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We establish the ultimate limits that quantum theory im-

poses on the accuracy attainable in optical ellipsometry. We

show that the standard quantum limit, as usual reached

when the incident light is in a coherent state, can be sur-

passed with the use of appropriate squeezed states and, for

tailored beams, even pushed to the ultimate Heisenberg

limit. © 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Polatization measurements, which in a broad sense can be called

polarimetry, constitute a fundamental ingredient of many optical mea-

surement techniques [1]. Polarimetry finds conceptual and practical

applications in virtually every branch of science and technology.

Polarimetry is usually performed using a combination of wave

plates and polarizers that enable direct measurements of Stokes pa-

rameters. Exhaustive research has been performed over the years on

optimizing polarimetric setups [2–5] and the associated sources of er-

rors have been thoroughly identified. However, in all these analysis

light is assumed to be a nonfluctuating classical field, and so the errors

are exclusively related to imperfections in the setup. In other words,

all of them involve technical noise that is, in principle, subject to ex-

perimental control and can be eliminated with a proper refinement of

the setup.

Modern schemes often involve accurate polarization measure-

ments at faint light levels, even with single photons [6, 7]. In these

circumstances, quantum fluctuations of light cannot be neglected. Ac-

tually, quantum polarimetry [8], as being concerned with the quan-

tized Stokes variables, does also examine the ultimate quantum limits

of their measurements. [9].

In this Letter, we focus on ellipsometry, whose basis are deeply

intertwined with polarimetry [10]. However, instead of Stokes param-

eters, the basic quantity in ellipsometric measurements is the ellipso-

metric function ρ

ρ =
rp

rs
= ei∆ tanψ , (1)

where rσ (σ ∈ {p,s}) are the sample’s reflection coefficients for a

plane wave with the electric field polarized parallel to the plane of

incidence (p) or perpendicular to it (s). The parameter ∆ is the dif-

ferential phase shift between the p and s components upon reflection,

and tanψ is their amplitude ratio. Both, ψ and ∆ (and, hence, ρ)

can be directly determined with standard setups. Note carefully that

ρ involves only amplitude information, in contradistinction to Stokes

polarimetry.

Using a model-based approach, ellipsometry can determine a range

of properties (including layer thickness, refractive index, morphology,

and chemical composition) for films ranging in thickness from a few

angstroms to several tens of microns. These features, together with

the fact that it is nondestructive, noncontact, and noninvasive, make

of ellipsometry the method of choice in a variety of fields [11–13].

For a structure of m layers, the amplitude coefficients rσ can be

calculated by resorting to the transfer-matrix formalism [14]. For a

fixed angle of incidence and wavelength, rσ depend on the material pa-

rameters (ni) and layers thicknesses (di), so that one gets an involved

relation ρ = ρ(n1, . . . ,nm,d1, . . . ,dm). Dispersion has to be taken into

account if several wavelengths are used [12]. To infer the parame-

ters describing the structure, this relation has to be inverted. Only a

few specific cases have as yet been worked out analytically [15]. How-

ever, a vast number of numerical inversion methods have been devised

which are suitable for different circumstances [16].

Our aim here is to analyze how the quantum nature of light affects

the precision of ellipsometric measurements. Surprisingly, these ulti-

mate limits have not been previously examined. In particular, we are

concerned with the scaling of quantum noise with the total number of

photons. We will show that settings like those based on intense co-

herent states are in line with the standard quantum limit [17], whereas

an optimal phase profile of the beam given by the Mathieu function

allows one to reach the Heisenberg limit [18].

To introduce our model, we start by rewriting ρ as

ρ =
rps

aps
=

Rp/Rs

Ap/As
, (2)

where rps and aps are the amplitude ratios, in the linear polarization

basis p and s, for the reflected (Rσ ) and the incident (Aσ ) fields, re-

spectively.

Our plan involves finding out the proper translation of Eq. (2) into

the quantum domain. This would require replacing the complex am-

plitudes by their appropriate quantum counterparts. Before doing so,

we observe that, since an ideal specular reflection only multiplies the

field by a complex number, the fluctuations of the reflected field are

entirely due to the fluctuations of the incident one. After all, ellipsom-

etry, as its very name indicates, is based on the accurate determination

of the polarization ellipse: if we ignore any quantum dipole fluctua-

http://arxiv.org/abs/2007.10440v1
http://dx.doi.org/10.1364/ao.XX.XXXXXX


Letter Optics Letters 2

tions of the material system, the quantum limits are thus exclusively

ruled by aps, which we shall consider henceforth.

