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Abstract 

This study investigates the interconnection between five implied volatility indices          

representative of different financial markets during the period August 1,          

2008-December ​29, 2017. ​To this end, we first perform a static and dynamic analysis to               

measure the total volatility connectedness in the entire period (the system-wide           

approach) using a framework recently proposed by Diebold and Yilmaz (2014). Second,            

we make use of a dynamic analysis to evaluate both the net directional connectedness              

for each market and all net pairwise directional connectedness. Our results suggest that             

a 38.99%, of the total variance of the forecast errors is explained by shocks across               

markets, indicating that the remainder 61.01% of the variation is due to idiosyncratic             

shocks. Furthermore, we find that volatility connectedness varies over time, with a            

surge during periods of increasing economic and financial instability. Finally, we also            

document frequently switch between a net volatility transmitter and a net volatility            

receiver role in the five markets under study.  
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1. Introduction 

The global financial crisis ((hereafter, GFC) of 2008-2009 seems to trigger a prolonged             

worldwide fear spillover and cause a fundamental change in the linkages among            

international markets. In periods of market stress, the diversification benefits can           

vanish, resulting in a propagated crash and increase of their volatilities at once. In this               

sense, it provides a unique natural experiment for examining the dynamic           

interrelationships among alternative asset classes during a worldwide financial crisis. 

Since volatility reflects the extent to which the market evaluates and assimilates the             

arrival of new information, capturing how perceptions of uncertainty about economic           

fundamentals are manifested in prices, the analysis of its transmission pattern might            

provide useful insights into the characteristics and dynamics of financial markets. Based            

on the theoretical papers of Demeterfi ​et al. (1999) and Carr and Madan (1998), the               

Chicago Board Options Exchange (CBOE) developed market volatility indices that are           

measures of implied volatility obtained from options markets, and constitute important           

indicators of financial markets risk . They are often referred to as the “fear gauge” for               2

asset markets (Whaley, 2000) because they represent the expectations of the investors            

about the future realized volatility of the underlying assets for 30 calendar days ahead.              

They are thought to reflect negative stock market psychology. Indeed, prior studies have             

provided support for the predictive ability of the Volatility Index (VIX, a measure of              

implied volatility of the Standard & Poor's 500 Index) with regard to stock return (see,               

2 For excellent primers on the VIX, see Whaley (2009) and Gonzalez-Perez (2015).  

2 
 



e. g., Giot, 2005; Guo and Whitelaw, 2006; and Banerjee ​et al., ​2007). Moreover, the               

forward-looking characteristic of volatility indices make them have a superiority of the            

information content over historical volatility measures as it has been extensively           

documented in the literature (Jorion, 1995; Xu and Taylor, 1995; Christenssen and            

Prabhala, 1998: Fleming, 1998; Blair, Poon, and Taylor, 2001; and Jiang and Tian,             

2005; among others).   3

Among the studies examining linkages in implied volatility indices, Nikkinen et al.            

(2006) analyze the connection between implied volatilities for the euro, the British            

pound and the Swiss franc (quoted against the U.S. dollar). These authors find that the               

implied volatility of the euro significantly affects the volatility expectations of the            

British pound and the Swiss franc. Äijö (2008) examines the implied volatility term             

structure linkages between the volatility indices for the German stock index (VDAX),            

the Swiss Market Index (VSMI) and the EURO STOXX 50 Index (VSTOXX). Badshah             

et al. (2013) investigate the contemporaneous spillover effects among the volatility           

indices for stocks (VIX), gold (GVZ), and the exchange rate (EVZ). The authors detect              

strong unidirectional spillover from VIX to GVZ and EVZ and bidirectional spillover            

between GVZ and EVZ. Liu ​et al. (2013) study the short- and long-term cross-market              

uncertainty transmission between the implied volatility index for crude oil (OVX), the            

VIX, the EVZ and the GVZ (gold price volatility index). They report that there are no                

strong long-run equilibrium relationships among these volatility indices and that the           

OVX is significantly influenced by other ones. Psaradellis and Sermpinis (2016)           

concentrate on modelling and trading of three daily market volatility indices: the VIX,             

3 Poon and Granger (2003) concluded that the VIX is the best predictor of realized volatility, although it                  
may be a biased one.  
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the VXN (based on the Nasdaq-100 Index) and the VXD (based on the Dow Jones               

Industrial Average Index).  

In this paper, we will focus on the interconnection between five volatility indices             

representative of different financial markets making use of Diebold and Yilmaz’s           

(2014) measures of connectedness . These volatility indices encompass the major asset           4

classes such as equities, commodities, foreign exchanges and bonds, and accordingly,           

are able to measure the uncertainty or “fears” in the financial markets. Diebold and              

Yilmaz’s (2014) connectedness framework is closely linked with both modern network           

theory (see Glover and Richards-Shubik, 2014) and modern measures of systemic risk            

(see Ang and Longstaff, 2013 or Acemoglu ​et al​., 2015). This framework has been used               

by Diebold and Yilmaz (2015) for defining, measuring, and monitoring connectedness           

in financial and related macroeconomic environments (cross-firm, cross-asset,        

cross-market, cross-country, etc.). The degree of connectedness, on the other hand,           

measures the contribution of individual units to systemic network events, in a fashion             

very similar to the conditional value at risk (CoVaR) of this unit (see, e.g., Adrian and                

Brunnermeier, 2016). 

