
New J. Phys. 17 (2015) 079602 doi:10.1088/1367-2630/17/7/079602

ERRATUM

Erratum: Quantifying spatial correlations of general quantum
dynamics (2015New J. Phys.17 062001)

Ángel Rivas andMarkusMüller
Departamento de Física Teórica I, UniversidadComplutense, E-28040Madrid, Spain

E-mail: anrivas@ucm.es

Onpage 4, an error wasmade in the statement ‘Theorem 1’. The correct sentence is as follows:

Theorem1. If for a map S ( )the property Ī 1S = holds such a map must be unitary, ( )S ⋅ =
U U U U( ) ,S S S S

† †⋅ = .

Due to a typesetting error, on page 9, line below equation (C5), commaswere incorrectly inserted. The

correct equation is:( )kdkV
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.
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Abstract
Understanding the role of correlations in quantum systems is both a fundamental challenge as well as
of high practical relevance for the control ofmulti-particle quantum systems.Whereas a lot of research
has been devoted to study the various types of correlations that can be present in the states of quantum
systems, in this workwe introduce a general and rigorousmethod to quantify the amount of
correlations in the dynamics of quantum systems. Using a resource-theoretical approach, we
introduce a suitable quantifier and characterize the properties of correlated dynamics. Furthermore,
we benchmark ourmethod by applying it to the paradigmatic case of two atomsweakly coupled to the
electromagnetic radiation field, and illustrate its potential use to detect and assess spatial noise
correlations in quantumcomputing architectures.

1. Introduction

Quantum systems can display awide variety of dynamical behaviors, in particular depending on how the system
is affected by its coupling to the surrounding environment. One interesting feature which has attractedmuch
attention is the presence ofmemory effects (non-Markovianity) in the time evolution. These typically arise for
strong enough coupling between the system and its environment, or when the environment is structured, such
that the assumptions of thewell-knownweak-coupling limit [1–3] are no longer valid.Whereasmemory effects
(or time correlations) can be present in any quantum system exposed to noise, another extremely relevant
feature, whichwewill focus on in this work, are correlations in the dynamics of different parts ofmulti-partite
quantum systems. Since different parties of a partition are commonly, though not always, identifiedwith
different places in space, without loss of generality wewill in the following refer to these correlations between
different subsystems of a larger system as spatial correlations.

Spatial correlations in the dynamics give rise to awide plethora of interesting phenomena ranging from
super-radiance [4] and super-decoherence [5] to sub-radiance [6] and decoherence-free subspaces [7–11].
Moreover, clarifying the role of spatial correlations in the performance of a large variety of quantumprocesses,
such as e.g. quantum error correction [12–17], photosynthesis and excitation transfer [18–28], dissipative phase
transitions [29–33] and quantummetrology [34] has been and still is an active area of research.

Along the last few years, numerousworks have aimed at quantifying up towhich extent quantumdynamics
deviates from theMarkovian behavior, see e.g. [35–43].However,much less attention has been paid to develop
quantifiers of spatial correlations in the dynamics, although someworks e.g. [44, 45] have addressed this issue
for some specificmodels. Thismay be partially due to thewell-known fact that undermany, though not all
practical circumstances, dynamical correlations can be detected by studying the time evolution of correlation
functions of properly chosen observables A and B , acting respectively on the two partiesA andB of interest.
For instance, in the context of quantum computing, sophisticatedmethods towitness the correlated character of
quantumdynamics, have been developed and implemented in the laboratory [45]. Indeed, any correlation

C ( , )A B A B A B= 〈 ⊗ 〉 − 〈 〉〈 〉      detected during the time evolution of an initial product state,

A Bρ ρ ρ= ⊗ , witnesses the correlated character of the dynamics. However, note that there exist highly
correlated dynamics, which cannot be realized by a combination of local processes, which do not generate any
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such correlation, e.g. the swap process between two parties. Such dynamics can either act on internal degrees of
freedom, induced e.g. by the action of a swap gate acting on two qubits [46], or can correspond to (unwanted)
external dynamics, caused e.g. by correlated hopping of atoms in an optical lattice [47, 48] or crystalmelting and
subsequent recooling dynamics in trapped-ion architectures [49].

