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Abstract. Let (Ao, A1) be a Banach couple, (Bog, B1) a quasi-Banach couple, 0 < ¢ < oo and
T a linear operator. We prove that if T': Ag — By is bounded and T : A1 — B; is compact,
then the interpolated operator by the logarithmic method T': (Ao, A1), , , — (Bo,B1), , , is
compact too. This result allows the extension of some limit variants of Krasnosel’skii’s compact
interpolation theorem.

1. Introduction. In 1960, Krasnosel’skii [20] gave a reinforced version of the Riesz-
Thorin theorem involving compactness. He proved that if T is a linear operator such
that T : Lp, — Lg, compactly and T': L,, — L, boundedly with 1 < pg,p1,q1 < oo,
1<g<o0,0<0<1,1/p=01-0)/po+6/p1 and 1/q = (1 —0)/q0 + 0/q1, then
T : L, — Lg is also compact. This result promoted the study of compact operators
between abstract interpolation spaces. The first results were due to Lions and Peetre [21]
and to Persson [23] (see also [2, 24] and the references given there). In 1992, it was proven
by Cwikel [15] and Cobos, Kithn and Schonbek [12] that if (Ag, A1), (Bo, B1) are Banach
couples and T is a linear operator such that 7' : A; — B; is bounded, for j = 0,1, and
one of the restrictions is compact, then the interpolated operator by the real method
T : (Ao, A1)s,q — (Bo, B1)g,q is also compact. In 1998, Cobos and Persson proved in [13]
that the previous result is still valid for quasi-Banach couples. As a particular application
of this result, they gave an extension of Krasnosel’skii’s theorem to Lorentz spaces with
no restrictions on parameters g;, that is to say, 0 < go # ¢1 < oo.

The logarithmic perturbations (Ag, A1)g,q,a of the real method have attracted con-
siderable attention in the last years (see [18, 19, 14, 3]). When § = 0 and 6 = 1, these
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2 B.F.BESOY

spaces are related to the limiting interpolation spaces [5, 10, 11]. Applying the logarith-
mic methods to the couple (L., L) one can get generalized Lorentz-Zygmund spaces
Ly, 4.4 (see [16, 22]).

Edmunds and Opic established in [17] the following limit version of Krasnosel’skii’s
theorem: let (R, u) and (S,v) be finite measure spaces, 1 < py < p1 < 00, 1 < go <
g1 <00,1<g<ooand a+1/¢g>0.If Tis a linear operator such that T : L,,(R) —
L4, (S) compactly and T : Ly, (R) — Lg, (S) boundedly then T': L (R) —
L

1
10,9, Sintpo )

S) is also compact.
qm«wm( ) b

Later Cobos, Ferndandez Cabrera and Martinez [6] and Cobos and Segurado [14] ob-
tained abstract versions of this result. They work with logarithmic interpolation methods
with limit values of # applied to Banach couples and 1 < ¢ < oo. In particular, it is shown
in [14] that the result of Edmunds and Opic also holds when the spaces are defined over
any o-finite measure spaces.

The first objective of this paper is to extend the abstract results for 0 < ¢ < oo and
a quasi-Banach target couple. Then, as a consequence, we prove an extended version of
the limit Krasnosel’skii type result for 0 < gp < ¢1 < oo and 0 < g < oo.

The organization of the paper is as follows. In Section 2 we review the definition
and some properties of limit logarithmic interpolation spaces. In Section 3 we prove the
abstract compactness theorem for logarithmic spaces. As the proof is quite technical,
we settle several auxiliary lemmas in advance. Finally, in Section 4 we derive the Kras-
nosel’skii’s type result.

