
GLAS: framework to improve assessment in educational
videogames

Ángel Serrano Laguna

MÁSTER EN INVESTIGACIÓN EN INFORMÁTICA. FACULTAD DE INFORMÁTICA
UNIVERSIDAD COMPLUTESNE DE MADRID

Trabajo Fin Máster en Sistemas Inteligentes

Curso 2011/2012

Director:

Baltasar Fernández Manjón

Convocatoria: Junio
Califación: Sobresaliente

Autorización de difusión

Ángel Serrano Laguna

21/06/2012

El/la abajo firmante, matriculado/a en el Máster en Investigación en Informática de
la Facultad de Informática, autoriza a la Universidad Complutense de Madrid (UCM) a
difundir y utilizar con fines académicos, no comerciales y mencionando expresamente a su
autor el presente Trabajo Fin de Máster: “GLAS: framework to improve assessment in
educational videogames”, realizado durante el curso académico 2011-2012 bajo la dirección
de Baltasar Fernández Manjón en el Departamento de Ingeniería del Software e Inteligencia
Artificial, y a la Biblioteca de la UCM a depositarlo en el Archivo Institucional E-Prints
Complutense con el objeto de incrementar la difusión, uso e impacto del trabajo en Internet
y garantizar su preservación y acceso a largo plazo.

Resumen en castellano

El proceso de evaluación es fundamental para valorar los resultados de cualquier proceso
educativo. Además es un elemento crucial en la aceptación de un nuevo proceso educativo
por parte de los profesores. Esta evaluación se hace aún más complicada cuando se ha de
realizar sobre juegos educativos. Learning Analytics es una nueva disciplina que aboga por
colectar la información derivada de la interacción de los estudiantes con cualquier material
educativo on-line, para por un lado entender mejor como interactúan los estudiantes con este
tipo de material, y por otro, evaluar el resultado de los procesos de aprendizaje. La mayoría
de aplicaciones de Learning Analytics que se están realizando en el campo de e-learning son
sobre sistemas de gestión de enseñanza o Learning Management System. Los videojuegos
educativos, debido a su alto nivel interactivo, presentan el entorno ideal para este tipo
de procesos. En este trabajo se presenta la aplicación del proceso de Learning Analytics
sobre videojuegos educativos. Este trabajo está organizado en tres partes: en la primera,
se presenta la motivación científica del planteamiento de este proyecto, una propuesta de
implementación abstracta y una propuesta de implementación concreta sobre el motor de
juegos educativos eAdventure como objetivo; en la segunda parte, se detalla todo el proceso
de implementación llevado a cabo en la realización del proyecto; y en la tercera y última se
presentan algunas de las conclusiones obtenidas y se identifican las líneas de trabajo futuro
a desarrollar.

Palabras clave

análisis de métricas de aprendizaje, videojuegos edcuativos, evaluación, minería de datos,
eAdventure

Abstract

Assessment process is key to evaluate results of any educational process. Besides, it is a
crucial element in the acceptance of any new assessment process by the teachers. This eval-
uation gets more complicated when it must be done over educational videogames. Learning
Analytics is a new field that advocates of capturing all the data derived from interaction
with on-line educational resources, first, to better understand how students interact with
this type of resources, and second, to evaluate the educational action itself. Most of Learn-
ing Analytics research in e-learning is being deployed over Learning Management Systems.
Educational videogames, due to their high interaction level, present the ideal environment
for this type of analysis. In this project, application of the Learning Analytics process over
educational videogames is presented. This document is organized in three parts: in part
I, it is presented the scientific motivation for the project, an abstract implementation ap-
proach and a concrete implementation deployed over the eAdventure game engine; in part
II, all implementation process is detailed, approaching all the project’s subsystems; and
finally, in part III, some conclusions of the project are presented, and some future work to
be developed.

Keywords

learning analytics, educational videogames, assessment, data mining, eAdventure

Table of Contents

Index i

List of Figures v

List of Tables vii

I Motivation and Objectives 1

1 Introduction 3

2 Previous work 9
2.1 LOCO-Analyst . 9
2.2 SNAPP . 11
2.3 Conclusions . 11

3 Learning Analytics in educational videogames: first approach 13
3.1 Select and capture . 14
3.2 Aggregate and Report . 17
3.3 Assess and Use . 19
3.4 Refine and share . 20

4 Implementation proposal: eAdventure 23
4.1 Select . 24
4.2 Capture . 25
4.3 Aggregate . 26
4.4 Report . 27
4.5 Assess . 28
4.6 Use . 29
4.7 Refine . 29
4.8 Share . 30

II Implementation 31

5 Introduction 33
5.0.1 GLAS Tracker . 33
5.0.2 GLAS Server . 35

i

5.0.3 GLAS Reporter . 35

6 Considered Technologies 37
6.1 Server technologies . 37

6.1.1 PHP . 38
6.1.2 Java . 38

6.2 Storage . 38
6.2.1 Appengine DataStore . 39
6.2.2 MySQL . 39

6.3 Client Side: Reports System . 39
6.3.1 GWT . 40
6.3.2 Java . 40

6.4 Game Engine: eAdventure . 40
6.5 Selected technologies . 40

7 Generating and selecting traces 43
7.1 Traces definition . 43

7.1.1 ActionTrace . 45
7.1.2 LogicTrace . 47

7.2 Trace selection . 47
7.3 Producing traces in eAdventure . 48

7.3.1 InputAction as ActionTrace . 49
7.3.2 Effects as LogicTrace . 49

7.4 Initial filtering . 52

8 Capturing traces and server communication 53
8.1 GLAS Tracker . 53

8.1.1 Server communication . 54
8.2 Tracker integration in the eAdventure game engine 57

8.2.1 Catching ActionTrace . 58
8.2.2 Catching LogicTraces . 58

9 REST API and Server Implementation 63
9.1 REST API definition . 63

9.1.1 Games . 64
9.1.2 Traces . 65
9.1.3 Game users . 66
9.1.4 Queries . 66

9.2 Data format . 68
9.2.1 XML . 68
9.2.2 JSON . 69
9.2.3 JSONP . 70

9.3 Server implementation . 70

ii

9.3.1 Database . 71
9.3.2 Accessing to resources . 73

10 Generating reports 77
10.1 Reports architecture . 77
10.2 Types of reports . 78

III Conclusions 83

11 Conclusions and future work 85
11.1 Contributions . 85
11.2 Future work . 87

Bibliography 89

References and Bibliography 91

IV Appendices 93

A A framework to improve evaluation in educational games 95
A.1 Introduction . 96
A.2 Learning Analytics Steps in Educational Games 98

A.2.1 Select and capture . 99
A.2.2 Aggregate and Report . 102
A.2.3 Assess and Use . 104
A.2.4 Refine and share . 105

A.3 Implementation Proposal: eAdventure . 106
A.3.1 Select . 108
A.3.2 Capture . 109
A.3.3 Aggregate . 109
A.3.4 Report . 110
A.3.5 Assess . 111
A.3.6 Use . 112
A.3.7 Refine . 113
A.3.8 Share . 113

A.4 Use case: Basic math game . 114
A.5 Final remarks . 115
A.6 References . 115

B Tracing a little for big improvements: Application of Learning Analytics
and Videogames for Student Assessment 117
B.1 Introduction . 118

iii

B.2 Taces logged . 120
B.2.1 Start game, end game, quit game . 120
B.2.2 Phase changes . 121
B.2.3 Significant variables . 122
B.2.4 User interaction . 122

B.3 Extracting information . 123
B.3.1 Derived and combined data . 123
B.3.2 Assessment . 124

B.4 Final remarks . 125
B.5 References . 126

iv

List of Figures

2.1 LOCO-Analyst . 10
2.2 SNAPP . 11
2.3 SNAPP Diagram . 12

3.1 General framework vision . 15
3.2 LAS-LAM Scheme . 16
3.3 Aggregator Scheme . 18

4.1 eAdventure integration with the LAS . 24
4.2 Data capturer scheme . 26
4.3 Heat map report example . 28

5.1 GLAS overview . 34

7.1 UML diagram of the two types of traces in GLAS 45
7.2 GLAS Selector . 48
7.3 InputAction UML . 50
7.4 EffectGO UML . 51
7.5 Tracker Selector UML . 52

8.1 Server-Tracker Protocol Diagram . 59
8.2 GLAS Tracker hierarchy . 60
8.3 Catching action traces in the eAdventure . 61
8.4 Catching logic traces in the eAdventure game engine 62

9.1 QueryResult UML Diagram . 68
9.2 Tables in GLAS Database . 71
9.3 Data Access Object implementation . 72
9.4 Resources UML diagram in GLAS Server . 75

10.1 Reports architecture UML diagram . 78
10.2 Counter report . 79
10.3 Graph report . 80
10.4 Histogram report . 81

A.1 General framework vision . 100
A.2 LAS-LAM Scheme . 101
A.3 Aggregator Scheme . 103
A.4 eAdventure integration with the LAS . 107

v

A.5 Data capturer scheme . 110
A.6 Heat map report example . 112

vi

List of Tables

3.1 Learning Analytics steps . 14

A.1 Learning Analytics Steps . 99

vii

Part I

Motivation and Objectives

1

Chapter 1

Introduction

In traditional education, either in higher education or in other levels, the main evaluation

method is based on written final exams [20]. This method, as some authors have pointed out

[21], presents a different issues. These issues are related not only to the student evaluation,

but also to the evaluation of the educational activity itself: the amount of data available is

limited, and it is usually restricted to students and educators subjective perceptions (e.g.

through polls about the past courses). Other metrics, mostly based on exam grades, might

not give enough information about the educational activity, or whether it was a success or a

failure and why. Moreover, these data usually become available when the activity is finished

or when it is too late to make an intervention, improvement or correction in the ongoing

action.

With the emergence of the Web, on-line educational resources have grown exponentially.

Many institutions now use LMS (Learning Management System) to organize their courses,

to allow students to communicate among themselves and with teachers, and to improve

access to educational resources [27]. Still, despite all of these on-line resources, evaluation

is still usually performed using traditional methods. Most of the content presented in LMS

is finally evaluated through written exams in classrooms, or through online tests or exams.

However, there is a whole new body of data, derived from the student interaction with on-

line educational resources. These data can be collected and analysed not only to improve

the evaluation methods, but also to obtain real-time feedback about the progress of any

3

educational activity, enabling educators to predict results and react to that progress.

Data mining processes are used in multiples disciplines to analyse big amounts of data

looking for knowledge patterns (discovery of regularities or rules) for further use. For

instance, this type of processes are used by companies trying to improve their services

analysing their client profiles and offering them only those products that might interest

them, and by scientists looking for solutions for data categorization problems or ontology

creations in fields like bioinformatics or medicine.

In the past few years, a new discipline focused in the data mining over learning metrics,

and generically named as Learning Analytics [22], is trying to determine how this type of

processes can be used in the data analysis to improve any of the many aspect of the educative

process.

Essentially, Learning Analytics is the measurement, collection, analysis and reporting

of data about learners and their contexts, for purposes of understanding and optimizing

learning and environments in which it occurs [22].

These ideas have been successfully applied in other disciplines, like Business Intelligence,

a well-extended set of techniques for analysing business data to support better business

decision-making [28], or Web Analytics, where internet data are collected in order to under-

stand and optimize web usage [23].

Learning Analytics results can be applied at different levels and with diverse purposes: at

course-level, where teachers and students obtain a better perspective of the educational pro-

cess and its results; at course-aggregated level, where predictive models and success/failure

patterns can be found in the analysed data; at administration-level, where more detailed

statistics can be obtain for groups of students or schools in order to, for example, improve

resources allocation; and at regional/state level, where all results obtained in all schools or

faculties can be compared.

Until now, the available set of parameters to analyse educational outcome was not enough

to establish the conditions of success or failure in the different educational processes. Nowa-

4

days, mainly due to new mobile technologies expansion as well as behaviour change, students

interact with a big amount of educational resources, from multiples places and platforms,

producing traces that can be collected and analysed. Therefore, the amount of available

data has increased significantly. This fact, coupled with the evolution and improvement of

analysis techniques as well as with the current processing power of computers, favours the

establishment of Learning Analytics Systems which help to improve the educational system

as a whole.

Learning Analytics process is divided in several steps: first, data selection and data

capture, which is established depending on the subsequent analysis goals; second, data

storage in an appropriate datastore; third, data filtering and structuring; fourth, integration

with other relevant data acquired from another sources; fifth, data analysis and knowledge

extraction; sixth, representation and visualization of that information; and seventh and

final, taking actions with some effect over the global system. And then, all steps begins

again, resulting in an iterative process.

Horizon Report 2011 marks Learning Analytics as one of the new technologies to adopt

in the next four or five years [26], denoting the relevance of this field in the future. This idea

is reinforced by the fact that Learning Analytics is one of the lines of research and funding

contemplated by the Seventh Frame Program (FP7) of the European Union.

Despite of being a relatively new discipline, some research about Learning Analytics have

been accomplished by several researchers, producing solutions as LOCO-Analyst or SNAPP,

which will be detailed in chapter 2. Most of this research is focused in the interactions

performed by the students with LMS, whose contents are mainly based on static resources

with low user interactivity, as documents, presentations or videos. However, there are others

educational resources, as simulations or games, which present a bigger interactivity level and,

therefore, generate a higher and more varied amount of data to be analysed.

For example, in the last few years, Game Analytics is being used to let developers know

about how players interact with their games. One of their main purposes is to identify where

5

and why a player got stuck during the game, so game developers can try to smooth this

hardness, to avoid player frustration and thus keep him engaged and playing [25].

The proven educational advantages of simulations and games [18], like the active involve-

ment of the students or the increased motivation, is promoting that teachers, from different

areas and levels, start to use this type of activities to teach their lessons and also to make

their students develop skills with a new approach. New situations and challenges, related

with learned skills and far from written exams or tests, can be presented to students in

games and simulations.

However, most of these activities do not have an important weight on the final student

evaluation, because most of games and simulations lacks of an appropriate assessment system

able to generate rigorous and reliable student results. And even when this assessment system

exists, it is used with auto-evaluation purposes only, and it is unable to collect and export

that information for subsequence analysis.

Aware of these problems and needs, the final goal of this project is to apply data mining

process and learning analytics in games and simulations to obtain a general model that

allows their optimization and improvement. This goal can be split in several sub-goals:

• Establish which generic data must be captured for an effective evaluation of edu-

cational simulations and games, and which of these data depends on the individual

characteristics of each simulation and game (field, scope, interaction mode, deployment

device) and which data have a more general nature.

• Obtain analysis models able to provide reliable and concrete assessment results from

the captured data, as well as models focused on spotting games and simulations weak-

ness, which educational aspects do not cover, or in which ones results are not as

expected, enabling an iterative improvement of the games and simulations.

• Study the best and most adequate visualization methods to present this type of infor-

mation.

6

• Stablish adaptation rules, based on the data, that allow to provide with adapted

experiences for each of the students.

To cover all these goals, a prototype framework will be developed, using eAdventure

educational platform as game engine to execute the games and simulations, where all user

data interaction will be generated.

7

8

Chapter 2

Previous work

Learning Analytics is a relatively new field. There is a lot of theoretical work, but when

it comes to find software implementing its principles it is hard to find available and complete

solutions that approach all Learning Analytics steps. Specifically, at the time of writing, we

were not able to find any publicly available system that applies the Learning Analytics ideas

in educational games, although there is a growing discipline around games and parallel to

Learning Analytics, Games Analytics, that is being used by games companies to understand

how their customers play their games.

Below, some of the main software implementing Learning Analytics is presented.

2.1 LOCO-Analyst

“LOCO-Analyst is an educational tool aimed at providing teachers with feedback on the

relevant aspects of the learning process taking place in a web-based learning environment,

and thus helps them improve the content and the structure of their web-based courses” [8]

(Figure 2.1).

The generation of feedback in LOCO-Analyst is based on analysis of the user tracking

data in a Learning Management System. These analyses are based on the notion of Learning

Object Context, represented by a student or a group of students, interacting with a learning

content: reading, quizzing, chating.

