PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 5, May 1997, Pages 1349–1353 S 0002-9939(97)03733-7

POLYNOMIAL CONTINUITY ON ℓ_1

MANUEL GONZÁLEZ, JOAQUÍN M. GUTIÉRREZ, AND JOSÉ G. LLAVONA

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. A mapping between Banach spaces is said to be polynomially continuous if its restriction to any bounded set is uniformly continuous for the weak polynomial topology. A Banach space X has property (RP) if given two bounded sequences $(u_j), (v_j) \subset X$, we have that $Q(u_j) - Q(v_j) \to 0$ for every polynomial Q on X whenever $P(u_j - v_j) \to 0$ for every polynomial P on X; i.e., the restriction of every polynomial on X to each bounded set is uniformly sequentially continuous for the weak polynomial topology. We show that property (RP) does not imply that every scalar valued polynomial on X must be polynomially continuous.

Throughout, X and Y are Banach spaces, X^* the dual of X, B_X its closed unit ball, S_X its unit sphere, and **N** the set of natural numbers. Given $k \in \mathbf{N}$, we denote by $\mathcal{P}(^kX, Y)$ the space of all k-homogeneous (continuous) polynomials from X into Y; $\mathcal{L}_s(^kX, Y)$ is the space of all (continuous) symmetric k-linear mappings from $X^k := X \times \overset{(k)}{\ldots} \times X$ into Y. Whenever Y is omitted, it is understood to be the scalar field **K** (real **R** or complex **C**). We identify $\mathcal{P}(^0X) = \mathbf{K}$, and denote $\mathcal{P}(X) := \sum_{k=0}^{\infty} \mathcal{P}(^kX)$. For the general theory of polynomials on Banach spaces, we refer to [6]. As usual, e_n stands for the sequence $(0, \ldots, 0, 1, 0, \ldots)$ with 1 in the *n*th position.

To each polynomial $P \in \mathcal{P}({}^{k}X, Y)$ we can associate a unique symmetric k-linear mapping $\hat{P} \in \mathcal{L}_{s}({}^{k}X, Y)$ so that $P(x) = \hat{P}(x, \ldots, x)$ for all $x \in X$, and a (bounded linear) operator $T_{P}: X \to \mathcal{L}_{s}({}^{k-1}X, Y)$ given by

$$T_P(x)(x_1,\ldots,x_{k-1}) = P(x,x_1,\ldots,x_{k-1}).$$

Following [1], we say that a mapping $f : X \to Y$ is polynomially continuous (*P*-continuous, for short) if, for every $\epsilon > 0$ and bounded $B \subset X$, there are a finite set $\{P_1, \ldots, P_n\} \subset \mathcal{P}(X)$ and $\delta > 0$ so that $||f(x) - f(y)|| < \epsilon$ whenever $x, y \in B$ satisfy $|P_j(x-y)| < \delta$ $(1 \le j \le n)$.

Clearly, the definition may be restated assuming that the polynomials P_1, \ldots, P_n are homogeneous.

Suppose we require the polynomials $\{P_1, \ldots, P_n\} \subset \mathcal{P}(X)$ in the above definition to be of degree one, i.e., to be continuous linear forms on X. Then we obtain that f is weakly uniformly continuous on bounded subsets, a notion that has been studied

©1997 American Mathematical Society

Received by the editors October 30, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46E15; Secondary 46B20.

Key words and phrases. Polynomials on Banach spaces, weak polynomial topology, polynomials on ℓ_1 .

The first author was supported in part by DGICYT Project PB 94–1052 (Spain), and the second and third authors by DGICYT Project PB 93–0452 (Spain).

by many authors (see [1]). Since an operator is compact if and only if it is weakly (uniformly) continuous on bounded sets [2, Proposition 2.5], every compact operator is *P*-continuous. If a polynomial is weakly (uniformly) continuous on bounded sets (such as every scalar valued polynomial on c_0), then it is clearly *P*-continuous.

We shall need the following result:

Proposition 1. A polynomial P is P-continuous if and only if so is the associated operator T_P .

Proof. Suppose $P \in \mathcal{P}({}^{k}X, Y)$ is *P*-continuous. Given $\epsilon > 0$, we can find $\delta > 0$ and $\{P_1, \ldots, P_n\} \subset \mathcal{P}(X)$ so that $||P(x) - P(y)|| < \epsilon$ whenever $|P_j(x - y)| < \delta$ for all $1 \leq j \leq n$ and $x, y \in B_X$.