Thus, it is of eminent importance to developmethodswhich allow us to detect the presence or absence of
spatial correlations in the dynamics, without a priori knowledge of the underlyingmicroscopic dynamics, and
do not require us to resort to adequately chosen ‘test’ observables and initial ‘test’ quantum states. Suchmethods
should furthermore provide a rigorous ground to quantitatively compare the amount of spatial correlations in
different dynamical processes. These characteristics are essential for a ‘good’ correlation quantifier that can be
used to study spatial correlations in quantumdynamics from a fundamental point of view [50–52], to clarify
their role in physical processes [12–34], as well as tomeasure and quantify spatial correlations in the dynamics of
experimental quantum systems.

It is the aim of this work to introduce amethod to quantify the degree of correlation in general quantum
dynamics from a fundamental view point. Specifically,

(i) we propose a theoretical framework and formulate a general measure to assess the amount of spatial
correlations of quantumdynamics without resorting to any specific physicalmodel. To this end, we adopt a
resource theory approach, and formulate a fundamental law that any faithfulmeasuremust satisfy.

(ii) Within this framework, we study the properties that a dynamics has to fulfill to be considered asmaximally
correlated.

(iii) We apply our measure to the paradigmatic quantum-optical model of two two-level atoms radiating into
the electromagnetic vacuum. This case exemplifies theworking principle of ourmeasure and quantitatively
confirms the expectation that spatial dynamical correlations decaywith increasing interatomic distance
and for long times.

(iv) Finally, we illustrate this formalism with a second example in the context of quantum computing, where
quantum error correction protocols rely on certain assumptions on (typically sufficiently small) noise
strengths and noise correlations. Specifically, we consider two qubits subject to local thermal baths that
suffer some residual interactionwhich induces a correlated noisy dynamics. Ourmethod reveals the
remarkable fact that, under keeping the overall error probability for the two qubits constant, the degree of
spatial correlations decays very rapidly as the bath temperature increases. This suggests that, in some
situations, noise addition as e.g. by amoderate increase of the environmental temperature, can be beneficial
to tailor specific desired noise characteristics.

2.Measure of correlations for dynamics

2.1. Uncorrelated dynamics
Let us consider a bipartite quantum system S AB= undergoing some dynamics given by a completely positive
and trace preserving (CPT)map S [without loss of generality we shall assume ddim( ) dim( )A B= =  and

so d ddim( )S S
2≔ = ]. This dynamics is said to be uncorrelatedwith respect to the subsystems A and B if it

can be decomposed as S A B= ⊗   , withCPTmaps A and B acting on A and B, respectively. Otherwise it
is said to be correlated.

The central tool of our construction is the Choi–Jamiołkowski isomorphism [53, 54], which provides a one-
to-onemap of a given quantumdynamics to an equivalent representation in the formof a quantum state in an
enlargedHilbert space. Thismapping allows us to use tools developed for the quantification of correlations in
quantum states for our purpose of quantifying correlations in quantumdynamics. Thus, consider a second d2

-dimensional bipartite system S A B′ = ′ ′, and let SSΦ∣ 〉′ be themaximally entangled state between S and S′,

d
jj

d
k k

1 1
. (1)SS

j

d

SS
k

d

AB A B
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∑ ∑Φ ℓ ℓ≔ = ⊗
ℓ

′
=

′
=

′ ′

Here, j∣ 〉denotes the state vector with 1 at the jth position and zero elsewhere (canonical basis). TheChoi–
Jamiołkowki representation of someCPTmap S on S is given by the d4-dimensional state

( ), (2)S S S SS SS
CJρ Φ Φ≔ ⊗ ′ ′ ′ 

where S′ denotes the identitymap acting on S′. The entire information about the dynamical process S is
contained in this unique state.
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2.2. Construction of the correlationmeasure
In order to formulate a faithfulmeasure of spatial correlations for dynamics, we adopt a resource theory
approach [55–62]. This is, wemay consider correlated dynamics as a resource to performwhatever task that
cannot be implemented solely by (composing) uncorrelated evolutions A B⊗  . Then, suppose that the system
Sundergoes some dynamics given by themap S , and consider the (left and right) composition of S with some
uncorrelatedmaps A B⊗  and A B⊗  , so that the total dynamics is given by S′= ( )A B S⊗  
( )A B⊗  . It is clear that any task that we can dowith S′ by compositionwith uncorrelatedmaps can also be
achievedwith S by compositionwith uncorrelatedmaps.Hence, we assert that the amount of correlation in S
is at least as large as in S′ . In other words, the amount of correlations of some dynamics does not increase under
compositionwith uncorrelated dynamics. This is the fundamental law of this resource theory, and any faithful
measure of correlations should satisfy it. For the sake of comparison, in the resource theory of entanglement,
entanglement is the resource, and the fundamental law is that entanglement cannot increase under application
of local operations and classical communication (LOCC) [55].