Our study extends and complements the existing literature by providing a novel            

perspective on the interdependence among alternative asset classes. Although a          

substantial amount of literature has used different extensions of Diebold and Yilmaz’s            

(2012) previous methodology to examine spillovers and transmission effects in different           

4 The connectedness methodology has several advantages over the alternative approach of focusing on              
contemporaneous correlations (corrected or not for volatility). First, while correlation is a symmetrical             
measure, connectedness is an asymmetrical one, so the procedure provides information on the direction              
and magnitude of the volatility transmission (from country ​A to country ​B​, from country ​B to country ​A​,                  
or both). Second, by investigating dynamic connectedness through a rolling window, we can evaluate              
how the strength of the connectedness evolves over time, allowing us to detect episodes of sudden and                 
temporary increases in volatility transmission. 
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financial markets , to the best of our knowledge, it has not been applied to explore               5

volatility transmission between the volatility indices of different asset classes as           

representative of expected future market volatility. Since they are based on derivatives            

markets, where volatility plays a prominent role, market volatility indices are especially            

relevant for unraveling the connections between uncertainty, the dynamics of the           

economy, preferences, and prices. 

Studies of the transmission of volatility shocks from one market to another are essential              

in finance, because they have many implications for international asset pricing and            

portfolio allocation. Indeed, a higher degree of connectedness between markets would           

reduce the diversification benefits. This would also imply that at least a partially             

integrated asset-pricing model is appropriate for modeling the risk-return profile of the            

different asset classes. 

The rest of the paper is organized as follows. Section 2 presents Diebold and Yılmaz               

(2014)’s methodology for assessing connectedness in financial market volatility.         

Section 3 presents our data and a preliminary analysis. In Section 4 we report the               

empirical results (both static and dynamic) obtained for our sample of five market             

volatility indices (a system-wide measure of connectedness). Section 5 examines the           

evolution of net directional and net pairwise directional connectedness in each market.            

Finally, Section 6 summarizes the findings and offers some concluding remarks. 

5 Awartania ​et al​. (2013), Lee and Chang (2013), Chau and Deesomsak (2014) and Cronin (2014) apply                 
this methodology to examine spillovers in the United States’ markets; Yilmaz (2010), Zhou ​et ​al​. (2012)                
and Narayan ​et ​al​. (2014) focus on Asian countries; Apostolakisa and Papadopoulos (2014) and Tsai               
(2014) examine G-7 economies; Demirer ​et al. (2015) estimate global bank network connectedness and              
Diebold and Yilmaz (2016) characterize equity return volatility connectedness in the network of major              
American and European financial institutions; McMillan ​et al. (2010), Antonakakis. (2012) and Bubák et              
al. (2014) examine interdependence and spillovers in exchange rate markets; and Antonakakis and Vergos              
(2013), Alter and Beyer (2014), Claeys and Vašícek (2014) and Fernández-Rodríguez ​et al. (2016) use               
connectedness analysis to assess financial stress transmission in European sovereign bond markets.  
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2. Methodology  

The main tool for measuring the amount of connectedness is based on a decomposition              

of the forecast error variance, which we will now briefly describe. 

Given a multivariate empirical time series, the forecast error variance decomposition is            

obtained from the following steps: 

1. Fit a standard vector autoregressive (VAR) model to the series. 

2. Using series data up to and including time ​t​, establish an ​H period-ahead forecast (up                

to time ​t + H​). 

3. Decompose the error variance of the forecast for each component with respect to              

shocks from the same or other components at time ​t​. 

Diebold and Yilmaz (2014) propose several connectedness measures built from pieces           

of variance decompositions in which the forecast error variance of variable ​i is             

decomposed into parts attributed to the various variables in the system. This section             

provides a summary of their connectedness index methodology. 

Let us denote by ​d​H​
ij the ​ij ​-th ​H ​-step variance decomposition component (i.e., the             

fraction of variable ​i​’s ​H​-step forecast error variance due to shocks in variable ​j​). The               

connectedness measures are based on the “non-own”, or “cross”, variance          

decompositions, ​d​H​
ij​, ​i​, ​j ​ = 1, . . . , ​N ​, ​i ​ ≠ ​j ​.  

Consider an ​N​-dimensional covariance-stationary data-generating process (DGP) with        

orthogonal shocks: Note     

that need not be diagonal. All aspects of connectedness are contained in this very              
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general representation. Contemporaneous aspects of connectedness are summarized in         

and dynamic aspects in Transformation of via variance          

decompositions is needed to reveal and compactly summarize connectedness. Diebold          

and Yilmaz (2014) propose a connectedness table such as Table 1 to understand the              

various connectedness measures and their relationships. Its main upper-left ​NxN block,           

which contains the variance decompositions, is called the “variance decomposition          

matrix,” and is denoted by The connectedness table increases with a             

rightmost column containing row sums, a bottom row containing column sums, and a             

bottom-right element containing the grand average, in all cases for ​i ≠ j. 

[Insert Table 1 here] 

The off-diagonal entries of are the parts of the ​N forecast-error variance            

decompositions of relevance from a connectedness perspective. In particular, the ​gross           

pairwise directional connectedness​ from​ j​ to ​i​ is defined as follows: 

 

Since in general the ​net ​pairwise directional connectedness from j to ​i,             

can be defined as: 

 

As for the off-diagonal row sums in Table 1, they give the share of the ​H​-step                

forecast-error variance of variable ​x​i coming from shocks arising in other variables (all             
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others, as opposed to a single other). The off-diagonal column sums provide the share of               

the ​H​-step forecast-error variance of variable ​x​i going to shocks arising in other             

variables. Hence, the off-diagonal row and column sums, labelled “from” and “to” in             

the connectedness table, offer the total directional connectedness measures. In          

particular, total directional connectedness from others to ​i​ is defined as 

 

and​ total directional connectedness​ from ​j​ to others is defined as 

 

We can also define ​net total directional connectedness​ as 

 

Finally, the grand total of the off-diagonal entries in ​D​H​ (equivalently, the sum of the 

“from” column or “to” row) measures ​total connectedness​: 