It uses Semantic Web technologies to annotate, with the facilities of the Knowledge and

9

Figure 2.1: LOCO-Analyst screen capture

Information Management (KIM) platform [8], learning artifacts. They define the LOCO

(Learning Object Context Ontologies) ontological framework, to annotate and interrelate

these artifacts that comprehend lessons, tests or messages exchanged during online interac-

tions.

Finally, LOCO-Analyst is implemented as an extension of the Reload Content Packag-

ing Editor [10], an open-source tool for creating courses compliant with the IMS Content

Packaging specification.

10

2.2 SNAPP

SNAPP (Social Network Adapting Pedagogical Practice) [15] is a software tool that

allows users to visualize the network of interactions resulting from discussion forum posts

and replies (Figure 2.2).

Figure 2.2: SNAPP tool screen capture

As LOCO-Analyst, it is usually deployed in Learning Management System, and it uses

students interaction data in forums (who posted replies, who began a discussion...) to create

interaction diagram as seen in the figure 2.3.

This diagram can tell several things: identify disconnected students, identify key infor-

mation brokers within the class, identify potentially low performing students so interventions

can be planned...

2.3 Conclusions

Learning Analytics is on the rise. It is beginning to be used mainly in e-learning and

in combination with LMS. It is also known that similar approaches have been used in

11

Figure 2.3: SNAPP diagram showing students interaction

commercial games to identify users difficulties and adapting games to the users so they play

for more time (also known as keeping the user in flow state [19]). But for now there are

not publicly available frameworks or even models to apply Learning Analytics to games.

In the next chapter, a first theoretical approach of a Learning Analytics Systems focused

on educational games is presented, using as a guide the Learning Analytics Steps.

12

Chapter 3

Learning Analytics in educational
videogames: first approach

Authors agree that Learning Analytics process [21] begins with selecting the most rele-

vant data to be captured. These data can be generated by students or other users. Once

it is captured, data must be aggregated and transformed into information (for example,

using charts or other visual representations). With this information, the educator should

be able to judge how the student used the educational resource. Some authors call this step

predict, since information is converted into knowledge, and knowledge enables predictions.

However, in our approach we will use this step to assess the student, and for now on, we will

name this step as assess. Assessment information can be used, under certain conditions, to

dynamically assist the student, and to refine the educational resource, based on the students

results. Finally, all the knowledge acquired can be shared with others whom could benefit

from it. Table 3.1 represents a scheme with all the steps and their descriptions.

Below, we discuss the main steps in the Learning Analytics process, and how these steps

can be particularized in educational games, proposing a theoretical Learning Analytic Model

and a Learning Analytic System.

To support all these steps, we propose a system based on a Learning Analytics Model

(LAM) that defines all the information required for every step, and a Learning Analytics

System (LAS) that comprises all the processing power required by the model.

13

Step Unit produced Description
Select Data Choose the data to be captured
Capture Data Collect selected data

Aggregate and Report Information Sort out captured data and con-
vert it in information

Assess Knowledge Understand reported information
and convert it into knowledge
used to assess students

Use Knowledge Adapt the system based on as-
sessment

Refine Knowledge Improve educational action
Share Knowledge Show knowledge for the benefit of

others

Table 3.1: Learning Analytics steps

In this approach, focused on educational games, we consider the LAS as a separate

system that is in continuous communication with the game engine. The LAS also has access

to the game model and the LAM (Fig. 3.1). The LAM is defined by a set of models, which

are directly related to the different modules contained by the LAS (Fig. 3.2).

In this chapter the learning analytics steps are described in general and for educational

games in particular, building the LAM and the LAS upon them. Available data in games

are the starting point to define the LAM. These data are used as starting point and all steps

are built from them

3.1 Select and capture

First, the data to be captured by the LAS are selected. These data is the raw material

that feeds the subsequent steps. The data selection criteria is driven by the educational

resource objectives. Also some constrictions such as technical limitations and privacy policies

must be taken into account. In educational resources, meaningful data can be selected from

personal information about the student (e.g. age, gender, etc.), academic information and

any other data provided by the resource context.

14

Figure 3.1: Relation between the different components involved in the Learning Analytics
process. The LAM is dependent on the game model and the LAS. LAS is aware of the LAM
and the game model, and can communicate with the game engine.

While in static resources (e.g. PDF files, videos, presentations...), the only data that can

be obtained are the number of views and the time spent with them, the interactive nature

of educational games provides a whole new type of data that can be selected:

• GUI events performed by the student during the game: mouse clicks, keys

pressed, and other events (joystick movements, buttons interactions), depending on

the input method. Not only the event itself can be recorded, but also the time when

it occurred and whether it was performed over a target (e.g. some click over a game

object). These events can provide clues about the student behavior during the game

(e.g. if all GUI events were captured the LAS would be able to recreate the complete

game play).

15

Figure 3.2: The LAS consists of a series modules that take part in the different steps of
the Learning Analytics process. The LAM holds models defining the information required
for every step. The LAS uses the LAM to process all the data captured and generated.

• Game state evolution: the game state is represented by a set of variables and their

values that specify a concrete status in the game instance. The evolution of variables

during the game execution represents the game state and the achievement of the game

goals. Depending on the case, the whole game state evolution could be recorded, or it

could be recorded only at some points (e.g. when a phase ends, or a goal is achieved).

• Logic events: a logic event is anything that moves forward the game-flow. Changing

16

the value of a variable, finishing a phase, launching a cut-scene (i.e. a slide-show

or video), losing a life, achieving a defined goal, etc. Some logic events, and their

timestamps, can be directly related to the student progress in the game, and thus be

relevant for the assessment.

Selectable data are limited by the technologies used to deploy the games: Not all the

data proposed here is available in every game platform. These data are platform-dependent

and must be defined in the LAM’s selection model. All games must define its own model

according to their own purposes.

Once the data are selected, the framework requires a way to capture that data. The

technology involved will be very important to establish how the data are collected. Access

to different internal parts of the game engine is required to capture some of the information.

This implies, for instance, that such model cannot be generally applied to commercial games

provided only as executable files and then behaving as black boxes.

Another issue is the moment when the captured data are communicated to the LAS to

begin the processing. The simplest way is to store all the data locally and send it back

to the LAS when the game is finished. Data could also be sent asynchronously in certain

significant moments, like when the student ends a phase or achieves a goal. Other option is

that all data is sent to the LAS as they are being captured. This last two approaches enable

real-time assessment that can be used to help the student during the game. Depending on

the needs, all these data might go through some kind of filter, for instance, to anonymize

or encrypt the data.

3.2 Aggregate and Report

The captured data must be processed and organized to obtain significant information in

an human readable formats, like tables or graphics. A more meaningful report can be done

if the LAM contains, in the aggregation model, semantic rules to interpret all the received

data. For example, the system could relate a raw event (e.g. a variable taking a particular

17

value) with a semantic event in the game (e.g. the player completed a goal). These semantic

rules can be based on the game engine, where some events can have an implicit meaning

(e.g. an engine where pressing escape key always brings up the menu) or on the game itself

(e.g. if the game variable “hits” is “8”, the phase is completed).

Semantic rules can be expressed like conditions producing new data to be reported: when

a condition (based on GUI events, a logic event or a concrete game state) is met a new unit

of data, defined in the aggregation model, is generated. For example, when in the game

state, the variable score equals to 10, and the variable gold equals to 15, the LAS aggregator

produces a logic event “Goal 1 completed”. The reporter could then treat this event as any

other logic event.

The LAS’ aggregator needs to be endued with mechanisms capable of understating and

processing these kinds of rules (Fig. 3.3).

Figure 3.3: Raw events are passed through the semantic rules contained by the LAM, and
converted to more meaningful data. Events can be grouped and simplified through semantic
rules. Some events, such as the game finishing, are considered as meaningful and do not
need to be interpreted by any rule

18

After aggregation, information can be reported in common ways, such as tables or charts,

but also, it is possible to take advantage from the inherent characteristics of games to report

information with new representations. For example, “heat maps” could be created for every

phase, in which the heat can measure the amount of times the player clicked in every point

of the phase, or the places where the player was defeated. If there is enough information

about the user interaction, an animation recreating how the student played a game phase

could be shown.

The reporter model contains which information must be reported and which representa-

tions must be used. Common reports can be defined at engine level (e.g. heat maps for every

phase can be common for all games), as well as reports at game level, holding important

information in that particular game.

These reports can be even richer if data from different students are aggregated. Average

results can spot which goals took more time or the places where most of the students failed.

3.3 Assess and Use

The information and the reports generated until now can give an overview of how the

students are using an educational resource. However, this information should have some

practical consequences to be really useful. It is the moment to transform the received

information into knowledge, and to use this knowledge to assess the student.

Games are organized around goals. In educational games, these goals should be based

on the success in some educational aspects. In our context, and based on the concepts of

the selection and aggregation process, we could have several types of goals, represented by:

• A GUI event or a series of GUI events performed by the student, over a game object

or in total.

• A concrete game state, fulfilled fully or partially.

• A variable taking a defined value.

19

• The launch of a particular logic event.

These classes of goals are platform-dependant, and should be defined by the LAM’s

assessment model.

Compound goals can be defined based on these simple goals. An educational game can

define all the necessary goals to cover all the educational aspects that are to be learned by

players of the game. Based on these goals and with the reported information the game can

be used to assess the student.

This assessment can have two applications: a) just to measure the success of the student

in the game, and act accordingly (e.g. enabling the student to access to a new educational

resources); or b), if the captured data are being passed to the LAS during game time, dy-

namic adaptation through real-time assessment (e.g. if the student got stuck in some point,

the system will offer him help). Rules for this assistance are contained by the adaptation

model, and are processed by the adapter, which is able to communicate with the game

engine to perform the adaptation.

Assessment and dynamic adaptation could be more sophisticated. As some authors

pointed out [10], propagating information through complex structures (e.g. Bayesian net-

works), can help to determine what is going on in virtual simulations, and better decide

what adaptation profile to choose.

However, our approach pretends to be based on simple principles that can be understood

by the average educator. Complex structures, like Bayesian networks, are normally out of

reach for most educators.

3.4 Refine and share

With all the accumulated knowledge from previous steps, an educator can know about

the global results (assessed in the previous step) of the educational action and can identify

which educational goals were not achieved as expected. Thus, educators can refine the

educational resources to improve the results or readjust their expectations.

20

In educational games, those game goals that were not obtained as expected can be

detected. Aggregated data from several students can ease this job, pointing out, in average,

which goals were more difficult to students. From here, the game could be modified or even

redesigned to facilitate its accomplishment. This does not directly imply making the game

simpler or reducing the educational goals, it could be enough to smooth the learning curve

in the game, or adding some extra help in game states or situations that are specially hard

for the users. Maybe, learning analytics conclusions could show that the student did not get

stuck, but stop playing the game after a while, indicating that it was not engaging enough.

Finally, the LAS can share all the knowledge obtained with other systems. These systems

cover from LMS to institution administrative systems. Making the data public can be an

option in some cases. In order to be able to share data, some considerations such as privacy

policies, what knowledge is shared or which standards are used in the communication, need

to be taken into account.

21

22

Chapter 4

Implementation proposal: eAdventure

eAdventure is an educational game platform developed and maintained by the <e-UCM>

research group at the Complutense University of Madrid for the last 5 years. This platform

includes a game engine and an easy-to-use editor, targeted at educators. eAdventure is

currently undergoing the development of the 2.0 version, where new features are being

added. Some of these include support for multiple platforms [11] and an easy to use narrative

representation of games [12]. Moreover, we propose to implement the framework presented

in this paper in this new version of the system.

eAdventure games are composed of scenes, which can represent from a simple scenario

in an adventure game where the player’s avatar moves to a more complex slide-show, going

through an array of mini-games and other content. These scenes are always composed of

simpler parts referred to as scene elements, each of which will usually have a graphical

representation, a position in the screen, behaviors, etc. The current scene and the status of

elements in the screen are defined as the game state. It is the flow from one scene to another,

behaviors of the scene elements and effects (changing current scene, showing text, launching

videos, assigning values to variables) that make up a game, by continually changing the

game state until a final state is reached.

The LAS is implemented on a server. It is initialized with the Game Model, (containing

the Adventure LAM) and the Engine LAM. The LAS has several modules to satisfy the

requirements for every step of the Learning Analytics process (Fig. 4.1). The relation

23

between the modules and the steps is detailed below.

Figure 4.1: General organization for the LAS integrated with eAdventure. The LAS is
deployed in a server, and can communicate with the game engine. A web interface and
external communication with other systems is offered as well.

4.1 Select

Given that eAdventure is intended to be a general game engine, including its own editor,

our proposal tries to make selectable the biggest amount of data to allow the game designer

choose between all the available options. The eAdventure Learning Analytics Model define

three units of selectable data:

24

• LAGUIEvent: represents a detailed GUI interaction. It holds the GUI event (mouse

action, drag and drop, keyboard action) with its properties (mouse button, key pressed)

and the target scene element, if exists.

• LALogicEvent: represents the launching of a game effect. It holds the generic effect

data and additional information about the concrete instantiation (e.g., in the changing

scene effect, the initial scene and the final scene).

• LAGameState: represents a game state in a certain moment. It contains a map holding

all the game variables associated with their current value.

Every of these units has associated a timestamp, representing the moment the event occurred

since the game was started.

In the editor, where and when data must be selected. For example, we can mark

which type of GUI events (mouse, keyboard) we want to capture for every scene element

(LAGUIEvent), and there is a special option to record all the GUI interactions performed

in the game, allowing the recreation of the whole game play. It is possible also to capture

those game effects that have relevance in the game flow (LALogicEvent) and, if desired,

produce a LAGameState with the current game state. LAGameStates can be configured to

be automatically generated periodically, when a game condition is met or when the game

ends.

All these options are added to the selection model as part of the game’s LAM, which

will be used by the LAS’ data capturer.

4.2 Capture

To capture all these data it is required a data capturer with access to all the relevant

parts of the eAdventure game engine. The game engine has three main elements that are

involved in this process: the input listener, which processes all GUI input from the user;

the game state, which stores all the values for all the variables in the game at any time;

25

and the effect handler, which processes all in-game events (e.g. scene changes). All these

elements communicate any relevant change to the data capturer, which then captures this

information according to the current game selection model. The captured data are instances

of the selectable data units presented before.

All these collected data are sent to the LAS aggregator (Fig. 4.2). Due to the multi-

platform nature of the eAdventure game engine, different implementations take care of the

communication with the aggregator. The data capturer can be configured to send out the

captured data when the game is finished, a scene change happens, a defined condition is

met or in real time.

Figure 4.2: The data capturer is compound by two elements: a grabber connected with
all the elements producing significant events in the game engine, and a sender managing
communication with the aggregator

4.3 Aggregate

The data sent are received by the aggregator, who makes a first data processing based

on the semantic rules defined by the aggregation model, contained by the Adventure LAM,

26

converting the basic units into more semantic pieces of data. This new units can be defined

through the editor, as well as the rules of conversion from basic units (presented in the II.c

section).

Aggregator also groups all the GUI events by type and scene element, filters redundancies

and stores all the data in the LAS database.

Previous versions of eAdventure provided a basic mechanism for data aggregation and

report generation. This basic mechanism allowed for information to be written in a textual

report based on the values of the variables in the game. This way, the game author could

define a set of rules that would, for instance, write in the report that the player failed to

complete a goal if a variable to indicate this was given a certain value [17].

The same sort of data aggregation can be performed with the new LAS system. The

rules in this case use a syntax that establishes the meaning of the data that were captured

during the game to generate a report. The most basic reports will only include basic textual

information, such as “Goal X was completed at time Y”. However, more complex information

can be aggregated to generate detailed information about the goal, such as “Goal X was

completed by time Y, after Z attempts where the player failed to solve problems A, B, C,

etc.”

4.4 Report

The reporter represents in a web format all the information stored in the database.

Among many others, the reports can be:

• A table relating scenes with the total time spent in any of them.

• Heat-maps showing where the player is hovering with the mouse most (Fig. 4.3).

• Screen capture recreated from game states.

• Game animations built from captured GUI events.

27

• Graphics showing the evolution along the time of selected variables.

• Tables with direct queries to the database.