In this spirit, we introduce ameasure of correlations for dynamics via the (normalized) quantummutual
information of theChoi–Jamiołkowski state S

CJρ , equation (2),

( )

( ) ( ) ( )

I
I

d

d
S S S

¯( )
4 log

1

4 log
, (3)

S
S

S AA S BB S

CJ

CJ CJ CJ⎡⎣ ⎤⎦

ρ

ρ ρ ρ

≔

≔ + −′ ′



with S ( · ) Tr[( · )log( · )]≔ − the vonNeumann entropy evaluated for the reduced density operators
Tr ( )S AA BB S

CJ CJρ ρ∣ ≔′ ′ and Tr ( )S BB AA S
CJ CJρ ρ∣ ≔′ ′ , and S

CJρ ; seefigure 1. The quantity Ī ( )S is a faithful
measure of how correlated the dynamics given by S is, as it satisfies the following properties:

(i) Ī ( ) 0S = if and only if S is uncorrelated, S A B= ⊗   . This follows from the fact that the Choi–
Jamiołkowski state of an uncorrelatedmap is a product state with respect to the bipartition AA BB′∣ ′, see
appendix A.

(ii) Ī ( ) [0, 1]S ∈ . It is clear that Ī ( ) 0S ⩾ , moreover it reaches its maximum value when S ( )S
CJρ is minimal

and ( ) ( )S SS AA S BB
CJ CJρ ρ∣ + ∣′ ′ ismaximal. Both conditionsmeet when S

CJρ is amaximally entangled state

with respect to the bipartition AA BB′∣ ′, leading to I d( ) 2 logS
CJ 2ρ = .

(iii) The fundamental law is satisfied,

I I¯( ) ¯[( ) ( )], (4)S A B S A B⩾ ⊗ ⊗     
where the equality is reached for uncorrelated unitaries U U( · ) ( · )A A A

†= , U U( · ) ( · )B B B
†= ,

V V( · ) ( · )A A A
†= , and V V( · ) ( · )B B B

†= . This result follows from themonotonicity of the
quantummutual information under local CPTmaps (which in turn follows from themonotonicity of
quantum relative entropy [63]) and the fact that for anymatrixA, A AS SS S SS

tΦ Φ⊗ ∣ 〉 = ⊗ ∣ 〉′ ′ ′  where
the superscript ‘t’ denotes the transposition in the Schmidt basis of themaximally entangled state SSΦ∣ 〉′ .

2.3.Maximally correlated dynamics
Before computing Ī for some cases it is worth studyingwhich dynamics achieve themaximumvalue Ī 1max = .
From the resource theory point of view, these dynamics can be considered asmaximally correlated since they

Figure 1. Schematics of themethod. Left: the system S is prepared in amaximally entangled state SSΦ∣ 〉′ with the auxiliary system S′
(this state is just a product ofmaximally entangled states between AA′ and BB′, see equation (1)).Middle: the systemundergoes some
dynamics S . Right: if and only if this process is correlatedwith respect toA andB, the total system SS′ becomes correlatedwith
respect to the bipartition AA BB′∣ ′ and the degree of correlation can bemeasured by the normalizedmutual information, equation (3).
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cannot be constructed fromothermaps by compositionwith uncorrelatedmaps (because of equation (4)).We
have the following results:

Theorem1. If for amap S the property Ī ( )S holds, such amapmust be unitary U U( · ) ( · )S S S
†= ,U US S

† = .

Proof.As aforementioned, themaximumvalue, Ī ( ) 1S = , is reached if and only if S
CJρ is amaximally

entangled state with respect to the bipartition AA BB′∣ ′, AA BB( ) ( )Ψ∣ 〉′ ∣ ′ . Then

( ) (5)S S SS SS AA BB AA BB( ) ( ) ( ) ( )Φ Φ Ψ Ψ⊗ =′ ′ ′ ′ ′ ′ ′ 

is a pure state. Therefore S must be unitary as theChoi–Jamiołkowski state is pure if and only if it represents a
unitarymap. □

Despite the connectionwithmaximally entangled states, the set ofmaximally correlated operations
U I U{ ; ¯ ( ) 1}S SC ≔ = , can not be so straightforwardly characterized as itmay seem.Note that not allmaximally

entangled states AA BB( ) ( )Ψ∣ 〉′ ∣ ′ are valid Choi–Jamiołkowski states. In appendix Bwe provide a detailed proof of
the next theorem.

