian field theory in Eq. (6),
namely Ψ †(x) iσ

x

2a2
Ψ (x + a2e2) − Ψ †(x) iσ

y

2a1
Ψ (x + a1e1), are understood as the finite-difference

iscretization of the so-called Rashba spin–orbit coupling e3 · (p ∧ σ) = iσ x∂y − iσ y∂x [231], when
ritten in terms of fermionic creation/annihilation operators in second quantization. From this
erspective, the complete Wilson-type discretization in Eq. (10) can be considered as a Dirac-type
pin–orbit coupling that generalizes the aforementioned Rashba terms [120].
Once the connection to spin–orbit coupling has been clarified, we can exploit the ideas un-

erlying the cold-atom QSs of synthetic spin–orbit coupling in optical lattices and, in particular,
e discuss how the schemes in [121,122] can be adapted with minor modifications to realize
ur four-Fermi–Wilson model (10), as briefly discussed in [117]. We also note that the recent
xperimental realization of the Qi–Wu–Zhang model using Raman optical lattices [126] is related
o the non-interacting limit of our four-Fermi–Wilson model (10).

.1. Raman Optical lattices and spin-flip tunnellings

Let us consider a gas of fermionic atoms, such as the alkali-earth 87Sr gas, which are subjected
o interfering laser beams that generate a cubic optical potential [239], namely

Vac(r) =

∑
j

V0,j cos2(kjrj). (116)

ere, j ∈ {1, 2, 3} now labels all three spatial axes, k j = kjej is the wave-vector of the laser beams
ith mutually-orthogonal polarizations ϵj (see the blue and green arrows in Fig. 20(a)), which

nterfere along the j-axis and lead to a standing-wave pattern. We have also introduced V0,j as the
mplitude of the corresponding ac-Stark shift experienced by the atoms in the groundstate manifold
1S0, F ,M⟩, where F = 9/2 is the total angular momentum, and M ∈ {−9/2,−7/2, . . . , 9/2} are
he 10 possible Zeeman sub-levels split by an additional external magnetic field Bex (we chose z as
he quantization axis in Fig. 20(a)). In this work, it suffices to focus on two such hyperfine levels
n order to define the spinor components |σ ⟩ ∈ {|↑⟩ = |

1S0, F ,M↑⟩, |↑⟩ = |
1S0, F ,M↓⟩}, choosing

↑,M↓ in a way that the electric-dipole selection rules allow one to connect these levels via two-
hoton Raman transitions. These two states can be isolated from the remaining hyperfine levels in
he groundstate manifold by exploiting a Zeeman shift, or an ac-Stark shift as in the case of the 87Sr
as [126], which must depend non-linearly on the magnetic number Mσ .
In order to induce the Raman transitions, one needs to drive off-resonant couplings to states

within the excited-state manifold |e ⟩ ∈ |
3P , F ′ ,M ′

⟩, which requires using large detunings ∆ to
σ 1 σ σ j
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Fig. 20. Spin-flip tunnelling in a Raman optical lattice: (a) Atom cloud subjected to a cubic optical lattice stemming
from the three pairs of counter-propagating laser beams depicted by blue arrows, all of which have mutually orthogonal
polarizations depicted by green arrows. In the xy plane, we apply additional laser beams in a travelling-wave configuration
(orange arrows) which can induce Raman transitions between two hyperfine groundstates |↑⟩ ↔ |↓⟩ by absorbing a photon
from this beam, and then subsequently emitting it in the standing wave, as depicted in the insets of (b) and (c). In these
two panels (b) and (c), we depict the corresponding optical-lattice and Raman-lattice potentials, which lead to spin-flip
tunnellings of strength t̃j due to the overlap of the neighbouring Wannier functions, mediated by the recoil of the laser
beams. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

minimize spontaneous photon emission and the associated heating mechanisms, as depicted in the
insets of Figs. 20(b) and (c). These drivings can be obtained by two additional laser beams in a
travelling-wave configuration, selecting their wave-vectors k̃ j and polarizations ϵ̃j (see the orange
and red arrows in Fig. 20(a)), following the general ideas of the schemes of synthetic spin–orbit
coupling to create a Raman potential [120–122]. We note that a standing-wave pattern for these
Raman beams can also be used which, in analogy to the optical-lattice potential (116), can be
obtained by exploiting retro-reflecting mirrors [240], and underlies the recent implementation of
synthetic spin–orbit coupling with the 87Sr gas [126]. We would also like to remark that there have
been other realizations of synthetic spin–orbit coupling that do not rely on Raman lattice potentials,
using alkaline-earth [241,242] and lanthanide [243–245] atoms. In comparison to the alkalis, these
atomic systems have ultra-narrow optical transitions and a larger fine-structure splitting of the
excited states, which can be exploited for the QS of synthetic spin–orbit coupling minimizing the
heating caused by the residual spontaneous emission from the excited-state manifold [246,247], as
originally discussed in the context of synthetic gauge fields [248,249]. As discussed in the following
paragraphs, these nice features can also be exploited for the generation of Raman lattice potentials.

Let us start by focusing on the Raman transition along the x axis (see Fig. 20 (b)). This transition
is implemented by the standing-wave beams along the x direction, and an additional Raman beam
with wave-vector k̃1, polarization ϵ̃1 and relative phase φ1, which propagates in a travelling-
wave configuration along the y axis (see Fig. 20(a)). As depicted in the inset of Fig. 20(b), since
the standing wave is linearly polarized along the quantization direction, it can couple one of the
groundstate spinors |σ ⟩ to an excited state |eσ ⟩ with the same magnetic number. On the other hand,
since the Raman beam is linearly polarized along a different direction, which corresponds to a linear
combination of the two circular polarizations, it can impart the required angular momentum onto
the atoms to connect this excited state to a groundstate spinor component of a different magnetic
number through a dipole-allowed transition, i.e. M↓ = M↑ ±1. For the Raman transition along the y
axis, the description is analogous (see Fig. 20(c)), but it is now the standing wave which can impart
momentum into the atoms, whereas the Raman beam propagating along k̃2 has linear polarization
ϵ̃2 along the quantization axis. As discussed in more detail below, it is important to control the
phase φ2 of this second Raman process relative to φ1.

