POLYNOMIAL CONTINUITY ON ℓ_{1}

MANUEL GONZÁLEZ, JOAQUÍN M. GUTIÉRREZ, AND JOSÉ G. LLAVONA

(Communicated by Palle E. T. Jorgensen)

Abstract

A mapping between Banach spaces is said to be polynomially continuous if its restriction to any bounded set is uniformly continuous for the weak polynomial topology. A Banach space X has property (RP) if given two bounded sequences $\left(u_{j}\right),\left(v_{j}\right) \subset X$, we have that $Q\left(u_{j}\right)-Q\left(v_{j}\right) \rightarrow 0$ for every polynomial Q on X whenever $P\left(u_{j}-v_{j}\right) \rightarrow 0$ for every polynomial P on X; i.e., the restriction of every polynomial on X to each bounded set is uniformly sequentially continuous for the weak polynomial topology. We show that property (RP) does not imply that every scalar valued polynomial on X must be polynomially continuous.

Throughout, X and Y are Banach spaces, X^{*} the dual of X, B_{X} its closed unit ball, S_{X} its unit sphere, and \mathbf{N} the set of natural numbers. Given $k \in \mathbf{N}$, we denote by $\mathcal{P}\left({ }^{k} X, Y\right)$ the space of all k-homogeneous (continuous) polynomials from X into $Y ; \mathcal{L}_{s}\left({ }^{k} X, Y\right)$ is the space of all (continuous) symmetric k-linear mappings from $X^{k}:=X \times \stackrel{(k)}{.} \times X$ into Y. Whenever Y is omitted, it is understood to be the scalar field \mathbf{K} (real \mathbf{R} or complex \mathbf{C}). We identify $\mathcal{P}\left({ }^{0} X\right)=\mathbf{K}$, and denote $\mathcal{P}(X):=\sum_{k=0}^{\infty} \mathcal{P}\left({ }^{k} X\right)$. For the general theory of polynomials on Banach spaces, we refer to [6]. As usual, e_{n} stands for the sequence $(0, \ldots, 0,1,0, \ldots)$ with 1 in the nth position.

To each polynomial $P \in \mathcal{P}\left({ }^{k} X, Y\right)$ we can associate a unique symmetric k-linear mapping $\hat{P} \in \mathcal{L}_{s}\left({ }^{k} X, Y\right)$ so that $P(x)=\hat{P}(x, \ldots, x)$ for all $x \in X$, and a (bounded linear) operator $T_{P}: X \rightarrow \mathcal{L}_{s}\left({ }^{k-1} X, Y\right)$ given by

$$
T_{P}(x)\left(x_{1}, \ldots, x_{k-1}\right)=\hat{P}\left(x, x_{1}, \ldots, x_{k-1}\right)
$$

Following [1], we say that a mapping $f: X \rightarrow Y$ is polynomially continuous (P-continuous, for short) if, for every $\epsilon>0$ and bounded $B \subset X$, there are a finite set $\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathcal{P}(X)$ and $\delta>0$ so that $\|f(x)-f(y)\|<\epsilon$ whenever $x, y \in B$ satisfy $\left|P_{j}(x-y)\right|<\delta(1 \leq j \leq n)$.

Clearly, the definition may be restated assuming that the polynomials P_{1}, \ldots, P_{n} are homogeneous.

Suppose we require the polynomials $\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathcal{P}(X)$ in the above definition to be of degree one, i.e., to be continuous linear forms on X. Then we obtain that f is weakly uniformly continuous on bounded subsets, a notion that has been studied

[^0]by many authors (see [1]). Since an operator is compact if and only if it is weakly (uniformly) continuous on bounded sets [2, Proposition 2.5], every compact operator is P-continuous. If a polynomial is weakly (uniformly) continuous on bounded sets (such as every scalar valued polynomial on c_{0}), then it is clearly P-continuous.

We shall need the following result:
Proposition 1. A polynomial P is P-continuous if and only if so is the associated operator T_{P}.

Proof. Suppose $P \in \mathcal{P}\left({ }^{k} X, Y\right)$ is P-continuous. Given $\epsilon>0$, we can find $\delta>0$ and $\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathcal{P}(X)$ so that $\|P(x)-P(y)\|<\epsilon$ whenever $\left|P_{j}(x-y)\right|<\delta$ for all $1 \leq j \leq n$ and $x, y \in B_{X}$.