Theorem2.AunitarymapUS C∈ if and only if it fulfills the equation

ki U mj nj U i . (6)
i j

S S k mn

,

†∑ ℓ δ δ= ℓ

Examples ofmaximally correlated dynamics are the swap operation exchanging the states of the two partiesA
andB,U US A B= ↔ , and thus also any unitary of the formof U U U V V( ) ( )A B A B A B⊗ ⊗↔ . However, not every
US C∈ falls into this class. For example, the unitary operation of two qubitsU 21 12 iS′ = ∣ 〉〈 ∣ + ( 11 21∣ 〉〈 ∣

12 11+∣ 〉〈 ∣ 22 22 )+∣ 〉〈 ∣ belongs to C and it cannot bewritten as U U U( )A B A B⊗ ↔ V V( )A B⊗ , since thatwould
imply vanishing I U U¯( )S A B′ ↔ whereas I U U¯( ) 1 2 0S A B′ = ≠↔ . Interestingly, operations able to create highly
correlated states such as the two-qubit controlled-NOT gate [46] aswell as the two-qubit dynamicalmaps
describing the dissipative generation of Bell states [64, 65] achieve a correlation value of 1/2 and thus do not
correspond tomaximally correlated dynamics. Note that whereas a controlled-NOTgate creates for
appropriately chosen two-qubit initial statesmaximally entangled states, there are other states which are left
completely uncorrelated under its action. Themeasure Ī captures—completely independently of initial states
and ofwhether possibly created correlations are quantumor classical—the fact that correlated dynamics cannot
be realized by purely local dynamics.

Let us point out that in some resource theories, such as bi-partite entanglement, themaximal element can
generate any other element by applying the operations which fulfill its fundamental law, e.g. LOCC. This is not
the case here, i.e.maximally correlated evolutions cannot generate any arbitrary dynamics by compositionwith
uncorrelated operations. Indeed, if S

max were able to generate any other dynamics, in particular it would be able

to generate any unitary evolutionUS, U U( ) ( )( · ) ( · )A B S A B S S
max †⊗ ⊗ =     . However, this would

imply that A B⊗  , S
max and ( )A B⊗  are unitary evolutions aswell, so that U U( )A B⊗ US

max

V V U( )A SB⊗ = , with U U( · ) ( · )S S S
max max max †= . Since Ī ( )S is invariant under the composition of

uncorrelated unitaries, this result would imply that for any correlated unitaryUS, I U¯( )S would take the same
value I U[¯( )]S

max , and this is not true as can be easily checked.

3. Applications

3.1. Two-level atoms in the electromagnetic vacuum
To illustrate the behavior of Ī ( )S , consider the paradigmatic example of two identical two-level atomswith
transition frequencyω interacting with the vacuumof the electromagnetic radiation field (see appendix C).
Under a series of standard approximations, the dynamics of the reduced densitymatrix of the atoms Sρ is
described by themaster equation
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( ){ }
t

a

d

d
( ) i ,

, , (7)

S
S

z z
S

j k

jk k S j j k S

2 1 2

, 1,2

1

2

⎡⎣ ⎤⎦
∑

ρ
ρ σ σ ρ

σ ρ σ σ σ ρ

= = − +

+ −

ω

=

− + + −



where j
zσ is the Pauli z-matrix for the jth atom, and e g( )j j j

†σ σ= = ∣ 〉 〈 ∣+ − the electronic raising and lowering
operators, describing transitions between the exited e j∣ 〉 and ground g j∣ 〉 states. The coefficients ajk depend on
the spatial separation r between the atoms. In the limit of r 1 ω≫ they reduce to a jk jk0γ δ≃ , whereas for
r 1 ω≪ they take the form a jk 0γ≃ . Here 0γ is the decay rate of the individual transition between e∣ 〉 and g∣ 〉. In
thefirst regime the two-level atoms interact effectively with independent environments, while in the second, the
transitions are collective and lead to theDickemodel of super-radiance [4].