Figure 4.3: Heat map showing the concentration of left mouse clicks in a scene. Main heat
zones are situated in interactive elements of the scene.

All these data can be shown for an individual student or for groups of students. The

system can be extended to add new reports generated from the stored data.

4.5 Assess

As established by the theoretical approach, this step is when the student is assessed.

The assessment model contains all the goals established for the game. Goals can be defined

28

in the editor as variables taking certain values at given times. The evaluator takes these

goals and checks them against the stored information.

The accomplishment of these goals can be viewed through the reporter, and can be sent

to the adapter to enable dynamic adaptation or to be shared with external systems.

4.6 Use

When the data are being captured in real time, dynamic adaptation can be used in the

game. Adaptation rules are defined in the adaptation model. These rules can be defined in

the editor and contain:

• An effect, which is considered the adaptation event and could be any eAdventure game

effect (showing a text, changing a variable’s value, launching a video...)

• A condition, establishing when the effect should be launched. Conditions can be the

general conditions offered to create game logic in eAdventure games, or conditions

based on goal accomplishment (e.g. a goal is not completed when the time for doing

it expires).

The adapter takes the current game state and the goals information offered by the

evaluator to check adaptation model conditions. When a condition is met, it communicates

to the game engine the effect to be launched.

4.7 Refine

To support the refine task the LAS offers, through the web LAS reporter, information

about the individual goals. This allows, for instance, to identify those goals with worst

performance by the students. How this performance must be improved is up to the game

designer.

29

However, to ease this task, results obtained for the games’ goals can be compared over

time (checking if results improved after student played several times the game) and between

different versions of the game.

4.8 Share

Nowadays, the selection and adhesion to standards for the content interoperability is an

essential matter in the development of e-Learning contents. Current e-learning standards,

like SCORM [14], are not designed to communicate all the information collected by our LAS

with other systems. For this reason, the best way of taking advantage of the full potential

of our approach is to develop specific ad-hoc communication solutions for the systems that

take into account all these data (e.g. a Moodle plugin). This idea has been implemented

to communicate an eAdventure activity inside a educational design in LAMS [13], where

all the information can be gathered and shown to educators, and use them to modify the

lesson flow in an automatic or monitored way.

In the near future, it will be feasible to implement our ideas in compliance with next

generation of e-learning standards. For example, one the last initiatives leaded by the IMS

Global Consortium, the IMS Learning Tool for Interoperability (IMS LTI), goes in that

direction. This specification allows for the execution of learning tools hosted in external

servers. Until other promising standards mature [15], our LAS is able to export all the

information contained in the database along with the LAM required to interpret it into a

exchangeable XML-based format.

30

Part II

Implementation

31

Chapter 5

Introduction

In this part, all the details of the currents LAS implementation are presented. For now

on, the framework will be named as GLAS (Games Learning Analytics System). A general

overview of GLAS is shown in figure 5.1.

The whole process begins in the eAdventure game engine, where all games are executed.

User interaction is tracked by the GLAS Tracker, and after being filtered by the GLAS

Selector, is sent to the GLAS Server, using REST calls. Data is stored in the GLAS

Database. Finally, GLAS Reporter access stored data through the REST API to generate

the reports.

It must be noticed that the theoretical model has been simplified in order to fit in the

time limitation of this project. Rest of the approach is presented as future work in chapter

11.

Below, all the features expected for every sub-system are presented. The technologies

considered to implement them are presented.

5.0.1 GLAS Tracker

GLAS Tracker is the link between the eAdventure game engine and the GLAS Server.

Therefore, eAdventure should be able to communicate with both of them.

eAdventure is a multi-platform game engine (it supports Java, Android and HTML5),

and the GLAS Tracker must be able to work with any of the supported technologies, pro-

33

Figure 5.1: Overview of the Game Learning Analytics System. The game engine sends
collected data to the GLAS Server, using a REST API. This same API is used by the GLAS
reporter to generate the reports.

viding a general API for all platforms, and concrete implementations where needed.

GLAS Tracker must be able to store temporary data, to maintain the collected traces

until they are sent back to the server. When possible, GLAS Tracker should run in a different

process than the game engine, to avoid game freezing.

Also, GLAS Tracker contains a subsystem, the GLAS Selector, that must be able to

filter data coming from the game engine. This subsystem must be configurable in order to

enable different filtering settings for each game.

Finally, GLAS Tracker must communicate with the server, mainly to send collected

34

traces to it. eAdventure multi-platform nature must be taken into account since network

communications are totally dependant on the implementing technology.

5.0.2 GLAS Server

GLAS Server must address two different needs: first, it must be able to receive and store

data coming form the GLAS Tracker, and second, it must be able to serve these data, in

the appropriate format, to the GLAS Reporter.

One of the most common solutions for this type of problem is the definition of a REST

API that allows to receive and to provide data. For the implementation of this REST

API, an ideal solution would be use a reliable library in the implementing technology that

ease development and deployment, and that provides with multiple formats for the data

communication.

GLAS Server should also include a solid and efficient database technology that allows

for multiple concurrent accesses, and a secure access to the data.

Finally, GLAS Server must also have processes to register and identify users, to pre-

process and post-process data as needed, and to easily communicate with the database.

5.0.3 GLAS Reporter

GLAS Reporter will access to the data contained by the GLAS Server, and it will generate

reports based on the received data. These reports will contain statistical data about the

game and they will be presented to different types of users: game designers, teachers,

students...

Thus, GLAS Reporter must be able to communicate with the GLAS Server through the

network, and it must be able to interpret and process data received from it.

Finally, it should have tools (charts library, graphics manipulation...) to represent the

data in the appropriate format and appearance.

35

36

Chapter 6

Considered Technologies

As presented in chapter 4, several technologies have to be used in order to build the

proposed framework. We have to consider three subsystems: three in the client side and one

in the server side. The clients include the game engine (eAdventure) where the educational

games will be played and where the track data will be captured (GLAS Tracker), and the

reports system (GLAS Reporter), where analysis results will be shown to users. In the

server side, first we need a server technology able to implement a REST API, and second,

a datastore to keep all traces collected in the game engine. This datastore also will be used

in order to generate graphics and data visualization in the reports system.

Next section presents the main technologies considered for the implementation are pre-

sented in the following order: server technologies, datastore solutions, tools for the reporter

system and finally eAdventure as selected game engine.

6.1 Server technologies

The server side technology is used for two different tasks. First, it must deal with the

datastore, implementing all the usual operations for it (insert, delete, update, read). And

second, it must offer a REST API that allows for sending the data to the datastore. This

API also must allow queries that return formatted data used by the GLAS Reporter.

37

6.1.1 PHP

PHP is the most extended server side language [14] and from its version 5, it is object-

oriented. Most of hosting providers offers PHP support at low cost, it counts with a good

documentation and it also has multiples features to connect with many types of databases.

It also has several libraries to deploy REST services, like Tonic [16].

However, its interpreted nature makes it slower compared to other options (e.g. Java)

and its lack of multi-threading functionality could make harder the implementation of some

algorithms. Reuse and modularity can be hard to accomplish and, for big projects, a certain

level of previous experience is required.

6.1.2 Java

Java is an object-oriented programming language that is used in desktop applications as

well as in servers, executed in containers like Apache Tomcat. It supports multi-threading,

it has features to connect with the most common databases and several libraries to create

REST services, as Restlet [12] or Jersey [5].

On the other hand, most of the pre-built frameworks based on Java, like GlassFish, are

too big and complex for the intended purposes of this project, and a new solution should

be programmed from scratch to meet the system requirements. Also, in Java the level of

complexity of system deployment increases.

6.2 Storage

In order to store the collected data, a datastore must be used. This datastore will be

integrated in the server and it will address two aspects: enable storage operations (insert,

update and delete data) and enable query operations. Two datastores have been considered:

38

6.2.1 Appengine DataStore

Appengine is a Google’s platform intended for the easy deployment of web applications.

It covers server side with Java and Python, and client side, if any, with the Google Web

Toolkit. Among other services, the Google Appengine offers its own datastore to store and

access data. Its main advantage is that it automatically handles concurrence and scalability

issues, thus, if the datastore is attacked for an unexpected amount of traffic is able to adapt

itself to it, without any downfall.

The drawbacks are that free Google’s datastore plans has a limited number of trans-

actions with the datastore, and this number is not enough for the expected amount of

operations for the planned system, so a premium plan should be bought, with the addi-

tional costs associated. Finally, developers necessarily need to use the server technologies

implemented by the Appengine (Java and Python).

6.2.2 MySQL

MySQL is the world’s most used open source relational database management system

[3]. It has complete documentation and most of host providers offers it as its main database

system. It also can be easily combined with most server side technologies.

On the other hand, MySQL does not support the foreign keys that could determine

relevant relation between some of the collected data.

6.3 Client Side: Reports System

In the client side, apart from the game engine capturing the traces, which will be pre-

sented in the next section, it is required some software able to represent the reports generated

for the data to the different users. The chosen technology should be able to communicate

with the REST server and to provide a graphic reports system enabling the generation of

graphics and visual representations.

Considered technologies are presented below:

39

6.3.1 GWT

The Google Web Toolkit (GWT) is aimed to develop browser web applications in Java.

When the code is compiled, it is translated into Javascript. GWT allows for the use of

native Javascript code and thus all of the many charts libraries written for this language.

It also includes AJAX features, enabling REST queries.

As drawbacks, Javascript is single-threaded, its performance is low and compatibility

with new native functions (overall, the new functions added in the HTML5 specification) is

irregular across browsers.

6.3.2 Java

Java counts with many REST libraries, as Restlet and Jersey, and there are many chart

libraries, as JFreeChart [6]. However, developing a client in Java will imply installing an

application to access the reports.

6.4 Game Engine: eAdventure

The eAdventure game engine [24] has been chosen as the game engine for deploying the

games and capturing the produced traces. The eAdventure platform is open source, and in

its version 2, is a multi-platform game engine able to execute 2D games in Android, Java

and HTML5.

Some features must be added to the eAdventure code in order to enable the trace cap-

turing.

6.5 Selected technologies

For the GLAS Server, Java will be used due to its better support in concurrence and

its multi-thread features. MySQL will be used as database, due to being free of any cost

associated and its level of maturity.

40

The GLAS Reports will be developed with GWT. Although it can be slower, most of

new applications are web applications, and a report system accessible from a web browser

is a better solution for the final user.

GLAS Tracker will be implemented in Java, Android and HTML5 (using GWT), to meet

the multiple platforms supported by the eAdventure game engine.

41

42

Chapter 7

Generating and selecting traces

As raw material for subsequent analysis, traces collected from the educational game are

needed. These traces must represent the meaningful events occurred during game play.

Furthermore, these traces must be selected and filtered, in order to avoid storing irrelevant

data in the database, or creating unnecessary overload in the tracking system. In this

chapter, the traces’ types in GLAS are defined. Available tools to select and filter these

traces are presented. Finally, eAdventure game events must be transformed into GLAS

traces, so a model and a implementation to perform this transformation is detailed.

7.1 Traces definition

In section 4.1, three types of traces were defined and considered for further analysis: GUI

events (all data derived from the direct user input), logic events (representing meaningful

events triggered during the game play), and game state events (information about all the

variables and other data representing the game state). Although eAdventure is a game

engine primarily conceived for a very specific game genre (point and click adventures), the

traces defined in the GLAS framework try to be as generic as possible to simplify integration

with other game engines.

In actual implementation, traces should be small and should contain the least number

of fields as possible, and those fields should only contain simple data types (integers, floats

and strings), because large amounts of traces are going to be sent through the network.

43

This idea creates a conflict with the third type of trace, that in which the game state was

periodically sent. For two reasons: first, trace’s size would be too big, since it supposes

to contain all the game state data; and second, it was complex to clearly establish what

information was actually relevant and valid for all the games.

Due to these problems, this type of trace was not included in the final implementation.

Instead, logic traces contains all relevant information about the game state evolution. Valu-

able information is obtained from changes in the game, and it is difficult to get it from a

game state that could contain hundreds of variables that only change once or twice in the

whole game play.

Thus, two types of trace were defined. An UML diagram, representing the traces classes,

is shown in figure 7.1. As seen in the figure, both types extends an abstract class, containing

several common fields:

• id: an unique id defined for every trace. This id is usually initialized to null, and it

is filled when the trace is stored in the server database. This field is mainly used for

database purposes.

• gameId: Sometimes, GLAS framework will be deployed for several games. All these

games will be sending their collected traces to the same server and database. This

identifier establish the game which generated the trace.

• userId: A lot of users can play the same game reporting traces to the same server.

This field contains the trace’s owner identifier. This id is a reference to an unique

player identifier, known by the server, which is associated to more information about

the player, also stored in server’s database.

• userSession: If it is established for the game, any user can play the same game more

than once. This user session is a counter pointing to which of those plays the trace is

associated. It is used to distinguish several game plays from the same user.

44

• timeStamp: It marks the amount of milliseconds since the game started until the

trace was generated. From this field, it can be established the order in which traces

were generated.

Figure 7.1: UML diagram representing the two types of traces defined by GLAS. Action-
Trace represents traces derived from direct user’s interaction with input devices (mouse,
keyboard, touch screen). LogicTrace represents those relevant events occurred during game
play (phase change, a significant variable changing its value...)

The two types of traces are constructed upon this generic trace:

7.1.1 ActionTrace

ActionTrace traces reflect the direct user’s interaction with input devices. It contains

the following fields:

45

• device: every device contemplated by the GLAS framework is defined with a different

numerical constant. This field contains the constant of the input device that produced

the trace.

• action: the concrete action that generated the trace. Several constants define every

of the possible actions, constructed upon three fundamental actions: pressed, released

and moved. Depending on the input device originating the trace, every of these actions

has a different meaning. For example, in a mouse, pressed means that some button

was clicked, but for a touch screen, it means that user pressed some point in the screen,

or for a keyboard, that some key was pressed.

• target: it is a string with an unique identifier pointing which game element, if any,

received the action event. For example, if some game object identified as “help button”

was clicked, the value for target field in the generated trace would be “help button”.

This field might not be always generated, but when present it can be used to sort and

classify traces.

• type: it contains the concrete type of the event, and again, its interpretation is

dependant on the device which generated the trace. For example, in mouse events,

this field contains the clicked mouse button (left button, right button or center button),

but for keyboard events, contains an integer representing which key was pressed.

• value1, value2: these two parameters are integers and contain additional values for

the trace. Those values that have no place in previous fields. For example, for mouse

events or screen touch events, value1 and value2 respectively contain x and y screen

coordinates, marking where the event was performed.

• extra: A final string field containing other relevant information. For example, in

keyboard events, this field is used to register if some extra keys (like CTRL, ALT or

SHIFT) were pressed when the event was triggered.

46

7.1.2 LogicTrace

LogicTrace traces contain data about the relevant events occurred during the game play

that are triggered by the user’s input actions: phase changes, significant variables updates,

starting, ending or quitting the game, etc. As the nature of these traces can be diverse,

depending exclusively on the game engine capacities, three generic fields has been defined

in order to included the largest number of possibilities:

• type: a string defining trace’s type, allowing events orderings and classifications.

• arg1, arg2: two attributes designed to store the event’s arguments. Values for this

fields will depend exclusively on the trace type. For example, for a change variable

value event, arg1 will store variable’s id and arg2 will store the new value assigned

to the variable. In change phase events, arg1 will contain an id marking the current

scene and arg2 the id of the next scene.

7.2 Trace selection

Not every generated trace is relevant for further analysis, hence, GLAS adds a trace

selector, the GLAS Selector, programmed to decide which traces are relevant. Criteria for

the relevance are defined in a configuration file, created by those interested in perform the

analysis.

The two selection methods defined in the GLAS Selector can be observed in figure 7.2:

one method is used to filter LogicTrace and another is used to filter ActionTrace.

As said before, criteria used by the GLAS Selector is defined in two separates files, one

for every type of trace. File structure is the same for both types: Every line starts with a

field name, followed by an equals sign and then, separated by commas, a set of values for

that field. All traces arriving to the GLAS Selector and containing any of the fields specified

in any of the lines with some of the given values, passes the filter and is selected.