Assume x, y satisfy the above conditions, and $z_{1}, \ldots, z_{k-1} \in B_{X}$. The polarization formula [6, Theorem 1.10] yields:

$$
\begin{aligned}
& \left(T_{P}(x)-T_{P}(y)\right)\left(z_{1}, \ldots, z_{k-1}\right) \\
& =\hat{P}\left(x, z_{1}, \ldots, z_{k-1}\right)-\hat{P}\left(y, z_{1}, \ldots, z_{k-1}\right) \\
& =\frac{k^{k}}{k!2^{k}} \sum_{\epsilon_{j}= \pm 1} \epsilon_{1} \cdots \epsilon_{k}\left[P\left(\frac{\epsilon_{1} x+\epsilon_{2} z_{1}+\cdots+\epsilon_{k} z_{k-1}}{k}\right)\right. \\
& \left.\quad-P\left(\frac{\epsilon_{1} y+\epsilon_{2} z_{1}+\cdots+\epsilon_{k} z_{k-1}}{k}\right)\right]
\end{aligned}
$$

Assuming that every P_{j} is homogeneous, we have

$$
\begin{aligned}
& \left|P_{j}\left(\frac{\epsilon_{1} x+\epsilon_{2} z_{1}+\cdots+\epsilon_{k} z_{k-1}}{k}-\frac{\epsilon_{1} y+\epsilon_{2} z_{1}+\cdots+\epsilon_{k} z_{k-1}}{k}\right)\right| \\
& \quad<\left|P_{j}\left(\epsilon_{1} x-\epsilon_{1} y\right)\right| \\
& \quad=\left|P_{j}(x-y)\right| \\
& \quad<\delta
\end{aligned}
$$

for $1 \leq j \leq n$, and so

$$
\left\|T_{P}(x)-T_{P}(y)\right\| \leq \frac{\epsilon k^{k}}{k!}
$$

Conversely, let T_{P} be P-continuous. For $0<\epsilon<1$, there is $\delta>0$ and $\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathcal{P}(X)$ so that $\left\|T_{P}(x)-T_{P}(y)\right\|<\epsilon$, whenever $\left|P_{j}(x-y)\right|<\delta$ for any $1 \leq j \leq n$ and $x, y \in B_{X}$. For such x, y we have

$$
\begin{aligned}
&\|P(x)-P(y)\| \\
& \leq\|\hat{P}(x, \ldots, x)-\hat{P}(x, y, x, \ldots, x)\|+\|\hat{P}(x, y, x, \ldots, x)-\hat{P}(x, y, y, x, \ldots, x)\| \\
&+\cdots+\|\hat{P}(x, y, \ldots, y)-\hat{P}(y, \ldots, y)\| \\
&=\left\|\left(T_{P}(x)-T_{P}(y)\right)(x, \ldots, x)\right\|+\left\|\left(T_{P}(x)-T_{P}(y)\right)(x, y, x, \ldots, x)\right\| \\
&+\cdots+\left\|\left(T_{P}(x)-T_{P}(y)\right)(y, \ldots, y)\right\| \\
&< k \epsilon
\end{aligned}
$$

and the proof is complete.
We say that a net $\left(x_{\alpha}\right) \subset X$ converges to x in the weak polynomial topology (pw-topology, for short) [3, §6] if for every $P \in \mathcal{P}(X)$ we have $P\left(x_{\alpha}\right) \rightarrow P(x)$.

It is clear that a mapping $f: X \rightarrow Y$ is $p w$-continuous on bounded sets if and only if for every $x \in X, \epsilon>0$ and bounded $B \subset X$ with $x \in B$, there are $\delta>0$ and
$\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathcal{P}(X)$ so that we have $\|f(x)-f(y)\|<\epsilon$ whenever $\left|P_{j}(x-y)\right|<\delta$ for $1 \leq j \leq n$ and $y \in B$. Obviously, an operator is P-continuous if and only if it is $p w$-continuous on bounded sets.