To quantitatively assess this behavior of uncorrelated/correlated dynamics as a function of r, we compute the
measure of correlations Ī , equation (3) (see appendix C for details). The results are shown infigure 2.Despite
the fact that the value of Ī depends on time (the dynamicalmap is et

S = ), Ī decreases as r increases, as
expected. Furthermore, the value of Ī approaches zero for t large enough (see inset plot), except in the limiting
case r=0, because for r 0≠ the dynamics becomes uncorrelated in the asymptotic limit, lim et

t = ⊗→∞   ,

where K K K K( · ) ( · ) ( · )1 1
†

2 2
†= + withKraus operators ( )K 0 0

1 01 = and ( )K 0 0
0 12 = ; however for

r=0, lim et
t

→∞
 is a correlatedmap. Thus, we obtain perfect agreement between the rigorousmeasure of

correlations Ī and the physically expected behavior of two distant atoms undergoing independent noise.

3.2. Spatial noise correlations in quantum computing
Fault-tolerant quantum computing is predicted to be achievable provided that detrimental noise is sufficiently
weak andnot too strongly correlated [66]. However, even if noise correlations decay sufficiently fast in space,
associated (provable) bounds for the accuracy threshold values can decrease by several orders ofmagnitude as
compared to uncorrelated noise [14]. Thus, it is of both fundamental and practical importance [45] to be able to
detect, quantify and possibly reducewithout a priori knowledge of the underlyingmicroscopic dynamics the
amount of correlated noise.Here, we exemplify how the proposedmeasure can be employed in this context by
applying it to a simple, though paradigmaticmodel systemof two representative qubits from a larger qubit
register.We assume that the qubits are exposed to local thermal (bosonic) baths, such as realized e.g. by coupling
distant atomic qubits to the surrounding electromagnetic radiationfield, and that they interact via aweakZZ-
coupling, which could be caused, e.g., by undesired residual dipolar or van-der-Waals type interactions between
the atoms. The ‘error’ dynamics of this system is described by themaster equation

Figure 2.Maximumvalue of Ī as a function of the distance r for two two-level atoms radiating in the electromagnetic vacuum.As
expected, the amount of correlations in the dynamics decreases with r. In the inset, Ī is represented as a function of time for different
distances r between atoms ( d 2 1ω = ∣ ∣ = , 0θ = , see appendixC).
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( )

( )

{ }

{ }

t
J

n

n

d

d
( ) i ( ) ,

( ¯ 1) ,
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S
S

z z z z
S

j

j S j j j S

j

j S j j j S

2 1 2 1 2

1,2
0

1

2

1,2
0

1

2

⎡⎣ ⎤⎦
∑

∑

ρ
ρ σ σ σ σ ρ

γ σ ρ σ σ σ ρ

γ σ ρ σ σ σ ρ

= = − + +

+ + −

+ −

ω

=

− + + −

=

+ − − +



whereω is the energy difference between the qubit states, J the strength of the residualHamiltonian coupling, 0γ
is again the decay rate between upper and lower energy level of each individual qubit and n T¯ [exp( ) 1] 1ω= − −

ismean number of bosonswith frequencyω in the two local baths of temperatureT (assumed to be equal).
We assume J and 0γ to be out of our control and aim at studying the spatial correlations of the errors induced

by the interplay of the residualZZ-coupling and the baths as a function of the bath temperatureT and elapsed
time t, which in the present contextmight be interpreted as the time for executing one round of quantum error
correction [66, 67]. Since the overall probability that some error occurs on the two qubits will increase under
increasing t andT, we need tofix it for a fair assessment of the correlation of the dynamics. A natural way to do
this is by defining the error probability in terms of how close the dynamicalmap induced by equation (8)
(excluding the term ( )z z

2 1 2σ σ+ω , as this is not considered a source of error) is to the identitymap (the case of no

errors). Particularly, we can use thefidelity between bothChoi–Jamiołkowski states, S
CJρ for the ‘error’map and

SSΦ∣ 〉′ for the identitymap, P 1 SS SSerror S
CJΦ ρ Φ= − 〈 ∣ ∣ 〉′ ′ . Figure 3 shows the value of amount of dynamical

correlations asmeasured by Ī along a t–T line onwhich the error probability is constant (P 0.1error = , green line
in the inset plot). The numerical data shows, despite this fixing of the overall error rate, that as the temperature
increases the correlatedness of errors decreases very rapidly. This remarkable result suggests that by increasing
the effective, surrounding temperature one can strongly decrease the non-local character of the noise at the
expense of a slightly higher error rate per fixed time t, or constant error rates if the time t for an error correction
round can be reduced. Thus, the proposed quantifiermight prove useful tomeet and certify in a given physical
architecture the noise levels and noise correlation characteristics which are required to reach the regimewhere
fault-tolerant scalable quantum computing becomes feasible in practice.