As depicted in the insets of Figs. 20(b) and (c), when the detunings with respect to the excited
states ∆j are very large, the two-photon processes only involve the spinor levels. Due to the
participation of the standing wave, the Raman transition has a periodic intensity depicted with
a green solid line in Figs. 20(b)–(c), which has a doubled period with respect to the optical-lattice

potentials depicted with blue solid lines (116). Altogether, the groundstate spinors |σ ⟩ are subjected
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to the Raman potential

VRam(r) =
Ṽ0,1

2
cos(k1x)ei(k̃1y−δ1t+φ1)σ+

+ H.c.

+
Ṽ0,2

2
cos(k2y)ei(k̃2x−δ2t+φ2)σ+

+ H.c.,

(117)

here we have introduced σ+
= |↑⟩⟨↓|, Ṽ0,j (δj) is the Rabi frequency (detuning) of the Raman

transition driven by the jth travelling wave, and we work in the interaction picture with respect
to the atomic transition, such that δj are the detunings of the laser beatnotes with respect to the
ransition frequency (see the insets of Figs. 20(b)–(c)). Let us note that, in principle, there can also
e two-photon contributions from the standing- and travelling-wave beams that propagate along
he same axis, but these will be highly off-resonant and contribute with higher-order shifts of the
nergy levels, which can be taken into account by adjusting the laser frequencies.
The gas of neutral atoms of mass m subjected to the total potential V (r) = Vac(r) + VRam(r) is

escribed in second quantization, as customarily [92,97], and leads to the following non-relativistic
amiltonian field theory

H =

∫
d3r

∑
σ ,σ ′

Φ†
σ (r)

(
−

∇
2
r

2m
+ ⟨σ |V (r)|σ ′

⟩

)
Φσ ′ (r)

+

∫
d3r

∫
d3r ′

∑
σ ,σ ′

Φ†
σ (r)Φ

†
σ ′ (r ′)

2πas
m

δ(r − r ′)Φσ ′ (r ′)Φσ (r),
(118)

here Φ†
σ (r),Φσ (r) are the creation/annihilation fields of fermionic atoms at position r in the

nternal state σ , and we have introduced the so-called s-wave scattering length as, which determines
he strength of the contact two-body collisions for these dilute and ultra-cold atomic gases.

We consider that all the laser beams have the same wavelength kj = k̃j =: k = 2π/λ, ∀j, such
hat they can actually be generated from a single laser source, using acousto-optical modulators to
ontrol the detunings δ1 = δ2 =: δ. To obtain a lattice field theory, we make use of the Wannier
asis [250] in

Φσ (r) =

∑
n

w(r − r0n)fn,σ . (119)

s depicted in Figs. 20(b)–(c), the Wannier functions w(r − r0n) are localized around the minima of
he blue-detuned ac-Stark shift (116), namely

r0n =

∑
j

λ

2
(nj +

1
2 )ej, (120)

here nj ∈ ZNj . In Eq. (119), f †
n,σ , fn,σ are dimensionless creation-annihilation operators of fermions

n the lowest band of the optical lattice. As realized in the seminal works [251,252], in the
egime of deep optical lattices, where the potential barriers are much larger than the recoil energy
V0,j| ≫ ER = k2/2m, the atoms are tightly confined within the minima, and the Hamiltonian field
heory (118) can be expressed in terms of a lattice model with nearest-neighbour couplings. For
nstance, the kinetic, ac-Stark shift and interaction potentials lead to a spin-conserving tunnelling
nd density–density interactions

Hsc =

∑
n

⎛⎝∑
σ ,j

(
−tjf †

n,σ fn+ej,σ + H.c.
)

+

∑
σ ̸=σ ′

U↑↓

2
nn,σnn,σ ′

⎞⎠ , (121)

here the fermion number operators are nn,σ = f †
n,σ fn,σ . Here, the tunnelling amplitudes

tj =
4

√ ER

(
V0,j

) 3
4

e
−2

√
V0,j
ER , (122)
π ER
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and interaction strengths

U↑↓ =

√
8
π
kasER

(
V0,1V0,2V0,3

E3
R

) 1
4

, (123)

re obtained by overlap integrals of the Wannier functions, weighted by the kinetic and ac-Stark
otentials or the interaction potential, respectively [92]. Note that these overlaps can in principle
ouple neighbouring sites that lie further apart, but the corresponding strengths decay exponentially
ast with distance [251], and are thus routinely neglected. By increasing the standing-wave intensity
long the z-axis, such that V0,3 ≫ V0,1, V0,2, the dynamics of the atoms along the z direction is
ffectively frozen, and Eq. (121) corresponds to the 2D Fermi–Hubbard model [7,253] which, as
iscussed in the introduction, is a paradigm in the physics of strongly-correlated materials [8,12].
his Hamiltonian will be supplemented by additional tunnelling terms stemming from the Raman
otential (117), which we now discuss in detail.
A crucial ingredient of the QSs of synthetic spin–orbit coupling using Raman potentials [120] is

hat, due to the specific form of the light interference in Eq. (117), the corresponding overlaps of
annier functions cannot contribute with local Raman transitions whereby an atom remains tightly