We now relate the P-continuity with property (RP) of Aron, Choi and Llavona [1]. We say that X has property (RP) if given two bounded sequences $\left(u_{j}\right)$ and $\left(v_{j}\right)$ in X, we have that $Q\left(u_{j}\right)-Q\left(v_{j}\right) \rightarrow 0$ for every $Q \in \mathcal{P}(X)$ whenever $P\left(u_{j}-v_{j}\right) \rightarrow 0$ for every $P \in \mathcal{P}(X)$.

Every superreflexive space and every space with the DPP not containing ℓ_{1} have property (RP) [1]. Clearly, if every scalar valued (continuous) polynomial on X is P-continuous, then X has property (RP). It is proved in [1] that $C[0,1], L_{1}[0,1]$ and $L_{\infty}[0,1]$ do not satisfy property (RP), and that there are 3 -homogeneous polynomials on the spaces $C[0,1]$ and $L_{\infty}[0,1]$ which are not P-continuous. Similarly, there is a non- P-continuous 2-homogeneous polynomial on $L_{1}[0,1]$.

It is natural to ask whether property (RP) implies that every scalar valued polynomial is P-continuous. We show that the answer is no by giving examples of polynomials on ℓ_{1} which are not P-continuous. We first need to construct a $p w$-null net in the sphere of ℓ_{1}. We need a previous lemma.
Lemma 2. Let U be a weak zero neighbourhood in ℓ_{1}. Then, for each $m \in \mathbf{N}$ we can find $x=\left(x_{n}\right) \in S_{\ell_{1}} \cap U$ and $r>m$ so that $x_{n}=0$ whenever $n<m$ and $n>r$.
Proof. We can find $\xi_{1}, \ldots, \xi_{k} \in B_{\ell_{\infty}}$ and $\epsilon>0$ such that

$$
U \supseteq\left\{x \in \ell_{1}:\left|\xi_{j}(x)\right|<\epsilon \text { for } 1 \leq j \leq k\right\}
$$

Let $\xi_{j}=\left(\xi_{j}^{n}\right)_{n=1}^{\infty}$. There is an infinite set $A \subset \mathbf{N}$ so that $\left|\xi_{j}^{p}-\xi_{j}^{q}\right|<2 \epsilon$ whenever $1 \leq j \leq k$ and $p, q \in A$. Fix $p, q \in A(m \leq p<q)$, and set $x:=\left(e_{p}-e_{q}\right) / 2$ and $r=q$. Then $\left|\xi_{j}(x)\right|=\left|\xi_{j}^{p}-\xi_{j}^{q}\right| / 2<\epsilon$ for $1 \leq j \leq k$, and the proof is complete.

The following two results use the idea of [4].
Lemma 3. Let \mathcal{F} be a finite family of continuous symmetric multilinear forms on $\ell_{1}, \epsilon>0$ and $N \geq 1$. Then there exist $x_{1}, \ldots, x_{N} \in S_{\ell_{1}}$, with disjoint supports, such that $\left|F\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)\right|<\epsilon$ whenever $F \in \mathcal{F}$ is an m-form and i_{1}, \ldots, i_{m} are distinct indices between 1 and N.

Proof. Since each $F \in \mathcal{F}$ is symmetric, it is enough to obtain the estimate when $i_{1}<\cdots<i_{m}$.

By Lemma 2, we can find $n_{1} \in \mathbf{N}$ and $x_{1} \in S_{\ell_{1}}$, having all but the first n_{1} coordinates equal to zero, so that $\left|F\left(x_{1}\right)\right|<\epsilon$ for all $F \in \mathcal{F} \cap \ell_{1}^{*}$. Again by Lemma 2, we can choose $n_{2} \in \mathbf{N}$ and $x_{2} \in S_{\ell_{1}}$ having disjoint support with x_{1} and all but the first n_{2} coordinates equal to zero, so that $\left|F\left(x_{2}\right)\right|<\epsilon$ for all $F \in \mathcal{F} \cap \ell_{1}^{*}$, and $\left|F\left(x_{1}, x_{2}\right)\right|<\epsilon$ for all $F \in \mathcal{F} \cap \mathcal{L}_{s}\left({ }^{2} \ell_{1}\right)$. In this way, we obtain x_{j} 's with disjoint supports, so that $\left|F\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)\right|<\epsilon$ for all $F \in \mathcal{F} \cap \mathcal{L}_{s}\left({ }^{m} \ell_{1}\right)$ and all $i_{1}<\cdots<i_{m}$.
Theorem 4. There is a pw-null net in $S_{\ell_{1}}$.
Proof. It is enough to show that for every finite family $\mathcal{F} \subset \mathcal{P}\left(\ell_{1}\right)$ and $\epsilon>0$, there is an $x \in S_{\ell_{1}}$ so that $|P(x)|<\epsilon$ for all $P \in \mathcal{F}$.