4. Conclusion

In this work, we have formulated a generalmeasure for the spatial correlations of quantumdynamics without
restriction to any specificmodel. To that aimwe have adopted a resource theory approach and obtained a
fundamental law that any faithful quantifier of spatial correlationmust satisfy.We have characterized the
maximally correlated dynamics, and applied ourmeasure to the paradigmatic example of two atoms radiating in

Figure 3.Amount of spatial correlations Ī along the t–T line corresponding to constant error probability P 0.1error = .We see the rapid
decreasing of Ī asT increases (J = 1 and 4 30γ = in units ofω). The inset shows t–T isolines for various values of the error probability
Perror, which increases with both t andT.
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the electromagnetic field, where spatial correlations are naturally related to the separation between atoms.
Furthermore, we have illustrated the applicability of themeasure in the context of quantum computing, where it
can be employed to quantify and potentially control spatial noise correlationswithout a priori knowledge of the
underlying dynamics.

Beyond the scope of this work it will be interesting from a fundamental point of view to study howmany
independent (up to local unitaries)maximally correlated dynamics there are, and how to deal with the case of
multi-partite or infinite dimensional systems. From a practical point of view, it is also interesting to develop
efficientmethods to estimate the proposedmeasure, in particular in high-dimensional quantum systems, e.g. by
the construction of witnesses or bounds, in analogy to entanglement estimators [68] that have been developed
based on the resource theory of entanglement. In this regard, it is our hope that the present results provide a
useful tool to study rigorously the role of spatial correlations in a variety of physical processes, including noise
assisted transport, quantum computing and dissipative phase transitions.
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AppendixA. Choi–Jamiołkowski state of uncorrelatedmaps

First of all, letUB A↔ ′ be the commutationmatrix (or unitary swap operation) [69, 70] betweenHilbert
subspaces B and A′ of the totalHilbert space A B A B⊗ ⊗ ⊗′ ′    :

( )U M M M M U (A1)B A B A1 2 3 4
†⊗ ⊗ ⊗↔ ′ ↔ ′

M M M M . (A2)1 3 2 4= ⊗ ⊗ ⊗

whereM1,M2,M3 andM4 are operators acting on the respectiveHilbert subspaces in the decomposition

A B A B⊗ ⊗ ⊗′ ′    . This is,M1 acts on A ,M4 on B′ , andM2 andM3 act on B and A′ on the left-
hand side and on A′ and B on the right-hand side of the equality respectively. Note thatU UB A B A =↔ ′ ↔ ′  and
thenU UB A B A

†=↔ ′ ↔ ′.
Now, it turns out that the evolution given by some dynamicalmap S is uncorrelatedwith respect to the

subsystems A and B, S A B= ⊗   , if and only if its Choi–Jamiołkowski state ( )S S S SS SS
CJρ Φ Φ≔ ⊗ ∣ 〉〈 ∣′ ′ ′ 

is

( )U U , (A3)S B A A B B A
CJ CJ CJρ ρ ρ= ⊗↔ ′ ↔ ′

where A
CJρ and B

CJρ are theChoi–Jamiołkowski states of themaps A and B , respectively.
Indeed, if S A B= ⊗   , we have (omitting for the sake of clarity the subindexes in the basis expansion of

SSΦ∣ 〉′ ):

d
k mn k mn

d
k m n k mn

( )
1

( )

1
( ) ( ) , (A4)

S S S SS SS

k m n

d

S

k m n

d

A B

CJ
2

, , , 1

2
, , , 1

∑

∑

ρ Φ Φ ℓ ℓ

ℓ ℓ

= ⊗ = ⊗

= ⊗ ⊗

ℓ

ℓ

′ ′ ′
=

=

 

 



then

U U
d

k m k m n n

d
kk mm

d
nn

1
( ) ( )

1
( )

1
( )

. (A5)

B A S B A

k m n

d

A B

k m

d

A

n

d

B

A B

CJ
2

, , , 1

, 1 , 1

CJ CJ

∑

∑ ∑

ρ ℓ ℓ

ℓℓ

ρ ρ

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

= ⊗

ℓ

ℓ

↔ ′ ↔ ′
=

= =

 

  

Conversely, if equation (A3) holds, then the dynamics has to be uncorrelated because the correspondence
betweenChoi–Jamiołkowski states and dynamicalmaps is one-to-one.
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From equation (A3) it is straightforward to conclude that Ī ( ) 0S = if and only if S is uncorrelated,

because the vonNeumann entropy of theChoi-Jamiłkowski state factorizes S ( )S
CJρ =

( )S U UB A A B B A
CJ CJ⎡⎣ ⎤⎦ρ ρ⊗ =↔ ′ ↔ ′ ( )S A B

CJ CJρ ρ⊗ = ( )S A
CJρ ( )S B

CJρ+ if and only if S is uncorrelated.