For example, the following configuration file for ActionTrace

47

Figure 7.2: UML diagram for the GLAS Selector. It has two methods used to decide which
traces are selected and which are not.

device=0,1

action=pressed

defines that only those traces coming for devices 0 or 1, or with action equals to “pressed”,

are selected.

Similarly, the following file can be defined for LogicTrace selection:

type=changeScene,changeField

defining that only those traces with value “changeScene” or “changeField” in the field

“type” will be selected.

This model is extensible and, n the future, will be extended in order to support more

complex combinations for the selection.

7.3 Producing traces in eAdventure

Once defined the traces used by GLAS, next step is to generate these traces in the game

engine. In this case, in the eAdventure Game Engine.

First step is identify the correspondence between traces defined by GLAS and the ele-

ments that are internally used by the game engine. In the eAdventure case, the following

relationships have been established:

48

7.3.1 InputAction as ActionTrace

eAdventure is a multi-platform game engine. It handles all the input events in the same

way for every platform. A generic class, InputHandler, receives all natives events (generated

from Java, Android or JavaScript) and converts them into generic eAdventure input events,

named InputAction. Once this object is generated, it is passed to the game loop, which

is responsible for determining what game element receives the input and for firing all the

consequences programmed for that event (game effects).

InputAction contains all the necessary data about the input event. An UML diagram of

this class can be observed in figure 7.3.

As shown in the figure, the correspondence between ActionTrace and InputAction is

one-to-one: All fields defined in ActionTrace can be filled with the data in InputAction.

Thus, a simple translation can be run over InputAction to obtain ActionTrace.

As said before, InputHandler seems a perfect place to intercept all user input interaction

and convert it into ActionTrace. This integration will be detailed in chapter 8.

7.3.2 Effects as LogicTrace

eAdventure game play establishes its game flow over game effects. In eAdventure, game

effects move forward the game. Effects can change variable’s values, play animations, move

game characters, change scenes, show the options menu, reproduce sounds, quit the game,

etc. Everything that happens in an eAdventure game is produced by an effect, and these

effects are usually fired by the user input interaction.

Every time an effect is launched, an EffectGO object is generated by the GameState.

This object, as shown in figure 7.4, contains all the information about the effect that defines

it. This effect can be of many types.

This event type is directly linked to those events represented by LogicTrace. Unlike

InputAction, EffectGO have not got a direct translation into LogicTrace. Type field in

LogicTrace can be a reference to the effect class, however, arg1 and arg2 fields must contain

49

Figure 7.3: UML diagram for the InputAction class and its inherited classes. All input
actions contain the information about the event that triggered them.

values with the relevant information about every effect.

Deciding these values and the transformation to LogicTrace is done on the game engine

side, i.e., unlike input actions, which are approximately the same for every game engine,

types and arguments in LogicTrace totally depend on the game engine. This could be a

problem when it comes to generate reports, since these reports are game engine dependant.

However, some standard types of LogicTrace are defined, in order to allow some standard

reports (see 10):

• start game: this type of trace is generated every time the game starts. It has

50

Figure 7.4: UML diagram for the EffectGO class and its fields. All effects game objects
contain the effect data defining them.

timestamp zero, and as first and only argument receives a timestamp representing the

moment in which the game started.

• end game: this type of trace is generated every time the player successfully completes

de game. If the game can be completed in several ways, the first argument contains

and unique id identifying which of those ways was used by the player.

• quit game: this type of trace is generate whenever the player quits the game, without

completing it. The first argument contains an id identifying where the player was in

the game when she abandoned (e.g. a phase id).

• change phase: this type of trace is generated when the player changes from one

phase to another. The completed phase appears in the first argument, and the next

phase identifier appears in the second argument.

• change var value: this type of trace is generated when some significant variable

changes its value. First argument contains the variable’s name and the second argu-

ment contains the new value it was assigned to. Concatenation of such traces result in

the third proposed type of trace, those containing information about the GameState.

51

These traces are shown and organize with predefined GLAS reports. However, eAdven-

ture generates more specific traces types which needs non-standard reports in order to show

the obtained information to the user. This will happen for every game engine generating

non-standards traces.

Chapter 8 details how these effects are captured in the eAdventure game engine.

7.4 Initial filtering

In the first tests it was clear that the initial traces selection done by the GLAS Selector,

presented in section 7.2, were not adequate and could not be effectively used. It required

to convert every InputAction and every EffectGO into ActionTrace and LogicTrace in order

to filter incoming traces. This was highly inefficient because most of traces were finally

discarded during selection.

Thus, another selector similar to GLAS Selector, but filtering eAdventure InputAction

and EffectGO, was added in order to perform a first filtering process. This class is part of

the eAdventure game engine and its UML diagram is shown in figure 7.5.

Figure 7.5: UML diagram for the TrackerSelector inside eAdventure game engine. It has
two methods which decide if effects and input actions are selected or not.

As with GLAS Selector, criteria for selection are defined in two separated configuration

files, with similar syntax. Those InputAction and EffectGO that passed the first filter, are

converted into GLAS traces and passed to the GLAS Selector.

52

Chapter 8

Capturing traces and server
communication

As presented in chapter 7 about how to do the trace generation, the initial steps in the

Learning Analytics process begins in the game engine. Selection and capture steps directly

depends on the used game engine. It must be that game engine who actually capture the

traces.

However, GLAS framework tries to provide the proper tools and classes to make these

steps as simple as possible. In the selection step, a GLAS Selector capable of filtering traces

was provided, though in the final implementation another extra selector, integrated in the

game engine, was added to make an initial selection based on eAdventure objects.

Classes and tools provided by GLAS for trace capturing are explained in this chapter,

and also how these tools are integrated in the eAdventure game engine.

8.1 GLAS Tracker

The GLAS Tracker has three distinct functions:

• Capture and store: once they are captured, the traces are stored in a temporary

cache before being sent to the server. How traces are captured depends only on the

used game engine. Game engine must communicate the generated traces to the GLAS

Tracker.

53

• Filter: the filtering process is performed inside the GLAS Tracker. The GLAS Tracker

includes a GLAS Selector to run this task over all captured traces. Only those traces

accepted by the filter are stored in the temporary cache.

• Send the traces: Finally, all stored traces are sent to the server. The GLAS Tracker

includes a sender capable of communicating with the server.

Developers should only be aware of how traces are passed from the game engine to

the GLAS Tracker, since the other functionality is completely implemented by the GLAS

framework.

The class provided for tracking, shown in figure 8.2, has two methods. The first one tracks

LogicTrace and the second one tracks ActionTrace. Developers must ensure that their game

engine calls these two methods when needed. These calls must use as parameters traces also

generated by the game engine. The eAdventure integration case will be presented in section

8.2.

Filtering mechanism was already explained in section 7.2. Sending traces and server

communication is presented below:

8.1.1 Server communication

Any communication process between two machines must be managed by some protocol.

This protocol must define the steps and the rules for the communication. This section

details the communication protocol followed by the GLAS Tracker and the GLAS Server,

as well as the implementation of that communication in three different platforms.

Communication protocol

Server side implementation will be detailed in chapter 9. For the following explanation,

the internal processing in the server is ignored. It is assumed that the server answers with

the correct data to all of the GLAS Tracker requests.

Communication protocol steps are represented in figure 8.1. These steps are:

54

1. Start track: Player starts the game. If tracking is enabled, GLAS Tracker is ini-

tialized with the proper parameters. GLAS Tracker sends to the server the user’s

credentials and an unique id identifying the game the user is playing.

(a) If the server does not recognise the game identifier or the user’s credentials are

invalid, it does not authorized the GLAS tracker to send traces. GLAS Server

sends a message to inform about what happened. GLAS Tracker disables the

trace tracking and the game is normally executed.

(b) If the server recognises the game identifier and the user’s credentials are valid,

it sends an authorization message to the GLAS Tracker. GLAS Tracker starts

the tracking. Besides the authorization itself, this authorization message also

contains required information by the GLAS Tracker, such as the user session

counter for that game, or the REST API URIs, required for sending traces.

These URIs will be cover with more detail in chapter 9.

2. Sending traces: Once the GLAS Tracker has been authorized, it begins to collect

and send traces. During this phase, the GLAS Tracker stores all traces generated by

the game engine. Once its cache is completely filled, compacts all traces in a single

message and it sends it to the server. GLAS Server responses indicating if everything

was OK or if there was some kind of error. GLAS Tracker behaves in two ways,

depending on the received error:

(a) If it is an recoverable server error, GLAS Tracker temporary stores the message

and waits some time before sending it again.

(b) If it is an unrecoverable server error, GLAS Tracker aborts the communication.

Traces stop being collected and the game continues its execution normally.

3. End of communication: When the game ends or if the player quits the game before

completing it a final trace is sent. This trace contains a timestamp and marks the

55

end of the communication between the GLAS Tracker and the GLAS Server. Again,

this trace must be generated by the game engine. GLAS Tracker merely identifies this

trace, stops the tracking and sends the remaining traces stored in the cache to the

server.

Communicating with the Server: implementation

Due to the multi-platform nature of the eAdventure game engine, GLAS offers two

possible implementations for the GLAS Tracker. One, implementation is used in Android

devices and in Java implementations. The other is implemented with GWT and is used in

the HTML5 implementation.

Actually, all these tools, modules and implementations only pretend to ease developers

work integrating the GLAS framework with any game engine. But, for other platforms not

considered, it is sufficient to implement the server communication through the REST API

presented in the chapter 9.

Classes hierarchy for the GLAS Tracker is presented in the figure 8.2.

Both implementations extends the same class, AbstractGLASTracker, which implements

the base interface GLASTracker. GLASTracker defines all the basics functionalities required

to carry out the communication between tracker and server. AbstractGLASTracker is a

basic implementation containing all the common features and functions for all the platforms

implemented, such as all the operations related to cache storage.

As shown in the UML diagram, GLAS Tracker needs to receive as parameter the server

url, a game key identifying the game to be tracked, and a listener that handles the server

response. Sending the user’s credentials is not mandatory since anonymous tracking is

allowed. In this case, users are identified by their I.P.

Implementation changes in the direct communication with the server, which is totally

platform-dependant. The solutions for every platform are presented below:

56

Java and Android Two separates libraries, one for every platform, are used for the server

communication. The client part of Jersey library is used in Java implementation. On the

other hand, Android uses the HttpClient API, capable of sending GET and POST request

as well as receiving responses.

GWT (HTML5) For the HTML5 and JavaScript client, additional restrictions must be

considered, in order to provide a tracker with enough flexibility.

The same origin policy [13] must be taken into account. An origin is defined by the

scheme, host and port of an URL. When the client and the server are hosted in the same

origin, they are allowed to directly communicate through AJAX. This mechanism is wrapped

in the GWT class Request.

However, if client and server are not hosted in the same origin, they are not allowed to

communicate through AJAX, due to the same origin policy. To solve this problem, several

solutions have been proposed. One of them is to configure the server to accept requests

from another origins; other solution is to use a cross domain technique using the JavaScript

function postMessage and one hidden iframe. The details of this hack is explained with

more detail in [2].

Whatever the case, GLAS offers the two implementations: one using the GWT request

class (with traditional AJAX communication) and another using the postMessage technique.

8.2 Tracker integration in the eAdventure game engine

As previously mentioned, traces tracking depends directly on the game engine imple-

mentation. It must be the game engine who generates and send the traces to the GLAS

Tracker during game play in order to start all Learning Analytics process.

In this section, integration between the GLAS tracking system and the eAdventure game

engine is explained for the two types of traces: ActionTrace and LogicTrace.

57

8.2.1 Catching ActionTrace

In section 7.3.1 user input processing was briefly explained for the eAdventure game

engine.

A more detailed scheme is shown in figure 8.3

Native events (Java events, Android events, JavaScript events) are translated into eAd-

venture input actions, and these are passed to the InputHandler. InputHandler does two

different things with these traces: it sends them to the game loop, where this input action

fires game effects, and it sends them to the initial filter, integrated in the game engine (see

chapter 7).

Once the first filter is passed, input actions are converted into GLAS traces and are sent

to the GLAS Tracker, where it all the process already described begins.

8.2.2 Catching LogicTraces

Transformation from effects game objects to logic traces was briefly introduced in section

7.3.2. A more detailed vision of the process is shown by the figure 8.4.

Input events, besides producing Logic Traces, also fire effects. These effects are the

minimum unit producing changes in the eAdventure game state, i.e., they represent those

events that move forward the game. These effects must be interpreted as LogicTrace.

Effects are intercepted in the GameState and passed to the initial filter. If the trace

passes the filter, it is transformed into a Logic Trace (section 7.3.2) and it is passed to the

GLAS Tracker.

58

Figure 8.1: GLAS Tracker communication protocol between the game engine and the GLAS
Server

59

Figure 8.2: GLAS Tracker hierarchy

60

Figure 8.3: Catching Action Traces in the eAdventure game engine

61

Figure 8.4: Catching Logic Traces in the eAdventure game engine

62

Chapter 9

REST API and Server Implementation

This chapter details the REST API defined to access and store traces in the GLAS Server

and its implementation using the Java library Jersey. Database structure and deployment

is also addressed, as well as all the server technology involved in interacting with it.

9.1 REST API definition

REpresentational State Transfer (REST) is a style of software architecture for distributed

systems such as the World Wide Web. REST has emerged over the past few years as

a predominant Web service design model. REST has increasingly displaced other design

models such as SOAP and WSDL due to its simpler style [11].

A REST API offers a set of resources identified by URIs. These resources usually repre-

sent pieces of data. Four operations can be performed on them:

• GET: to obtain the data contained by the resource.

• POST: to add new pieces of data.

• DELETE: to remove data.

• PUT: to update data already stored.

The GLAS REST API defines several types of resources. Some of them allow GET oper-

ations only but others allow for GET and PUT operations. DELETE and PUT operations

63

have not been implemented for any resource because GLAS resources’ deletions and updates

are never performed through the REST API.

Access to GLAS REST API is made through URIs beginning with:

url-server/r

Thus, all resources URIs have the previous URI as a prefix. The following resources are

defined by the GLAS REST API: Games, traces, game users and queries.

9.1.1 Games

A game is considered as the entire set of traces collected for some individual game,

including all the users who played it. It also contains key data about the game itself. The

resource identified by the URI

url-server/r/games

represents a list with all the games being tracked by the GLAS Server.

GET operation returns the game list. The list contains a set of games, each of them with

the following fields: an unique identifier (used internally by the database), the game title,

the game key (used by the GLAS Tracker to request tracking authorization) and a boolean

field indicating whether the tracking is enabled for the game.

POST operation over this URI allows to add new games to be tracked by the GLAS

Server. The only data required for creating a new game is its title. The GLAS Server takes

care of creating the game key and sets the default boolean tracking value to true. Once

is created, the game is added to the game list. Game data can be accessed with the GET

operation.

Data format used in these operations will be detailed in section 9.2.

Each game is as well an individual resource. Its URI is constructed according to the

following scheme:

64

url-server/r/games/{gameId}

The parameter gameId is the unique identifier given to the game by the database. The

only operation allowed for this resource is the GET operation, which returns the individual

game with the fields already mentioned.

9.1.2 Traces

The URI identifying each game is also the root to access the traces collected for them.

The URI for traces resource follows the next scheme:

url-server/r/games/{gameId}/traces/{traceType}

As said before, gameId is the unique identifier - set by the database - of the game whose

traces want to be accessed. The traceType parameter can take two values: action that

identifies a resource containing a list of all ActionTrace collected for the game; and logic

that identifies a resources containing a list of all LogicTrace.

Traces resources allow GET and POST operations. GET operations are used by the

GLAS Reporter to retrieve games traces data. POST operations are performed by the GLAS

Tracker, in order to add new game traces. Normally, these POST operations contains more

than one trace.

For example, consider the following resource’s URI:

url-server/r/games/2/traces/action

if GET operation is performed over it, all ActionTrace collected by the game with iden-

tifier 2 would be returned. The result would be a list of traces. Each of these traces is

defined by the fields presented in section 7.1.

