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Abstract. Chiral symmetry in QCD can be simultaneously in Wigner and Goldstone modes, depending on the
part of the spectrum examined. The transition regime between both, exploiting for example the onset of parity
doubling in the high baryon spectrum, can be used to probe the running quark mass in the mid-IR power-law
regime. In passing we also argue that three-quark states naturally group into same-flavor quartets, split into two
parity doublets, all splittings decreasing high in the spectrum. We propose that a measurement of masses of
high-partial wave∆∗ resonances should be sufficient to unambiguously establish the approximate degeneracy and
see the quark mass running. We test these concepts with the first computation of the spectrum of high-J excited
baryons in a chiral-invariant quark model.

1 Introduction

In the last thirty years, Quantum Chromodynamics has turned
out to give an accurate description of many high-energy
processes. In the last decennium, a lot of effort has gone
to solving the QCD equations on a discretized spacetime
lattice, using an impressive amount of computing power.
This, together with perturbation theory, has led to very
persuasive evidence that QCD indeed describes the strong
interaction, both at the high-energy end and at the static
end. However, there still remains the question if the the-
ory describes the transition between the perturbative and
non-perturbative domain. A suitable quantity for checking
this is the quark mass, which should be a function of the
quark’s momentum due to the interactions with the QCD
medium. Asymptotic freedom tells us that at high quark
momentumk, the nonstrange quark mass should approach
the current quark mass of the order of 1−5 MeV as deduced
from chiral perturbation theory or sum-rules, while hadron
phenomenology puts the value of the quark mass at low
momenta to an effective∼ 300 MeV. This means that the
nonstrange quark mass changes by two orders of magni-
tude when going from low momentumk << ΛQCDto high
momentumk >> ΛQCD (typicallyΛQCD ∼ 210 MeV).

Obviously, a direct comparison between the QCD pre-
diction of the running quark mass and experimental obser-
vation is not possible since quarks are confined and propa-
gate only a distance of order a fermi, too small to detect
directly. It is a main goal of modern hadron physics to
glimpse properties of the confined, colored quarks from
colorless hadron properties. We suggest an indirect way
of extracting the power-law behaviour of the quark mass
function from the experimentally obtainable masses of∆
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resonances. Two main ideas are applied in order to do this:
insensitivity to chiral symmetry breaking leading to the ap-
pearance of parity doublets in the hadron spectrum [1–
3] andlinking the mass splittings between parity partners
with the running quark mass.

Our proposal can be concisely understood with the help
of figure 1.

2 Chiral quartets

Chiral symmetry in the strong interactions is the Noether
symmetry related to the chiral transformation, which reads
on the classical fermion fields

ψ→ eiαaτaγ5ψ , (1)

with αa the parameters describing the rotation inS U(2)-
flavour space with generatorsτa. Due to the Dirac matrix
γ5, the chiral transformation is a helicity-dependent rota-
tion in flavour space.

One term in the QCD Lagrangian which is clearly not
invariant to the chiral transformation of Eq. 1, is a quark
mass term

mqq̄q . (2)

This term breaks chiral symmetry explicitly, and the amount
of breaking is larger when the quark mass increases. As
mentioned before, the small current quark mass of 5 MeV
breaks chiral symmetry only slightly. On top of the explicit
breaking of chiral symmetry, the strong interactions also
show spontaneous chiral symmetry breaking due to the ap-
pearance of the quark condensate< q̄q > (a constituent
quark mass of 300 MeV arises and breaks it to a much
larger degree).
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Fig. 1. The running of the quark mass (top), falling with momen-
tumas a power law, is accessible from the hadron spectrum in the
regionm(k) < 〈k〉 (continuous red line). All one needs to do is fit
a power law to the decreasing parity splittings for excited baryon
states (bottom, where we show a variational-Montecarlo model
calculation thereof as boxes and experimental data from Ref. [4]
as circles). Then the exponent of the quark mass power-law in
Eq. (10) is obtained from Eq. (9).

This is the QCD explanation for the absence of parity
doubling in the low spectrum, as the symmetry is spon-
taneously broken. The community now believes that the
highly excited states however are insensitive to this spon-
taneous breaking (see fig. 2 for a classical analogy). In-
deed, since the quark mass is large at low momenta and
small at high momenta, one may expect that the chiral sym-
metry breaking is less important in systems where the av-
erage quark momentum< k > is high, than in systems
where< k > is large. This leads to the idea of insensitivity
to chiral symmetry breaking high in the hadron spectrum
[1–3,5,6] : in highly excited meson or baryon states, the
average quark momentum can become larger thanΛQCD
and the explicit chiral-symmetry breaking quark mass term
is small. This is illustrated in Fig. 3, where typical quark
momentum distributions are shown for the lowest-lying∆-
resonance for different spins, together with the lattice QCD
calculation of the running quark mass from Ref. [7].