Fix N large, choose $x_{1}, \ldots, x_{N} \in S_{\ell_{1}}$ with disjoint supports satisfying the conditions of Lemma 3 for the family $\{\hat{P}: P \in \mathcal{F}\}$ of symmetric multilinear forms, and set

$$
x:=\frac{1}{N}\left(x_{1}+\cdots+x_{N}\right) \in S_{\ell_{1}}
$$

If $P \in \mathcal{F} \cap \mathcal{P}\left({ }^{m} \ell_{1}\right)$, we write

$$
P(x)=\frac{1}{N^{m}} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \hat{P}\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)=\Sigma_{1}+\Sigma_{2}
$$

where Σ_{1} is the sum over m-tuples of distinct indices, and Σ_{2} is the sum over the remaining indices.

By Lemma 3, $\left|\Sigma_{1}\right|<\epsilon / 2$. Since there are $N^{m}-N(N-1) \cdots(N-m+1)$ summands in Σ_{2}, we obtain

$$
\left|\Sigma_{2}\right| \leq\left[1-\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{m-1}{N}\right)\right] \cdot\|\hat{P}\|<\frac{\epsilon}{2}
$$

for N large enough.
As a consequence, if X contains a copy of ℓ_{1}, then the unit sphere of X contains a $p w$-null net as well. We now give the main result.

Theorem 5. For every $k \in \mathbf{N}(k \geq 2)$, there is a k-homogeneous scalar valued polynomial on ℓ_{1} which is not P-continuous.

Proof. Suppose first that $k=2$ and ℓ_{1} is constructed over the real numbers. We need a sequence $\left(x_{j}\right) \subset \ell_{\infty}$, equivalent to the ℓ_{1}-basis, such that $x_{i}^{j}=x_{j}^{i}$ for all $i, j \in \mathbf{N}$, where $x_{j}^{i}:=x_{j}\left(e_{i}\right)$ (then we say that the sequence is symmetric).

We select a Rademacher-like sequence $\left(y_{j}\right) \subset \ell_{\infty}$, taking $y_{1}:=(1,-1,1,-1, \ldots)$, and letting y_{j} be the sequence consisting of infinitely many times the following block of 2^{j} integers:

$$
\left.1, \stackrel{\left(2^{j-1}\right)}{\cdots}, 1,-1, \stackrel{\left(2^{j-1}\right.}{\cdots}\right),-1
$$

Clearly, $\left(y_{j}\right)$ is 1 -equivalent to the unit vector basis of ℓ_{1}; i.e., for every finite set of real numbers $\alpha_{1}, \ldots, \alpha_{n}$, we have

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\alpha_{j}\right|=\left\|\sum_{j=1}^{n} \alpha_{j} y_{j}\right\|_{\infty} \tag{1}
\end{equation*}
$$

If we take $x_{1}:=y_{1}$ and, for $j>1$, modify the first $j-1$ coordinates of y_{j} in the obvious way, then we get a symmetric sequence $\left(x_{j}\right)$ which is still 1-equivalent to the unit vector basis of ℓ_{1}.

Now, define an operator $T: \ell_{1} \rightarrow \ell_{\infty}$ by $T\left(e_{j}\right):=x_{j}$. Since T is an embedding, we conclude from Theorem 4 that it is not P-continuous. Therefore, by Proposition 1, the 2-homogeneous polynomial $P: \ell_{1} \rightarrow \mathbf{R}$ given by $P(y)=(T(y))(y)$ for $y \in \ell_{1}$ is not P-continuous.