 

For the case of non-orthogonal shocks, the variance decompositions are not as easily             

calculated as before, because the variance of a weighted sum is not an appropriate sum               

of variances. Methodologies for providing orthogonal innovations like traditional         

Cholesky-factor identification may be sensitive to ordering. Therefore, following         
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Diebold and Yilmaz (2014), a generalized VAR decomposition (GVD), invariant to           

ordering, proposed by Koop ​et al. (1996) and Pesaran and Shin (1998) will be used. The                

H​-step generalized variance decomposition matrix is defined as , where 

  

In this case, is a vector with ​j​th element unity and zeros elsewhere; is the                 

coefficient matrix in the infinite moving-average representation from VAR; is the            

covariance matrix of the shock vector in the non-orthogonalized-VAR, being its ​j​th             

diagonal element. In this GVD framework, the lack of orthogonality means that the             

rows of do not have sum unity and, in order to obtain a generalized connectedness                

index , the following normalization is necessary: where by         

construction  and   

The matrix permits us to define similar concepts as defined before for the              

orthogonal case, that is, ​total directional connectedness​, ​net total directional          

connectedness​, and ​total connectedness. 
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3. Data and preliminary analysis  

In this paper, we use close daily data on five market volatility indices representative of               

the main financial assets (equities, energy and non-energy commodities, currencies and           

bonds). As an indicator of stock market uncertainty, we employ the Volatility Index             

(VIX) . VIX is a measure of the expected change in the Standard & Poor's 500 Index               6

over the next 30 days calculated with reference to the price of options that allow               

investors to hedge against sharp increases or declines in prices . As illustrative of             7

non-energy commodity markets, we utilize the CBOE Gold exchange-traded fund          

(ETF) Volatility Index (GVZ). GVZ measures market's expectation of 30-day volatility           8

of gold prices, which based on the bid and ask prices of the SPDR Gold Shares. As                 

indicator of energy commodity markets, we use the CBOE Crude Oil ETF Volatility             

Index (OVX). OVX is a measure of the market's expectation of 30-day volatility of              

crude oil prices United States Oil Fund, LP (Ticker-USO) options spanning a wide             

range of strike prices. As representative of foreign-exchange markets, we take the            

CBOE Euro Currency Volatility Index (EVZ) that measures market's expectation of           

30-day volatility of the USD/Euro exchange rate, based on options on the Currency             

Shares Euro Trust. Finally, and as indicator of uncertainty in bond markets, we employ              

the CBOE/Chicago Board of Trade (CBT) 10-year U.S. Treasury Note Volatility Index            

(TYVIX). TYVIX measures a constant 30-day expected volatility of 10-year Treasury           

note futures prices, based on transparent pricing from CBOT's actively traded options            

6 Since its introduction in 1993, the VIX Index has been considered to be the world's premier barometer of                   
investor sentiment and market volatility. The VIX has been utilized as a proxy for the level of investor                  
risk aversion or market sentiment (see, e. g, Brunnermeier ​et al​. 2008 or Bekaert ​et al. ​2013),  
7 Recall that option prices provide a unique insight into the probabilities assigned by markets to various                 
future outcomes for a particular economic variable. 
8 Note that gold is a precious and highly liquid metal, so it is categorized as a commodity and a monetary                     
asset. Gold has possessed similar characteristics to money in that it acts as a store of wealth, medium of                   
exchange and a unit of value (Goodman, 1956; Solt and Swanson, 1981). Gold has also played an                 
important role as a precious metal with significant portfolio diversification properties (Ciner, 2001). 

10 
 



on the Treasury-note futures. All five indexes are calculated by the CBOE by applying              

the VIX methodology. The data are collected from the CBOE website. Given that the              9

GVD requires normality, and that volatilities tend to be distributed asymmetrically (with            

a right skew), we approximate normality by taking natural logarithms (see, e.g. Diebold             

and Yilmaz, 2015). Hence, we work with the logarithm of the daily implied-volatilities.             

Our sample spans from August 1, 2008 until December 29, 2017 (i.e., a total of ​2,376                

observations). 

The Panel A of Table 2 reports the descriptive statistics for these series. The assets with                

the highest average log implied volatility in our sample are the two commodities, OVX              

(3.54) and GVZ (2.96), followed by VIX (2.90) and EZV (2.37). As expected, the              

TYVIX (1.81) has the lowest average implied volatility, given the well-known low risk             

of fixed income products. Otherwise, the logarithm of our market volatility indices are             

close to normal with skewness (positive but) close to zero and kurtosis close to 3. We                

report the pairwise correlations in the Panel B of Table 2. The correlations are high,               

being not lower than 0.58. Intuitively, these high correlations could shed light about the              

connections between these implied-volatilities, which we develop further below as the           

main goal of this paper.  

[Insert Table 2 here] 

Finally, Figure 1 shows the daily evolution in the logarithm of the implied volatilities.              

Note that the highest values of implied volatility occur when investors anticipate that             

huge moves in either direction are likely. In these graphs, we observe several             

well-known peaks in volatilities, which coincide with important events, such as: 

i) the Lehman Bros. demise in September 2008;  

9 ​See http://www.cboe.com/micro/vix/vixwhite.pdf 
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ii) the European Debt crisis in May 2010;  

iii) the debt ceiling crisis of August 2011, when ​the US Congress and White             

House clashed over raising the government borrowing limit, prompting a          

spike in economic policy uncertainty and a downgrading of US credit rating            

from AAA to AA+;  

iv) the rapid fall in gold prices from the first months of 2013, following             

disappointing Chinese economic data and expectations of reduced inflation         

as consequence of a possible tighten of monetary policy by the Federal            

Reserve;  

v) the collapse in oil prices and its impact on other assets in late 2014 to               

mid-2015;  

vi) China’s bursting equity bubble and the subsequent international stock market          

selloff in August 2015; 

vii) the global financial turmoil after the UK voted to leave the European Union             

in June 2016; and  

viii) the upsurge of political risk in August 2017, led by mounting US-North            

Korea tensions and terrorist attacks in Spain, triggering investor nerves and           

boosting volatility.  