2. Logarithmic interpolation spaces. Let A = (Ag, A1) be a quasi-Banach couple,
that is to say, two quasi-Banach spaces A;, j = 0,1, which are continuously embedded
in some Hausdorff topological vector space. We put ca; > 1 for the constants in the
quasi-triangle inequality, j = 0,1. Let ¢ > 0, the Peetre’s K- and J- functionals are
defined by
K(t,a) = K(t,a; Ao, A1) = inf{||aol| 4, + tllar]|a, : @ =ao+ a1, a; € Aj, j=0,1}
where a € Ag + Ay and
J(LCL) = J(taa; Ao, Al) = max{”a”Aoat”a”Al}v a€AgN A

Observe that K (1,-) is the quasi-norm of Ag+ Ay and J(1,-) the quasi-norm of Ay N A;.
In both cases, the quasi-triangular inequality holds with constant ¢ = max{ca,,ca, }.
When c4, = ca, = 1 we say that A = (Ag, A1) is a Banach couple.

For a quasi-Banach couple A = (A, A1), the Gagliardo completion A7 of Aj is formed
of all those a € Ag + Ay such that

lalla> := sup {t_jK(t,a) t> o} < 0,
(see [1, 2, 4]). Clearly A; < AT, where — means continuous embedding. Note that
K(t,a; Ay, AT) < K(t,a; Ao, A1) < max{ca,,ca, } K(t,a; Ay, AT), (1)

fort > 0and a € Ap+A;. Indeed, for any decomposition a = ag+a1, with a; € A; — A7,
we have that
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K(t,a; A7, AT) < llaol|lag + tllax|lay < llaolla, + tllax]la, -
Hence K(t,a; A7, AY) < K(t,a; Ao, A1). On the other hand, if a = by + by with b; €
A;’ — Ay + Ay, then
K(t,a; Ao, A1) < max{ca,, ca, } (K(t, bo; Ao, A1) + K(t,b1; Ao, A1))
< max{cay, ca, } ([bollag + tlbrllay) -

Thus K (t,a; Ag, A1) < max{ca,,ca, } K(t,a; Ay, AT). In particular, if A = (A4g, A1) is a
Banach couple, we get an equality in (1) as it can be seen in [1, Theorem V.1.5].

Let £(t) = 1+ |logt|, £6(t) = 1+ (log(1 + |logt|)) and for A = (g, o) € R?

£ (t ifo<t<l1,
éA(t> _ g(ao,am)(t) _ ( ) 1 >
02 (t) if1<t< o0,

and define ¢4 (t) similarly.
Given 0 <0< 1,0 < ¢q<oo, A€ R?and a quasi-Banach couple A = (A, A;), the
logarithmic interpolation space (Ag, Al)@,q,A consists of all a € Ay + A; such that

lallcanan, ., = I (K@™a)270e4@m) |, < oo.
Since this definition requires the weighted sequence space £,(2-™%¢%(2™)), we also use
the notation (Ao,Al)zq(Q,,,LeeA(Q,”)). It is not difficult to check that the quasi-norm of
(Ao, A1)y, 4 is equivalent to the continuous quasi-norm
_ aqe\1/a .
(S [0 () K (t,a)]" 4E) if 0 < g < o0,

llall a LA ~
o0, sup{t=PCA (1)K (t,a) : £ > 0} if ¢ = oo.

See [18, 19] for more details on (Ag, A1),q.4-
We are interested in the limiting interpolation spaces that appear when # = 0 and
6 = 1. Note that K(t,a; Ag, A1) = tK(t~!,a; A1, Ag) and therefore

(AOaAl) AlaAO)l—G,q,(ozoo,ao) (2)

with equal quasi-norms. In particular, (Ao, A1)
quently we focus on the case § = 1.
Under the assumptions

0,q,(a0,0000) = (

y = (A1, A0)1,9,(,a0)- Subse-

0,9, (0,000

(3)

a0+%<0 if 0 < g < oo,
ag <0 if ¢ = o0,

we have that A9 N A1 — (Ao, A1), , 5 <> Ao + A1, for any quasi-Banach couple A=
(Ao, A1), otherwise (Ao, A1), , , = {0} (see [19, Theorem 2.2]).

When A = (A4, A;) is a Banach couple, it will be useful to represent the space
(Ao, A1), 4 4 by means of the J-functional.

