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In this work, an Indium Nitride (InN) dielectric overlay has been used to develop a surface plasmon
resonance optical fiber sensor. Although InN is a very promising material in electronics industry, this is the
first time that this kind of material is used for optical sensing. The obtained results show an improvement
of the reliability and long term stability with respect to previous devices made with the same technology.
More remarkably, the sensitivity increases up to 11,800 nm/RIU in the range of outer refractive indices
between 1.415 and 1.429, the highest sensitivity achieved with this kind of devices. Therefore, a novel
application of the InN to optical fiber sensors is demonstrated. The use of this material would be of great
interest to produce new SPR-based devices for chemical and biological sensing.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Surface plasmon resonance (SPR) is a powerful refractometric
technique that has been widely used in the field of chemical, envi-
ronmental and biological sensing, becoming a mature technology
in biosensing applications [1-5] where a huge number of specially
designed transducers can be found in the literature [1,6-10]. Sev-
eral setups have been proposed to excite surface plasmons, being
the attenuated total internal reflection technique the most pop-
ular in the literature [2]. However, the use of optical fibers can
simplify the experimental arrangement providing the substantial
advantages offered by all-fiber intrinsic systems such are remote
measurements, operation in harsh environments, easier handling,
wavelength multiplexing, small size and weight [11,12]. Since the
spectral interrogation of SPR-based sensors is the most robust tech-
nique, tunability of the resonance has been an issue in order to use
the portable and low cost spectrometers based on silicon detectors.

Spectral tunability of SPR sensors, both in total internal reflec-
tion and waveguide configurations, is traditionally got with a high
refractive index dielectric overlay, which is usually a metal-oxide
one, deposited on top of a metallic layer [13-18], although the use
of some other dielectric could be also suitable in order to achieve
the desired operation point, providing that its surface can be func-
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tionalized to get specific recognition of the target analyte. With this
procedure, it is possible to get a specific resonance wavelength for
a fixed refractive index of the outer medium. Within this approach,
double-layer uniform-waist tapered fibers (DLUWTs) have been
proposed in recent years to develop more compact and efficient
SPR sensors [15-21].

In the past, our group has shown the advantages of adding a
second layer to move the operating range of the sensors. In partic-
ular, we have shown that the adding of a second layer is mandatory
to achieve SPR fiber sensing in aqueous media in the optical com-
munications range [22]. We have also presented theoretical papers
depicting the behaviour of these devices and this has also been
studied by other authors [23-26].

On the other hand, it has recently been proposed the use of InN
as suitable material for electronic-based biosensing due to its high
superficial electron concentration [27,28]. However, this material
also offers advantages in order to their use in optical biosensors.
Indeed, their refractive index is larger than the obtained with
the metal-oxides used up to date, mainly Ta;0s, TiO, and Al,03
[13-15], which translated to SPR sensors design implies thinner
dielectriclayer to get the same spectral operation point for the same
refractive index of the outer medium. Furthermore, IlI-nitrides-
based technology represents the most environmentally friendly
compound semiconductor technology of the moment, which makes
it very convenient for in situ environmental measurements. The
specific use of InN for biosensing has been recently addressed.
Several works have shown the feasibility of this material to be func-
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tionalized either with the most common functional groups [29] or
with organosilane molecules [30].

InN material has been deposited using different techniques
like molecular beam epitaxy (MBE), metal-organic vapour phase
epitaxy (MOVPE) and sputtering. In particular, magnetron radio
frequency (RF) sputtering is a commonly used technique for the
deposition of nanocrystalline thin films (like metals and semicon-
ductors) onto a substrate. Applications like optical coatings, solar
cells and optoelectronic devices are based on the deposition of
thin films by sputtering, verifying the interest of its research [31].
One of the main advantages is the natural simplicity of its physi-
cal process. Furthermore, sputtering enables the deposition of thin
films at room temperature, and on a variety of substrates, includ-
ing optical fibers and plastic substrates, making it a highly versatile
low-cost technique suitable for the development of competitive
sensor applications. With this technique, the deposited InN has an
absorption band around 850 nm [32]. Thus, the excitation of sur-
face plasmons must be done beyond this wavelength in the near
infrared region.