These spikes in volatility seem to affect at all the implied volatilities at some degree.  

[Insert Figure 1 here] 

4. Empirical results  

In this section, we report the empirical results of the volatility connectedness. First, we              
show the static or full-sample GVD table. Second, we analyze the dynamic            
connectedness.  

4.1 Static (full-sample, unconditional) analysis 
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In the Table 3, we report the full-sample connectedness table where the off-diagonal             

elements measure the connectedness between the implied-volatility indices. As         

mentioned in Section 2, the ​ij​th entry of the upper-left 5x5 market submatrix gives the               

estimated ​ij​th pair-wise directional connectedness contribution to the forecast error          

variance of market ​i​’s implied volatility coming from innovations to market ​j​. Hence,             

the off-diagonal column sums (labelled TO) and row sums (labelled FROM) gives the             

total directional connectedness to all others from ​i and from all others to ​i​, respectively.               

The bottom-most row (labelled NET) gives the difference in total directional           

connectedness (TO minus FROM). Finally, the bottom-right element (in boldface) is           

total connectedness, which is calculated as the sum of the non-diagonal elements of the              

connectedness matrix, divided by number of assets . 10

[Insert Table 3 here] 

As can be seen, the diagonal elements (own connectedness) are the largest individual             

elements in the table, ranging from 55.27% (VIX) to 65.56% (TYVIX). Interestingly,            

the own connectedness is also larger than any total directional connectedness FROM            

and TO others, reflecting that these implied volatilities are relatively independent of            

each other. Namely, news shocks that affect to the implied volatility of a particular asset               

do not fully spread on the implied volatilities of the other assets. Accordingly, the total               

connectedness of implied volatilities is merely a 38.99%, indicating that 61.01% of the             

variation is due to idiosyncratic shocks. This result sharply contrasts with the value of              

78.3% obtained by Diebold and Yilmaz (2014) for the total connectedness between US             

10 All results are based on vector autoregressions of order 2 and generalized variance decompositions of                
10-day ahead volatility forecast errors. To check for the sensitivity of the results to the choice of the order                   
of VAR, we also calculate the spillover index for orders 2 through 4, as well as for forecast horizons                   
varying from 4 days to 10 days. The main results of our paper are not affected by these choices. Detailed                    
results are available from the authors upon request. 
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financial institutions and with the value of 97.2% found by Diebold and Yilmaz (2012)              

for international financial markets. Our result is more closed to the values of 31.3%              

found Antonakakis (2012) for exchange rates in the post-euro period and 48.75% found             

by Fernández-Rodríguez and Sosvilla-Rivero (2016) for the stock and foreign exchange           

markets of the seven major world economies. 

Regarding to the net (TO minus FROM) contribution, our results suggest that the VIX is               

net trigger of implied volatility, 15.19%, being OVX, EVZ, GVZ and TYVIX net             

volatility receivers (​-​6.81%, -3.53%, -1.34% and -3.52%, respectively). Finally, the          

highest observed pairwise connectedness is from VIX to the crude oil’s implied            

volatility, OVX, about 18%. This may be due to phenomenon known as the             

financialization in commodity futures. This states that the equity and commodity           

markets have been integrating in such a way that news shocks that affect the volatility in                

the equity markets, at some degree, spread to commodity markets. Indeed, an emerging             

literature on financialization of commodities attributes this behaviour to the appearance           

of commodities as an asset class, which has become widely held by institutional             

investors seeking diversification benefits (see, ​Büyükşahin and Robe, 2014; or          

Singleton, 2014, among others). 

4.2 Dynamic (rolling-sample, conditional) analysis 

The previous section provides a snapshot of the “unconditional”, or full-sample, aspects            

of the connectedness measure among the implied volatility indices. However, the           

dynamics of the connectedness measures remains covered. The appeal of connectedness           

methodology lies in its use as a measure of how quickly volatility shocks spread across               

assets as well as within the same asset class. Following the literature, we carry out an                

analysis of dynamic connectedness, which relies on rolling estimation windows.          
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Specifically, we focus on a 200-day rolling-sample windows and using 10 days as the              

predictive horizon for the underlying variance decomposition.  

In the Figure 2, we report the evolution of the total connectedness between the five               

implied volatility indices. Figure 2 also highlights several cycles of connectedness           

where the total connectedness is higher or lower than the full sample average. As              

expected, the connectedness index shows a time-varying pattern over the sample period.            

Interestingly, during our subsample corresponding to the GFC (May 2009-April 2010),           

the degree of connectedness is relatively low (35% on average). This low degree of              

connectedness may be due to this period encompasses the worst of the GFC, such as the                