Let A = (Ag, A1) be a Banach couple, 0 < ¢ < 00, A = (ap,00) € R? and B =
(Bo, Boo) € R%. Assume that

Qoo >0, or age =0 and B > 0 if0<qg<1,
aoof$>0, oramziandﬂmf%>0 if 1 <q<o0,

(4)
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where 1/q+ 1/q¢’ = 1. The space (AO,Al)lJ’qA’B = (A07A])Zq(277n4A(27n)Z@B(27n)) is formed
of all those a € Ag + Ay for which there exists (u,,) C Ag N A; such that

a= Z U (convergence in Ag + Aj)
and
(2™, )27 (2705 (2)) ) g e, < oo
We set
lalloagays, o = inf L (J@" w2 @MEE@M) I, ra= Y ).

If B = (0,0), we simply write (A()’Al)lJ,q,A' It is proven in [3, Section 2] that under
t}ne assumptions in (4), Ag N A} — (AO?Al)l,q,A,]B — Ay + A; for every Banach couple
A = (Ap, A1). If 1 < ¢ < oo there exists an equivalent continuous representation for the
J-spaces (see [14, Definition 3.1]).

Let A = (Ap, A1) be a Banach couple. If 1 < ¢ < oo and A = (ap, as) satisfies (3),

then [14, Theorem 3.5 and Theorem 3.6] state that
(AO?Al){,q,A+1 1f0400+1/q>07
(A07A1)f,q,A+l,(O,1) lf Qo +1/q:0,

with equivalent norms. Here A + A = (g + A\, @00 + A), for any A€ R. If 0 < ¢ < 1 and
A = (oo, a) satisfies (3), then [3, Theorem 3.2] shows that

(Ao, A1)1,g8 = { (5)

(Ao, A1)1,9.8 = {<A8’A1~)1J’Q’A+1/q if ass +1/q >0, ©)
) »q, - ~ - )
(A5, A7 )lJ,q,A+1/q,(o,1/q) if ae +1/q =0,

with equivalent quasi-norms. In general, when a, + 1/¢ < 0 and 0 < ¢ < 00, Or Qo =
0 and ¢ = oo, the K-space (Ag, A1)1,4,a does not admit a J-representation (see [14,
Proposition 3.4] and [3, Example 2.1]). In this case, the following result is useful. For a
given quasi-Banach couple A = (Ag, A1) , A = (ap, ae) € R? and 0 < ¢ < oo satisfying

ag+1/g<0and as +1/¢<0 if0<q< oo,
ag <0 and as <0 if ¢ = o0,

we have that for any o > —1/¢
(A(), Al)l,q,A = (AO + A17 Al)l,q,(ao,a)v (7)

with equivalent quasi-norms. This result was proven in [14, Corollary 2.5] for Banach
couples and 1 < ¢ < oo, but the proof remains valid for quasi-Banach couples and
0 < g < oo just taking into account the constant in the quasi-triangle inequality.

3. Compactness theorem. In what follows, if X and Y are quantities depending on
certain parameters, we write X <Y if X < CY with a constant C' independent of all
the parameters. We put X ~Y if X <Y and Y < X.

Let A be a quasi-Banach space. For M > 0, we put MU4 = {a € A : |la]|a < M} and
just Us when M = 1. If B is another quasi-Banach space, let £(A, B) denote the set of
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bounded linear operators from A to B and K(A, B) the set of linear compact operators
from A to B. If A = (Ap, A1) and B = (By, By) are two quasi-Banach couples, we put
T € L(A,B) if T € L(Ag + A1, By + B1) and the restrictions T : A; — B; are also
bounded with quasi-norm ||T'||;, for j = 0,1. If Ag = A; = A or By = By = B, then we
simply write T € L(A, B) or T € L(A, B). For A € R, we set AT = max{0, \}.

Let A = (Ag,A;) and B = (By, B1) be quasi-Banach couples, 0 < ¢ < oo and
A = (a0, a00) € R? satisfying (3). If T € L(A, B), then T € L (Ay,4,4;B1,4,4) and the
following norm estimate holds

)T\ ,
Tl o, < 10 (14 (o2 ) T A0 =01
1,q,A5P1,q,A ™~

This result was proven in [7, Theorem 2.2] for Banach couples and 1 < ¢ < co. The proof
remains true in our hypothesis.