2.1 Series expansion in m(k)/k

In order to assess the effect of a nonzero quark mass to a
hadron mass, it is important to note that the quark mass

Fig. 2. A classical analogy of three symmetry realizations in a
quantum theory. Top: the two buildings have equal mass as re-
quired by Reflection symmetry in Wigner mode. Middle: if in-
mersed in a fluid (non-trivial ground state) with a density gradient
from left to right, the two buildings, filled with it, have now dif-
ferent mass (the symmetry is in Goldstone mode). Bottom: even
if the fluid breaks the Reflection symmetry, tall enough buildings
have close to equal masses (insensitivity to symmetry breaking).

shows up both in the quark spinors and in the QCD Hamil-
tonian. Since we want to find out what happens at small
quark mass and high momentum, a series expansion of the
spinors and Hamiltonian in the parameterm(k)/k seems
appropriate.

The spinors are expanded as

Ukλ =
1

2E(k)

[ √
E(k) + m(k)χλ√

E(k) − m(k)σ · k̂χλ

]
(3)

−−−−−→
k → ∞ 1

√
2

[
χλ

σ · k̂χλ

]
+

1

2
√

2

m(k)
k

[
χλ

−σ · k̂χλ

]
,

with E(k) =
√

k2 + m(k)2. We have kept the leading chi-
rally invariant term and the leading chiral-symmetry break-
ing term which is necessarily of orderm(k)/k. Note that the
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Fig. 3. Typical momentum distributions of increasingly excited
∆3/2, · · · , ∆13/2 resonances overlap less and less with the dynam-
ically generated infrared quark mass. The momentum distribu-
tions are computed using variational wave functions (not nor-
malized for visibility) for a linear potential with string tension
σ = 0.135 GeV2.

lower component of the first-order term has the opposite
sign of the lower component of the chiral invariant term.

When expanding the QCD Hamiltonian [8] in the weak
sense (that is, not of the Hamiltonian itself, but a restriction
thereof to the Hilbert space of highly excited resonances,
where< k > is large), we note that the leading term in the
m(k)/k expansion is chiral invariant, while the first order
term may involve nonchiral, spin-dependent potentials in
the quark-quark interaction:

〈n|HQCD |n′〉 ≃ 〈n|HQCD
χ |n′〉+〈n|m(k)

k
HQCD ′

χ |n′〉+. . . . (4)

2.2 Chiral charge and three-quark states

If the quarks were massless, and there would be no chiral
noninvariant mass term in the strong interactions, the chiral
charge [9]

Qa
5 =

∫
dxψ†(x)γ5

τa

2
ψ(x) (5)

would commute with the QCD Hamiltonian. Nevertheless,
chiral symmetry would still be spontaneously broken by
the ground state,Qa

5|0〉 , 0, leading to a large quark mass
in the quark propagator, pseudo-Goldstone bosons and the
loss of parity-degeneracy in ground-state baryons. Using
Bogoliubov-rotatedquark/antiquark operatorsB andD and
the explicit expression for the spinors, the chiral charge can
be written as

Qa
5 =

∫
d3k

(2π)3

∑

λλ′ f f ′c

(
τa

2

)

f f ′

k√
k2 + m2(k)

(6)

×
[
(σ · k̂)λλ′

(
B†kλ f cBkλ′ f ′c + D†−kλ′ f ′cD−kλ f c

)
+

m(k)
k

(iσ2)λλ′
(
B†kλ f cD†−kλ′ f ′c + Bkλ′ f ′cD−kλ f c

)]
.

The first term between the square brackets represents a
quark and antiquark number operators flipping spin and

parity. Whenm(k) << k, it dominates the second term rep-
resenting the creation or annihilation of a pion (and theRe-
fore realizes chiral symmetry nonlinearly).

As is argumented in Refs. [10–12], repeated action of
the chiral charge on a three-quark state leads to a quartet
of states, two of each parity, which dynamically breaks into
two doublets of parity partners. These partners become de-
generate whenm(k) vanishes. Moreover, the mass splitting
between partners is a direct measure ofm(k).