Lehman Bros. demise, and a period of recovery or decrease in implied volatilities. We              

observe several spikes in the evolution of the total connectedness, reaching figures of             

over 50% in several periods of our sample. The first spike appears after the stress               

observed in financial markets from May 2010, reflecting the Eurozone sovereign debt            

crisis, which ended in February 2011 with a second Greek bailout . A second episode              11

of increase in connectedness comes after the heavy losses registered in stock exchanges             

worldwide in August 2011. This was due to the fears of contagion of the Eurozone               

sovereign debt crisis and the credit rating downgraded because of the debt-ceiling crisis             

of the United States. These tensions were intensified in 2012 due to a growing ​concern               

about the weak US recovery and political uncertainty around the world. After some ups              

and downs, the connectedness among implied volatility indices experienced an          

important reduction. ​The stabilizing actions by central banks and the Cyprus bailout that             

boosted investor confidence in financial markets was possibly the cause of this            

11 ​During this period, there was the May 6, 2010 Flash Crash, one of the most turbulent periods in the                    
history of financial markets.  
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reduction. From July 2013, coinciding with a geopolitical risk in Arab countries, the             

connectedness indicator registers a gradual rise until April 2014 as the conflict in             

eastern Ukraine escalated in the course of 2014, in a context of the considerable              

uncertainty triggered by the crisis and the fall in energy prices. After a temporary              

reduction, a renewed impulse is observed from October 2014. The world stock markets             

slide as bad news mounts up fears of a global economic slowdown, tensions in the               

Middle East and the spread of the Ebola virus weighed on world shares. Another              

increase in connectedness is found coinciding with slumping commodity prices, China’s           

bursting equity bubble, and pressure on exchange rates registered from July 2015            

leading to the devaluation of the yuan on August 11, 2015. Investors world-wide took              

the yuan devaluation as a sign that China’s economy was performing worse than             

thought, originating an intense correction in stock markets and wild fluctuations in            

bonds. In a year marked by volatility and political upheaval, financial markets in 2016              

endured an escalation of negative interest rates, the collapse and subsequent rebound in             

commodity prices, and fluctuating stock market valuations. The effects were especially           

intensified after the UK’s vote on whether to remain a member of the EU and the                

unexpected results of the US presidential election. Finally, during 2017 low interest            

rates, an improved economic outlook, and increased risk appetite boosted asset prices            

and suppressed volatility. 

Therefore, the “unconditional”, or full-sample, total connectedness of 38.99% that we           

report in the previous section actually undervalues the potential connectedness of the            

implied volatilities indices, which seem to be more connected in periods of high market              

stress, making them most vulnerable to contagion. Our findings are consistent with            

earlier literature in that the linkage between markets intensifies during periods of            
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increasing economic and financial instability (see, e. g., Kolb, 2011), implying a loss of              

diversification just when it is needed most.  

 

5. Net directional connectedness 

5.1. Rolling-sample net directional volatility connectedness plots 

The net directional connectedness index provides information about how much each           

market’s volatility contributes in net terms to other market’s volatilities. As the full             

sample dynamic measure presented in Section 4.1, it also relies on rolling estimation             

windows. Figures 3a to 3e display the rolling net connectedness (shaded grey area).  

[Insert Figures 3a to 3e here] 

In contrast with Table 2 where we report the static net contribution, Figures 3a to 3e                

show how the volatility indices have switched from generators to receivers of volatility,             

and ​vice versa​, throughout the sample.  

As can be seen in Figure 3a (black line), VIX is net generator of volatility in our                 

sample. Indeed, 70% of the computed values are positive, indicating that during most of              

the sample period, VIX influenced the rest of markets. This is consistent with the              

general knowledge that VIX is the fear index of the US economy and the main gauge of                 

broad market performance. This is remarkable from 2009 to early 2010 (GFC), August             

2011 until the beginning of 2013, and from the end of 2015 to early 2016, being the                 

VIX the strongest volatility generator. In this sense, shocks that affect the VIX are              

spread all over the other asset classes. Nevertheless, VIX is net receiver of volatility in               

the second half of 2010 and spring 2013 (a time of real turbulence in EMU sovereign                

debt markets). It is also net receiver during some months of 2013 and 2014, which               
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coincides with sudden positive increase in the net contribution of GVZ. In this episode,              

slowing economies in Europe and Asia provoked a wider flight from gold after a panic               

selling that triggered the biggest gold price drop in 30 years in April 2013. Finally, a                

further surge is observed during the 2015–16 stock market selloffs, initiated in the             

United States instigated by global financial events. In this later episode, we detect the              

maximum value of the net connectedness index (89.58 in September 2015). 

Regarding EVZ (Figure 3c, red line), it is net generator of volatility in 74% of the                

sample. Instead, it is net receiver of volatility at the beginning of the sample and               

between the months of April to October 2015. Note, the increase in total connectedness              

that we observe Figure 2 around May 2010 is mostly generated by EVZ which is its net                 

generator, being the other volatility indices net receivers of volatility. This could reflect             

rising concerns about the sovereign debt situation in some euro area countries due to              

high government deficits, rapidly increasing government debt-to-GDP ratios and rising          

contingent liabilities because of guarantees for banks set the stage for a            

re-intensification of the financial crisis. During this episode, there was a mounting            

tension in Eurozone sovereign bond markets in a context of fear of contagion (see, for               

instance, Constâncio, 2012). This was not only because there was a sudden loss of              

confidence among investors (see Beirne and Fratzscher, 2013), but also because several            

European Union banks had a particularly high exposure to Greece (see Gómez-Puig and             

Sosvilla-Rivero, 2013 or Vuillemey and Peltonen, 2015). It is worth to notice a further              

significant intensification in the underlying uncertainty transmission in the first months           

of 2013. This coincides with financial market tensions originated by the escalation in             

the conflict in eastern Ukraine, the fall in energy prices and the doubts about the               

resilience and pace of the global recovery. EVZ also was a strong volatility generator              
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from the second half of 2014, when the euro depreciated with respect to the US dollar in                 

a context of a continuously declining outlook for growth and inflation in the euro area.               

The political uncertainty that followed the outcomes of the UK referendum on EU             

membership in June and the US presidential election in November 2016 reinforced this             

effect of net volatility propagator.  