Our goal in this section is to prove the compactness of the interpolated operator
T : (Ao, A1)y gp = (Bo, B1)y 44, for A a Banach couple and B a quasi-Banach couple,
under the assumptions that T : A; — Bj is compact and T : Ay — By is bounded.
For this purpose we establish first a simplified version of this result and some auxiliary
lemmas.

LEMMA 3.1. Let A = (Ag, Ay) be a quasi-Banach couple and let B be a quasi-Banach
space. Take A = (ap, o) € R? and 0 < q < oo satisfying (3).

1. If T € L(B,A) with T : B — Ay compact, then T : B — (AO’Al)l,q,A s compact.
2. If T € L(A, B) with T : Ay — B compact, then T : (Ao, Al)l,q,A — B is compact.

Proof. For the first case, the proof given in [14, Lemma 4.1,(a)] is still valid. However, for
the second case, [14, Lemma 4.2,(b)] uses Hahn-Banach theorem and we have to proceed
differently. It is clear that for any m € Z

K(2m .
sup {M 10 € Ajgn,aF O} < 2my—h(om). 9)
lall 4, , .
Given ¢ > 0, we fix m < 0 such that 2™¢=4(2™) < ¢/(4cp||T||a,,5)- Using (9), we get
that for any a € Ug, , there exists a; € A;, j = 0,1 such that a = ag + a; and
llaollag + 2™ [lax]|a, < 2K(2™,a) < 2"FH7H(2™) < e/ (2eB|T ] a0,5)-

Let M = 27"¢/(2¢g||T||4y,8)- By compactness of the operator T' : A; — B, there

exists {b1,...,bx} C B such that min{||Txz — b;|lp : 1 < j < k} < ¢/(2¢p), for every

z € MUa,. Consequently, for each a € Uy, , we can take j € {1,...,k} such that
|Tar — bz <e/(2¢cp) and

A

[Ta—bj|lp < cp([[Taollp + [Tar — bsl|p) <e.
Therefore, T : (Ao, Al)1,q,A — B is compact. =

LEMMA 3.2. Let A = (Ao, A1) be a Banach couple. Let B = (By, B1) be a quasi-Banach
couple and T € L(A,B). If T : Ay — By is compact, then T : Ay — B is also compact.
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Proof. Let ¢ > 0 and a € Uar = {a € Ag + Ay : sup;o K(t,a)/t < 1}. For every
n € N there exists ag, € Ag and a1, € Ay, satisfying that a = agn + a1, and ||agn |4, +
1/nllain|la, < 2K(1/n,a) < 2/n. Note that lim, ,o Ta1, = Ta in By + By, since
lim,, 00 @1, = @ in Ag + A;. Moreover, the sequence (ay,) is contained in 2Uy4, and the
operator T is compact from A; to By, therefore there exists a subsequence (Tay,) that
is convergent in B;. Using compatibility, we obtain that T'aq,, 7% Ta in By and then
we can find ng € N such that (| Tay,; — Tallp, <¢e/(2¢B,).

Again by compactness of T : Ay — By, there exists {b1,...,bpy} C B; such that
min{||[Txz — b;||p, : 1 < j < k} < ¢/(2¢p,), for every x € 2U,4,. Hence, we can take
J €{1,....k} such that ||T'ayn; — bj|lp, <e/(2¢p,) and
[Ta=bjp, < e, (|Ta—Taiy |, + Tain, —bjlp,) < cp, (¢/(2c8,) +¢/(2c5,)) = e
Thus T : AT — B; is compact. Since By — BY, it follows that T' : A — B’ is also
compact. m

The previous lemma for Banach couples and compactness on the restriction 7' : Ay —
By was given in [6, Theorem 2.2]. The formulation of the next two lemmas correspond

to [9, Lemma 2.3 and Corollary 2.2] in the Banach case. The proofs can be found in [8,
Lemma 3.2 and Lemma 3.3] for quasi-Banach spaces and bilinear operators.