In this work, we evaluate the performance of SPR sensors with
a second InN layer deposited over the metallic one. As far as we
know, this is the first time that a nitride based material is used in
optical sensors, and the obtained results show a high reliability and
long-term stability together with a generally good sensitivity which
can be as high as 11,800 nm/RIU in the range 1.415-1.429 with the
thinnest dielectric layer that has been tested. A really remarkable
value never obtained in the past with this kind of sensors based on
DLUWTSs. This figure is also comparable to the highest performance
of SPR sensors reported in the literature [33] and can be the starting
point to the generalization of the use of DLUWTs with InN layers
for biosensing.

2. Transducers fabrication and experimental setup

The method for obtaining uniform-waist tapered fibers has
already been depicted elsewhere [17]. It is based in the travelling
burner technique, where the fiber glass is heated in an oscilla-
tory way around the length to be stretched while is gently drawn
in opposite directions. With this procedure we have fabricated
tapered single-mode fibers from standard silica fibers optimized
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for transmission at 850 nm. The parameters of the obtained tapers
are 40 wm waist diameter, 12 mm waist length, total taper length
of about 50 mm and losses below 0.2 dB. On these tapers we have
deposited an Al/InN bi-layer at room temperature by RF sputter-
ing with a 2” confocal magnetron cathode (AJA International, ATC
ORION-3-HV). This is the technique commonly used for the deposi-
tion of nanocrystalline thin films onto a substrate to develop optical
coatings [34].

The aluminium layer was grown using a high purity Al target
(5N) in Ar plasma and 75 W of DC power. Using these growth con-
ditions, a deposition rate of 2.8 nm/min was obtained. For InN the
target was a pure In disk (4N5) and pure N, (6N) was used as the
reactive gas. The nitride was deposited with 40 W of radio fre-
quency plasma. The base pressure for the deposition was in the
order of 10> mTorr, while the whole deposition was carried out at
a working pressure of 3.5 mTorr [32]. With these parameters, we
have produced several sensors, all of them with an Al layer 8 nm
thick but with different InN thickness, namely 40, 30 and 20 nm.
The deposition procedure has been done in a static way. Thus, the
obtained devices are the so-called asymmetric ones [15,18], where
only approximately half of the taper is covered by the bi-layer struc-
ture with non-uniform layers thickness. A scheme of the fabricated
transducers is shown in Fig. 1.

The characterization procedure for the devices has also been
reported elsewhere [15,17,18], and it is schematically depicted also
in Fig. 1. It is based on the measurement of the spectral transmit-
tance of the devices through an Optical Spectrum Analyzer (OSA)
for different refractive indices of the outer medium, always in lig-
uid state. Thus the procedure starts with the measurement of the
transmission of the device with air as surrounding medium, being
this measurement the reference for the complete characterization.
Since the measurements are spectrally based, a halogen lamp has
been used as light source.

Since the SPR phenomenon in asymmetric tapers is dependent
on polarization, a polarization-controlling system based on a linear
polarizer and a set of Lefévre loops has been included in the setup,
although the polarization is not an issue with DLUWTSs, as we have
shown in previous works [18]. In this case we adjust the polariza-
tion at the start of the experiments to achieve the best contrast
and nothing has then to be done to prevent any further influence
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Fig. 1. Scheme of the experimental setup and detailed view of the fabricated transducers.
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in the measurements. This system should give a sharp transmit-
tance dip when the polarization plane is aligned with the maximum
thickness of the deposited layers.