As seen in Figure 3d, GVZ (yellow line) is net receiver of volatility along the sample,                

since 75% of the computed values are negative. Nevertheless, there are episodes of             

uncertainty transmission at the beginning of the sample (May-August 2009), in a            

context of a re-intensification of the adverse feedback loop between the real and             

financial sectors. Further episodes of volatility transmission are detected in the central            

part of the sample (April 2013 –January 2014). This is explained in a context of falling                

global inflation (reducing gold’s value as a hedge against rising prices) and of gold              

undermining its status as a safe haven markets regaining confidence in the US dollar.              

The latter coincides in time with all the other volatility indices as net receivers of               

volatility. Gold is often identified as a store of wealth during periods of economic and               

political instability (Aggarwal and Lucey, 2007) and as a volatile monetary asset            

commodity (Batten et al., 2010 and Lucey ​et al.​, 2013). These characteristics seemed to              

play a role during the first months of 2013 before the sudden revision of expectations by                

market participants in April 2013. At the beginning of 2014, GVZ became volatility             

propagator when gold recorded its first annual price decline since 2000. At that time,              

speculative investors ran down their holdings in response to Fed Quantitative Easing            

(QE, hereafter) tapering and an outlook for still soft inflation. After that, there is a               

subperiod where GVZ is net receiver of volatility in a context of low volatility despite               

heightened economic, political, and monetary uncertainty. Finally, following the         
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outcomes of the UK referendum and the US election, GVZ turned out to be net               

transmitter of volatility as investors flew to Gold, once again due to its status as a safe                 

haven asset. 

Finally, TYVIX and OVX are net receivers of volatility during large periods of the              

sample (Figures 3e and 3b, green and blue lines, respectively), being 74% and 68% of               

the computed values negative, respectively. Regarding the TYVIX, this behaviour could           

be related with being perceived by market participants as safe haven assets (together             

with Gold), being driven by “flight-to-safety” movements whenever there is concern           

about the macroeconomic and financial environment. As for the OVX, the surge in net              

directional connectedness observed in 2010 could be reflecting downside risks related to            

renewed increases in oil prices after OPEC production cuts. It is worth noting also that,               

from late 2014 until mid-2015, when the crude oil prices down sharply, the OVX was               

net generator of volatility. We interpret this result as the market could understand this              

sudden drop in crude oil prices as a slowdown in the world economy, mainly due to a                 

possible recession in China, which spread the fear over other asset classes. The             

evolution of net connectedness of TYVIX and OVX during 2016 and 2017 was             

influenced by the escalation of negative interest rates, the collapse and subsequent            

rebound in commodity prices and fluctuating stock market valuations. 

5.2. Rolling-sample net pair-wise directional volatility connectedness plots 

So far, we have discussed the behavior of the total connectedness and total net              

directional connectedness measures for the five implied volatility indices. However, we           

have also examined their net pairwise directional connectedness during the financial           

turmoil periods experienced in the sample period. By construction, the net directional            

connectedness from implied volatility ​i​-th to others is equal to the sum of all the net                
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pair-wise connectedness from implied volatility ​i​-th to implied volatility ​j​-th, for all ​j             

with ​i ​≠ j​. Having this relationship in mind, in Figures 3a to 3e, the dynamics of the net                   

pairwise directional connectedness with respect to the other asset markets under study            

are added to the net directional connectedness (grey area) explained before. This            

decomposition of the dynamics of net directional connectedness into their pairwise           

directional connectedness is appealing since it allows a deeper understanding how the            

transmission of volatility works for each implied volatility index.    

As can be seen in Figure 3a, VIX was net trigger of volatility to all other implied                 

volatility indices most of the sample. Interestingly, the two episodes where VIX was net              

receiver of volatility are link to EVZ (spring 2010) and GVZ (2013), coinciding with              

subperiods where these markets were volatility generators as commented before. Note           

also that the VIX was a net transmitter of volatility to the TYVIX whose net pair-wise                

volatility from VIX was increasing gradually after the 2014 stock market crash. This             

finding is in line with previous research documenting that perception of uncertainty in             

the Treasury market tends to rise during stock market crashes (see, e.g. López, 2015).              

During 2015, we observe a stronger net volatility transfer to the remainder financial             

asset classes, which can be taken as a symptom of herding and search-for-yield             

behaviour. This trend reverted in the last part of the sample, being the VIX net receiver                

from to EVZ. The latter might be reasonably interpreted as reflecting the different             

cyclical positions and monetary policy stances across USA and the euro area. 

Figure 3b reports the results for OVX. As can be seen, OVX was net receiver of                

volatility during much of the sample, which is mostly due to the VIX and EVZ               

transmitting volatility to OVX. It is interesting to note that in the two episodes when               

OVX is net trigger of volatility (beginning of 2010 and from late 2014), the main net                
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pair-wise directional connectedness is with TYVIX. This result suggests that during           

turbulent periods in crude oil market there is common information that simultaneously            

affects the perception of uncertainty in the Treasury market​. Remarkably, OVX           

received strong transmission of volatility from GVZ in the period April 2013-January            

2014, which was also transmitted indirectly to VIX through OVX. This result highlights             

how there may exist indirect mechanisms of volatility transmission among the implied            

volatility indices. Finally, although OVX carried on generating volatility to all the            

implied volatility indices after late 2014, VIX was turning from receiver to generator of              

volatility to OVX in that particular period and during the August 2015 turmoil. 

In Figure 3c, EVZ shows swing in net volatility where periods of net generator of               

volatility to all the other implied volatility indices are followed by periods where this is               

net receiver of volatility. The biggest net pairwise connectedness is from EVZ to GVZ              

and from EVZ to TYVIX, which may be due to the usage of these assets and their                 

safe-haven properties in a context of heightened economic, political, and monetary           

uncertainty. 