3 The running quark mass and the ∆
spectrum

In order to link the mass splitting|MP=+ − MP=− | in a par-
ity doublet to the running quark mass, we will look at the
lowest-lying∆ parity doublets for increasing spinj and we
use the following four arguments

1. Regge trajectories:j = α0 + αM±2 j→∞−→ αM±2

2. Relativistic virial theorem [13]:< k >→ c2M± →
c2√
α

√
j

3. The chirally invariant term (< n|HQCD
χ |n >) cancels out

in ∆M:
|M+ − M− | ≪ M±

and

|M+ − M− | →<
m(k)

k
HQCD
χ

′
>→ c3

m(k)
k

< HQCD
χ

′
>

4. In HQCD
χ , the spin-orbitLi · Si term is crucial to correct

the angular momentum in the centrifugal barrier term
from L2

i to the chirally invariantL2
i + 2Li · Si = J2

i −
3
4. Dueto the sign difference in the helicity-dependent

term∼ −σ·k̂ in the spinor, the spin-orbit term inHQCD
χ

′

adds to the mass difference∆M, instead of cancelling
out as it does forHQCD

χ . Since the centrifugal barrier
scales likeM± for high j, the spin-orbit term scales
with one power ofj less:

< HQCD
χ

′
>→ c5M± j−1 → c5√

α

√
1
j
. (7)

Combining these four arguments, we obtain

|M+ − M−| → c3c5

c2
√
α

m(< k >) j−1 . (8)

An experimental extraction can be done by fitting the ex-
ponent−i of j in the splitting

|M+ − M− | ∝ j−i . (9)

Then, the power-law behaviour of the running quark mass
is given by

m(k) ∝ k−2i+2 . (10)

The experimentally known masses of lowest-lying∆-res-
onances forj = 1/2, · · · , 15/2 are shown in Fig. 4. From
this, it is clear that the present state of our experimental
knowledge of the∆-spectrum is not sufficient to derive the
exponenti. Knowledge of the masses of the parity doubler
for spins j > 9/2 would greatly enhance this.

03012-p.3



EPJ Web of Conferences

1 2 3 4 5 6 7 8 9
J

1

1.5

2

2.5

3

3.5

4
M

 (
G

eV
)

PDG, natural parity
PDG, parity doubler

Fig. 4. Experimentally known masses for the lowest-lying∆ res-
onance for spins up to 15/2 and each parity. The degeneracy seen
at j = 9/2 can be accidental and may be confirmed if the masses
of the parity doublers atj > 9/2 are measured.

4 A basis for ∆ states

The idea of extracting the running quark mass from the
hadron spectrum can be investigated using a chirally in-
variant quark model. The Hamiltonian we have used in
Ref. [10] comes from a field theory upgrade of the Cor-
nell model where we neglect the gluon fields and use a lin-
ear quark-quark potentialVL(r) = σr with string tension
σ = 0.135 GeV2. This leads to an analytic expression for
the mass splitting between parity partners of

M+ − M− = 3
∫

d3k1

(2π)3

d3k2

(2π)3

(
2
3

) ∫
d3q

(2π)3
(11)

×V̂(q)
1
2

(
m(|k1|)
|k1|

+
m(|k1 + q|)
|k1 + q|

)
F∗λ1λ2λ3(k1, k2)

×
(
I − σk̂1σ ̂k1 + q

)
λ1µ1

Fµ1λ2λ3(k1 + q, k2 − q) .

HereV̂ is the Fourier transform of the linear potential which
falls like q−4, and theF is the wavefunction of one of the
parity partners. This wavefunction can be obtained vari-
ationally as done in Ref. [10]. However, it is only possi-
ble to do this for the lowest state for each spin and parity.
Higher-lying states can be computed by diagonalizing the
Hamiltonian using a set of basis functions for three-quark
states.

Constructing an orthonormal basis of three-quark states
is not an easy task. The basis functions need to form an
antisymmetrized and orthonormal set of states of definite
spin and parity. We have built this basis starting from ba-
sis states which are a combination of harmonic-oscillator
(HO) states with parameterα and a 2×2×2 = 8-component
spinor

BαN,l,mρ,mλ,Ri
(pρ, pλ, S i)

= ϕα
nN,l
ρ ,lN,l

ρ ,mρ

(pρ) ϕαnN,l
λ
,lN,l
λ
,mλ

(pλ) χRi(S i) , (12)

wherepρ andpλ are the relative Jacobi momenta, and the
indices are needed to denote the quantum numbers of the
HO wavefunctions and the spinor.

The following subsequent steps are taken in construct-
ing the basis

– A unitary transformation is applied to the basis func-
tions of Eq. 12, using Clebsch-Gordan coefficients to
ensure a fixed spin of the basis function. The parity of
the state is automatically fixed for the HO basis func-
tions: HO shells with even (odd) shell numberN give
rise to positive (negative) parity states.