Assume x, y satisfy the above conditions, and $z_1, \ldots, z_{k-1} \in B_X$. The polarization formula [6, Theorem 1.10] yields:

$$(T_P(x) - T_P(y))(z_1, \dots, z_{k-1})$$

$$= \hat{P}(x, z_1, \dots, z_{k-1}) - \hat{P}(y, z_1, \dots, z_{k-1})$$

$$= \frac{k^k}{k! 2^k} \sum_{\epsilon_j = \pm 1} \epsilon_1 \cdots \epsilon_k \left[P\left(\frac{\epsilon_1 x + \epsilon_2 z_1 + \dots + \epsilon_k z_{k-1}}{k}\right) - P\left(\frac{\epsilon_1 y + \epsilon_2 z_1 + \dots + \epsilon_k z_{k-1}}{k}\right) \right]$$

Assuming that every P_j is homogeneous, we have

$$\left| P_j \left(\frac{\epsilon_1 x + \epsilon_2 z_1 + \dots + \epsilon_k z_{k-1}}{k} - \frac{\epsilon_1 y + \epsilon_2 z_1 + \dots + \epsilon_k z_{k-1}}{k} \right) \right|$$

< $|P_j(\epsilon_1 x - \epsilon_1 y)|$
= $|P_j(x - y)|$
< δ

for $1 \leq j \leq n$, and so

$$||T_P(x) - T_P(y)|| \le \frac{\epsilon k^k}{k!}$$

Conversely, let T_P be *P*-continuous. For $0 < \epsilon < 1$, there is $\delta > 0$ and $\{P_1, \ldots, P_n\} \subset \mathcal{P}(X)$ so that $||T_P(x) - T_P(y)|| < \epsilon$, whenever $|P_j(x - y)| < \delta$ for any $1 \leq j \leq n$ and $x, y \in B_X$. For such x, y we have

$$\begin{aligned} \|P(x) - P(y)\| \\ &\leq \|\hat{P}(x, \dots, x) - \hat{P}(x, y, x, \dots, x)\| + \|\hat{P}(x, y, x, \dots, x) - \hat{P}(x, y, y, x, \dots, x)\| \\ &+ \dots + \|\hat{P}(x, y, \dots, y) - \hat{P}(y, \dots, y)\| \\ &= \|(T_P(x) - T_P(y))(x, \dots, x)\| + \|(T_P(x) - T_P(y))(x, y, x, \dots, x)\| \\ &+ \dots + \|(T_P(x) - T_P(y))(y, \dots, y)\| \\ &< k\epsilon \,, \end{aligned}$$

and the proof is complete.

We say that a net $(x_{\alpha}) \subset X$ converges to x in the weak polynomial topology (*pw-topology*, for short) [3, §6] if for every $P \in \mathcal{P}(X)$ we have $P(x_{\alpha}) \to P(x)$.

It is clear that a mapping $f : X \to Y$ is *pw*-continuous on bounded sets if and only if for every $x \in X$, $\epsilon > 0$ and bounded $B \subset X$ with $x \in B$, there are $\delta > 0$ and $\{P_1, \ldots, P_n\} \subset \mathcal{P}(X)$ so that we have $||f(x) - f(y)|| < \epsilon$ whenever $|P_j(x - y)| < \delta$ for $1 \leq j \leq n$ and $y \in B$. Obviously, an operator is *P*-continuous if and only if it is *pw*-continuous on bounded sets.

We now relate the *P*-continuity with property (RP) of Aron, Choi and Llavona [1]. We say that X has property (RP) if given two bounded sequences (u_j) and (v_j) in X, we have that $Q(u_j) - Q(v_j) \to 0$ for every $Q \in \mathcal{P}(X)$ whenever $P(u_j - v_j) \to 0$ for every $P \in \mathcal{P}(X)$.

Every superreflexive space and every space with the DPP not containing ℓ_1 have property (RP) [1]. Clearly, if every scalar valued (continuous) polynomial on X is *P*-continuous, then X has property (RP). It is proved in [1] that C[0, 1], $L_1[0, 1]$ and $L_{\infty}[0, 1]$ do not satisfy property (RP), and that there are 3-homogeneous polynomials on the spaces C[0, 1] and $L_{\infty}[0, 1]$ which are not *P*-continuous. Similarly, there is a non-*P*-continuous 2-homogeneous polynomial on $L_1[0, 1]$.

It is natural to ask whether property (RP) implies that every scalar valued polynomial is *P*-continuous. We show that the answer is no by giving examples of polynomials on ℓ_1 which are not *P*-continuous. We first need to construct a *pw*-null net in the sphere of ℓ_1 . We need a previous lemma.

Lemma 2. Let U be a weak zero neighbourhood in ℓ_1 . Then, for each $m \in \mathbf{N}$ we can find $x = (x_n) \in S_{\ell_1} \cap U$ and r > m so that $x_n = 0$ whenever n < m and n > r.

