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POLYNOMIAL CONTINUITY ON `1

MANUEL GONZÁLEZ, JOAQUÍN M. GUTIÉRREZ, AND JOSÉ G. LLAVONA

(Communicated by Palle E. T. Jorgensen)

Abstract. A mapping between Banach spaces is said to be polynomially
continuous if its restriction to any bounded set is uniformly continuous for
the weak polynomial topology. A Banach space X has property (RP) if given
two bounded sequences (uj), (vj) ⊂ X, we have that Q(uj) − Q(vj) → 0 for
every polynomial Q on X whenever P (uj − vj) → 0 for every polynomial P
on X; i.e., the restriction of every polynomial on X to each bounded set is
uniformly sequentially continuous for the weak polynomial topology. We show
that property (RP) does not imply that every scalar valued polynomial on X
must be polynomially continuous.

Throughout, X and Y are Banach spaces, X∗ the dual of X , BX its closed unit
ball, SX its unit sphere, and N the set of natural numbers. Given k ∈ N, we
denote by P(kX,Y ) the space of all k-homogeneous (continuous) polynomials from
X into Y ; Ls(kX,Y ) is the space of all (continuous) symmetric k-linear mappings

from Xk := X× (k). . . ×X into Y . Whenever Y is omitted, it is understood to be
the scalar field K (real R or complex C). We identify P(0X) = K, and denote
P(X) :=

∑∞
k=0 P(kX). For the general theory of polynomials on Banach spaces,

we refer to [6]. As usual, en stands for the sequence (0, . . . , 0, 1, 0, . . . ) with 1 in
the nth position.

To each polynomial P ∈ P(kX,Y ) we can associate a unique symmetric k-linear

mapping P̂ ∈ Ls(kX,Y ) so that P (x) = P̂ (x, . . . , x) for all x ∈ X , and a (bounded
linear) operator TP : X → Ls(k−1X,Y ) given by

TP (x)(x1, . . . , xk−1) = P̂ (x, x1, . . . , xk−1) .

Following [1], we say that a mapping f : X → Y is polynomially continuous
(P -continuous, for short) if, for every ε > 0 and bounded B ⊂ X , there are a finite
set {P1, . . . , Pn} ⊂ P(X) and δ > 0 so that ‖f(x) − f(y)‖ < ε whenever x, y ∈ B
satisfy |Pj(x− y)| < δ (1 ≤ j ≤ n).

Clearly, the definition may be restated assuming that the polynomials P1, . . . , Pn
are homogeneous.

Suppose we require the polynomials {P1, . . . , Pn} ⊂ P(X) in the above definition
to be of degree one, i.e., to be continuous linear forms on X . Then we obtain that f
is weakly uniformly continuous on bounded subsets, a notion that has been studied
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by many authors (see [1]). Since an operator is compact if and only if it is weakly
(uniformly) continuous on bounded sets [2, Proposition 2.5], every compact operator
is P -continuous. If a polynomial is weakly (uniformly) continuous on bounded sets
(such as every scalar valued polynomial on c0), then it is clearly P -continuous.

We shall need the following result:

Proposition 1. A polynomial P is P -continuous if and only if so is the associated
operator TP .

Proof. Suppose P ∈ P(kX,Y ) is P -continuous. Given ε > 0, we can find δ > 0 and
{P1, . . . , Pn} ⊂ P(X) so that ‖P (x) − P (y)‖ < ε whenever |Pj(x − y)| < δ for all
1 ≤ j ≤ n and x, y ∈ BX .

Assume x, y satisfy the above conditions, and z1, . . . , zk−1 ∈ BX . The polariza-
tion formula [6, Theorem 1.10] yields:

(TP (x)− TP (y)) (z1, . . . , zk−1)

= P̂ (x, z1, . . . , zk−1)− P̂ (y, z1, . . . , zk−1)

=
kk

k!2k

∑
εj=±1

ε1 · · · εk
[
P

(
ε1x+ ε2z1 + · · ·+ εkzk−1

k

)

− P

(
ε1y + ε2z1 + · · ·+ εkzk−1

k

)]
.

Assuming that every Pj is homogeneous, we have∣∣∣∣Pj (ε1x+ ε2z1 + · · ·+ εkzk−1

k
− ε1y + ε2z1 + · · ·+ εkzk−1

k

)∣∣∣∣
< |Pj(ε1x− ε1y)|
= |Pj(x− y)|
< δ

for 1 ≤ j ≤ n, and so

‖TP (x)− TP (y)‖ ≤ εkk

k!
.