If a POST operation, containing as data some captured traces, is performed over the

URI by the GLAS Tracker, the GLAS Server receives the sent traces and stores them in the

database, linked to the game with identifier 2.

Similarly, consider the following URI resource:

65

url-server/r/games/2/traces/logic

GET operation returns a list with all LogicTrace tracked for the game 2. Each of these

traces contains all the fields defined in previous sections for LogicTrace. If the REST API

receives a POST operation with collected LogicTrace as data, the GLAS Server stores them

in the database, associated to the game 2.

9.1.3 Game users

Additionally, each game contains all users that played them. Game users resource is

represented by an URI with the next structure:

url-server/r/games/{gameId}/users

This URI represents a list with all of the users that played the game identified by the

gameId parameter. The list contains game users represented by three attributes: a unique

user identifier, the game id and a user session counter (counts how many times the user

played the game). The user identifier can be used to obtain more data that are not exposed

by the REST API.

This resource only allows GET operations to obtain the users information. Game users

are automatically generated by the GLAS Server from “start traces”, so POST operations

are not implemented for this resource.

9.1.4 Queries

Most of the times, report generators are not interested in accessing the raw data returned

by most of the resources. They usually need a subset of that raw data, filtered and prepared

for the report intended to be created.

One option is to obtain all data at once and perform the filtering and preparation af-

terwards, according to the reports needs. However, the GLAS REST API allows a simple

query language which enables a more organized access to the data.

These language is based on SQL features and its basic syntax presents the next scheme:

66

url-server/r/{resource}/q?c=columns&w=conditions&g=groupby&o=order

A special “query resource” is accessed adding the extra suffix /q to any of the previous

described resources. After this, query parameters are added as normal GET parameters.

These parameters are:

• c: Defines the columns that should be included in the result. In this context, columns

actually refers to the resources’ fields. Syntax for columns is a list of words, one for

every desired field, separated by commas. If any of the specified fields does not exist,

an error is thrown and nothing is returned. As in standard SQL, asterisk (*) can be

used to retrieve all the columns. Additionally, commons grouping functions in SQL,

as count, sum, avg, max or min can be used as columns values.

• w: it defines conditions to be met by the traces in order to be included in the query

result. These conditions are pairs attribute-value, separated by commas, which are

concatenated in a single AND condition. For example, if conditions has as value

type,’scn’,arg1,’start’ only those traces with value “scn” in field “type” and value “start”

in field “start”.

• g: list columns names, separated by commas, that are used as the “group by” clause

in standard SQL.

• o: a list with pairs column-order, defining the order in which query results will be

returned. For example, if the value were “type,asc,arg1,desc”, query result will be

ordered first by the column “type” in ascending order and then ordered by the column

“arg1” in descending order.

All previous resources returns objects or lists of objects from classes like games or traces.

This query special resource always returns a query result object, represented in figure 9.1.

As shown in the figure, returned object contains an array of QueryColumn class. This

QueryColumn class contains the column name, a boolean defining if the data is text (if this

67

Figure 9.1: QueryResult contains a QueryColumn for every column consulted in the query.

boolean is false then data are numbers) and two arrays containing the values for the column

Only one array will be filled with data, depending on the column type.

This kind of query can be done over any type of resource already defined by the GLAS

REST API, and the result is always a QueryResult object (which can be represented in

several formats described in section 9.2).

GET operation returns a response with a QueryResult object and POST operation is

not implemented since it has no meaning for this type of resource.

9.2 Data format

Until now, most of objects used in communications are represented by Java classes (as

trace definitions in chapter 7). However, due to the undefined nature of the platforms that

could interact with the REST API, format for these data must be as standard as possible

to ease the communication.

GLAS framework offers three data formats to communicate with the GLAS Server:

9.2.1 XML

GLAS Server is able to send and receive Java objects serialize into XML format, using

the Java Architecture for XML Binding (JAXB) [4].

In this architecture all fields of the object are converted into XML tags. The following

snippet shows an example of some Java object converted into XML.

68

<glossary><title>example glossary</title>
<GlossDiv><title>S</title>
<GlossList>
<GlossEntry ID="SGML" SortAs="SGML">
<GlossTerm>Standard Generalized Markup Language</GlossTerm>
<Acronym>SGML</Acronym>
<Abbrev>ISO 8879:1986</Abbrev>
<GlossDef>
<para>A meta-markup language, used to create markup

languages such as DocBook.</para>
<GlossSeeAlso OtherTerm="GML">
<GlossSeeAlso OtherTerm="XML">

</GlossDef>
<GlossSee OtherTerm="markup">

</GlossEntry>
</GlossList>

</GlossDiv>
</glossary>

As will be shown in section 9.3, GLAS Server is able to convert Java objects into XML

and send them to clients, as well as converting back XML data into Java Objects, using the

Jersey library.

9.2.2 JSON

JavaScript Object Notation is a lightweight data-interchange format. It is easy for

humans to read and write. It is easy for machines to parse and generate. It is also based

on a subset of the JavaScript Programming Language[7].

With a similar mechanism to generate XML, Java Objects are serialized into JSON. The

following data would represent a Java object in the JSON format:

{
"glossary": {

"title": "example glossary",
"GlossDiv": {

"title": "S",
"GlossList": {

"GlossEntry": {
"ID": "SGML",

"SortAs": "SGML",
"GlossTerm": "Standard Generalized Markup Language",
"Acronym": "SGML",
"Abbrev": "ISO 8879:1986",
"GlossDef": {

"para": "A meta-markup language.",

69

"GlossSeeAlso": ["GML", "XML"]
},

"GlossSee": "markup"
}

}
}

}
}

Again, in the server side, the Jersey library deals with conversion between Java objects

and JSON.

9.2.3 JSONP

JSONP is a variation over JSON that enables access to the REST API data avoiding

the same origin security policy in browsers.

Essentially, returned data are the same as in JSON, only that these data are wrapped

with a callback function. Something like the following is obtained:
callback({

"glossary": {
"title": "example glossary" });

The script HTML tag is not affected by the same origin policy, so it can be used to

invoke REST APIs in other domains, and process the data in the “callback” function, whose

body must be defined in some other script.

An extra parameter, named callback, must be added to the URI resources to request

JSONP data format to the GLAS Server. Callback parameter value must be the name of

the function which will process the obtained data.

9.3 Server implementation

To implement the API presented in the previous section, first a database to store all

the data collected is required, and second, a server technology that allows to access that

information through the REST API.

In this section, database deployment is explained as well as its main tables. Then, it is

detailed part of the server technology implementing the REST API.

70

9.3.1 Database

A MySQL database is used as datastore. Tables scheme is shown by the figure 9.2.

Figure 9.2: Tables in the GLAS Server Database

As shown in the figure, data is stored in three different tables:

• Games Table: contains all data about games. It has a column for every field previ-

ously mentioned in the game resource definition.

• Logic traces: table containing all the logic traces collected for all games and users,

with a column for every field defined in LogicTrace.

71

• Action traces: table containing all the action traces collected for all games and users,

with a column for every field defined in ActionTrace.

Database access

The Data Access Object [1] pattern is used to access the database. A general UML

diagram, representing the whole sub-system, is shown in figure 9.3.

Figure 9.3: UML diagram showing the Data Access Object pattern at its implementation
in the GLAS Server.

The root interface DAO contains all the function required by the operations allowed

in the REST API: methods addCollection and addElement are designed to support POST

72

operations sending data; methods getCollection and getElement, to support GET operations

asking for raw data; and method getQueryResult, to attend GET operations sending queries.

Additional methods getConnection, close, release deal with the direct connection to the

database, and release the acquired resources when they are not longer needed.

AbstractDAO extends the DAO interface, and it is programmed to deal with SQL

databases. It contains several helpers to perform common SQL operations (select, insert,

update) and it defines some abstracts methods to be implemented by concrete classes, de-

pending on the type of the resource accessed (marked by the generic type T in the abstract

class definition).

Thus, several implementations are provided for each of the possible resource previously

presented. These classes only implements the abstract methods required by AbstractDAO,

which are mostly methods that returns information about the table containing the resource

(table name, columns names...). All the processing and work with the database is done by

the abstract class.

9.3.2 Accessing to resources

Jersey is used as main library to deploy a REST service in the GLAS Server. Jersey uses

class annotations to create resources based on URIs. The steps for creating REST resources

with Jersey are:

1. Create a class for the resource and annotate it with Path and use as value for the

annotation the resource’s URI.

2. Create methods to response those REST operations used by the resource, and annotate

them with GET, POST, DELETE or PUT, as required.

3. Tell Jersey where the resources are in the web server configuration file.

For example, the following code:

73

@Path(/games)
public class GameResource {
@GET
@Produces(MediaType.APPLICATION_XML)
Object getXML(){
// ...
return xmlResult;
}

@GET
@Produces(MediaType.APPLICATION_JSON)
Object getJson(){
// ...
return jsonResult;
}

@POST
@Consumes(MediaType.APPLICATION_JSON)
public void put(T object){
// ...
}
}

could represent a handler for the game resource. Path annotation value (concatenated

to the server URL) defines its URI, and GET and POST annotations define which methods

must be executed when GET and POST requests are received. Additionally, these methods

can even define the data format that produces/consumes. Jersey automatically invokes the

right method, depending on the information contained by the HTTP request.

The class hierarchy shown in figure 9.4 represents all the resources defined in section 9.1.

GameResource, GameUserResource, ActionTraceResource and LogicTraceResource han-

dle the resources defined in 9.1, and have Path annotations with their corresponding URIs.

All of them extends AbstractResource, the class which actually has defined all the GET

and POST operations. Inherited classes only define the Path annotation and some of them

override the initResource method to meet their particular needs.

Additionally to resource access, there are two special types of resources:

Install

Accessing the URI

url-server/r/install

74

Figure 9.4: Architecture deployed to provide access to all GLAS resources.

installation process for the GLAS Server is started. Essentially, this “resource” creates the

database structure and the initial data, among other tasks. The only information required

is the database location.

Start tracking

As said in section 8.1.1, communication between GLAS Tracker and GLAS Server begins

with a message sent from the GLAS Tracker to the GLAS Server in order to obtain an

authorization to send traces.

This message is a POST request sent to a special resource defined by the following URI

url-server/games/track

GameResource checks the game key and, if any, the user credentials, and sends back a

proper response.

75

76

Chapter 10

Generating reports

Report system is designed to work in Internet browsers. GLAS Reporter is programmed

with the Google Web Toolkit to allow its deployment in most modern browsers.

These chapter explains the general architecture used to generate reports. Then, what

types of reports exist and what kind of data are shown in every of them.

This is a first approach to a more complex reports system. This system will integrate

all reports presented in a unique web application. This application will allow to navigate

for the different games and check results of students and group of students.

10.1 Reports architecture

In GLAS, a report is defined as a graphic representation of some data. These data

proceeds from a query result returned by a GLAS REST API request. Reports can be

generated using games collective data, showing total or average results, or using single users

data, showing individual results.

General architecture for reports is presented in figure 10.1.

All reports extends the GLASReport interface. This interface defines three methods:

• load(gameId, gameUser): Begins the report generation. It receives as parameters

the game id and the game user id, if any, to generate the report.

• getApiCall(gameId, gameUser): it returns the URI of the GLAS resource used

77

Figure 10.1: UML diagram showing the reports architecture and some of the reports types

to generate the report. It receives the game id and the game user as parameters.

• setData(queryResult): this method is called once the request is done and the re-

sulting data are received. The query result parameter contains all the data required

to fill the report.

The abstract class AbstractGLASReport deals with the communication with the server,

using a GLASRequestBuilder. Inherited classes takes the data received from the request

and represent it.

10.2 Types of reports

The current GLAS representation includes the following types of reports:

• Counters: Shows a number representing some quantity. It is used, for example, to

show the number of users of some game, how many times some user played a game...

(Figure 10.2)

78

• Histograms: Shows a barchart with some data. It is used to show times spent

for every user in complete the game, compare time spent in every phase by user on

average... (Figure 10.4)

• Heatmaps: Shows an image with colored areas representing hotspots. The meaning

of these hotspots depends on the context. For example, heatmaps are used to show

the most clicked areas on a specific game phase.

• Graphs: Shows a graph made by nodes and connections. For example, this type of

report is used to represent the path followed by an user phase to phase in a game.

(Figure 10.3)

Figure 10.2: A report with a counter. In this case, it is used to show the unique users that
played the game.

79

Figure 10.3: An example a graph report. In this case, it is showing the exploration path
followed by a player in a specific game.

80

Figure 10.4: An example of histogram report. In this case, it represents time spent for
every user on completing a specific game.

81

82

Part III

Conclusions

83

Chapter 11

Conclusions and future work

This chapter discusses what are the main contributions of the project and draw some

conclusions about the work carried out. Then, some future work planned for the project is

also presented.

11.1 Contributions

The main contribution of this work is the proposal of an abstract model to perform

the Learning Analytics process over educational videogames. This abstract model covers

all Learning Analytics Steps: it defines very generic game traces that could be applied to

almost every game genre; it also defines how these traces could be filtered and stored; it

proposes several standard visualization methods for stored data and several assessment rules

to evaluate students performance.

A specific implementation has been developed to validate the abstract model. This

implementation has resulted in the GLAS framework. The framework uses eAdventure

as game engine and consists of three separate subsystems: the GLAS tracker, responsible

for selecting and capturing all traces generated by the game engine; the GLAS Server,

responsible for some trace aggregation tasks and for storing all collected traces; and the

GLAS Reporter, responsible for some additional aggregations tasks and for showing data

visualization to the users.

The abstract model proposes two additional subsystems: an evaluator to assess the

85

students according to their game play, and a game adapter capable of reacting in real time

to players game play. This adapter intervenes in the game flow in order to adapt the game to

the player needs. These subsystem were designed but the implementation was not completed

due to project’s time constraints.

Finally, the main contribution of this work have been reflected in two conference papers:

• A framework to improve evaluation in educational games, Serrano-Laguna, A., Mar-

chiori, E. J., del Blanco, A., Torrente, J., and Fernandez-Manjon, B. (2012). Pro-

ceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON)

(pp. 1-8). IEEE. doi:10.1109/EDUCON.2012.6201154. The complete publication is

included in appendix A.

• Tracing a little for big Improvements: Application of Learning Analytics and Videogames

for Student Assessment, Serrano-Laguna, A., Torrente, J., Moreno-Ger, P., and Fernandez-

Manjon, B. Presented to the 4th International Conference on Games and Virtual

Words for Serious Applications (VS-GAMES’12). Submitted and pending on final

decision. The complete publication is included in appendix B.

Even if the complete GLAS framework was too large to be completely implemented in

the given time, the framework is ready to track games, store data and generate reports.

Besides developing the framework itself, another extra elements were needed.

First, specially designed educational games are required in order to fully test the frame-

work. Some pre-existing eAdventure games were used to carry out some initial tests, but

these games were not designed to contain a complete assessment process. The extracted

data were only useful and enough to generate simple reports. Serious assessment to be

effective should be present in the early design of games.

Users trials with the games were also required. When the track system was ready, it was

too late to start tracking some games with actual users in order to obtain substantial data,

and perform some deeper statistical analysis.

86

Now, all efforts can be focused on create games and perform in-depth analysis that will

be used to improve the implementation and to fully validate the abstract model.

11.2 Future work

GLAS framework just begin with the first steps if applying Learning Analytics to games,

even when GLAS collects the data, stores it and generate reports about it.

However, the actual power of Learning Analytics is much higher. Reports are good for

visualization, but the actual goal is to find models able to predict results, to assess students

in a rigorous and reliable way and to provide concrete actions designed to improve the whole

educational process at any level.

Future work, from a scientific viewpoint, includes:

• Better data analysis: analysis performed over the data are too simple to extract all

the complexities hidden in data. More complex statistical analysis could be used in

order to extract more relevant information and to discover relationship between the

different metrics.

• Test if data collected is enough and adequate: traces collected for videogames

mainly derived from game mechanics and from intuition. Better data analysis could

confirm or refute if the selected data is adequate for the intended analysis. Even if

the type of data collected was right, it still remain the problem of the initial selection,

which input events to track, which logic events to log... Some general rules for data

selection could be also extracted analysing more videogames.