Proof. We can find $\xi_1, \ldots, \xi_k \in B_{\ell_{\infty}}$ and $\epsilon > 0$ such that

$$U \supseteq \{ x \in \ell_1 : |\xi_j(x)| < \epsilon \text{ for } 1 \le j \le k \} .$$

Let $\xi_j = (\xi_j^n)_{n=1}^{\infty}$. There is an infinite set $A \subset \mathbf{N}$ so that $|\xi_j^p - \xi_j^q| < 2\epsilon$ whenever $1 \leq j \leq k$ and $p, q \in A$. Fix $p, q \in A$ $(m \leq p < q)$, and set $x := (e_p - e_q)/2$ and r = q. Then $|\xi_j(x)| = |\xi_j^p - \xi_j^q|/2 < \epsilon$ for $1 \leq j \leq k$, and the proof is complete. \Box

The following two results use the idea of [4].

Lemma 3. Let \mathcal{F} be a finite family of continuous symmetric multilinear forms on ℓ_1 , $\epsilon > 0$ and $N \ge 1$. Then there exist $x_1, \ldots, x_N \in S_{\ell_1}$, with disjoint supports, such that $|F(x_{i_1}, \ldots, x_{i_m})| < \epsilon$ whenever $F \in \mathcal{F}$ is an m-form and i_1, \ldots, i_m are distinct indices between 1 and N.

Proof. Since each $F \in \mathcal{F}$ is symmetric, it is enough to obtain the estimate when $i_1 < \cdots < i_m$.

By Lemma 2, we can find $n_1 \in \mathbf{N}$ and $x_1 \in S_{\ell_1}$, having all but the first n_1 coordinates equal to zero, so that $|F(x_1)| < \epsilon$ for all $F \in \mathcal{F} \cap \ell_1^*$. Again by Lemma 2, we can choose $n_2 \in \mathbf{N}$ and $x_2 \in S_{\ell_1}$ having disjoint support with x_1 and all but the first n_2 coordinates equal to zero, so that $|F(x_2)| < \epsilon$ for all $F \in \mathcal{F} \cap \ell_1^*$, and $|F(x_1, x_2)| < \epsilon$ for all $F \in \mathcal{F} \cap \mathcal{L}_s({}^2\ell_1)$. In this way, we obtain x_j 's with disjoint supports, so that $|F(x_{i_1}, \ldots, x_{i_m})| < \epsilon$ for all $F \in \mathcal{F} \cap \mathcal{L}_s({}^m\ell_1)$ and all $i_1 < \cdots < i_m$.

Theorem 4. There is a pw-null net in S_{ℓ_1} .

Proof. It is enough to show that for every finite family $\mathcal{F} \subset \mathcal{P}(\ell_1)$ and $\epsilon > 0$, there is an $x \in S_{\ell_1}$ so that $|P(x)| < \epsilon$ for all $P \in \mathcal{F}$.

Fix N large, choose $x_1, \ldots, x_N \in S_{\ell_1}$ with disjoint supports satisfying the conditions of Lemma 3 for the family $\{\hat{P} : P \in \mathcal{F}\}$ of symmetric multilinear forms, and set

$$x := \frac{1}{N} \left(x_1 + \dots + x_N \right) \in S_{\ell_1} \,.$$

If $P \in \mathcal{F} \cap \mathcal{P}(^{m}\ell_{1})$, we write

$$P(x) = \frac{1}{N^m} \sum_{i_1, \dots, i_m = 1}^N \hat{P}(x_{i_1}, \dots, x_{i_m}) = \Sigma_1 + \Sigma_2,$$

where Σ_1 is the sum over *m*-tuples of distinct indices, and Σ_2 is the sum over the remaining indices.

By Lemma 3, $|\Sigma_1| < \epsilon/2$. Since there are $N^m - N(N-1)\cdots(N-m+1)$ summands in Σ_2 , we obtain

$$|\Sigma_2| \le \left[1 - \left(1 - \frac{1}{N}\right) \cdots \left(1 - \frac{m-1}{N}\right)\right] \cdot \|\hat{P}\| < \frac{\epsilon}{2},$$

for N large enough.

As a consequence, if X contains a copy of ℓ_1 , then the unit sphere of X contains a *pw*-null net as well. We now give the main result.

Theorem 5. For every $k \in \mathbf{N}$ $(k \geq 2)$, there is a k-homogeneous scalar valued polynomial on ℓ_1 which is not P-continuous.

Proof. Suppose first that k = 2 and ℓ_1 is constructed over the real numbers. We need a sequence $(x_j) \subset \ell_{\infty}$, equivalent to the ℓ_1 -basis, such that $x_i^j = x_j^i$ for all $i, j \in \mathbf{N}$, where $x_i^i := x_j(e_i)$ (then we say that the sequence is symmetric).