Conversely, let TP be P -continuous. For 0 < ε < 1, there is δ > 0 and
{P1, . . . , Pn} ⊂ P(X) so that ‖TP (x) − TP (y)‖ < ε, whenever |Pj(x − y)| < δ
for any 1 ≤ j ≤ n and x, y ∈ BX . For such x, y we have

‖P (x)− P (y)‖
≤ ‖P̂ (x, . . . , x)− P̂ (x, y, x, . . . , x)‖+ ‖P̂ (x, y, x, . . . , x)− P̂ (x, y, y, x, . . . , x)‖

+ · · ·+ ‖P̂ (x, y, . . . , y)− P̂ (y, . . . , y)‖
= ‖(TP (x)− TP (y))(x, . . . , x)‖+ ‖(TP (x) − TP (y))(x, y, x, . . . , x)‖

+ · · ·+ ‖(TP (x)− TP (y))(y, . . . , y)‖
< kε ,

and the proof is complete.

We say that a net (xα) ⊂ X converges to x in the weak polynomial topology
(pw-topology, for short) [3, §6] if for every P ∈ P(X) we have P (xα) → P (x).

It is clear that a mapping f : X → Y is pw-continuous on bounded sets if and
only if for every x ∈ X , ε > 0 and bounded B ⊂ X with x ∈ B, there are δ > 0 and

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



POLYNOMIAL CONTINUITY ON `1 1351

{P1, . . . , Pn} ⊂ P(X) so that we have ‖f(x)− f(y)‖ < ε whenever |Pj(x− y)| < δ
for 1 ≤ j ≤ n and y ∈ B. Obviously, an operator is P -continuous if and only if it
is pw-continuous on bounded sets.

We now relate the P -continuity with property (RP) of Aron, Choi and Llavona
[1]. We say that X has property (RP) if given two bounded sequences (uj) and (vj)
in X , we have that Q(uj)−Q(vj) → 0 for every Q ∈ P(X) whenever P (uj−vj) → 0
for every P ∈ P(X).

Every superreflexive space and every space with the DPP not containing `1 have
property (RP) [1]. Clearly, if every scalar valued (continuous) polynomial on X is
P -continuous, then X has property (RP). It is proved in [1] that C[0, 1], L1[0, 1]
and L∞[0, 1] do not satisfy property (RP), and that there are 3-homogeneous poly-
nomials on the spaces C[0, 1] and L∞[0, 1] which are not P -continuous. Similarly,
there is a non-P -continuous 2-homogeneous polynomial on L1[0, 1].

It is natural to ask whether property (RP) implies that every scalar valued
polynomial is P -continuous. We show that the answer is no by giving examples of
polynomials on `1 which are not P -continuous. We first need to construct a pw-null
net in the sphere of `1. We need a previous lemma.

Lemma 2. Let U be a weak zero neighbourhood in `1. Then, for each m ∈ N we
can find x = (xn) ∈ S`1 ∩U and r > m so that xn = 0 whenever n < m and n > r.

Proof. We can find ξ1, . . . , ξk ∈ B`∞ and ε > 0 such that

U ⊇ {x ∈ `1 : |ξj(x)| < ε for 1 ≤ j ≤ k} .
Let ξj =

(
ξnj
)∞
n=1

. There is an infinite set A ⊂ N so that
∣∣ξpj − ξqj

∣∣ < 2ε whenever

1 ≤ j ≤ k and p, q ∈ A. Fix p, q ∈ A (m ≤ p < q), and set x := (ep − eq)/2 and
r = q. Then |ξj(x)| = ∣∣ξpj − ξqj

∣∣ /2 < ε for 1 ≤ j ≤ k, and the proof is complete.

The following two results use the idea of [4].

Lemma 3. Let F be a finite family of continuous symmetric multilinear forms on
`1, ε > 0 and N ≥ 1. Then there exist x1, . . . , xN ∈ S`1 , with disjoint supports,
such that |F (xi1 , . . . , xim)| < ε whenever F ∈ F is an m-form and i1, . . . , im are
distinct indices between 1 and N .

Proof. Since each F ∈ F is symmetric, it is enough to obtain the estimate when
i1 < · · · < im.

By Lemma 2, we can find n1 ∈ N and x1 ∈ S`1 , having all but the first n1

coordinates equal to zero, so that |F (x1)| < ε for all F ∈ F ∩ `∗1. Again by
Lemma 2, we can choose n2 ∈ N and x2 ∈ S`1 having disjoint support with x1 and
all but the first n2 coordinates equal to zero, so that |F (x2)| < ε for all F ∈ F ∩ `∗1,
and |F (x1, x2)| < ε for all F ∈ F ∩ Ls(2`1). In this way, we obtain xj ’s with
disjoint supports, so that |F (xi1 , . . . , xim)| < ε for all F ∈ F ∩ Ls(m`1) and all
i1 < · · · < im.

Theorem 4. There is a pw-null net in S`1 .