– The resulting set of basis functions are symmetrised
(the colour part of the wavefunction is taken to be an-
tisymmetric and is left out in this discussion) by sim-
ply summing over the six possible quark permutations.
This gives rise to an overdetermined set of non-orthog-
onal symmetrized basis functions of fixed spin and par-
ity.

– An orthonormal set of basis functions is created by
performing a Gram-Schmidt procedure on the non-or-
thogonal set. For this, one has to compute the overlaps
between the non-orthogonal wavefunctions using the
van Beveren-Ribeiro-Moschinsky coefficients [14].

We have performed this orthonormalization procedure
and diagonalized the model Hamiltonian for spin 1/2 and
3/2 states of each parity. The resulting masses are plotted
in Fig. 5. Here, we can already see a tendency of decreas-
ing mass difference between states of different parity when
looking at higher-excited states.

0 2 4 6 8 10 12 14 16 18 20
Eigenvalue number

0

1

2

3

4

M
 (

G
eV

)

1/2
-

1/2
+

Parity doubling in the ∆ spectrum?

0 2 4 6 8 10 12 14 16 18 20
Eigenvalue number

0

1

2

3

4

M
 (

G
eV

)

3/2
-

3/2
+

Parity doubling in the ∆ spectrum?

Fig. 5. A massive variational-Montecarlo model calculation [15]
allows to check that parity doubling occurs high in the high
baryon spectrum, here∆ baryons with spin 1/2 and 3/2. The com-
putation of highly excited states is currently impossible in lattice
gauge theory. Even in our simplified chiral field-theory model of
QCD, the present computation is formidable and required∼ 105

CPU-hours at 2-3 GHz.
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However, it is at this point not clear which states are
parity partners since the density of states is so high. In or-
der to disentangle the pairs in model terms, one just needs
to check out the overlaps of the chiral charge between pos-
itive and negative parity candidates. If〈B−|Qa

5|B
+〉 ∼ 1, the

states are close to being such degenerate partners. However
this is difficult to implement with experimental data alone.

Thus we advocate reaching high excitation not by “ra-
dial” excitations (successive resonances of increasing mass
but equal quantum numbers), but instead by angular excita-
tions (the ground state in eachJ-channel). It is straightfor-
ward to match the ground states in an experimental analy-
sis, as long as good partial wave expansions are achieved.
We look forward for JLAB and ELSA providing these ex-
cited∆J spectrum.

5 Conclusions

It is commonly quoted in textbooks that symmetries in a
quantum theory can be realized in Wigner mode (degen-
erate spectrum), Goldstone mode (vacuum spontaneously
breaks symmetry, Goldstone bosons present) or anoma-
lously (the quantum effective action has less symmetry than
the classical action). Chiral symmetry in QCD is widely
believed to be in Goldstone mode.

In this note we have argued that actually, in QCD, chi-
ral symmetry is realized in both Goldstone mode (lower
part of the spectrum) and Wigner mode (excited states),
and given a classical analogy.

We have further commented on the possibility of em-
ploying a new perturbative regime in QCD, an expansion
in powers ofm(k)/k for small quark masses. This is use-
ful for observables that (in Wigner mode) do not receive
a contribution from the first order term. Such observables
are parity splittings in excited states, their pion couplings,
etc. These observables are then able to probe the running
quark mass in first order.

We have undertaken a major model calculation of ex-
cited baryon states, in the simplest possible model that si-
multaneously implements chiral symmetry yet has excited
states (the first condition rules out non-relativistic quark
models, the second the Nambu-Jona-Lasinio model). Thus
one needs to resort to global-color models that are non-
local, and we employ the field-theory upgrade of the Cor-
nell quark model. In this contribution we have shown re-
sults for highly excited∆ baryons to more than 20 eigenval-
ues (out of reach for conceivable lattice calculations), with
a much larger variational basis in the hundred-more range
of basis vectors. Our computations, for both spin 1/2 and
3/2, clearly show the parity doubling.

However, this avenue is not promising for experimental
extraction, as it is then difficult to match the partners since
the density of states is large, and they overlap as their width
grows high in the spectrum. We advocate an experimental
measurement of the doubling for the ground-states of each
angular momentum channel at JLAB and ELSA.

With the data in hand, one can then use ourm(k)/k first-
order expansion to obtain the running of the quark mass in
the infrared, a hitherto unaccessed quantity in QCD. Other

efforts are underway to access this interesting property of
a confined object from hadron structure data1 and a com-
parison should prove interesting.
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