We select a Rademacher-like sequence $(y_j) \subset \ell_{\infty}$, taking $y_1 := (1, -1, 1, -1, ...)$, and letting y_j be the sequence consisting of infinitely many times the following block of 2^j integers:

$$1, \frac{(2^{j-1})}{\dots}, 1, -1, \frac{(2^{j-1})}{\dots}, -1$$
.

Clearly, (y_j) is 1-equivalent to the unit vector basis of ℓ_1 ; i.e., for every finite set of real numbers $\alpha_1, \ldots, \alpha_n$, we have

(1)
$$\sum_{j=1}^{n} |\alpha_j| = \left\| \sum_{j=1}^{n} \alpha_j y_j \right\|_{\infty}.$$

If we take $x_1 := y_1$ and, for j > 1, modify the first j - 1 coordinates of y_j in the obvious way, then we get a symmetric sequence (x_j) which is still 1-equivalent to the unit vector basis of ℓ_1 .

Now, define an operator $T : \ell_1 \to \ell_\infty$ by $T(e_j) := x_j$. Since T is an embedding, we conclude from Theorem 4 that it is not P-continuous. Therefore, by Proposition 1, the 2-homogeneous polynomial $P : \ell_1 \to \mathbf{R}$ given by P(y) = (T(y))(y) for $y \in \ell_1$ is not P-continuous.

The same sequence can be used in the complex case, since, for every finite set of complex numbers $\alpha_1, \ldots, \alpha_n$, we have (see [5, XI, Proposition 4])

(2)
$$\sum_{j=1}^{n} |\alpha_j| \le 4 \left\| \sum_{j=1}^{n} \alpha_j y_j \right\|_{\infty}.$$

The sequence (y_j) will be used in the case k > 2 as well. Letting

$$A_{j}(e_{i_{2}},\ldots,e_{i_{k}}) := \begin{cases} y_{j}^{i_{2}+\cdots+i_{k}} & \text{if } j \leq \min\{i_{2},\ldots,i_{k}\}, \\ y_{i_{r}}^{j+i_{2}+\cdots+i_{r-1}+i_{r+1}+\cdots+i_{k}} & \text{if } i_{r} = \min\{i_{2},\ldots,i_{k}\} < j, \end{cases}$$

we obtain $A_j \in \mathcal{L}_s(^{k-1}\ell_1)$. Moreover, the sequence (A_j) is equivalent to the unit vector basis of ℓ_1 . Indeed, given real numbers $\alpha_1, \ldots, \alpha_n$, using (1), choose $i_2, \ldots, i_k \in \mathbf{N}$ such that $n \leq \min\{i_2, \ldots, i_k\}$ and

$$\sum_{j=1}^{n} |\alpha_j| = \left| \sum_{j=1}^{n} \alpha_j y_j^{i_2 + \dots + i_k} \right| = \left\| \sum_{j=1}^{n} \alpha_j A_j \right\|.$$

Note that the sequence (A_j) is symmetric in the sense that $A_{i_1}(e_{i_2}, \ldots, e_{i_k})$ is invariant under permutation of the indices i_1, \ldots, i_k . In the complex case we proceed similarly, using (2) in place of (1). In both cases we define $T : \ell_1 \to \mathcal{L}_s(^{k-1}\ell_1)$ by $T(e_j) = A_j$. Then the polynomial $P \in \mathcal{P}(^k\ell_1)$ given by

$$P(\alpha) := \sum_{i_1,\dots,i_k=1}^{\infty} \alpha_{i_1} \cdots \alpha_{i_k} A_{i_1} (e_{i_2},\dots,e_{i_k}) , \text{ for } \alpha = (\alpha_j)_{j=1}^{\infty} \in \ell_1,$$

is not P-continuous, since the associated operator T is an isomorphism.

The authors wish to thank J. A. Jaramillo, M. Lacruz and S. Troyanski for helpful discussions.

References

- R. M. Aron, Y. S. Choi and J. G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995), 475–486. CMP 96:03
- [2] R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195–216. MR 81c:41078
- [3] T. K. Carne, B. Cole and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, *Trans. Amer. Math. Soc.* **314** (1989), 639–659. MR **90i**:46098
- [4] A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351–356. MR 89k:46023
- [5] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin 1984. MR 85i:46020
- [6] J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam 1986. MR 88d:46084

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE CANTABRIA, 39071 SANTANDER, SPAIN

E-mail address: gonzalem@ccaix3.unican.es

DEPARTAMENTO DE MATEMÁTICAS, ETS DE INGENIEROS INDUSTRIALES, UNIVERSIDAD POLITÉC-NICA DE MADRID, C. JOSÉ GUTIÉRREZ ABASCAL 2, 28006 MADRID, SPAIN *E-mail address*: c0550003@ccupm.upm.es

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COM-PLUTENSE DE MADRID, 28040 MADRID, SPAIN

E-mail address: llavona@eucmax.sim.ucm.es