LEMMA 3.3. Let A, B,Z be quasi-Banach spaces, D a dense subspace of A and T €
K(A,B). Let (Sp)nen C L(B,Z) such that M := sup{||Sullg,z : n > 1} < oo. If
limy, o0 [|SnTullz =0 for all w € D then lim,_ o |SnT|| 4,z = 0.
LEMMA 3.4. Let A = (Ag,Ay) and B = (By, B1) be quasi-Banach couples and let
A, B be intermediate spaces with respect to A and B, respectively. Assume that T €
L(Ag+ A1, By + B1)NK(A, B). Let X be a quasi-Banach space and (R,)nen C L(X, A)
such that M := sup{||Rn|[x,a : n > 1} < oo and lim, o | TRyl x,Bo+B, = 0. Then
limn_,oo HTRnHX,B = O

Let (An) be a sequence of positive numbers and (W,,) a sequence of quasi-Banach
spaces with the same constant ¢ > 1 in the quasi-triangle inequality. For any 0 < ¢ < oo,
we put

LA W) = {w = (Wm)mez : Wm € Wi, and (Ap||wim||lw,,) € €4}

The quasi-norm in £, (A, Wi,) is given by [[w|le, (x,.w,.) = [[(Am||wm
Now we establish the analogous results to [14, Lemma 4.2].

Wm)mGZ”Eq'

LEMMA 3.5. Let (Wi )men be a sequence of quasi-Banach spaces with constant ¢ > 1 in
the quasi-triangle inequality. Let A = (ap, o) € R? and 0 < q < 0o satisfying (3). Then

(oo (Win), boo (27" Win))1,0,8 = Kq(Q_mKA(Qm)Wm)~
Proof. Let x = () € (boc(Wim), €oo(27"Wi))1,4,4- Given any decomposition z =y + =z
with ¥ = (ym) € loo(Wi) and 2z = (21) € oo (27™(W,,)), we have
leliwe < e vellw, + Ikl < e (1lenw) + 2 1llen@mwn) ok € Z.
Then ||zg|lw, < cK (2%, 2;00(Win), loo (2™ W,y,)) for every k € Z, which yields that
||117Heq(27mef‘\(2m)wm) < CHJU”(zm(Wm),fao(Tme))l,q,A' m
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For a sequence of Banach spaces we also have the following result.

LEMMA 3.6. Let (W,,)men be a sequence of Banach spaces. Let A = (ap, o) € R? and
0 < q <1 satisfying (3).

1. If oo +1/q > 0, then
L, (279, s (U (W), €127 W )1 g
2. If ano +1/q =0, then
g (27 meAF a0/ D) (oMY Y s (01 (W), £1(27 ™ Win))1.g.4-
Proof.

L Let © = (z,,) € £,(27™¢A1/9(2™)IW,,) and let 6%, the Kronecker delta. We set
Ug = (5ﬁzxk)m€Z € gl(Wm) ngl(2mem) — El(Wm)N ﬁEl(Qim‘/Vm)N' Using (6),
we now derive that

121l cer (W) 2= W1 gn ~ N2l es (W)~ 2= W) i

- 1/q
< ( > [2—k4A+1/Q(2’“)J<2k,uk;41(Wm>~,él<2—me)~>]Q>

k=—o0

.S 1/q
< ( > [2’“Wl/%?’w@'zuk;mwm),wme>>1Q>
k=—o0

||»"UHeq(2—keA+1/q(2k))~

2. This case can be handled as the previous one but using the appropriate equality of

(6).

We now prove the main result of this section.

THEOREM 3.7. Let A = (Ag, A1) be a Banach couple. Let B = (Bo, B1) be a quasi-
Banach couple and T € L(A, B) such that T : Ay — By is compact. For any A =
(ap, o) € R? and 0 < q < oo satisfying (3), we have that

T: (Ao, A1)1,4.4 = (Bo, B1)1,g.a
s also compact.
Proof. Step 1. Let 0 < ¢ < 1 and assume that as + 1/g > 0. For m € Z, let
G = (AT NAT,J(2™,; AY, AT)) and
Fm = (Bg' + By, K(2™, 5 By, BY))-
We define i, = 27™¢4(2™) and
2 mpAtl/a(gm) if a0 +1/q >0,
" {2—m£A+1/Q(2m)12£<071/Q> (2™)  if a+1/g=0.
By (1) and (6), we have that
(A(TaAT)zq(um) = (AoyAl)eq(Mm) = (AE,AT)ZZ(/\

m,)
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with equivalent quasi-norms.
Consider the operators 7(u) = > U, and jb = (...,b,b,b,...) . Observe that