rapped in a minimum of the optical potential, while its spin gets flipped |↑⟩ ↔ |↓⟩. In the scheme
f Figs. 20(b)–(c), the vanishing of these on-site spin flips could be easily understood in the limit
f weak Raman potentials |Ṽ0,j| ≪ |V0,j|, as a consequence of the zero value of this potential at
he minima of the optical lattice (120). Remarkably, due to our choice of equal laser wave-vectors,
ymmetry arguments allow to prove that this is not limited to weak potentials. Mathematically,
hereas the Wannier functions localized with respect to a single site are even with respect to lattice

nversion about the site centre (120) (see the schematic drawing in Figs. 20(b)–(c)), the Raman
otential (117) is odd, such that the corresponding overlap integrals vanish. The situation changes
or the overlap between nearest-neighbour Wannier functions, as the above symmetry argument no
onger applies in the direction of tunnelling. These overlaps lead to a non-zero spin-flip tunnelling
ith a complex-valued amplitude

Hsf = −

∑
n,j

(
it̃je

i(δt−φj,n)
(
f †
n,↑fn+ej,↓ − f †

n,↑fn−ej,↓

)
+ H.c.

)
. (124)

he modulus of the tunnelling, t̃j, can be estimated analytically by approximating the optical-lattice
otential around the minima (120) by a harmonic oscillator of frequencies νj = 2

√
V0,jER along each

xis, such that the Wannier functions become a separable product of Gaussians. When tunnelling
long the x(y) axis, the above symmetry argument can still be applied to neglect the Re{eik̃1y}

(Re{eik̃2x}) contribution of the Raman potential (117) to the overlap integral along the y(x) axis. On
he other hand, the Im{eik̃1y} (Im{eik̃2x}) part gives a non-zero contribution multiplying the overlaps
long the x(y) axis, and leads to

t̃j =
Ṽ0,j

2

⎛⎝e
−
π2
4

√
V0,j
ER

−
1
2

√
ER
V0,j

⎞⎠ . (125)

n addition, one obtains a site-dependent phase

φj,n = φj − π (n1 + n2). (126)

n the schemes of Figs. 20(b)–(c)), the alternation of the signs of the spin-flip tunnellings eiφj,n =

−1)n1+n2eiφj can be understood as a consequence of the doubled period of the Raman potential
ith respect to the optical lattice, which leads to alternating signs of the linear slopes of the Raman
otential as one moves along the tunnelling direction. As discussed in the following subsection, this
s another crucial property for the QS of our four-Fermi–Wilson model.

.2. Four-Fermi–Wilson quantum simulator

Once we have obtained the microscopic Hamiltonian governing the dynamics of the two-

omponent atoms in a deep optical Raman potential, we can discuss how this can be mapped via a
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U(2) gauge transformation, followed by a rescaling, to the four-Fermi–Wilson model of Eq. (10) in
the single-flavour limit f = 1 = N . This transformation is

ψf,1(x) =
1

√
a1a2

e−i δ2 t fn,↑,

ψf,2(x) =
1

√
a1a2

ei
δ
2 t+iπ (n1+n2)fn,↓.

(127)

he time-dependence can be understood as a change from the aforementioned interaction picture
o the so-called rotating frame, such that the detunings correspond to an energy imbalance that
ill contribute to the bare mass. In addition, the site-dependent phase transformation allows us to
ewrite the model in a translationally-invariant manner, making direct connection with the starting
oint for the lattice discretization of our four-Fermi–Wilson QFT discussed in Section 2.2.
As discussed in [117], the dependence on the relative phases φj generalizes previous schemes for

ynthetic spin–orbit coupling [121,122], which can be exploited to connect precisely to our four-
ermi–Wilson models. Setting the Raman-beam phases to φ1 = 0, φ2 = π/2, we find that the sum

of the spin-conserving (121) and spin-flipping (124) Hamiltonians maps directly to the lattice field
theory (10) with the following correspondence of the microscopic parameters

aj =
1
2t̃j
, rj =

tj
t̃j
, m =

δ

2
− 2(t1 + t2), g2

=
U↑↓

4t̃1 t̃2
. (128)

ccordingly, the bare mass m can be controlled by the detuning of the Raman beams, whereas the
oupling strength g2 is proportional to the s-wave scattering length (123), and can thus be modified
independently via a Feshbach resonance [113]. Alternatively, since it is inversely proportional to the
spin-flip tunnellings (125), one can tune this parameter by modifying the corresponding potential
depths V0,j or Ṽ0,j. At this point, it is worth mentioning that the recent experimental realization of
the Qi–Wu–Zhang model with the 87Sr gas [126] is related to the non-interacting limit of our four-
Fermi–Wilson model (10) by a simple SU(2) rotation of gamma matrices (2) that makes σ x

↔ σ y.
n this case, the experiment uses standing-wave Raman beams, and their relative phase enters
ifferently in the microscopic Hamiltonian. The only important point is that this phase difference is
/2. In the presence of the Hubbard interactions, this would only lead to an interchange of the two
ymmetry-breaking channels. We thus believe that these experiments are a very promising route
o explore the physics discussed in our work.

In this regard, it is important to note that the effective lattice spacings aj are not set by the
ptical-lattice wavelength λ/2, but rather by the inverse of the spin-flip tunnelling strengths, which
re proportional to the Rabi frequency of the Raman beams (125), and can thus be tuned by changing
he corresponding laser power. Since this laser power can be different along the x, y axes, the cold-
atom QS can also explore different anisotropies for the spatial ξ2 = a1/a2, and Wilson parameters
rj. In this manuscript, we have explored in detail the limit rj = 1, which would require equal spin-
conserving and spin-flip tunnellings. We note, however, that non-unity Wilson parameters rj ̸= 1
will simply rescale the axes but maintain the same shape of the non-interacting phase diagram. As
the interactions are switched on, we expect that rj ≈ 1 will not introduce additional strong-coupling
phases. Exploring larger rj ≫ 1 or smaller values rj ≪ 1 is left for future studies, which could also
be targeted by the proposed QS.