• Information visualization: information visualization is a key process for under-

standing large amounts of data. Current reports elaborated by GLAS are pretty

simple, since the data obtained is also pretty simple. When more advanced analy-

sis methods are performed, more complex data could be extracted and new ways of

visualizing that information will be needed.

87

On the other hand and from a more technical perspective, GLAS framework needs to

evolve including some of the following features:

• Implementing some secure protocol (e.g. like OAuth [9]), to restrict the access to the

GLAS REST API and to identify users in a safe and secure way.

• Improve framework security. Since it is a prototype version, different security risks

usually encountered in web applications have not been fully addressed.

• Improve data storage performance. In the current implementation, all messages con-

taining data to be stored that are received by the GLAS Server create a database

connection. Using a share queue to store the incoming data and a process taking

the elements in the queue and adding them to the database would allow much more

simultaneous connections, which is fundamental to improve the performance of this

type of systems.

• Create a integrated report web application that allows to navigate for all the games

and reports generated by GLAS, using users with different roles (teachers, students,

administrators...).

88

Bibliography

[1] Core j2ee patterns - data access object. http://java.sun.com/blueprints/

corej2eepatterns/Patterns/DataAccessObject.html.

[2] Cross domain post with postmessage. http://benalman.com/projects/

jquery-postmessage-plugin/.

[3] Databases market share. http://www.mysql.com/why-mysql/marketshare/.

[4] Java api for xml binding. http://jaxb.java.net/.

[5] Jersey: Restful web framework for java. http://jersey.java.net/.

[6] Jfreechart: Java chart library. http://www.jfree.org/jfreechart/.

[7] Json: Javascript object notation. http://www.json.org/.

[8] Loco-analyst: Learning analytics software. http://jelenajovanovic.net/

LOCO-Analyst/index.html.

[9] Oauth: an open protocol to allow secure api authorization. http://oauth.net/.

[10] Reload: Reusable elearning object authoring and delivery. http://www.reload.ac.

uk/editor.html.

[11] Restful web services: The basics. http://www.ibm.com/developerworks/

webservices/library/ws-restful/.

[12] Restlet: Restful web framework for java. http://www.restlet.org/.

[13] Same origin policy in web browsers. http://www.w3.org/Security/wiki/Same_

Origin_Policy.

89

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://benalman.com/projects/jquery-postmessage-plugin/
http://benalman.com/projects/jquery-postmessage-plugin/
http://www.mysql.com/why-mysql/marketshare/
http://jaxb.java.net/
http://jersey.java.net/
http://www.jfree.org/jfreechart/
http://www.json.org/
http://jelenajovanovic.net/LOCO-Analyst/index.html
http://jelenajovanovic.net/LOCO-Analyst/index.html
http://oauth.net/
http://www.reload.ac.uk/editor.html
http://www.reload.ac.uk/editor.html
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.restlet.org/
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy

[14] Server-side technologies survey 2010. http://www.webdirections.org/sotw10/

server/.

[15] Snapp: Social networks adapting pedagogical practice. http://research.uow.edu.

au/learningnetworks/seeing/snapp/index.html.

[16] Tonic: A restful web app development php library. http://peej.github.com/tonic/.

[17] E. J. Marchiori I. Martínez-Ortiz P. Moreno-Ger B. Fernández-Manjón Á. del Blanco,

J. Torrente. Easing assessment of game-based learning with <e-adventure> and lams,

2010.

[18] Richard Blunt. Does Game-Based Learning Work? Results from Three Recent Studies,

2007.

[19] J Chen. Flow in games. Communications of the ACM, 50(4):31–34, 2007.

[20] L. Communiqué. Towards the european higher education area: Responding to chal-

lenges in a globalised world, 2007.

[21] T. Elias. Learning analytics : definitions , processes and potential., 2003.

[22] Rebecca Ferguson. The State of Learning Analytics in 2012 : A Review and Future

Challenges a review and future challenges. Media, (March), 2012.

[23] M. Hassler. Web analytics., 2010.

[24] Eugenio J. Marchiori Pablo Moreno-Ger Baltasar Fernández-Manjón Javier Torrente,

Ángel del Blanco. <e-adventure>: Introducing educational games in the learning

process, 2010.

[25] A. Dix K. Gilleade. Using frustration in the design of adaptive videogames. Pro-

ceedings of the 2004 ACM SIGCHI International Conference on Advances in computer

entertainment technology ACE 04, 74:228–232, 2004.

90

http://www.webdirections.org/sotw10/server/
http://www.webdirections.org/sotw10/server/
http://research.uow.edu.au/learningnetworks/seeing/snapp/index.html
http://research.uow.edu.au/learningnetworks/seeing/snapp/index.html
http://peej.github.com/tonic/

[26] H Willis A Levine K Haywood L Johnson, R Smith. The 2011 horizon report, 2011.

[27] M. F. Paulsen. Experiences with learning management systems in 113 european insti-

tutions., 2003.

[28] S. Williams and N. Williams. The business value of business intelligence, 2003.

91

92

Part IV

Appendices

93

Appendix A

A framework to improve evaluation in
educational games

Ángel Serrano, Eugenio J. Marchiori, Ángel del Blanco, Javier Torrente, Baltasar Fernández-

Manjón

Department of Artificial Intelligence and Software Engineering

Complutense University

Madrid, Spain

aserrano@e-ucm.es, [emarchiori, angel.dba, jtorrente, balta]@fdi.ucm.es

Abstract — The evaluation process is key for educator’s acceptance of any

educational action. The evaluation is challenging in most cases but especially

when educational games are used. In educational games if in-game evaluation

exist it is usually based on a series of simple goals and whether these goals are

achieved (i.e. assessment). But we consider that evaluation can be improved

by taking advantage of in-game interaction, such as the user behavior during

the game and the type and number of interactions performed by the user while

playing. In this paper, we propose an evaluation framework for educational

games based on in-game interaction data. We discuss how user interaction data

is collected in the most automatic and seamless way possible, how to analyze

the data to extract relevant information, and how to present this information

95

in a usable way to educators so they achieve the maximum benefit from the ex-

perience. The evaluation framework is implemented as part of the eAdventure

educational platform, where it can be used both to improve upon traditional

basic assessment methods (i.e. goals, scores and reports) and to provide infor-

mation to help improve interaction with games (e.g. discovery strategies).

Learning Analytics; Educational video games; framework proposal; case study;

A.1 Introduction

In traditional education, either in higher education or in other levels, the main eval-

uation method is based on written final exams [1]. This method, as some authors have

pointed out [2], presents a series of problems. These problems are related not only to the

student evaluation, but also to the evaluation of the educational action itself: the amount

of data available is limited, and it is usually restricted to students and educators subjective

perceptions (e.g. through polls about the past courses). Other metrics, mostly based on

exam grades, might not give enough information about the educational action, or whether it

was a success or a failure and why. Moreover, these data usually become available when the

action is finished or when it is too late to make an intervention, improvement or correction

in the ongoing action.

With the emergence of the Web, on-line educational resources have grown exponentially.

Many institutions now use LMS (Learning Management System) to organize their courses,

to allow students to communicate among themselves and with teachers, and to improve

access to educational resources [3]. Still, despite all of these on-line resources, evaluation is

still usually performed using traditional methods. Most of the content presented in LMS is

finally evaluated through written exams in classrooms, or through online tests or exams.

However, there is a whole new body of data, derived from the student interaction with on-

line educational resources. These data can be collected and analyzed not only to improve

the evaluation methods, but also to obtain real-time feedback about the progress of any

96

educational action, enabling educators to predict results and react to that progress.

The field studying the use and analysis of this kind of data is known as Learning Ana-

lytics [4]. This new field advocates of capturing all the data derived from interaction with

on-line educational resources, and analyzing it to assess students, predict future events and

act consequently to refine educational actions. These ideas have been successfully applied

in other disciplines, like Business Intelligence, a well-extended set of techniques for analyz-

ing business data to support better business decision-making [5], or Web Analytics, where

internet data are collected in order to understand and optimize web usage [6].

Currently, LMS are the main target for Learning Analytics systems. Projects like SNAPP

[7] or LOCO-Analyst [8] offer statistics about the interactions made by students inside an

LMS. SNAPP is focused on analyzing forum activity and creating network diagrams of

all interactions among students. From this, it infers which are the most active students

in a class, and those students who are “disconnected” or “at risk”, among other features.

LOCO-Analyst is based on student interaction with learning content (e.g. number of views,

time spent with every resource) that is used to infer conclusions about learning content

characteristics (e.g. difficulty or importance).

Though LMS activity reports can contribute to better understand students’ interactions

with content and resources, educational games represent an ideal environment to capture

more detailed and diversified student interaction. In the last few years, Game Analytics are

being used to let developers know about how players interact with their games. One of their

main purposes is identifying where and why a player got stuck during the game , so game

developers can try to smooth this hardness, to avoid player frustration and thus keep him

engaged and playing [9]. All these ideas applied to educational games, combined with other

Business Intelligence and Web Analytics techniques and guided by the Learning Analytics

process, are addressed in this paper.

First, we board the main steps in the Learning Analytics process, and how these steps

can be particularized in educational games, proposing a theoretical Learning Analytic Model

97

and a Learning Analytic System. Then, we propose an implementation upon the educational

game platform eAdventure and a use case to deploy the system, and finally some ideas and

thoughts about the whole process.

A.2 Learning Analytics Steps in Educational Games

Authors agree that Learning Analytics process [2] begins with selecting the most relevant

student data to be captured. Once it is captured, data must be aggregated and transformed

into reportable information (for example, using charts or other visual representations). With

this information, the educator should be able to judge how the student used the educational

resource. Some authors call this step predict, since information is converted into knowledge,

and knowledge enables predictions. However, in our approach we will use this step to assess

the student, and for now on, we will name this step as assess. Assessment information

can be used, under certain conditions, to dynamically assist the student, and to refine the

educational resource, based on the students results. Finally, all the knowledge acquired can

be shared with others whom could benefit from it. Table A.1 represents a scheme with all

the steps and their descriptions.

To support all these steps, we propose a system based on a Learning Analytics Model

(LAM) holding all the information required for every step, and a Learning Analytics System

(LAS) endued with all the processing power required by the model.

In this approach, focused on educational games, we consider the LAS as a separate

system from the game engine, but both are communicated. The LAS also has access to the

game model and the LAM (Fig. A.1). The LAM is constructed by a set of models, which

are directly related to the different modules contained by the LAS (Fig. A.2).

In this section the learning analytics steps are described in general but also for educa-

tional games in particular, building the LAM and the LAS upon them. As starting point for

this definition we consider the available data in games and how to adapt these data to the

theoretical model in order to extract the maximum information possible from this media.

98

Step Unit produced Description
Select Data Choose the basis data to be cap-

tured
Capture Data Collect selected data

Aggregate and Report Information Sort out captured data and con-
vert it in information

Assess Knowledge Understand reported information
and convert it into knowledge, as-
sess students

Use Knowledge Adapt the system based on as-
sessment

Refine Knowledge Improve educational action
Share Knowledge Show knowledge for the benefit of

others

Table A.1: Learning Analytics Steps

A.2.1 Select and capture

First, the data to be captured by the LAS are selected. These data will be the raw

material that will feed the steps that follow. The data selection criteria are lead by the

educational resource objectives and some constrictions such as technical limitations and

privacy policies must be taken into account. In educational resources, meaningful data can

be selected from personal information about the student (e.g. age, gender, etc.), academic

information and any other data provided by the resource context.

While in static resources (e.g. PDF files), the only extractable data are the number of

views and the time spent with them, the interactive nature of educational games provides

a whole new type of data that can be selected:

• GUI events performed by the student during the game: mouse clicks, keys pressed,

and other events (joystick movements, buttons interactions), depending on the input

method. Not only the event itself can be recorded, but also the time when it occurred

and whether it was performed over a target (e.g. some click over a game object).

These events can provide clues about the student behavior during the game (e.g. if

99

Figure A.1: Relation between the different components involved in the Learning Analytics
process. The LAM is dependent on the game model and the LAS. LAS is aware of the LAM
and the game model, and can communicate with the game engine.

all GUI events were captured the LAS would be able to recreate the complete game

play).

• Game state evolution: the game state is a set of variables and their values that specify

a concrete status in the game instance. The evolution of variables through time

describes the development of the different goals of the game. Depending on the case,

the whole game state evolution could be recorded, or it could be recorded only in some

points (e.g. when a phase ends, or a goal is achieved).

• Logic events: a logic event is anything that moves the game-flow forward. Changing

the value of a variable, finishing a phase, launching a cut-scene (i.e. a slide-show

or video), losing a life, achieving a defined goal, etc. Some logic events, and their

100

Figure A.2: The LAS consists of a series modules that take part in the different steps of the
Learning Analytics process. The LAM holds models for those steps which requires defining
a model to work. The LAS uses the LAM to process all the data captured and generated.

timestamps, can be directly related to the student progress in the game, and thus be

relevant for the assessment.

Selectable data are limited by the technologies used to deploy the games: Not every

piece of data here proposed will be available in every game platform. These selectable data,

then, are platform-dependent and must be defined in the LAM’s selection model. To avoid

unnecessary data capture, every game model should define, among all selectable data, the

101

final data to be captured according to their own purposes.

Once the data are selected, the framework requires a way to capture it. The technology

involved will be very important to establish how the data are collected. Access to different

internal parts of the game engine is required to capture some of the information. This

implies, for instance, that such model cannot be generally applied to commercial games

provided as black boxes.

Another issue is the moment when the captured data are passed to the LAS to begin

processing. The simplest way is to store all the data locally and send it back to the LAS

when the game is finished. Data could be sent in certain significant moments, like when the

student ends a phase or achieves a goal. Moreover, all the data could be sent to the LAS

as they are being captured. Last two approaches enable real-time assessment that can be

used to assist the student during the game. Depending on the needs, all these data might

go through a filter in order to make it anonymous.

A.2.2 Aggregate and Report

The captured data must be organized in such a manner that it can be shown in human

readable formats, like tables or graphics. A more meaningful report can be done if the LAM

contains, in the aggregation model, semantic rules to interpret all the received data. For

example, the system could relate a raw event (e.g. a variable taking a particular value) with

a meaningful feat (e.g. the player completed a goal). These semantic rules can be based on

the game engine, where some events can have an implicit meaning (e.g. an engine where

pressing escape key always brings up the menu) or on the game itself (e.g. if the game

variable “hits” is “8”, the phase is completed).

Semantic rules can be expressed like conditions producing new data to be reported: when

a condition (based on GUI events, a logic event or a concrete game state) is met a new unit

of data, defined in the aggregation model, is generated. E.g. when in the game state, the

variable score equals to 10, and the variable gold equals to 15, the LAS aggregator produces

102

a logic event “Goal 1 completed”. The reporter could then treat this event as it would with

any other logic event.

The LAS’ aggregator needs to be endued with mechanisms capable of understating and

processing these kinds of rules (Fig. A.3).

Figure A.3: Raw events are passed through the semantic rules contained by the LAM, and
converted to more meaningful data. Events can be grouped and simplified through semantic
rules. Some events, such as the game finishing, have enough meaning and do not need to be
interpreted by any rule

After aggregation, information can be reported in common ways, such as tables or charts,

but also, we can take advantage from the inherent characteristics of games to report infor-

mation with new representations. For example, “heat maps” could be created for every

phase, in which the heat can measure the amount of times the player clicked in every point

of the phase, or the places where the player was defeated. If there is enough information

of user interaction, an animation recreating how the student played a game phase could be

shown.

The reporter model contains which information must be reported and which representa-

103

tions must be used. Common reports can be defined at engine level (e.g. heat maps for every

phase can be common for all games), as well as reports at game level, holding important

information in that particular game.

These reports can be even richer if data from different students are aggregated. Average

results can spot which goals took more time or the places where most of the students failed.

A.2.3 Assess and Use

The information and the reports generated until now can give an overview of how the

students are using an educational resource. However, this information should have some

practical consequences to be really useful. It is the moment to transform the information

received into knowledge. In the educational game context, all the information reported is

processed to assess the student in this step.