Apart from constant factors, of no relevance here, we can replace

the classical amplitudes Aσ with the mode annihilation operators âσ ,

which satisfy the bosonic commutation relations [âσ , â
†
σ ′ ] = δσσ ′ ,

(σ ,σ ′ ∈ {p,s} as before). We thus have

âps =
âp

âs
= âpâ†

s (âsâ†
s )

−1 = âpâ†
s (N̂s + 1)−1 , (3)

where N̂σ = â
†
σ âσ are the number operators for each basic polariza-

tion mode. Please observe carefully that the quotient âp/âs is mean-

ingful, since there is no problem with the ordering of operators. Simi-

lar amplitude ratios have been considered before to deal with quantum

polarization [19].

Next, following a well-established procedure [20], we decompose

the amplitudes as âpâ
†
s = Ê[N̂p

(

N̂s + 1
)

]1/2, where Ê is a unitary op-

erator that represents the exponential of the relative phase between the

modes p and s. In this way, we can recast Eq. (3) as

âps = Ê P̂ , P̂ =

√

N̂p

N̂s + 1
. (4)

Since P̂ is a positive-semidefinite operator, the polar decomposition

Eq. (4) can be seen as the quantum version of the factorization in

Eq. (1) in terms of a phase Ê (which plays the role of ei∆) and a mod-

ulus P̂ (the analogous to tanψ) [21], applied to the incident field. Ob-

serve that the commutation relations force the appearance of N̂s + 1

instead or N̂s in the denominator of P̂, which breaks an apparent sym-

metry in the classical definition of ρ under the interchange of modes

p ↔ s.

To examine the properties of Ê and P̂, we introduce two new oper-

ators

N̂ = N̂p + N̂s L̂ =
1

2
(N̂p − N̂s) , (5)

which correspond to the total photon number and (apart from the

factor 1/2) the photon number difference between the two modes.

Since [N̂, Ê] = 0, we can study the restrictions Ê(N) to each sub-

space with fixed number of photons, which have been aptly termed

as Fock layers [22]. If we denote the Fock basis of the two modes as

|m,n〉= |m〉p ⊗|n〉s, the restriction Ê(N) turns out to be [20]

Ê(N) =
N−1

∑
n=0

|n,N −n〉〈n+ 1,N −n−1|+ |N,0〉〈0,N| . (6)

The extra contribution |N,0〉〈0,N|, related to the quantum vacuum,

makes Ê(N) unitary in the N-photon layer. The total operator Ê is ob-

tained by summing over all the Fock layers Ê = ∑N Ê(N); it is unitary

and defines a Hermitian relative phase via Ê = exp(iΦ̂). Interestingly,

Φ̂ has a discrete spectrum: for each Fock layer, there are N + 1 uni-

formly distributed eigenvalues in the interval [0,2π ]. When N is large,

this spectrum becomes dense and we can take this variable as contin-

uous. This is the limit we shall consider in what follows, as it is the

situation encountered in most of realistic ellipsometric experiments.

To elucidate this situation in more detail, it will prove convenient to

relabel the Fock basis |m,n〉 in terms of the common eigenstates of N̂

and L̂ (note that [N̂, L̂] = 0): |N,ℓ〉, with ℓ = −N/2, . . . ,N/2. When

N ≫ 1 this basis is effectively infinite dimensional and, to simplify

the notation, we will omit N and label these states just by |ℓ〉. The

action of the unitary operator Ê in the |ℓ〉 basis is Ê|ℓ〉 = |ℓ−1〉 and,

in the representation generated by the normalized eigenvectors of Ê,

we have

L̂ 7→ −i∂φ , Ê 7→ eiφ , (7)

as it happens for the canonical pair angle-angular momentum [23, 24].

The relative-phase wave function Ψ(φ ) = 〈φ |Ψ〉 defines a contin-

uous probability density p(φ ) = |Ψ(φ )|2 that is Fourier related with

the basis |ℓ〉; namely,

Ψ(φ ) =
1√
2π

∞

∑
ℓ=−∞

e−iℓφ
Ψℓ , (8)

with Ψℓ = 〈ℓ|Ψ〉.
In principle, every quantum state has an expansion in the number

basis and therefore spans several Fock layers (leaving aside the num-

ber states). Since there are no coherences across them, when N ≫ 1

we can replace the action of the operator N̂ by its average N̄. In ad-

dition, we take 〈L̂〉 ≪ N̄; this holds when the sample’s reflectivity is

high, which holds in most practical cases. We stress though that this

hypothesis simplifies the calculations, but it is unessential for our re-

sults. We have now that Eq. (4) can be rewritten as

P̂ ≃ 1+
2

N̄
L̂ , (9)

which shows that the relevant variable in this limit is L̂.