Let us now comment on the observable consequences of the U(2) gauge transformation (127).
The time-dependence due to the rotating frame is customary in quantum optics, and can be
accounted for during the measurement process. The local site-dependent phase can change the
interpretation of the symmetry-breaking order parameters related to the π-field condensates, while
they do not change the σ -field scalar condensate. One can easily check that

Σ ∝⟨f †
n,↑fn,↑ − f †

n,↓fn,↓⟩,

Π1 ∝(−1)n1+n2⟨f †
n,↑fn,↓ + f †

n,↓fn,↑⟩,

n1+n2 † †

(129)
Π2 ∝(−1) ⟨ifn,↓fn,↑ − ifn,↑fn,↓⟩.
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Accordingly, in the language of the cold-atom QS, a non-zero value of the scalar condensate
corresponds to an atomic density imbalance between the two hyperfine groundstates. For the
Lorentz-breaking Πj condensates the situation changes, as a non-zero value marks an alternating
attern that turns the orbital ferromagnets FMx (FMy) into Néel-ordered anti-ferromagnets AFMx
AFMy). In order to prepare these phases, as well as the correlated QAH or trivial band insulators
iscussed in this manuscript, one would start by preparing an ultra-cold spin-polarized Fermi gas
y optical pumping, and then adiabatically ramping up the ac-Stark and Raman potentials to create
he non-interacting groundstate for specific values of ma1, ξ2. One could then adiabatically change
he coupling strength g2/a1. According to Eq. (128), one can increase the Hubbard interactions via
Feshbach resonance, or decrease the spin-flip tunnellings, until the desired point of parameter
pace (ma1, ξ2, g2/a1) is reached. Once this groundstate is approximately prepared, let us discuss
ossible characterization techniques in the experiment.
Note that the scalar condensate (129) can be inferred by spin-resolved in-situ imaging, where

he trapped atoms are illuminated by an incoming laser and cast a shadow on a CCD-camera that is
sed to extract the integrated, so-called columnar, density of the atoms [254,255]. Absorptive [256]
nd dispersive [257] techniques can be applied in subsequent shots with lasers addressing each
f the internal states separately, such that ρσ (x) = ⟨Φ†

σ (x)Φσ (x)⟩ can be reconstructed from the
pin-resolved columnar densities. To get lattice-site resolution for ⟨f †

n,σ fn,σ ⟩, one can exploit the so-
alled quantum gas microscopes [258–263]. To achieve spin resolution, one may separate different
pin components spatially prior to the microscope imaging [264,265]. Alternatively, one can remove
he atoms with a specific spin state by shining resonant light before the imaging [266,267].
inally, in order to infer the values of the Πj condensates, one would need to apply an additional
icrowave/Raman term that drives a π/2 rotation of the spins on the Bloch sphere in Fig. 5(a).

Controlling the phase of this rotation, provided that it is locked to the rotating frame of the
original Raman beams, one can map the differential spin population to the x or y axis, such
that the subsequent quantum-gas-microscope imaging gives the desired information about the
Lorentz-breaking condensates (129).

Density imaging can also be performed after switching off the confining potential, which leads to
the so-called time-of-flight (TOF) imaging. If the density is imaged after a sudden release [252], one
gains information about the coherence properties of the system in momentum space [92]. Instead of
the sudden release, one can adiabatically ramp-down the lattice potential, which gives access to the
quasi-momentum atomic distribution through the so-called band-mapping technique [268,269]. In
Ref. [109], this band-mapping technique was used to measure the differential drift of the atom cloud
when subjected to two opposite gradients, which allows one to distinguish trivial from non-trivial
Berry curvatures in Haldane’s honeycomb model of the QAH effect. This type of measurements could
be used to infer the value of the Chern number [270,271], as has been demonstrated in cold-atom
experiments of the integer QHE [272].

Coming back to the QAH effect, we note that the spin-resolved TOF densities have been measured
in quasi-momentum space for the simulated Qi–Wu–Zhang model with the 87Sr gas [126]. Remark-
ably, exploiting a symmetry that corresponds exactly to our inversion symmetry (61), the measured
differential spin densities at four high-symmetry points of the Brillouin zone give experimental
access to the Chern number [273]. These points correspond to the centre Γ , edge centres M and
corner Rwhere the fermion doublers reside, as discussed below Eq. (17). According to our discussion
of the static self-energy and the topological Hamiltonian in Section 5.2, we expect that these spin
densities will get renormalized by the non-zero scalar condensate, but still serve to characterize
the topological invariant in the presence of interactions in an analogous fashion to our Eq. (112). It
would be interesting to combine this observable, together with the in-situ symmetry-breaking Π1
(Π2) condensates, to explore the full phase diagram of the model and the topological and symmetry-
breaking phase transitions. We note that, in this case, the condensates would change into AFMy
(AFMx) Néel orders due to the alternation in Eq. (129), and the σ x

→ σ y change of the different
implementation of the Raman lattice.

Before closing this section, we emphasize that recovering the continuum limit of the lattice field
theory (10) implemented by the cold-atom QS does not imply a drastic modification of the laser
wavelength λ → 0. Instead, it requires setting the microscopic parameters (t , t̃ , δ,U ) to certain
j j ↑↓
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values, such that the bare couplings (ma1, ξ2, rj, g2/a1) lie in the vicinity of a critical point. Here, the
nergy gap is much smaller than the tunnellings ∆ϵ ≪ t̃j, and the relevant length scale ξl ≫ a1, a2
eads to a continuum QFT. The question that could be addressed by the cold-atom QS is to explore
his region and determine the critical scaling shedding light on the nature of the strongly-coupled
ixed points of the continuum four-Fermi QFT, addressing questions that might otherwise require
arge-scale LFT simulations. Ultimately, the goal would be to explore different fillings and real-time
ynamics in these models, going beyond the capabilities of classical simulations.