Games are organized around goals. In educational games, these goals should be based

on the success in some educational aspects. In our context, and based on the concepts of

the selection and aggregation process, we could have several types of goals, represented by:

• A GUI event or a series of GUI events performed by the student, over a game object

or in total.

• A concrete game state, fulfilled fully or partially.

• A variable taking a defined value.

• The launch of a particular logic event.

These classes of goals are platform-dependant, and should be defined by the LAM’s

assessment model.

Compound goals can be defined based on these simple goals. An educational game can

define all the necessary goals to cover all the educational aspects that are to be learned by

players of the game. Based on these goals and with the reported information the game can

be used to assess the student.

104

This assessment can have two applications: one, just to measure the success of the

student in the game, and act accordingly (e.g. enabling the student to access to new

educational resources), or, if the captured data are being passed to the LAS during game

time, dynamic adaptation through real-time assessment (e.g. if the student got stuck in

some point, the system will offer him help). Rules for this assistance are contained by the

adaptation model, and are processed by the adapter, which is able to communicate with the

game engine to perform the adaptation.

Assessment and dynamic adaptation could be more sophisticated. As some authors

pointed out [10], propagating information through complex structures, like Bayesian net-

works, can help to determine what is going on in virtual simulations, and better decide what

adaptation profile to choose.

However, our approach pretends to be based on easy principles and stay accessible for

as many educators as possible. Complex structures, like Bayesian networks, are normally

out of reach for most educators.

A.2.4 Refine and share

With all the accumulated knowledge from previous steps, an educator can know about

the global results (assessed in the previous step) of the educational action and can identify

which educational goals were not achieved as expected. Thus, educators can refine the

educational resources to improve the results or readjust their expectations.

In educational games, those game goals that were not solved as expected can be detected.

Aggregated data from several students can ease this job, pointing out, in average, which

goals made more trouble to students. From here, the game could be modified or even

redesigned to facilitate its accomplishment. This does not directly imply making the game

simpler or shorting the educational goals, it could be enough to smooth the learning curve

in the game, or adding some extra help in game points especially hard. Maybe, learning

analytics conclusions showed that the student did not get stuck, but stop playing the game

105

after a while, indicating that it was not engaging enough.

Finally, the LAS can share all the knowledge obtained with other systems. These systems

cover from LMS to institution administrative systems. Even making the data public can be

an option in some cases. In order to be able to share data, some considerations such as pri-

vacy policies, what knowledge is shared or which standards are used in the communication,

need to be taken into account.

A.3 Implementation Proposal: eAdventure

eAdventure is an educational game platform developed and maintained by the <e-UCM>

research group at the Complutense University of Madrid for the last 5 years. This platform

includes a game engine and an easy-to-use editor, targeted at educators. eAdventure is

currently undergoing the development of the 2.0 version, where new features are being

added. Some of these include support for multiple platforms [11] and an easy to use narrative

representation of games [12]. Moreover, we propose to implement the framework presented

in this paper in this new version of the system.

eAdventure games are composed of scenes, which can represent from a simple scenario

in an adventure game where the player’s avatar moves to a more complex slide-show, going

through an array of mini-games and other content. These scenes are always composed of

simpler parts referred to as scene elements, each of which will usually have a graphical

representation, a position in the screen, behaviors, etc. The current scene and the status of

elements in the screen are defined as the game state. It is the flow from one scene to another,

behaviors of the scene elements and effects (changing current scene, showing text, launching

videos, assigning values to variables) that make up a game, by continually changing the

game state until a final state is reached.

Most of the modules forming the LAS are implemented on a server (Fig. A.4). The

whole system is initialized with the Game Model, (containing the Adventure LAM) and the

Engine LAM. The LAS has several modules to satisfy the requirements for every step of

106

the Learning Analytics process. Each module is initialized with the information received by

the initializer, and remains ready to process all the incoming input. LAS pipeline begins

with the data collected by the capturer from the eAdventure game engine. The data is sent

to the server, where first is aggregated, according to the rules defined by the Adventure

LAM, and second, stored in a database. This information can be shown to users via web

through the reporter, and also be used to assess the student, through the evaluator. If

adaptation is enabled, assessment data is used by the adapter to change the game state in

the eAdventure engine. Finally, LAS can communicate its data to external systems. A more

detailed relation between the modules and the steps is detailed below.

Figure A.4: General organization for the LAS integrated with eAdventure. The LAS is
mostly deployed in a server, and can communicate with the game engine. A web interface
and external communication with other systems is offered as well.

107

A.3.1 Select

Given that eAdventure is intended to be a general game engine, including its own editor,

our proposal tries to make selectable the biggest amount of data, letting to the game designer

choose between all the available options. The eAdventure Learning Analytics Model defines

three units of selectable data:

• LAGUIEvent: represents a detailed GUI interaction. It holds the GUI event (mouse

action, drag and drop, keyboard action) with its properties (mouse button, key pressed)

and the target scene element, if exists.

• LALogicEvent: represents the launching of a game effect. It holds the generic effect

data and additional information about the concrete instantiation (e.g., in the changing

scene effect, the initial scene and the final scene).

• LAGameState: represents a game state in a certain moment. It contains a map holding

all the game variables associated with their current value.

Every of these units has associated a timestamp, representing the moment the event

occurred since the game was started.

In the editor, we select where and when these data must be captured. For example, we

can mark which type of GUI events (mouse, keyboard) we want to capture for every scene

element (LAGUIEvent), and there is a special option to record all the GUI interactions

performed in the game, allowing the recreation of the whole game play. It is possible also

to capture those game effects that have relevance in the game flow (LALogicEvent) and,

if desired, produce a LAGameState with the current game state. LAGameStates can be

configured to be automatically generated periodically, when a game condition is met or

when the game ends.

108

All these options are added to the selection model as part of the game’s LAM, which

will be used by the LAS’ data capturer.

A.3.2 Capture

To capture all these data it is required a data capturer with access to all the relevant

parts of the eAdventure game engine. The game engine has three main elements that are

involved in this process: the input listener, which processes all GUI input from the user; the

game state, which stores all the values for all the variables in the game at any given point in

time; and the effect handler, which processes all in-game events (such as scene changes). All

these elements communicate any relevant change to the data capturer, which then captures

this information according to the current game selection model. The captured data are

instances of the selectable data units presented before.

All these collected data are sent to the LAS aggregator (Fig. A.5). Due to the multi-

platform nature of the eAdventure game engine, different implementations take care of the

communication with the aggregator. The data capturer can be configured to send out the

captured data when the game is finished, a scene change happens, a defined condition is

met or in real time.

A.3.3 Aggregate

The data sent are received by the aggregator, who makes a first data processing based

on the semantic rules defined by the aggregation model, contained by the Adventure LAM,

converting the basic units into more semantic pieces of data. This new units can be defined

through the editor, as well as the rules of conversion from basic units (presented in the II.c

section).

Aggregator also groups all the GUI events by type and scene element, filters redundancies

and stores all the data in the LAS database.

Previous versions of eAdventure provided a basic mechanism for data aggregation and

report generation. This basic mechanism allowed for information to be written in a textual

109

Figure A.5: The data capturer is compound by two elements: a grabber connected with
all the elements producing significant events in the game engine, and a sender managing
communication with the aggregator

report based on the values of variables in the game. This way, the game author could define

a set of rules that would, for instance, write in the report that the player failed to complete

a goal if a variable to indicate this was given a certain value. [13]

The same sort of data aggregation can be performed with the new LAS system. The

rules in this case use a syntax that establishes the meaning of the data that were captured

during the game to generate a report. The most basic reports will only include basic textual

information, such as “Goal X was completed at time Y”. However, more complex information

can be aggregated to generate detailed information about the goal, such as “Goal X was

completed by time Y, after Z attempts where the player failed to solve problems A, B, C,

etc.”

A.3.4 Report

The reporter represents in a web format all the information stored in the database.

Among many others, the reports can be:

110

• A table relating scenes with the total time spent in any of them.

• Heat-maps showing where the player is hovering with the mouse most.

• Screen capture recreated from game states.

• Game animations built from captured GUI events.

• Graphics showing the evolution of chosen variables in time.

• Tables with direct queries to the database.

All these data can be shown for every student or for groups of students. The system can

be extended to add new reports from the stored data.

The reporter is intended to help teachers and game designers to understand how the

student is interacting with the game, showing data that might not be relevant for the

assessment, but for improve the game design, or give clues about how to improve the learning

experience.

For example, a heat-map report (Fig. A.6) could show the places where students are

clicking during the game for every scene. Teachers and game designers could check if the

hot spots are the ones they expected and if not, act consequently, for example modifying

the game trying to focus students clicks in the intended points.

A.3.5 Assess

As established by the theoretical approach, this step is when the student is assessed.

The assessment model contains all the goals established for the game. Goals can be defined

in the editor as variables taking certain values at given times. The evaluator takes these

goals and checks them against the stored information.

The accomplishment of these goals can be viewed through the reporter, and can be sent

to the adapter to enable dynamic adaptation or to be shared with external systems.

111

Figure A.6: Heat map showing the concentration of left mouse clicks in a scene. Main
heat zones are situated in interactive elements of the scene.

A.3.6 Use

When the data are being captured in real time, dynamic adaptation can be used in the

game. Adaptation rules are defined in the adaptation model. These rules can be defined in

the editor and contain:

• An effect, which is considered the adaptation event and could be any eAdventure game

effect (showing a text, changing a variable’s value, launching a video...)

• A condition, establishing when the effect should be launched. Conditions can be the

general conditions offered to create game logic in eAdventure games, or conditions

based on goal accomplishment (e.g. a goal is not completed when the time for doing it

112

expires). The adapter takes the current game state and the goals information offered

by the evaluator to check adaptation model conditions. When a condition is met, it

communicates to the game engine the effect to be launched.

A.3.7 Refine

To support the refine task the LAS offers, through the web LAS reporter, information

about the individual goals. This allows, for instance, the goals that lead to the worst

performance to be identified. How the performance of students can be improved based on

this is up to the game designer. However, to ease this task, results obtained for the games’

goals can be compared through time (checking if results improved after student played

several times the game) and between different versions of the game.

A.3.8 Share

Nowadays, the selection and adhesion to standards for the content interoperability is an

essential matter in the development of e-Learning contents. Current e-learning standards,

like SCORM [14], are not prepared to communicate all the information collected by our LAS

with other systems. For this reason, the best way of taking advantage of the full potential

of our approach is to develop specific ad-hoc communication solutions for the systems that

take into account all these data (e.g. a Moodle plugin). This idea can also be carried out

in the eAdventure activity in LAMS [13], where all the information can be gathered and

shown to educators, and use them to modify the lesson flow in an automatic or monitored

way.

In the near future, it will be feasible to implement our ideas in compliance with next

generation standards. For example, one the last initiatives leaded by the IMS Global Con-

sortium, the IMS Learning Tool for Interoperability (IMS LTI), goes in that direction. This

specification allows for the execution of learning tools hosted in external servers. Until other

promising standards mature [15], our LAS is able to export all the information contained in

the database along with the LAM required to interpret it into a exchangeable XML-based

113

format.

A.4 Use case: Basic math game

We propose using the framework described in this paper in a basic math game targeted at

school children. This game covers basic addition, subtraction and multiplication concepts,

challenging the students to solve different problems within a given time-frame. This game

is intended to provide increasing difficulty in the challenges presented to the students (e.g.

the number of digits in the numbers involved is increased gradually).

The main goal of the game is sub-divided into simple goals: learn to operate with numbers

of 1, 2 and 3 digits. Each time one of the goals is met, the game is adapted to provide the

next level of challenge. Moreover, to provide help to the students and limit the chances that

students could get stuck in any particular level, a help button is always accessible. The use

of the help button is part of the information selected to be collected by the system.

In the selection model we marked the help button to capture all left-clicks performed

over it. We also added to the model all the keyboard interactions, since these will be the

input method used by the students to give their answers.

In the aggregation model a rule is added to convert every left-click over the help button

into an “ask for help” event. Another rule is added to transform a sequence of numbers

typed in the keyboard, followed by an “enter” into an “answer given” event, which its value

is the introduced number and if the answer was correct.

The reporter shows the number of times the “ask for help” event occurred and the number

of right answers. For the wrong answers, the invalid value introduced by the student is also

shown. Average time for every operation is also displayed.

In the assessment model three goals are added: a percentage of all the given answers,

after a minimum number of operations, must be correct (without using the help button) for

operations with 1, 2 and 3 digits.

In the adaptation model an effect that changes the difficulty level (operations with 1, 2

114

or 3 digits) is added when the goal for the current event is achieved.

A.5 Final remarks

Learning Analytics, unlike Business Intelligence or Web Analytics, is still an emerging

field that has a great potential. In this paper we tried to focus on a single target (i.e.

educational games) in order to develop concrete methodologies trying to clarify some of the

steps involved and better define the whole process. But, we think most of the ideas proposed

for educational games can be extended to analyze data from other types of interactive

educational resources as well, if more information about how they are being used becomes

available.

The processing and logic involved in Learning Analytics can be used for other purposes

different than education. The proposed LAS can help games in tasks like debugging the

game design (statistics could show game points with no return), and testing (the LAS could

spot if the user is playing the game as it was specified in the design).

Finally, it is important to note that the ultimate goal of Learning Analytics is to improve

educational actions. We believe that learning analytics can help in establishing the educa-

tional value of games that use it. It is also important to take into account that monitoring

students presents several ethics problems and privacy issues. Therefore transparency must

guide all the design decisions.

A.6 References

[1] L. Communique, Towards the European higher education area: Responding to Chal-

lenges in a Globalised World. Techreport. 2007.

[2] T. Elias, Learning Analytics:definitions , processes and potential. Learning, 23. vol:

6, issue: 4, pp. 134-148. 2003

[3] M. F. Paulsen, Experiences with learning management systems in 113 European

institutions. Educational Technology and Society. 2003.

115

[4] M. Brown, Learning analytics. Learning Circuits Retrieved March, vol. 2, issue 1,

pp. 1-4. 2010.

[5] S. Williams and N. Williams, The business value of business intelligence. Intelligence,

vol. 8 issue 301, pp. 30-39. The Data Warehouse Institute. 2003.

[6] M. Hassler, Web analytics. Redline Heidelberg, vol. 3, issue 1, pp. 1-14. 2010

doi:10.1080/19322900802660292

[7] S. Dawson, A. Bakharia, E. Heathcote, SNAPP : Realising the affordances of real-time

SNA within networked learning environments. Learning. pp 125-133. 2010.

[8] J. Jovanovic, D. Gasevic, C. Brooks, V. Devedzic, M. Hatala, LOCO-Analyst: a

Tool for raising teachers’ awareness in online learning environments. The 2nd European

Conference on Technology Enhanced Learning, Crete, Greece, 2007, pp. 112-126.

[9] K. Gilleade, A. Dix. Using frustration in the design of adaptive Videogames. Pro-

ceedings of the 2004 ACM SIGCHI International Conference on Advances in computer

entertainment technology ACE 04 vol: 74, pp: 228-232. 2004

[10] V. Shute and J. M. Spector, SCORM 2.0 white paper: stealth assessment in virtual

worlds. Learning. pp. 1-10. 2008

116

Appendix B

Tracing a little for big improvements:
Application of Learning Analytics and
Videogames for Student Assessment

Ángel Serrano-Laguna, Javier Torrente, Baltasar Fernández-Manjón, Pablo Moreno-Ger

Department of Artificial Intelligence and Software Engineering

Complutense University

Madrid, Spain

[aserrano, jtorrente]@e-ucm.es, [balta, pablom]@fdi.ucm.es

Abstract—Assessment is essential to establish the failure or success of any

educational activity. Not only to measure the acquisition of the knowledge cov-

ered by the activity, but also to determine the effectiveness of the activity itself.

The increasing adoption of new technologies is promoting the use of new types

of activities in schools, like educational video games that in some cases are devel-

oped by the teachers themselves. In this kind of activity, interactivity increases

compared to traditional activities (e.g. reading a document), which can be a

powerful source of data to feed learning analytics systems that infer knowledge

about the effectiveness of the educational process. In this paper, we discuss how

a part of the students’ assessment can be achieved semi-automatically by log-

ging the interaction with educational video games. We conclude that even the

117

application of rather simple tracking techniques means an advantage compared

to other systems that are fed with less quality data.