14 ()\me) — (AO~7A~)( ()

is a metric surjection if we consider on (Ag ,A“‘) o () the J-quasi-norm. Moreover, re-
strictions 7 : £1(2™G,p,) — A7, j=0,1, are bounded operators with norm < 1. On the
other hand,

7+ (B, BT )1.g.8 = Lo(pimFim)

is a metric injection and restrictions j : B} — (2=™IF,,), 7 = 0,1, are bounded with
quasi-norm < 1. Applying Lemma 3.5 and Lemma 3.6 we obtain the following diagram
that illustrates the situation

06(Gr) Ay x, By L t(F)
627 MGy) AT AN By Ly 0 (27F,)

™ ~ A~ T ~
f1(G )’q,A B (AO7A1)1,q,A E— (BO7BI) q,A —> E ( ),qu

I
LeAmGim)

1
Eq(NmFm)

where
Zl(Gm)l,q,A = (51(G ) 51(27me))1 a.,A and
EOO(Fm)l,qA = (EOO(F )s Lo (2 " Fm)) 1,q,A-

Let 7' = jTn. Properties of m and j yield that compactness of T : (AO»Al)l,q,A —
(Bo, B1), ,, 1s equivalent to compactness of T : £4(AnGp) — £g(tmFm). Observe that
applying Lemma 3.2, T' : AT — B{” is compact and so T": 0((27"G) = Loo(27™F,,)
is also compact. We shall check the compactness of T" with the help of the following
projections. For n € N we define

Qn(um) = (.0,0,U_p, ..., Uy, 0,0, ...),
(um) = (...,0,0,u7l+1,un+2, ),
Um> = ( "7u*’ﬂ727u7n71,0,07 ...).

The identity operator on él(Gm) +01(27™@G,,) can be written as I = Q,, + Q) + Q,,.
These projections have the following properties:
1Qullee = Q% lee = Q7 |5, =1 for E=(1(Gn), 6127 G, b(AnGim),  (10)
n el(Qime)/l(Gm) = mn fl(Gm),€1(27me) = ,n=1,
Qnll [1Qnl 2",n=>1 (11)
1@ les(Go)ytr 2=y = 27T m > 1, (12)
1@n ey 2= G s Gy = 27D, > 1 (13)

On the couple (Yoo (F), loo(27™F)y,)) we can define similar projections P,, P;F, P, sat-
isfying analogous properties.
We have

T=TQn+TQ; +1TQ} =TQn+TQ, + P.TQS + PyTQY + PITQ;.
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Next we show that 7'Q,,, P,TQ;, and P; TQ; are compact from £y (A Gy t0 Ly (pm Fin)
and that the quasi-norms of the other two operators converge to 0.
Using (11) and Lemma 3.6, we have the factorization

% gl(Gm) L éoo(Fm)
(O Gin) —— (G + 627 G) A

T
Qn €1(2_me) HT EOO(Q_WFm)7

which allows to apply Lemma 3.1 to obtain the compactness of
TQu : ly(AmGim) = (Loo(Fin)y loo(27™ Fp)) 1 q.0-

Now from Lemma 3.5, we conclude that 7'Q,, : Ly AmGm) = Log(pm Fyy) is compact.
Considering (10), (12), the analogous properties to (10) and (11) for the operator P,
and Lemma 3.5, we have the factorization

El (Gm) Q;iz—
T

i .

2MG) B 0o (27 F) 2 0 (Fr) 0 6o (2™ Fin) < Lyt Fon)-
7

01(27™G) Q)

Thus, by Lemma 3.1 and Lemma 3.6, the operator P,LTAQ;Lr g AmGm) = Ly(m Frn) s
compact.
For P;TQ;t, we first use (10) and (12) to get the next diagram

el(Gm) \jz_ R
2T — L 0 (27T,

627 Gy) Q/Z

Again from Lemma 3.1 and Lemma 3.6, we infer the compactness of TQ}! : £g(AnGm) —
loo(27™F,,). Now using the analogous property to (13) for the operator P, we have the
factorization

gq(/\me)
P L (27™F,).