. Conclusion and outlook

We have shown that Wilson-type discretizations of four-Fermi QFTs in (2+1) dimensions (1)
ith irreducible representations of the gamma matrices (2) yield a neat playground to address

nteresting questions in both high-energy physics and condensed matter. Although explicitly lacking
hiral symmetry, these regularized QFTs present the analogue of dynamical mass generation which,
n contrast to other spacetime dimensions, occurs both at a non-zero coupling strength within a
enormalizable QFT with a strongly-coupled fixed point. In contrast to chiral-invariant theories,
hese four-Fermi–Wilson model can also host fermion condensates that break inversion symmetry
pontaneously and, thus, Lorentz invariance in the continuum limit. From a condensed-matter
erspective, these lattice models host QAH phases with non-zero Chern numbers, and the four-
ermi terms can be used to explore the role of interactions as one enters strongly-correlated
egimes. Both of these topics are actively investigated in these two fields.

We have presented a multidisciplinary approach that combines tools from these communities to
dvance our understanding of these four-Fermi–Wilson models. In the strong-coupling and single-
lavour limit, we have shown that the condensed-matter concept of super-exchange interactions
an be used to find an effective description in terms of a 900 quantum compass model in a
transverse field. Analysing this model with variational mean-field and tensor-network techniques,
we have identified two possible symmetry-breaking channels that connect to two versions of the
aforementioned Lorentz-breaking condensates. This has allowed us to formulate a large-N limit of
this field theory in terms of auxiliary fields, which has been used to predict the whole extent of the
condensates away from the strong-coupling limit by solving a set of non-linear gap equations. By
comparing a continuum-time Hamiltonian formalism with a discrete-time Euclidean approach, we
have been able to identify additive renormalizations of the bare parameters that must be carefully
considered when one explores the phases of the model using the discrete-time Euclidean approach
common to the lattice field theory community.

Moreover, using the Euclidean approach, we have calculated the effective potential resumming
the leading-order Feynman diagrams for N → ∞. This has allowed us to unveil a new type
of radiative corrections that give rise to novel effects in comparison to chiral-invariant theories,
such as an interesting crossover between first- and second-order phase transitions. This effective
potential has also allowed us to explore regions of parameter space where the inversion symmetry
remains intact, extracting the large-N contributions to the self-energy, and using those to calculate
the many-body Chern numbers that characterize the groundstate and the QAH in the presence
of correlations. This leads to a non-perturbative characterization of a rich phase diagram, which
contains large-N Chern insulators, trivial band insulators, and Lorentz-breaking fermion condensates
separated by various critical lines, around which one can recover continuum QFTs and explore the
nature of the corresponding strongly-coupled fixed points.

Finally, we have shown that quantum simulators based on ultra-cold alkali-earth atoms trapped
in optical lattices and subjected to synthetic spin–orbit coupling yield a very promising avenue to
realize these four-Fermi–Wilson models in experiments. In particular, we have argued that recent
experiments with a 87Sr gas subjected to Raman lattice potentials [126] are related to the non-
interacting limit of our four-Fermi–Wilson model, and give a unique opportunity to explore a
correlated QAH effect in the laboratory. Such an implementation would benefit from the microscopic
tunability of cold-atom quantum gases, which would allow to infer all of the relevant observables
such as the symmetry-breaking order parameters related to the fermion condensates or the many-

body Chern numbers. Moreover, these quantum simulators would open the route to the study
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of real-time dynamics and finite-fermion densities, overcoming current limitations of numerical
studies based on classical hardware.

As an outlook, we believe that exploiting the current multi-disciplinary view will be very
nteresting to explore effects that have not been covered by this article. An interesting open question
s to determine the role of anisotropic Wilson parameters in the nature of the Lorentz-breaking
ermion condensates, exploring if new phases can appear as one increases the interactions. We also
elieve that further studies of the isotropic regime a1 = a2 will be very interesting. As noted in this
anuscript, there is an emerging O(2) symmetry in the π(x) field, which can modify substantially

he dynamics of the theory due to an additional Chern–Simons term that is generated by quantum
orrections. In analogy to quantum electrodynamics in (2+1) dimensions, where photons acquire
mass due to a Chern–Simons term [45], the low-lying excitations about the condensate phase

hat breaks the O(2) symmetry spontaneously can also acquire a non-zero mass. It will be very
nteresting to explore this phenomenon in the presence of boundaries, since there can be an
nterplay with the QAH effect and the topological edge states. Finally, we finish by mentioning that
he cold-atom quantum simulators would open a new route to the study of real-time dynamics
nd finite-fermion densities, overcoming current limitations of numerical studies based on classical
ardware. In the future, it will be very interesting to exploit this multidisciplinary view and to
dentify new interaction-induced topological phases, such as fractional Chern insulators.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
hips that could have appeared to influence the work reported in this paper.