Keywords: Learning Analytics, educational games, data mining, assessment

B.1 Introduction

Increasingly, teachers of all education levels and knowledge branches are becoming en-

ticed by the possibilities new technologies can offer to their daily work. Among other activ-

ities, teachers are starting to use educational videogames in order to explore new ways to

educate their students [1], [2]. Although there is evidence to support that characteristics of

videogames such as high interactivity, supply of engagement and challenge can improve the

educational processes [3], [4], most teachers are reluctant to use them as evaluation tools and

usually end up turning to traditional methods, like written exams. Videogames are even-

tually left as low-weight complements that have little or no impact on the final mark, even

when games can support new assessment approaches [5], [6] as they foster problem-solving,

critical thinking, observation and reasoning.

There are solid reasons that motivate this distrust. First, and probably most important,

it is difficult to implement Question and answer structures with games. In games students are

constantly solving problems at a certain pace that is designed to make the game challenging

but not frustrating and the explicit introduction of a test or questionnaire in any form is

seen as disruptive and breaks the immersive atmosphere [7]. Therefore evaluation through

games can only be achieved by tracking students’ interactions and extracting conclusions

about the process. But to do so, teachers need tools that analyze data coming from the

games and infer high-level knowledge that can be understood by a human (e.g. the student

has problems with concept ’A’ or skill ’B’).

Most of commercial educational games used by educational institutions, developed by

publishers or government education departments are distributed as black-boxes in order to

protect intellectual property. As a consequence it is unfeasible to collect any kind of data

118

from them, leaving teachers with the only choice of using traditional methods, i.e. written

exams.

Teachers doing their own games are using easy-to-use game editors [8]. These tools

give them more control of the whole game, which allows them in some cases to extract

information for evaluation purposes. However, to maximize effectiveness it is necessary that

these tools include features to track students’ interactions and display high-level results in

a teacher friendly way without requiring technical knowledge.

Assessment systems of this kind can be complex to develop as they require advance

techniques of data mining and precise information about the game and study domain. Nev-

ertheless in this paper we discuss that even simple systems tracking a few types of traces

can produce a lot of assessment information with little teacher intervention.

Our approach is framed in the Learning Analytics discipline, an emerging field [9] that

advocates for the analysis of students’ interaction data with online educational resources to

better understand their learning process. This field is directly related to other disciplines

that apply data mining processes, like Business Intelligence or Web Analytics. While Busi-

ness Intelligence provides advice to take action on certain alerts by analyzing numeric data,

Web Analytics is centered on the analysis of users interaction with web pages, and its main

purpose is to report the collected information, but no conclusions are drawn automatically

(data must be interpreted by the webmaster).

We propose a double approach. In first place we use a similar philosophy to Web An-

alytics: data collected from interaction is reported to teachers using convenient graphics.

In this case data is treated in a game-independent manner and teachers are responsible to

give meaning to those results, as no automatic inference is possible. In second instance we

propose adding an extra layer that allows the automatic inference of conclusions by using

game-specific data. In this case additional input from teachers is required, as they have to

define assessment rules that help the system to infer conclusions.

This paper is structured as follows: first we present the types of traces that we pro-

119

pose to log to facilitate assessment, and what information can be extracted from them.

Second, we discuss what kind of teacher-defined assessment rules are needed to reach a

more fine-grained inference of conclusions and high-level generation of knowledge about

the educational process. The last section discusses final remarks, restrictions and possible

extensions.

B.2 Taces logged

Educational video games can be varied and embrace many genres. However, most games

share a certain common characteristics and therefore a basic but fundamental set of inter-

action traces can be defined. The more concrete the game design is, the better these traces

can be defined. However in this paper we elaborate on a general basis that could become

the breeding ground for more elaborated models.

Our basic set of traces is presented below, with all the information associated that can

be extracted from them.

B.2.1 Start game, end game, quit game

Generating a trace with a timestamp whenever a student begins to play some game

provides information about when and who, if the students are uniquely identified, the game

is being played. Adding a session identifier to the trace, we can track how many times any

user tries to beat the game. With all this information we can also obtain group stats about

the total number of users who played the game.

This information might seem trivial, but having the students uniquely identified is the

first step towards automatic assessment.

Also, generating time stamped traces whenever a student finishes the game provides

more relevant information. Firstly, this allows for determining if the student accomplished

the game (i.e. s/he completed the main goal for which the game was designed). Secondly,

by comparing the final and start timestamps the total time spent to fulfill the game can

120

be calculated. Global statistics can be generated as well, like students’ success rate and

mean completion times. Start traces are always generated but end traces can be logged

only whether the student finishes the game. To deal with situations where the student quits

the game it is necessary to generate another time stamped trace with information about

the state of the game to let teachers know the exact point where students stopped playing.

Sometimes, due to game platforms restrictions, the quit trace could not be generated. In

those cases, the game state can be logged periodically at a fixed time rate. Checking the

quit trace against the newest time stamped game state would provide information about

the last game point reached. Moreover, by processing the evolution of these game states

relevant information about the students’ game play can be inferred.

B.2.2 Phase changes

Most of video games structure the narrative in chapters, missions or phases. Every phase

can be associated with a secondary or mid-term goal in the game. A typical game structure

is to consider the game as fulfilled or completed after all the secondary goals are fulfilled. In

some games second term goals must be achieved in a specific order, while in other phases’

can be explored freely.

If possible, logging traces with timestamps whenever a student starts and ends every

phase provides relevant data. We obtain finer grained information about how the student is

distributing her/his game play time within the games. Moreover, if the phase exploration

sequence is not linear, teachers can gather insight on how each part of the game is being

accessed.

Time spent in every phase can be used to identify most time-consuming parts of the game

and lead to revising the game design if the results are unexpected (e.g. readjust difficulty,

adapt content, etc.).

121

B.2.3 Significant variables

All games use variables to keep some sort of state. By tracking these variables the game

play for every student can be reproduced.

A game can contain thousands of variables, but only a few are actually significant for

assessment purposes. These variables can contain game scores or opportunities used to

complete the game. A trace can be generated to reflect final values for these significant

variables or, if necessary, when their values change.

This type of trace depends on the game mechanics and also on the possibility of working

with game variables. In some game platforms this information is just kept hidden from the

user/teacher.

B.2.4 User interaction

Previous traces are based on in-game situations and they contain information about what

is going on in the game. But there is also interaction data produced by the user interaction

with the game that may also contain relevant assessment information. Low level events such

as mouse clicks, screen touches (on smartphones or tablets) and keys pressed register how

students are interacting with the game and if all them were logged and reproduced, teachers

could replay the whole game play of their students.

However, in most cases it results inefficient to analyze every single user interaction with

the game. Then, it is necessary to filter interactions that are not relevant for assessment

purposes. In our general approach, mouse clicks can be logged in order to create heatmaps

marking hotspots distributed by phases or game scenarios for example. If the game control

is based on keyboard interaction, pressed keys can be logged to check if students are using

controls correctly.

When the educational videogame is multiplatform (having versions for desktop, mobile

platforms, etc.) or have more than one input method (e.g. voice, mouse, keyboard, etc.)

it may be necessary to have an abstract low level interaction model all different could be

122

mapped onto to enable comparison.

B.3 Extracting information

Once all data is collected from the game, we can start to extract some information from

them.

B.3.1 Derived and combined data

The aforementioned types of traces can be automatically collected and displayed in

human-readable reports to the teachers. The only requisite is to have a proper logging

system available in the game and visualization tools to represent the data.

A game-independent analysis of data collected is useful, as it allows teachers to identify,

for example, how long it took students to reach a certain point B from point A. However,

knowledge can only be inferred automatically if information about the game is taken into

account (e.g. structure, images, etc.). Using the previous example, if game-specific informa-

tion is considered time intervals like those mentioned could be linked to the game structure

to generate statistics about phase completion times.

Having game-specific information can be used to improve the quality of the reports as

well. For example, heatmaps could use real images as backgrounds

Finally, combining different types of traces it is possible to obtain new information. For

example, if in some phases users spent more time than expected, phase heatmaps could be

checked in order to find what is the problem and redesign the game accordingly. This would

allow an in-depth analysis of the feedback provided by the game by detecting students’

misconceptions.

For example, using heatmaps it could be easy to identify situations where the player

fails to interact with the right element or repeatedly interacts with an irrelevant character or

object. These situations usually depict an incorrect or insufficient use of feedback, leading to

an inappropriate level of guidance that prevents the student to reach an optimum decision

123

on what is the best action to progress in the game. By automatically identifying these

situations, which is not a great challenge from a technical perspective, teachers or game

designers would be able to provide more explicit feedback when needed.

B.3.2 Assessment

To generate knowledge about the process it is necessary to build a rule-based system

on top of the interaction logging system. This system takes as inputs the assessment rules

defined by the teacher and game-specific information. Useful information about the game

includes its structure, specific goals, phases, and information about characters and objects

present, for example. The system uses the teacher-defined rules to analyze the interaction

logs and infer conclusions which are reported on high-level terms.

To avoid an excessive increase of the system complexity, assessment rules must be based

on quantifiable parameters. Some of these rules are briefly discussed below:

Measuring times

Time spent to reach a specific some goal is key to determine student success. With

the presented traces, it is possible to measure different time intervals: time spent to com-

plete every phase and total completion time. Several assessment rules can be defined on

these numbers. For example, a maximum time threshold can be set for each phase or the

whole game, and use the comparison of the actual completion time with the threshold to

automatically grade the student.

A minimum threshold could be set for games which have some repetitive actions that

should keep students busy for a while. The maximum score would be given to students

improving that threshold.

Variables values

All the significant variables chosen to be logged are a potential source of assessment

information. These variables are usually numerical and assessment rules can be directly

124

defined on the comparison between actual and expected values of these variables.

For example, from a variable that represents a score it could be extracted a numeric

mark based on its division by a maximum score. Or some goal can be considered as fulfilled

only if a set of variables are greater than values defined by the teachers.

Group results

Also, complementary assessment rules can be defined by the teachers at the student

group level.

Teachers could define minimum success rates for every game and program alarms for

when these rates were not achieved. They also could define the number of students assumed

for the game and be alerted if these number is not fulfilled when the deadline to complete

the task is approaching.

By analyzing group results teachers could gauge the assessment system as well. For

example, if the number of students that receive good marks is too little, time thresholds can

be relaxed and get new assessment reports automatically.

B.4 Final remarks

Some considerations about the model proposed deserve discussion. The game platform

used for running the games must comply with some technical requisites. First, it must allow

collecting or generating traces as described in this paper. This issue could be addressed

extending open source game engines or using one with a built-in tracking system. Second,

the game platform must include an explicit model to represent the definition of a game.

This model should be kept in separate files from the code that runs the games in a format

that is easy to process by a machine. And third, data logged must be stored somewhere,

normally in a database, which could increase the difficulty to deploy the games. But the

game engine could also log locally (in files with some specified format, for example) and

then pass the results to an external analyzer. For data visualization, one of the many open

125

source libraries available could be used to generate graphics and reports.

In this paper we propose a double-step approach that applies Learning Analytics tech-

niques in educational videogames. In first place it pretends to be general enough so to

be applied to multiple game genres and game mechanics, treating information collected as

game-independent to produce reports that teachers could analyze. In a second step, an ad-

ditional assessment layer could be used to generate more depurated reports. These reports

serve two purposes: assess and evaluate how students’ progress within the game, and also

debug the game design, spotting weak points in the game that could be fixed by the teacher

if necessary.

We think it is a first step towards a new model of student assessment based on educational

games that can complement other methods. These ideas will not substitute traditional

assessment techniques, but they can provide more information about the educational process

to the teachers in a rather automatic way. More sophisticated algorithms can be developed

in order to expand and obtain finer-grained information, narrowing the games genre or the

game mechanics as needed.

B.5 References

[1] L. Johnson, S. Adams, and M. Cummins, NMC Horizon Report: 2012 K-12 Edition.

Austin, Texas: The New Media Consortium, 2012, p. 44.

[2] L. Johnson, S. Adams, and M. Cummins, NMC Horizon Report: 2012 Higher Edu-

cation Edition. Austin, Texas: The New Media Consortium, 2012.

[3] L. A. Annetta, J. Minogue, S. Y. Holmes, and M. Cheng, “Investigating the impact of

video games on high school students’ engagement and learning about genetics,” Computers

and Education, vol. 53, pp. 74-85, 2009.

[4] H. Tuzun, M. Yilmazsoylu, T. Karakus, Y. Inal, and G. Kizilkaya, “The effects of

computer games on primary school students’ achievement and motivation in geography

learning,” Computers and Education, vol. 52, no. 1, pp. 68-77, Jan. 2009.

126

[5] A. Serrano, E. J. Marchiori, A. del Blanco, J. Torrente, and B. Fernandez-Manjon, “A

framework to improve evaluation in educational games,” in Proceedings of the 2012 IEEE

Global Engineering Education Conference (EDUCON), 2012, pp. 1-8.

[6] Á. del Blanco, J. Torrente, E. J. Marchiori, I. Martínez-Ortiz, P. Moreno-Ger, and B.

Fernández-Manjón, “A framework for simplifying educator tasks related to the integration

of games in the learning flow,” Education Technology and Society.

[7] J. Chen, “Flow in games,” Communications of the ACM, vol. 50, no. 4, pp. 31-34,

2007.

[8] J. Torrente, Á. Del Blanco, E. J. Marchiori, P. Moreno-Ger, and B. Fernández-

Manjón, “<e-Adventure>: Introducing Educational Games in the Learning Process,” in

IEEE Education Engineering (EDUCON) 2010 Conference, 2010, pp. 1121-1126.

[9] R. Ferguson, “The State of Learning Analytics in 2012: A Review and Future Chal-

lenges a review and future challenges,” Media, no. March, 2012.

127

	Portada
	Autorización
	Resumen
	Abstract
	Index
	List of Figures
	List of Tables
	I Motivation and Objectives
	Introduction
	Previous work
	LOCO-Analyst
	SNAPP
	Conclusions

	Learning Analytics in educational videogames: first approach
	Select and capture
	Aggregate and Report
	Assess and Use
	Refine and share

	Implementation proposal: eAdventure
	Select
	Capture
	Aggregate
	Report
	Assess
	Use
	Refine
	Share

	II Implementation
	Introduction
	GLAS Tracker
	GLAS Server
	GLAS Reporter

	Considered Technologies
	Server technologies
	PHP
	Java

	Storage
	Appengine DataStore
	MySQL

	Client Side: Reports System
	GWT
	Java

	Game Engine: eAdventure
	Selected technologies

	Generating and selecting traces
	Traces definition
	ActionTrace
	LogicTrace

	Trace selection
	Producing traces in eAdventure
	InputAction as ActionTrace
	Effects as LogicTrace

	Initial filtering

	Capturing traces and server communication
	GLAS Tracker
	Server communication

	Tracker integration in the eAdventure game engine
	Catching ActionTrace
	Catching LogicTraces

	REST API and Server Implementation
	REST API definition
	Games
	Traces
	Game users
	Queries

	Data format
	XML
	JSON
	JSONP

	Server implementation
	Database
	Accessing to resources

	Generating reports
	Reports architecture
	Types of reports

	III Conclusions
	Conclusions and future work
	Contributions
	Future work

	Bibliography
	References and Bibliography

	IV Appendices
	A framework to improve evaluation in educational games
	Introduction
	Learning Analytics Steps in Educational Games
	Select and capture
	Aggregate and Report
	Assess and Use
	Refine and share

	Implementation Proposal: eAdventure
	Select
	Capture
	Aggregate
	Report
	Assess
	Use
	Refine
	Share

	Use case: Basic math game
	Final remarks
	References

	Tracing a little for big improvements: Application of Learning Analytics and Videogames for Student Assessment
	Introduction
	Taces logged
	Start game, end game, quit game
	Phase changes
	Significant variables
	User interaction

	Extracting information
	Derived and combined data
	Assessment

	Final remarks
	References