GVZ (Figure 3d) is net receiver of volatility from VIX and EVZ but net generator of                

volatility to OVX and TYVIX. This result indicates that linkages between the equity             

and foreign exchange markets and between oil and Treasury markets with respect to             

uncertainty are closer. Nevertheless, GVZ was a substantial generator of volatility over            

OVZ and VIX during the period April 2013-January 2014. This episode coincides with             

a fall in global inflation, and evidence of gold undermining its status as a safe haven                

markets regaining confidence in the US dollar. Latter GVZ became net receiver from all              

other assets until Nov 2016, net giver from November 2016 until October 2017 for VIX               

and OVX, and net receiver from EVZ, in a context marked by the escalation of negative                
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interest rates, the collapse and subsequent rebound in commodity prices and fluctuating            

stock market valuations. Finally, our results suggest that GVZ turned into net receiver             

from EVZ between October 2017 and the end of the sample. 

Finally, Figure 3e plots the results for TYVIX. This is mostly a net receiver of volatility                

from all the implied volatility indices but overall from VIX and EVZ. There are few               

periods where TYVIX was net generator of volatility. At the beginning of our sample in               

2009, ​where TYVIX was a strong net generator of volatility to OVX, EVZ and GVZ,               

reflecting the intensification of financial tensions and a substantial increase in           

uncertainty and investors’ risk aversion. Likewise, TYVIX was a net generator of            

volatility from 2014, mainly, to GVZ and OVZ, as the US Federal Reserve System              

began to phase out its QE programme. Diverging monetary policies between the            

European Central Bank and Fed marked the evolution of the net connectedness between             

TYVIX and EVZ at the end of the sample. Uncertainty and geopolitical risks also              

influenced the net volatility transmission from TYVIX to GVZ during 2016.  

In summary, Figures 3.a to 3.e have shown how the dynamics of the net pair-wise               

connectedness between all the volatility indices are not constant but switch from net             

pair-wise generator to net receiver of volatility to other, depending on either            

market-wide as asset-specific effects.  

 

6. Concluding remarks 

The recent GFC has again brought the interdependencies of alternative asset classes to             

the fore. This has underlined that the cross-market transference of shocks can be rapid              

and powerful where ​confidence the “fears” play​s an important transmission mechanism.           

Eichengreen (2016) contend that macroeconomic and financial volatility is likely to           
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remain a fact of twenty-first century economic life; therefore, good understanding of            

international spillovers is essential for policy coordination and design. 

We have analyzed the connectedness of the implied volatility indices of several asset             

classes, known as the “fear indices”. Although the interactions among some of these             

volatility indices have been previously partially examined in the empirical literature. To            

the best of our knowledge, we are the first to systematically analyse their nexus              

applying the framework proposed by Diebold and Yilmaz (2012, 2014). Such           

framework allows us to examine the directional spillovers emanating from each market            

to another under both, static and dynamic settings. 

The main findings of our research can be summarized as follows. In the first step, we                

found a system-wide value of 38.99% for the total connectedness between the VIX,             

OVZ, EVZ, GVZ and TYVIX implied volatility indices under study for the full sample              

period. This level is much lower than that obtained by Diebold and Yilmaz (2012, 2014)               

for international financial markets and US financial institutions, respectively. In the           

second step, we studied the dynamic nature of total net connectedness, obtaining            

evidence of volatility connectedness showing large variation over time and supporting           

the literature documenting that volatility across markets increases during unstable          

periods. In a third step, we examined the time-varying net spillovers across markets,             

observing in all cases that the variables frequently switch between a net transmitting and              

a net receiving role depending on either market-wide as asset-specific effects. Finally,            

when analyzing net pairwise directional volatility connectedness, our results suggest          

that there exists common information (i.e., news about economic fundamentals and           
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unexpected events) that direct or indirectly affects uncertainty about the future           

development of the segment markets under study. 

The results presented in this paper should be of value to macro-prudential and monetary              

policymakers, as they provide evidence on the time-varying volatility transmission          

among different asset classes, incorporating information for signaling systemic events​.          

Our findings may also provide useful insight into the file of volatility forecasting, option              

pricing and futures hedging strategies, among other, that could be useful to portfolio             

managers, risk strategists and insurers.  
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Table 1: Schematic connectedness table 
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Table 2: Descriptive statistics and contemporaneous correlations of implied volatilities 

 

  VIX   OVX   EVZ   GVZ   TYVIX   

Panel A: Descriptive statistics​  
Mean 2.8956  3.5439  2.3697  2.9549  1.8069   

Std. Dev. 0.4050  0.3666  0.3227  0.3192  0.2927   

Min 2.2127  2.6741  1.5454  2.2439  1.1663   

Median 2.8127  3.5176  2.3726  2.9145  1.7561   

Max 4.3927  4.6094  3.4230  4.1671  2.6892   

Skewness 0.9940  0.1660  0.2350  0.8804  0.7419   

Kurtosis 3.8001  2.9902  3.1350  4.1653  3.2049   

Observations 2376  2376  2376  2376  2376   
                      

Panel B: Matrix correlations                   

  VIX   OVX   EVZ   GVZ   TYVIX   

VIX 1                   

OVX 
0.6981 

**
* 1               

EVZ 
0.8057 

**
* 0.7556 

**
* 1           

GVZ 
0.8379 

**
* 0.5835 

**
* 0.7110 

**
* 1       

TYVIX 
0.8322 

**
* 0.6283 

**
* 0.7892 

**
* 0.7393 

**
* 1   

Notes: All the series are in logs.  
Daily data from August 1, 2008 to December 29, 2017.  
*** indicates significance at the 1% level​. 
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Table 3: Full-sample connectedness 