cknowledgements

The ICFO group acknowledges support from ERC AdG NOQIA, State Research Agency AEI (‘‘Severo
choa’’ Center of Excellence CEX2019-000910-S) Plan National FIDEUA PID2019-106901GB-I00
roject funded by MCIN/AEI /10.13039/501100011033, FPI, QUANTERA MAQS PCI2019-111828-2
roject funded by MCIN/AEI /10.13039/501100011033, Proyectos de I+D+I ‘‘Retos Colaboración’’
TC2019-007196-7 project funded by MCIN/AEI /10.13039/501100011033, Fundació Privada Cellex,
undació Mir-Puig, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341, CERCA program,
uantumCAT U16-011424, co-funded by ERDF Operational Program of Catalonia 2014–2020),
U Horizon 2020 FET-OPEN OPTOLogic (Grant No 899794), and the National Science Centre,
oland (Symfonia Grant No. 2016/20/W/ST4/00314), Marie Skłodowska-Curie grant STREDCH No
01029393, ‘‘La Caixa’’ Junior Leaders fellowships (ID100010434), and EU Horizon 2020 under Marie
kłodowska-Curie grant agreement No. 847648 (LCF/BQ/PI19/11690013, LCF/BQ/PI20/11760031,
CF/BQ/PR20/11770012).). A.B. acknowledges support from the Ramón y Cajal program RYC-
016-20066, CAM/FEDER Project S2018/TCS- 4342 (QUITEMADCM), and PGC2018-099169-B-I00
MCIU/AEI/FEDER, UE). S.J.H. acknowledges the support of STFC grant ST/T000813/1.

ppendix A. Absence of two simultaneous π condensates

In this Appendix, we give a detailed account of the gap equations obtained by using a Hubbard–
tratonovich transformation to rewrite the action (58) in terms of two π fields, and show that there
annot be a simultaneous condensation for general anisotropies.
To find the effective action in terms of the σ (x) and π(x) = (π1(x), π2(x)) auxiliary fields, we

ote that in the single-flavour limit N = 1 one can exactly rewrite the quartic interaction as the
ombination (Ψ (x)Ψ (x))2 →

1
3 ((Ψ (x)γ 1Ψ (x))2 + (Ψ (x)γ 2Ψ (x))2 + (Ψ (x)Ψ (x))2), such that the

uxiliary fields can be introduced symmetrically. We proceed by assuming once more that the
56
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H

corresponding condensates are homogeneous, i.e. Σ(x) = Σ , (Π1(x),Π2(x)) = (Π1,Π2) = Π , such
hat the effective action is now

SE =

∫ β

0
dτ
(
3NAs

2g2

(
Σ2

+ Π 2)
+

∑
k∈BZ

Ψ ⋆
k (τ )

(
∂τ + hk(m +Σ,Π )

)
Ψk(τ )

)
.

(A.1)

ere, in analogy to the derivation for a single π channel presented in Section 4.1, we find that the
single-particle Hamiltonian (13) gets modified to

hk(m) → hk(m +Σ,Π ) = dk(m +Σ,Π ) · (IN ⊗ σ). (A.2)

where the vector (14) also gets modified dk(m) → dk(m + Σ,Π ) due to the presence of the
auxiliary fields

dk(m +Σ,Π ) = dk(m) + (Π1,Π2,Σ) . (A.3)

Therefore, the only differences with respect to Section 4.1 are that the couplings strength g2
→

2g2/3, and that this vector is simultaneously shifted by both Πj condensates.
The rest of the derivation follows exactly the steps described in Section 4.1, and leads to a saddle

point of the action that is now determined by three non-linear gap equations

I :
Σ

g2 =
1
3

∫
k

m +Σ + mW (k)
ϵk(m +Σ,Π )

(A.4)

II :
Π1

g2 =
1
3

∫
k

1
a1

sin(k1a1) +Π1

ϵk(m +Σ,Π )
(A.5)

III :
Π2

g2 =
1
3

∫
k

1
a2

sin(k2a2) +Π2

ϵk(m +Σ,Π )
, (A.6)

Let us note that from II (A.5) and III (A.6), it follows that∫
k

( 1
Π1a1

sin(a1k1)

ϵk(m +Σ,Π )
−

1
Π2a2

sin(k2a2)

ϵk(m +Σ,Π )

)
= 0. (A.7)

The left hand side does not vanish for any point (σ ,Π1,Π2) in the anisotropic case a1 ̸= a2, meaning
that II and III cannot be satisfied simultaneously. For a1 = a2, gap equations II and III are equal and,
around this regime, Eq. (A.7) changes from being negative to positive. As a consequence, there is
no condensation with two simultaneous non-zero vacuum expectation values of the π fields for
generic anisotropy, meaning that we must consider either the Π1 or the Π2 symmetry-breaking
channels individually. This is in line with the prediction of the variational mean-field where, in the
language of an effective spin model, the ground state is either a x- or y-ferromagnet unless a1 = a2.
This discussion implies that we can improve on the auxiliary-field description by considering two
independent sets of gap equations for Σ,Π1 and Σ,Π2 separately.

Appendix B. Continuum-time limit and time doublers

In this Appendix, we present a detailed derivation of the additive renormalization of the bare
parameters in the time-continuum limit (98) caused by the spurious time doublers (95). To get an
explicit expression for this renormalization, we start from the action for dimensional fields (78),
using a subscript E in the bare parameters and condensates to distinguish this discrete-time
Euclidean-lattice approach from the Hamiltonian one in Eqs. (70)–(71).

After repeating similar steps as those described in Section 4.1, we obtain an effective action for
the auxiliary fields, and arrive at a pair of gap equations

ΣE

g2 =
1
Q

∑ mE +ΣE + mE(k)
s2 (m +Σ ,Π )

, (B.1)

E k k E E 2,E
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Π2,E

g2
E

=
1
Q

∑
k

1
a2

sin(k2a2) +Π2,E

s2k(mE +ΣE,Π2,E)
, (B.2)

where the Euclidean contribution to the mass (92) due to the Wilson-term reads, for dimensional
couplings, as follows

mE(k) =

∑
α

1 − cos(kαaα)
aα

. (B.3)

n the above gap equations, we have also introduced the analogue of Eq. (91) for dimensional
ouplings

s2k(mE +ΣE,Π2,E) = (mE +ΣE + mE(k))2

+

∑
α

1
a2α

(
sin(kαaα) +Πα,Eδα,2

)2
.