Applying again Lemma 3.1 and Lemma 3.5, we deduce that P, TQ; : £y(AnGrm) —
Ly(ptm Fi) is compact.
We shall now prove that ||TQ;||zq(>\me),éq(umFm) 272, 0. Using (13) we get that

n—oo

1TQ5 v @7 G s ()40 @ Fa) < 27 TN T (G e (o) (2 ) ——r O.

n—oo

Then Lemma 3.4 implies that ||TQ;; lley2-mG) b (2-mF,) —— 0. Note also that
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1TQ5 ey (G ) toe (Fon) < IT My (Gt (Fon)s TOr every n € N.

Thus, using (8), Lemma 3.5 and Lemma 3.6, we conclude that

B 1T ey 0 G ) I 1T (00 (B

+ a;—()éo
RPN || nllo
S lim |TQ 1 | 1+ =0 =0.
e *17Qu s
Now we show that lim,—ec | PFTQ; e, (Gt (e ) = 0. We define

D ={u= (Um)o——_oo : Um € Gy, with a finite number of no-null coordinates}.
Since D is dense in £1(27™G,,) and for any u € D,
1P Tulles2-m By < 27N Ty (@) e (B [0y (@) == 0,
by Lemma 3.3 we get that
lim 1P TQ ey 2= G oo (2= ) < Jim 1P Tlley 2-m o) e (2 ) = O
Then, proceeding as in the previous case we infer that

Jim. IPTTQ 6y (0 Gy o ) = 0

Step 2. Let 0 < ¢ < 1 and suppose now that as +1/¢g < 0. Take @« > —1/q. By (7), we
get that (AO, Al)l,q,A = (AO +A1, Al)l,q,(ao,a) a’nd (B07 Bl)l,q,A = (BO +B1’ Bl)l,q,(ao,a)'
Applying the previous case we prove the compactness of

T (Aos A1)y 5 = (Ao + A1, A1)1,g,(a0.0) = (Bo + B1, Bi)1,g,(a0.0) = (Bos B1)y g s

Step 3. Assume now that 1 < ¢ < oco. In this case we can proceed as when 0 < ¢ < 1
but defining

_Jammerttem) if oo +1/¢ >0,
" 2mmeA T (2m) e (2m) if as +1/g=0and 1 < ¢ < oo,

and using (5) instead of (6) and [14, Lemma 4.2] instead of Lemma 3.1.
This completes the proof. m

The corresponding result for the 0, ¢, A—method is a consequence of (2) and reads as
follows.

COROLLARY 3.8. Let A = (Ag, A1) be a Banach couple. Let B = (By, By) be a quasi-
Banach couple and T € L(A,B) such that T : Ay — By is compact. For any A =
(g, o) € R? and 0 < ¢ < 0o such that

0 +1/g< 0 if ¢ < o0,
Qoo <0 if ¢ = o0

we have that T : (Ao, A1), , o — (Bo, B1)g 4 18 also compact.
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4. Applications to Lorentz-Zygmund spaces. Let (R,u) be a o—finite measure

space. For f a p—measurable function on R, let f* be the non-increasing rearrangement
of f defined by

ff@)=inf{s >0: p({x € R:|f(z)| > s}) <t}.
Let 0 < p,¢ < oo and A = (ap, ) € R2 The generalized Lorentz-Zygmund space
Ly, ¢ a(R, ) is formed of all the (classes of) p—measurable functions f on R having a

finite quasi-norm
w(R) L/p ph . adt Y
loae= ([ [prewre]' T
0
See [22, 16].

Now we are going to extend the result given in [14, Corollary 4.5] to the case 0 < ¢ < 0o
and 0 < gp < ¢1 < .