  VIX OVX EVZ GVZ TYVIX 
Directional 
FROM​ Others 

VIX 55.2670 11.7807 10.3603 12.5200 10.0721 44.7330 

OVX 17.5813 63.6472 5.9591 7.8877 4.9247 36.3528 

EVZ 13.4766 6.1621 60.8753 10.4953 8.9907 39.1247 

GVZ 15.7181 7.2408 10.3883 59.7199 6.9329 40.2801 

TYVIX 13.1500 4.3575 8.8924 8.0380 65.5621 34.4379 

Directional ​TO​ Others 59.9260 29.5412 35.6002 38.9409 30.9204 
Total 

connectednes
s =38.9857 

Net 
Contribution 
(To – From) 
Others 

15.1929 -6.8116 -3.5245 -1.3393 -3.5175 - 
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Figure 1: Daily financial market volatilities (in logs) 

—​ VIX  ​—​ OVX  ​—​ EVZ  ​—​ GVZ  ​—​ TYVIX 
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Figure 2: Rolling total connectedness 

ertical lines delimit the following episodes: I: May 2009-May 2010, II: May 2010-March 2011, III: March 2011-August 2011, IV: August 2011-Oc                    
tober 2012-January 2013, VI: January 2013-March 2013, VII: March 2013-January 2014, VIII: January 2014-July 2014, IX: July 2014-Octobe                 
er 2014-October 2014, XI: November 2014-February 2016, XII: February 2016-June 2016, XIII: June 2016-June 2016, XIV: June 2016-April 2017                  
May 2017, XVI: May 2017-August 2017, and XVII: August 2017-December 2017. 
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Figure 3a: Net directional connectedness and net pair-wise directional connectedness: 

CBOE Volatility Index (VIX) 

—​ VIX  ​—​ OVX  ​—​ EVZ  ​—​ GVZ  ​—​ TYVIX 

ertical lines delimit the following episodes: I: May 2009-May 2010, II: May 2010-March 2011, III: March 2011-August 2011, IV: August 2011-Oc                    
tober 2012-January 2013, VI: January 2013-March 2013, VII: March 2013-January 2014, VIII: January 2014-July 2014, IX: July 2014-Octobe                 
er 2014-October 2014, XI: November 2014-February 2016, XII: February 2016-June 2016, XIII: June 2016-June 2016, XIV: June 2016-April 2017                  
May 2017, XVI: May 2017-August 2017, and XVII: August 2017-December 2017. 
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Figure 3b: Net directional connectedness and net pair-wise directional connectedness: 

CBOE Crude Oil ETF Volatility Index (OVX) 

—​ VIX  ​—​ OVX  ​—​ EVZ  ​—​ GVZ  ​—​ TYVIX 

ertical lines delimit the following episodes: I: May 2009-May 2010, II: May 2010-March 2011, III: March 2011-August 2011, IV: August 2011-Oc                    
tober 2012-January 2013, VI: January 2013-March 2013, VII: March 2013-January 2014, VIII: January 2014-July 2014, IX: July 2014-Octobe                 
er 2014-October 2014, XI: November 2014-February 2016, XII: February 2016-June 2016, XIII: June 2016-June 2016, XIV: June 2016-April 2017                  
May 2017, XVI: May 2017-August 2017, and XVII: August 2017-December 2017. 
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Figure 3c: Net directional connectedness and net pair-wise directional connectedness: 

CBOE  EuroCurrency Volatility Index (EVZ) 

—​ VIX  ​—​ OVX  ​—​ EVZ  ​—​ GVZ  ​—​ TYVIX 

ertical lines delimit the following episodes: I: May 2009-May 2010, II: May 2010-March 2011, III: March 2011-August 2011, IV: August 2011-Oc                    
tober 2012-January 2013, VI: January 2013-March 2013, VII: March 2013-January 2014, VIII: January 2014-July 2014, IX: July 2014-Octobe                 
er 2014-October 2014, XI: November 2014-February 2016, XII: February 2016-June 2016, XIII: June 2016-June 2016, XIV: June 2016-April 2017                  
May 2017, XVI: May 2017-August 2017, and XVII: August 2017-December 2017. 
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Figure 3d: Net directional connectedness and net pair-wise directional connectedness: 

CBOE Gold ETF Volatility Index (GVZ) 

—​ VIX  ​—​ OVX  ​—​ EVZ  ​—​ GVZ  ​—​ TYVIX 

ertical lines delimit the following episodes: I: May 2009-May 2010, II: May 2010-March 2011, III: March 2011-August 2011, IV: August 2011-Oc                    
tober 2012-January 2013, VI: January 2013-March 2013, VII: March 2013-January 2014, VIII: January 2014-July 2014, IX: July 2014-Octobe                 
er 2014-October 2014, XI: November 2014-February 2016, XII: February 2016-June 2016, XIII: June 2016-June 2016, XIV: June 2016-April 2017                  
May 2017, XVI: May 2017-August 2017, and XVII: August 2017-December 2017. 
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Figure 3e: Net directional connectedness and net pair-wise directional connectedness: 

CBOE/CBOT 10-year U.S. Treasury Note Volatility Index (TYVIX) 

—​ VIX  ​—​ OVX  ​—​ EVZ  ​—​ GVZ  ​—​ TYVIX 

ertical lines delimit the following episodes: I: May 2009-May 2010, II: May 2010-March 2011, III: March 2011-August 2011, IV: August 2011-Oc                    
tober 2012-January 2013, VI: January 2013-March 2013, VII: March 2013-January 2014, VIII: January 2014-July 2014, IX: July 2014-Octobe                 
er 2014-October 2014, XI: November 2014-February 2016, XII: February 2016-June 2016, XIII: June 2016-June 2016, XIV: June 2016-April 2017                  
May 2017, XVI: May 2017-August 2017, and XVII: August 2017-December 2017. 
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