(B.4)

With these expressions at hand, let us perform a long-wavelength approximation k0 = K0 + δk0
around K0 ∈ {0, π/a0}, such that we can identify the contributions of the physical and spurious
doublers. After a Taylor expansion, and using contour techniques for the integrals along δk0, we
find that the second gap equation can be expressed as

Π2,E

g2
E

=
1
2

∫
k

( 1
a2

sin(k2a2) +Π2,E

ϵk
(
mE +ΣE,Π2,Ee2

) +

1
a2

sin(k2a2) +Π2,E

ϵk(mE +ΣE +
2
a0
,Π2,Ee2)

)
, (B.5)

here k = (k1, k2)t , and we have made use of the single-particle energy defined in Eq. (68). We
an now let a0 → 0, noticing that the mass term of the spurious time doublers, proportional to
/a0, dominates in the denominator of the second term, such that the integral vanishes linearly
ith a0 in this limit. Accordingly, we recover the continuum gap equation (71) for j = 2, which is
he desired single π-channel gap equation. Let us now recall that, in our numerical solution of the
ap equations, we start by fixing the value of the coupling strength g2 and M = m+Σ , after which
e solve Eq. (B.2) to get the π condensate Π2. As we have just shown that the Euclidean-lattice gap
quation (B.2) yields the same gap equation (71) in the continuum-time limit, we can thus conclude
hat

g2
E = g2, Π2,E = Π2. (B.6)

The situation changes for the first gap equation (B.1), since the Wilson-term contribution (B.3)
or the time doublers leads to a term that scales with 1/a0 also in the numerator

ΣE

g2
E

=
1
2

∫
k

(
mE +ΣE + mW (k)
ϵk(mE +ΣE,Π2,Ee2)

+

mE +ΣE +
2
a0

+ mW (k)

ϵk(mE +ΣE +
2
a0
,Π2,Ee2)

)
. (B.7)

n the limit a0 → 0, the second term no longer vanishes, but yields instead
ΣE

g2
E

=
1
2

∫
k

mE +ΣE + mW (k)
ϵk(mE +ΣE,Π2,Ee2)

+
1

2 a1 a2
. (B.8)

ne can readily check that this gap equation differs from the Hamiltonian one (70), which was
btained by working directly in the time-continuum limit, by a constant additive term, where we
onsider the single π-channel. Going back to our numerical solution of the gap equations, and
he discussion above Eq. (B.6), once we have solved the second gap equation and know g2

E and
2,E , we can solve Eq. (B.2) to obtain the value of the scalar condensate ΣE , and finally infer the
orresponding bare mass mE = M −ΣE . According to the shift in Eq. (B.8), we can readily infer that
he Euclidean-lattice formalism gives the same value of the scalar condensate, but renormalizes
dditively the bare mass

ΣE = Σ, mE = m −
g2

. (B.9)

2a1a2
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When this additive renormalization is taken into account, together with the required rescalings of
the adimensional formulation (82), we finally arrive to Eq. (98).

Appendix C. Derivation of the effective potential

In this Appendix, we give a detailed account of the derivation of the resummation for the
ffective potential (101) to all orders of the couplings strength g2. Let us start from the most general

expression with an even/odd number of auxiliary lines

Veff(Π̃2) =
NΠ̃2

2

2g̃2 + N
∞∑
n=1

1
n

∫
p
Tr

(
−iγ̃2

Π̃2

i/p + m̃

)n
, (C.1)

here we recall that
∫
p =

∑
k , /p = γ̃ αpα with pα = 2κα sin kα , and our choice for the Euclidean

amma matrices is given in Eq. (80). Although these are the specific for the anisotropic Wilson-type
egularization of the four-Fermi QFT, we note that the following derivations are completely generic,
nd can be readily applied to the continuum case and to other representations of gamma matrices.
or instance, if one aims at implementing chiral symmetry using the Euclidean version of Eq. (3),
he expressions below need only be modified by letting N → 2N due to the doubled dimension of
he gammas.

The trace in Eq. (C.1) can be calculated analytically via an inductive method, where

Tr

(
−iγ̃2

Π̃2

i/p + m̃

)n
=

Π̃n
2

(p2 + m̃2)n
Tr(In) (C.2)

nd we have defined

In = (−iγ̃2(−i/p + m̃))n. (C.3)

One can derive a recursive relation by noting that

In = −γ̃2(−i/p + m̃)γ̃2(−i/p + m̃)In−2 (C.4)

= −(p2 + m̃2)In−2 − 2p2In−1. (C.5)

In the last step, we use the anti-commutation rules {γ̃µ, γ̃ν} = 2δµ,ν , and the identity γ̃2/pγ̃2 =

/p− 2p2γ̃2. The recurrence relation starts with the first two terms I0 = I2 and I1 = −iγ̃2(−i/p+ m̃)
hich, considering our choice in Eq. (80) and the properties of the Pauli matrices, have the traces

Tr(I0) = Tr(I2) = 2, Tr(I1) = Tr(−p2I2) = −2p2. (C.6)

or higher-dimensional representations, such as Eq. (3), these traces will have an overall multiplica-
ive factor that shall carry onto the expressions of the effective potential.