THEOREM 4.1. Let (R, ) and (S,v) be o—finite measure spaces. Take 1 < py < p1 < 00,
0<qo<q <00,0<q<o0andA = (ap,s) € R? with as, +1/q <0 < ag+1/q. Let
T be a linear operator such that

T : Ly, (R) = Lgy(S) is compact and
T:L, (R)— Ly (S) is bounded.

Then T : L (R) — Ly ant

Do G A+ )(S) is also compact.

mm(po q) mdx(qo

Proof. By Corollary 3.8,
T: (LPO (R)’ Lpl (R))O,Q,A - (qu (S)a qu (S))O#LA

is compact.
On the other hand, accordmg to [2, Theorem 5.2.1] for any r < ¢o we have

2,
Lypy (R) = (L1(R), Loo (R))1-1/po.po»
Ly, (R) = (L1(R), Loo (R))1-1/p1 p1»
qu( ) = (Lr(8); Loo (9))1-r/q0,00>
Lq( ) ( (S ) (S ))1*7‘/(11 q1*

It follows from [18, Theorem 4.7 and Theorem 5.9]
(L (R): oo (B 1 s > (L (R). Ly (B))o g and
)

(Lo (5)s Ly (S))o,g.n = (Lr(S);s Loo (S))1-r/gq 4,8+
Besides by [18, Corollary 8.4] we have

L = (Ll(R)vLOO(R))lfl/po,q,A+
= (LT(S)7 LOO(S))l—r/qo,q,A+

1 .
max(q,qq)

P0,q,A+

1 1
min(po,) ™in(po,a)

qu,q,A+

1 1 .
max(qq,q) max(q,q0)

Consequently, the operator

T: Lpo,q,A-i- — (L;Do (R)7 LP] (R))O,Q,A - (LQO (S)a Llh (S)) 0,q,A — ng,q,A-&-

1
min(pg,q) maX(fm a)

is compact. =
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Next we consider the case of compactness on the second restriction.

COROLLARY 4.2. Let (R, ) and (S,v) be o—finite measure spaces. Take 1 < py < p1 <
00, 0< go < q1<00,0<q<o00and A = (ag, ) € R? with ag+1/qg <0 < ase +1/q.
Let T be a linear operator such that

T : Ly, (R) = Lgy(S) is bounded and

T: L, (R)— Ly (S) is compact.

ThenT: L, sar——1 (R) = Ly ,ar—1 () is also compact.

min(py,q) max(q1,q)

Proof. By Theorem 3.7 and (2),
T: (Lp1 (R)’ Lpo (R))O,q,(aoo,ozo) — (LQ1 (S)a qu (S))O,q,(a(x,,ao)

is compact.
Using [2, Theorem 5.2.1 and Theorem 3.4.1/(a)], for any r < gy we get

Ly, (R) = (Loo(R), L1(R))1/pgpo if Po > 1,
Ly, (R) = (Loo(R), Ly (R))l/phpl’
Lo (S) = (Loo(S), Lr(S))r/g0.00
Lgy (5) = (Loo(S), Lr(S)r /g1 a1
It follows from [18, Theorem 4.7 and Theorem 5.9] that

(Loo (R)7 Ll(R))l/pl,q,(aoo,ao)Jrl/ min(p1,q) 7 (Lm (R)7 Lpo (R))O,q,(am,ao) and
(qu(S)’LfIO (S))OJL(am,ao) — (LOO(S)vLT’(S))T'/tn,q,(%o,ao)+1/maX(q7q1)'

If po = 1, these inclusions also follow from [18, Theorem 4.7 and Theorem 5.9]. Further-
more, according to [18, Corollary 8.4] and (2) we have

Lpl,q,AJrl/ min(p1,9) — (Loo (R), Ly (R))l/pl,q,(aoo,ao)Jrl/ min(p1,9)>
Lgy q,41/ max(qr.q) = (Loo(5): Lr(5))r/g1.q,(cree ,a0)+1/ max(q.a1)

Consequently, the operator

T: Ly gns—1 = (Lpg(R), Lp, (R)1,g,8 = (Lgo(S), Lgy (S)1,9,8 = Ly, g at

1
min(pq,q) max(q1,q)

is compact. m
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