From this perspective, ellipsometry reduces to the simultaneous

measurement of both Ê and L̂. If the second vacuum-related contribu-

tion in Eq. (6) can be neglected (which happens, as we have said, for

all the situations of interest), we can use the representation Eq. (7). In

this limit, these operators satisfy the commutation relation [Ê, L̂] = Ê,

which immediately leads to an uncertainty relation that reflects the

fact that both magnitudes cannot be simultaneously measured with ar-

bitrary precision.

Since Ê is unitary, the notion of variance must be accordingly

adapted [25]: ∆2Ê = 〈Ê†Ê〉− 〈Ê†〉〈Ê〉 = 1−|〈Ê〉|2. This coincides

with the circular variance, which is the proper way of dealing with a

periodic variable in statistics [26]. With this alternative standpoint, the

usual form of the uncertainty relation; viz, ∆2Â ∆2B̂ ≥ |〈[Â, B̂]〉|2/4,

becomes

∆
2Ê ∆

2L̂ ≥ 1

4
|〈Ê〉|2 . (10)

Before we proceed with a systematic treatment, let us examine a

natural choice for the input state: the two-mode coherent state |αp,αs〉.
A direct calculation gives

∆
2
cohL̂ =

|αp|2 + |αs|2
4

=
N̄

4
,

(11)

〈Ê〉coh ≃ ei(φp−φs)
(

1− 1

8|αp|2
)(

1− 1

8|αs|2
)

,

with ασ = |ασ |eiφσ and, in the second equation, we have assumed

large |ασ |. In the optimal choice |αp|= |αs|=
√

N̄/2, this result boils

down to ∆2
cohÊ ≃ 1/N̄ and, therefore, in the limit N̄ ≫ 1, these states

do saturate the uncertainty relation (10). As could be anticipated, this

is the standard quantum limit for ellipsometry; i.e., the uncertainty of

ρ scales with 1/
√

N̄. This statement follows from the fact that while

both 〈Ê〉coh and 〈P̂〉coh do not scale with N̄, the uncertainties ∆cohÊ

and ∆cohP̂ do scale like 1/
√

N̄. Therefore, the accuracy of the relative

phase, which renders the accuracy of L̂, fully depends on the number

of photons. In this way, setting the accuracy of the relative phase fixes

the average number of photons, leaving no room for improvements of

the scaling property of ∆2
cohL̂.

The treatment of the previous paragraph assumed that the input

state is separable. One might naively expect that entangling the p and

s modes would make it possible to bypass the standard quantum limit.

In this vein, a natural choice is a two-mode squeezed state, |αp,αs,ζ 〉,
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which is a displaced squeezed vacuum with a complex squeezing pa-

rameter ζ = seiθ . Using the results for the second-order moments of

the photon numbers [27], we get

∆
2
sqL̂ = 1

4

[

(|αp|2 + |αs|2) cosh(2s)−2|αpαs|cos(δφ ) sinh(2s)
]

,

(12)

with δφ = φp + φs − θ . In the optimal setting, when δφ = 0 and

|αp|= |αs|=
√

N̄/2− sinh2
s, we obtain

∆
2
sqL̂ = 1

4 (N̄ −2sinh2
s)e−2s .

N̄

4
e−2s ,

(13)

〈Ê〉sq ≃ ei(φp−φs)
(

1− 2sinh2
s

N̄

)

.

where in the second equation we have utilized the approximation

Ê ≃ 2âp â
†
s /N̄, which works well for large squeezing. In this regime,

we effectively get ∆
2
sqÊ = e2s/N̄, confirming that the uncertainty re-

lation (10) is saturated. In interferometry, squeezed states allow us to

beat the standard quantum limit by reducing the noise in one quadra-

ture at the expense of increasing the noise in the conjugate quadra-

ture [28]. Much in the same way, Eq. (13) shows that we can control

the quantum-noise balance between Ê and L̂. For an experimental

scheme and a particular system under study, one can perform a con-

ventional analysis of the sensitivity of the parameters to be estimated

to the noise in the measured ψ and ∆. Redistributing the noise be-

tween these variables is a resource to improve the practical precision.