With the aid of these first two terms, and the above recurrence relation, one can develop a
eneral expression for arbitrary n with the general structure

Tr(In) = 2
n∑

k=1

Ankpk2(p
2
+ m̃2)

n−k
2 , (C.7)

here the first few values of the coefficients Ank are given in Table 1. Note that we only present
the coefficients for even integers k = 0, 2, 4, . . . , n, and even n. Although the odd ones k =

, 3, 5, . . . , n, for odd n, can also be non-zero, they lead to mode sums, or integrals in the continuum,
hich vanish (C.1), as the function is odd in a symmetric interval. In the standard calculation of the
ffective potential for continuum four-Fermi QFTs [112], where the σ field couples to (ΨΨ ) for the

chiral symmetry-breaking channel; the odd terms vanish directly since they are proportional to the
traces of the gamma matrices, all of which vanish. For the current (Ψ γ̃1Ψ ) channel, although the
races do not vanish, once we integrate over the Euclidean Brillouin zone (C.1), the odd terms do
ot contribute either. It is for this reason that the large-N Feynman diagrams depicted in Fig. only
ontain an even number of auxiliary π lines, and lead to Eq. (C.1).
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Table 1
Coefficients Ank in the expansion of Eq. (C.7). The lower row also gives the values of
the coefficients Ak in Eq. (C.9).
n/k 0 2 4 6 8 10 12

2 −1 2
4 1 −8 8
6 −1 18 −48 32
8 1 −32 160 −256 128

10 −1 50 −400 1120 −1280 512
12 1 −72 840 −3584 6912 −6144 2048

Ak −2 2
3 −

4
45

2
315 −

4
14175

4
467775

In order to perform the resummation, we need to express these coefficients Ank in closed from.
e have found that the exact expression is

Ank = (−1)
n
2 Ak

(n
2

)2 ((n
2

)2
− 12

)
· · ·

((n
2

)2
−

(
k
2

− 1
)2
)
, (C.8)

here we have introduced

Ak =
(−1)

k
2 2k−1( k

2

)2 (( k
2

)2
− 12

)
· · ·

(( k
2

)2
−
( k
2 − 1

)2) . (C.9)

The first values of Ak shown in Table 1 can be readily checked to follow this general expression.
This expression (C.8) must be supplemented with the k = 0 term An0 = (−1)

n
2 . Relabelling

, k → 2n, 2k to only account for terms with an even number of external π lines, we find

Veff(Π̃2)
N

=
Π̃2

2

2g̃2 −

∫
p
log

(
1 +

Π̃2
2

p2 + m̃2

)
+

∫
p

∞∑
n=1

(
−

Π̃2
2

p2 + m̃2

)n

×

n∑
k=1

(
p22

p2 + m̃2

)k

A2k n(n2
− 12)(n2

− 22) · · · (n2
− (k − 1)2),

(C.10)

here the first radiative term comes from resumming the series in n for the aforementioned k = 0
erm, where we have used ln(1 + z) =

∑
∞

n=1(−z)n/n for the parameter

z =
Π̃2

2

p2 + m̃2 , (C.11)

such that convergence requires |z| < 1. We note that in the standard effective potential for
continuum four-Fermi QFTs [112], where the σ field couples to the (ΨΨ ) bilinear, all the radiative
uantum corrections to the classical potential are contained in a term that is completely analogous
o this one

δVq,1 = −N
∫
p
log

(
1 +

Π̃2
2

p2 + m̃2

)
(C.12)

fter making the substitution Π̃2 → σ̃ . Accordingly, the consequence of using a different π channel
s that there are additional quantum corrections contained in the remaining contributions for
∈ {1, 2, 3, . . .} of Eq. (C.10). Accounting for these new radiative corrections is crucial to find the

correct phase diagram, identifying the regions that delimit the correlated QAH phase.
Let us now describe how to perform the resummation of these additional corrections. The idea is

to focus on the different k contributions separately, performing the sums over n to arbitrary orders
f the coupling strength, here corresponding to arbitrary pairs of external lines, by means of the
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following generating functions

Sℓ(z) =

∑
n

nℓ(−z)n =

(
z
d
dz

)ℓ 1
1 + z

.

Note that the contributions in Eq. (C.10) of order O(p2k2 ), considering a fixed value of k, can be
xpressed in terms of a combination of generating functions {S2r−1(z)}kr=1, e.g. for k = 2 one

gets a contribution proportional to S3(z) − S1(z). Each of these generating functions is a rational
unction P2k−1(z)/(1 + z)2k, the numerator of which P2k−1(z) is a polynomial of order 2k − 1. In
ight of Eq. (C.11), z ∝ Π̃2

1 , and one would then expect that each k term has a different polynomial
ependence on the π condensate, such that resummation cannot be performed. Remarkably, we find
hat the prefactors that multiply the generating functions inside each of the polynomials P2k−1(z)
ancel all terms except for one scaling with zk, e.g. for k = 2, we get P3(z) = 6z2. This leads to
scaling with the condensate of order O(Π̃2k

2 ) that can now be resummed. The first few terms of
hese additional quantum-mechanical corrections to the effective potential read

δVq,2(Π̃2)
N

≈
1
2

∫
p

(
4p22Π̃

2
2

(p2 + m̃2 + Π̃2
2 )2

+
1
2

(
4p22Π̃

2
2

(p2 + m̃2 + Π̃2
2 )2

)2

+
1
3

(
4p22Π̃

2
2

(p2 + m̃2 + Π̃2
2 )2

)3

+
1
4

(
4p22Π̃

2
2

(p2 + m̃2 + Π̃2
2 )2

)4

+ · · ·

⎞⎠ .
(C.13)

he particular form of these last four terms suggests that a resummation is possible using again the
aylor series of the logarithm series, such that

δVq,2(Π̃2) = −
N
2

∫
p
log

(
1 −

4p22Π̃
2
2

(p2 + m̃2 + Π̃2
2 )2

)
.
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