Appendix B. Proof of theorem2

As commented in section 2.3,US C∈ if

U , (B1)AA BB S SS( ) ( )Ψ Φ= ⊗′ ′ ′

where AA BB( ) ( )Ψ∣ 〉′ ∣ ′ is amaximally entangled statewith respect to the bipartition AA BB′∣ ′. Note that if
AA BB( ) ( )Ψ∣ 〉′ ∣ ′ is amaximally entangled state with respect to the bipartition AA BB′∣ ′,UB A AA BB( ) ( )Ψ∣ 〉↔ ′ ′ ∣ ′ will be a

maximally entangled state state with respect to the bipartition AB A B S S∣ ′ ′ = ∣ ′. Since anymaximally entangled
state with respect to the bipartition S S∣ ′ can bewritten asU U˜ ˜

S S SSΦ⊗ ∣ 〉′ ′ for some local unitaries ŨS and ŨS′,
we canwrite

U U U˜ ˜ . (B2)B A AA BB S S SS( ) ( )Ψ Φ= ⊗↔ ′ ′ ′ ′ ′

Because of equations (B1) and (B2)we conclude thatUS C∈ if and only if there exist unitaries ŨS and ŨS′ such
that

U U U U( ˜ ˜ ) . (B3)S S SS B A S S SSΦ Φ⊗ = ⊗′ ′ ↔ ′ ′ ′

Next, we prove the following
Lemma. A unitarymapUS C∈ if and only if there exists some other unitaryV such that thematrix elements

ofUS can bewritten as

k U mn km V n . (B4)Sℓ ℓ=

Proof. IfUS C∈ , then by taking inner product with respect to the basis element k mnℓ∣ 〉 in equation (B3)we
obtain:

k U mn d km n U U

km U U n km V n

˜ ˜

˜ ˜ , (B5)

S S S SS

S S
t

ℓ ℓ Φ

ℓ ℓ

= ⊗

= =
′ ′

′

forV U U˜ ˜
S S

t= ′. Here we have used that A AS SS S SS
tΦ Φ⊗ ∣ 〉 = ⊗ ∣ 〉′ ′ ′  where the superscript ‘t’ denotes the

transposition in the Schmidt basis of themaximally entangled state SSΦ∣ 〉′ , which has been taken to be the
canonical basis here.

Conversely, assume that there exists a unitaryV satisfying (B4). AsV can always be decomposed as the
product of two unitaries,V V V1 2= , by settingU V˜

S 1= andU V˜
S
t

2=′ , the same algebra as in equation (B5) leads
us to rewrite equation (B4) as

k mn U k mn U U U˜ ˜ . (B6)S S SS B A S S SSℓ Φ ℓ Φ⊗ = ⊗′ ′ ↔ ′ ′ ′

Since k mnℓ∣ 〉 are elements of a basis we conclude that equation (B3) holds. □

With these results, the theorem2 is easy to prove.

Proof of theorem2.Note that for any unitaryUS, equation (B4) is satisfied for somematrixV. Thus, whatwe
have to prove is that such amatrixV is unitary if and only ifUS fulfills the equation

ki U mj nj U i , (B7)
i j

S S k mn

,

†∑ ℓ δ δ= ℓ

and this follows after a straightforward algebraic computation. □

AppendixC. Two two-level atoms coupled to the radiationfield

The freeHamiltonian of the atoms is

H
2

( ), (C1)S
z z

1 2
ω σ σ= +
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where j
zσ is the Pauli z-matrix for the jth atom. In addition, the environmental freeHamiltonian is given by

k kH a a( ) ( ), (C2)
k

kE

1,2

†∑ ∑ ω=
λ

λ λ
=

where k and λ stand for thewave vector and the two polarization degrees of freedom, respectively.We have
taken natural units c 1 = = . The dispersion relation in the free space is kkω = ∣ ∣, and the field operators

ka ( )†
λ and ka ( )λ describe the creation and annihilation of photonswithwave vector k and polarization vector

e .λ These fulfill k e· 0=λ and e e· ,δ=λ λ λ λ′ ′.
The atom–field interaction is described in dipole approximation by theHamiltonian

d E r d E rH · ( ) * · ( ) . (C3)SE

j

j j j j

1,2

⎡⎣ ⎤⎦∑ σ σ= − +
=

− +

Here, d is the dipolematrix element of the atomic transition, rj denotes the position of the jth atom, and

e g( )j j j
†σ σ= = ∣ 〉 〈 ∣+ − for its exited e j∣ 〉 and ground g j∣ 〉 states. Furthermore, the electric field operator is given by