Proof. It is enough to show that for every finite family F ⊂ P(`1) and ε > 0, there
is an x ∈ S`1 so that |P (x)| < ε for all P ∈ F .

Fix N large, choose x1, . . . , xN ∈ S`1 with disjoint supports satisfying the con-

ditions of Lemma 3 for the family {P̂ : P ∈ F} of symmetric multilinear forms,
and set

x :=
1

N
(x1 + · · ·+ xN ) ∈ S`1 .
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If P ∈ F ∩ P(m`1), we write

P (x) =
1

Nm

N∑
i1,... ,im=1

P̂ (xi1 , . . . , xim) = Σ1 + Σ2 ,

where Σ1 is the sum over m-tuples of distinct indices, and Σ2 is the sum over the
remaining indices.

By Lemma 3, |Σ1| < ε/2. Since there are Nm − N(N − 1) · · · (N − m + 1)
summands in Σ2, we obtain

|Σ2| ≤
[
1−

(
1− 1

N

)
· · ·
(

1− m− 1

N

)]
· ‖P̂‖ < ε

2
,

for N large enough.

As a consequence, if X contains a copy of `1, then the unit sphere of X contains
a pw-null net as well. We now give the main result.

Theorem 5. For every k ∈ N (k ≥ 2), there is a k-homogeneous scalar valued
polynomial on `1 which is not P -continuous.

Proof. Suppose first that k = 2 and `1 is constructed over the real numbers. We
need a sequence (xj) ⊂ `∞, equivalent to the `1-basis, such that xji = xij for all

i, j ∈ N, where xij := xj(ei) (then we say that the sequence is symmetric).
We select a Rademacher-like sequence (yj) ⊂ `∞, taking y1 := (1,−1, 1,−1, . . . ),

and letting yj be the sequence consisting of infinitely many times the following block
of 2j integers:

1, (2
j−1). . . , 1,−1, (2

j−1). . . ,−1 .

Clearly, (yj) is 1-equivalent to the unit vector basis of `1; i.e., for every finite set of
real numbers α1, . . . , αn, we have

n∑
j=1

|αj | =
∥∥∥∥∥∥

n∑
j=1

αjyj

∥∥∥∥∥∥
∞

.(1)

If we take x1 := y1 and, for j > 1, modify the first j − 1 coordinates of yj in the
obvious way, then we get a symmetric sequence (xj) which is still 1-equivalent to
the unit vector basis of `1.

Now, define an operator T : `1 → `∞ by T (ej) := xj . Since T is an embedding,
we conclude from Theorem 4 that it is not P -continuous. Therefore, by Proposi-
tion 1, the 2-homogeneous polynomial P : `1 → R given by P (y) = (T (y))(y) for
y ∈ `1 is not P -continuous.

The same sequence can be used in the complex case, since, for every finite set of
complex numbers α1, . . . , αn, we have (see [5, XI, Proposition 4])

n∑
j=1

|αj | ≤ 4

∥∥∥∥∥∥
n∑

j=1

αjyj

∥∥∥∥∥∥
∞

.(2)

The sequence (yj) will be used in the case k > 2 as well. Letting

Aj (ei2 , . . . , eik) :=

{
yi2+···+ik
j if j ≤ min {i2, . . . , ik} ,
y
j+i2+···+ir−1+ir+1+···+ik
ir

if ir = min{i2, . . . , ik} < j ,
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we obtain Aj ∈ Ls(k−1`1). Moreover, the sequence (Aj) is equivalent to the
unit vector basis of `1. Indeed, given real numbers α1, . . . , αn, using (1), choose
i2, . . . , ik ∈ N such that n ≤ min{i2, . . . , ik} and

n∑
j=1

|αj | =
∣∣∣∣∣∣
n∑

j=1

αjy
i2+···+ik
j

∣∣∣∣∣∣ =

∥∥∥∥∥∥
n∑

j=1

αjAj

∥∥∥∥∥∥ .

Note that the sequence (Aj) is symmetric in the sense that Ai1 (ei2 , . . . , eik) is in-
variant under permutation of the indices i1, . . . , ik. In the complex case we proceed
similarly, using (2) in place of (1). In both cases we define T : `1 → Ls(k−1`1) by
T (ej) = Aj . Then the polynomial P ∈ P(k`1) given by

P (α) :=

∞∑
i1,... ,ik=1

αi1 · · ·αikAi1 (ei2 , . . . , eik) , for α = (αj)
∞
j=1 ∈ `1 ,

is not P -continuous, since the associated operator T is an isomorphism.

The authors wish to thank J. A. Jaramillo, M. Lacruz and S. Troyanski for
helpful discussions.
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plutense de Madrid, 28040 Madrid, Spain

E-mail address: llavona@eucmax.sim.ucm.es

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