The same sequence can be used in the complex case, since, for every finite set of complex numbers $\alpha_{1}, \ldots, \alpha_{n}$, we have (see [5, XI, Proposition 4])

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\alpha_{j}\right| \leq 4\left\|\sum_{j=1}^{n} \alpha_{j} y_{j}\right\|_{\infty} \tag{2}
\end{equation*}
$$

The sequence $\left(y_{j}\right)$ will be used in the case $k>2$ as well. Letting

$$
A_{j}\left(e_{i_{2}}, \ldots, e_{i_{k}}\right):= \begin{cases}y_{j}^{i_{2}+\cdots+i_{k}} & \text { if } j \leq \min \left\{i_{2}, \ldots, i_{k}\right\} \\ y_{i_{r}}^{j+i_{2}+\cdots+i_{r-1}+i_{r+1}+\cdots+i_{k}} & \text { if } i_{r}=\min \left\{i_{2}, \ldots, i_{k}\right\}<j\end{cases}
$$

we obtain $A_{j} \in \mathcal{L}_{s}\left({ }^{k-1} \ell_{1}\right)$. Moreover, the sequence $\left(A_{j}\right)$ is equivalent to the unit vector basis of ℓ_{1}. Indeed, given real numbers $\alpha_{1}, \ldots, \alpha_{n}$, using (1), choose $i_{2}, \ldots, i_{k} \in \mathbf{N}$ such that $n \leq \min \left\{i_{2}, \ldots, i_{k}\right\}$ and

$$
\sum_{j=1}^{n}\left|\alpha_{j}\right|=\left|\sum_{j=1}^{n} \alpha_{j} y_{j}^{i_{2}+\cdots+i_{k}}\right|=\left\|\sum_{j=1}^{n} \alpha_{j} A_{j}\right\| .
$$

Note that the sequence $\left(A_{j}\right)$ is symmetric in the sense that $A_{i_{1}}\left(e_{i_{2}}, \ldots, e_{i_{k}}\right)$ is invariant under permutation of the indices i_{1}, \ldots, i_{k}. In the complex case we proceed similarly, using (2) in place of (1). In both cases we define $T: \ell_{1} \rightarrow \mathcal{L}_{s}\left({ }^{k-1} \ell_{1}\right)$ by $T\left(e_{j}\right)=A_{j}$. Then the polynomial $P \in \mathcal{P}\left({ }^{k} \ell_{1}\right)$ given by

$$
P(\alpha):=\sum_{i_{1}, \ldots, i_{k}=1}^{\infty} \alpha_{i_{1}} \cdots \alpha_{i_{k}} A_{i_{1}}\left(e_{i_{2}}, \ldots, e_{i_{k}}\right), \quad \text { for } \alpha=\left(\alpha_{j}\right)_{j=1}^{\infty} \in \ell_{1}
$$

is not P-continuous, since the associated operator T is an isomorphism.
The authors wish to thank J. A. Jaramillo, M. Lacruz and S. Troyanski for helpful discussions.

References

[1] R. M. Aron, Y. S. Choi and J. G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995), 475-486. CMP 96:03
[2] R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195-216. MR 81c:41078
[3] T. K. Carne, B. Cole and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659. MR 90i:46098
[4] A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351-356. MR 89k:46023
[5] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin 1984. MR 85i:46020
[6] J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam 1986. MR 88d:46084

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, 39071 Santander, Spain

E-mail address: gonzalem@ccaix3.unican.es
Departamento de Matemáticas, ETS de Ingenieros Industriales, Universidad Politécnica de Madrid, C. José Gutiérrez Abascal 2, 28006 Madrid, Spain

E-mail address: c0550003@ccupm.upm.es
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain

E-mail address: llavona@eucmax.sim.ucm.es

[^0]: Received by the editors October 30, 1995.
 1991 Mathematics Subject Classification. Primary 46E15; Secondary 46B20.
 Key words and phrases. Polynomials on Banach spaces, weak polynomial topology, polynomials on ℓ_{1}.

 The first author was supported in part by DGICYT Project PB 94-1052 (Spain), and the second and third authors by DGICYT Project PB 93-0452 (Spain).