(Gaussian units)

( )E r e k k ka a( ) i
2

( ) ( )e ( )e , (C4)
k

k k r k r

,

i · † i ·∑ πω
= −

λ
λ λ λ

−


where  denotes the quantization volume. In theMarkovianweak coupling limit [1] themaster equation for the
atoms takes the form:

( ){ }
t

a

d

d
( ) i ,

, , (C5)

S
S

z z
S

i j

jk k S j j k S

2 1 2

, 1,2

1

2

⎡⎣ ⎤⎦
∑

ρ
ρ σ σ ρ

σ ρ σ σ σ ρ

= = − +

+ −

ω

=

− + + −



where, after taking the continuum limit( )k, , , , , d ,k
1 1

(2 )
3

3 ∫∑ →
π and performing the integrals, the coefficients

ajk are given by (section 3.7.5 of [1])

( )a j x P j x( ) cos ( ) , (C6)jk jk jk jk0 0 2 2
⎡⎣ ⎤⎦γ θ= +

here d
4

30
3 2γ ω= ∣ ∣ , and j x( )0 and j x( )2 are spherical Bessel functions [71],

j x
x

x
j x

x x
x

x
x( )

sin
, ( )

3 1
sin

3
cos , (C7)0 2 3 2

⎜ ⎟⎛
⎝

⎞
⎠= = − −

and

P (cos )
1

2
(3 cos 1) (C8)2

2θ θ= −

is a Legendre polynomial, with

( )r r
d r r

d r r
x , and cos

· ( )
. (C9)jk j k jk

j k

j k

2

2

2 2
ω θ= − =

−

−

Notice that if the distance between atoms r rr 1 2= ∣ − ∣, ismuch larger than thewavelength associatedwith

the atomic transition r 1 ω≫ , we have a jk ij0γ δ≃ and only the diagonal terms d
4

30
3 2γ ω= ∣ ∣ are relevant.

Then, themaster equation describes two-level atoms interacting with independent environments, and there are
no correlations in the emission of photons by the first and the second atom. In the opposite case, when r 1 ω≪ ,
everymatrix element approaches the same value aij 0γ≃ , in themaster equation the atomic transitions can be

approximately described by the collective jumpoperators J 1 1σ σ= +±
± ±, and the pair of atoms becomes

equivalent to a four-level systemwithHamiltonian J
2

( )z
z z

1 2ω ω σ σ= + at themean position r r( ) 21 2−
interactingwith the electromagnetic vacuum. This emission of photons in a collective way known as super-
radiance is effectively described in terms of collective angularmomentumoperators in theDickemodel [4].

Evaluation of the correlationmeasure. In order to numerically compute Ī for this dynamics, we consider a
maximally entangled state SSΦ∣ 〉′ between two sets S and S′ of two qubits. Namely, S is the set of the two physical
qubits, i.e. the two two-level atoms 1 and 2, and S′ ismade up of two auxiliary qubits 1′ and 2′ as sketched in
figure 1.Next, the part S of themaximally entangled state SS SSΦ Φ∣ 〉〈 ∣′ ′ is evolved according to themaster

equation (C5)while keeping the part S′ constant, to obtain t( )S
CJρ . This can be done, for instance, by
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numerically integrating themaster equation
t

t
t

d ( )

d
[ ( )]S

CJ

S
CJ

ρ
ρ= ⊗  , with the initial condition

(0) SS SSS
CJρ Ψ Ψ= ∣ 〉〈 ∣′ ′ , where  is for the present example specified in equation (C5). Tracing out the qubits 2

and 2′ of t( )S
CJρ yields t( )S

CJ
11ρ ∣ ′, and similarly tracing out qubits 1 and 1′ yields t( )S

CJ
22ρ ∣ ′. Finally, this allows

one to compute the vonNeumann entropies of t( )S
CJ

11ρ ∣ ′, t( )S
CJ

22ρ ∣ ′ and t( )S
CJρ to calculate I t¯( ) according to

equation (3).
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