Actually, ellipsometric measurements are limited by shot noise,

particularly at low light intensities or when using ellipsometers em-

ploying a nulling technique. The use of entangled beams in ellipsom-

etry has been previously reported [29, 30] and it was shown how this

technique can improve present standards.

Let us now go back to the uncertainty relation (10). States satis-

fying the equality in an uncertainty relation are sometimes referred to

as intelligent states. The left-hand side can be minimized (getting the

value 0) for eigenstates of L̂. However, this situation is trivial: since

the right-hand side must vanish as well, it follows that 〈Ê〉= 0.

The two previous examples of coherent and squeezed states ev-

idence that Eq. (10) can be saturated in the limit of intense fields

N̄ → ∞. However, it is well known that for the general case of fi-

nite N this bound cannot be exactly attained. Therefore, we modify

our strategy and look instead for normalized states that minimize the

uncertainty product ∆2Ê ∆2L̂ under the condition that 〈Ê〉 and 〈L̂〉 are

fixed (albeit a priori unknown) parameters. As a consequence, what

is left for optimization is 〈L̂2〉.
We approach this problem by the method of undetermined multi-

pliers. The linear combination of variations leads to the basic equa-

tion [23]

[L̂2 + µL̂+ 1
4 (q

∗Ê + qÊ†)]|Ψ〉= a|Ψ〉, (14)

where µ , q, and a are Lagrange multipliers. The factor of 1/4 was

included for convenience. We solve this equation in the phase rep-

resentation Ψ(φ ) = 〈φ |Ψ〉. For simplicity, we also take q to be real

and nonnegative, since its argument is the phase of 〈Ê〉 and, as such,

can be reintroduced whenever necessary. With the change of variable

Ψ(φ ) = eiµη Ψ̃(η), with η = φ/2, we arrive at the Mathieu equa-

tion [31]

d2Ψ̃(η)

dη2
+ [ã−2qcos(2η)] Ψ̃(η) = 0, (15)

with ã = 4a+µ2. The variable η has a domain 0 ≤ η < 2π and plays

the role of polar angle in elliptic coordinates. In our case, the required

periodicity of φ imposes that the only acceptable Mathieu functions

0.0

π 0 π

10

0.2

10

0.2

0.4

|Ψ
0
(φ
,q
)|
2

Fig. 1. Probability density of the relative phase for the fundamen-

tal Mathieu wave function Ψ0(φ ,q), saturating the uncertainty rela-

tion (10), for two different values of the phase dispersion q. The con-

tinuous lines correspond to the true probability, whereas the dotted

lines are the von Mises approximations as in Eq. (18). In the inset,

we show the Fourier components |Ψℓ|2 corresponding to q = 0.1.

are those being periodic with the period of π in η . The values of ã in

Eq. (15) that satisfy this condition are the eigenvalues of this equation.

We have then two families of independent solutions, namely the an-

gular Mathieu functions cek(η ,q) and sek+1(η ,q) with k = 0,1,2, . . .,

which are usually known as the elliptic cosine and sine, respectively.

The eigenvalues associated with these solutions are conventionally de-

noted as ak(q) and bk+1(q). The parity of both eigenfunctions is ex-

actly the same as their trigonometric counterparts, that is, the elliptic

cosines are even while the elliptic sines are odd in η . Both functions

have the period π when their index (k or k + 1 respectively) is even

or period 2π when it is odd. Thus, the acceptable solutions for our

problem are the independent Mathieu functions of the even order.

Because of the above symmetry properties, we can easily find that

〈L̂〉= −µ/2, which further specifies the phase of Ψ(φ ) to be e−i〈L̂〉φ .

Finally, we obtain (k = 0,1, . . .)

Ψk(φ ,q) =
e−i〈L̂〉φ
√

π







ce2k(φ/2,q),

se2k+2(φ/2,q),
(16)

where the factor 1/
√

π ensures proper normalization on the interval

0 ≤ φ < 2π .

We consider only even solutions, although a parallel treatment can

be done for the odd ones. After some calculations we obtain

∆
2
k L̂ = 1

4 [A2k(q)−2q Re Θk(q)] , ∆
2
kÊ = 1−|Θ2k(q)|2 , (17)

where Θk(q) = A
(2k)
0 (q) A

(2k)
2 (q)+∑∞

j=0 A
(2k)
2 j (q) A

(2k)
2 j+2(q) and the

coefficients A
(k)
j (q) are defined in terms of the expansion cek(η ,q) =

∑∞
j=0 A

(k)
j (q) cos( jη), so they determine the Fourier spectrum and sat-

isfy recurrence relations that can be efficiently computed by a variety

of methods.

Formulas (17) can be studied by means of both numerical methods

and analytical considerations based on asymptotic expansions of the

Mathieu functions. These asymptotic limits identify the fundamental

mode k = 0 as the minimum uncertainty state for all the values of the

parameter q and, henceforth, Ψ0(φ ,q) is the solution we were looking

for.
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The corresponding probability density p(φ ) = |Ψ0(φ ,q)|2 can be

approximated by

p(φ ) =
1

π
|ce0(φ/2,q)|2 ≃ 1

π







exp(−qcosφ ), q → 0,

exp(−√
qcosφ ) q → ∞.

(18)

In both limits, this p(φ ) may be approximated by a von Mises dis-

tribution, p(φ ) ∝ exp[−κ cos(φ − φ0)], which is considered as the

circular analog of the Gaussian distribution [32]. The parameter φ0

is the mean phase, while κ (which is directly related to q) is a mea-

sure of concentration (i.e., a reciprocal measure of dispersion). If κ
tends to zero, the distribution is close to uniform, whereas when κ is

large, the distribution becomes very concentrated. We thus conclude

that von Mises wave functions constitute an excellent approximation

to the fundamental Mathieu wave function, except perhaps for inter-

mediate values of the dispersions, where a deviation may occur. This

behavior is illustrated in Fig. 1, where we compare p(φ ) for two ex-

treme values of q. We also plot the Fourier components Ψℓ of the state,

defined via Eq. (8). In this way, we have characterized optimal input

states for which the relative phase φ between p and s components is

continuously distributed with probability p(φ ).
Most importantly, the bound (10) can now be saturated indepen-

dently of the value of N̄. The accuracy of the phase becomes fixed

by the choice of q which is the inverse of the Gaussian width, while

Eq. (10) provides the uncertainty of L̂ as being the function of |〈eiφ 〉|
only. At the level of Ê and L̂ the situation seems to be analogous to that

of the coherent and squeezed states. However, the lack of dependence

on the photon number, which now is an external parameter absent in

the wavefunction Ψ0, leads to the Heisenberg scaling: N̄−2 when it

comes to the uncertainty of the modulus ∆2L̂ and consequently the

1/N̄ scaling for the uncertainty of ρ .

To conclude, it is interesting to look at the optimal states discussed

thus far from the perspective of polarization squeezing, which can be

seen as a continuous-variable polarization entanglement. For N̄ ≫ 1

the standard Stokes operators [33] can be approximated as Ŝz = L̂,

Ŝ+ = N̄Ê†, and Ŝ− = N̄Ê, with Ŝ± = Ŝx ± iŜy. Polarization squeezing

occurs when [34, 35] N̄∆2Ŝz/(|〈Ŝx〉|2 + |〈Ŝy〉|2) < 1, which in our

context can be simply reformulated as ∆2L̂ < 1
4 N̄|〈Ê〉|2. A glance at

Eqs. (11) and (13) reveals that the coherent states are not polarization

squeezed, but the squeezed states |αp,αs,ζ 〉 do present substantial

amount of polarization squeezing. On the other hand, the optimal

Mathieu beams, Ψ0(φ ,q), are polarization squeezed whenever
√

q <

N̄. For them, the average value of the Stokes vector is given by the

free parameters of the state.

The ideal squeezed states require an infinite amount of energy and

they can therefore not be generated in the lab. The squeezed states that

can significantly improve the performance of a delicate measurement,

such as in the case of gravitational wave detection, are always states

showing finite squeezing, which nevertheless may be high. The same

is true here. One purpose of this manuscript is to discuss the improve-

ment such states offer in the case of ellipsometry. Another purpose it

that in this particular application, we found that by using special states

of finite energy we can do even a better than with squeezed states of

the same energy and we provide their mathematical properties. The

possibility of creating them in the lab is still under study.

In summary, we have investigated how unavoidable quantum noise

limits the accuracy of ellipsometric measurements. Coherent states are

shot-noise limited, whereas squeezed states achieve the Heisenberg

scaling only in the limit of very large N. However, we have found a

set of states, with a Mathieu wave function, which yield the optimal

scaling precisely in the moderate-light regime. This regime has been

ignored thus far by classical analysis but, as quantum technologies

improve, the use of entanglement and squeezing to enhance precision

in ellipsometry is likely to become more widespread.
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