In our case, the index of the outer medium can be varied contin-
uously through either a mixture of pure water and ethylene-glycol
to cover the range 1.3252-1.4089 or pure water and glycerol to
cover the range 1.4082-1.4290. The sensor is submersed in a small
volume of the solution whose index is calculated from the values
of the indices of water and the added ethylene-glycol or glycerol
as a binary mixture [35]. In this way, it is possible to cover a wide
range of refractive indices and determine their specific value for a
given wavelength if the dispersion relationships of the individual
components are known [36].

3. Experimental results

Since the main target for this kind of devices is biosensing appli-
cations, the first test was carried out with a transducer designed
to resonantly excite a surface plasmon with pure water as outer
medium. Using simulation routines previously developed for this
kind of devices [20], it was possible to predict a resonance peak
around 950 nm, with the sensor immersed in water, when the outer
dielectric layer is set to 40 nm. Therefore, a transducer was fabri-
cated with an InN layer 40 nm thick.

The measured transmittance in this case is shown in Fig. 2 with
solid line, where the shortest resonance wavelength belongs to
pure water (refractive index of 1.3252) as outer medium while
the largest one comes from an outer refractive index of 1.3905.
In this case, the refractive index values have been calculated for
the central wavelength of the investigated range, which is around
1050 nm. With the values of the measured data, it is possible to
evaluate the average sensitivity of the device around 4300 nm/RIU
from the slope of the curve plotted in Fig. 3. This value is slightly
better than the reported previously in literature for DLUWTs work-
ing with TiO, as dielectric layer in the same spectral range, which
is about 3500 nm/RIU [17].

An additional test to check the long-term stability and the reli-
ability of the transducers was performed after one month without
any special care in its conservation but a simple cover to preserve it
from dust. The result of this test is also shown in Fig. 2 with dashed
line. As can be seen, both measurements appear superimposed with
only a small drift in some cases, which can be due to small varia-
tions in the refractive index of the measured samples. This feature
is of great interest since some drift usually appeared in former SPR
transducers based on tapered optical fibers with a metal-oxide as
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Fig. 2. Transmittance of a device with a bi-layer Al/InN (8 nm/40 nm thick respec-
tively) for outer refractive indices in the range 1.3252-1.3905 calculated at 1050 nm.
The first test is plotted in solid line while a reliability test performed one month after
is plotted in dashed line.
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Fig. 3. Change in the resonant wavelength with the outer refractive index for the
device of Fig. 2 (bi-layer Al/InN, 8 nm/40 nm thick respectively). The slope of the
curve gives an average sensitivity around 4300 nm/riu.

dielectric layer. This drift was around 10 nm after each use, modify-
ing the starting point of the measurement although the sensitivity
was kept. With our design, the transducers become more reli-
able; a decisive characteristic to generalize its use as SPR based
Sensors.

To prove the tunability of the devices, an additional design was
fabricated with an InN layer 30 nm thick. In this case, the character-
ization procedure gives a transmittance for the transducer which
is shown in Fig. 4, and where the shortest resonance wavelength is
obtained for an outer refractive index of 1.3950 while the largest
one comes from a value of 1.4089. Once more, the refractive index
values have been estimated at the central wavelength of the range,
around 900 nm. These results are in agreement with the expected
ones that predict the resonance at higher values of refractive index
in the same spectral range when the thickness of the dielectric
layer decreases. As it can be seen from Fig. 5, the behaviour of the
response is quite linear, obtaining from the slope of the plotted
curve a very high average sensitivity around 10,800 nm/RIU. This
value is quite higher than the reported previously for this kind of
devices.

This result is a remarkable one, since usually when the oper-
ation wavelength shifts to larger values the sensitivity increases
too, as can be seen in previous results reported for SPR excitation
around 1550 nm wavelengths [22,37], and some theoretical studies
[26,38]. However, here the central wavelength of the characterized
range has decreased from 1100 nm to 975 nm, while the sensitiv-
ity has been doubled. Results of this kind have been depicted for
different structures [39], but this is not the usual behaviour in SPR
fiber sensors.
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Fig. 4. Transmittance of a device with a bi-layer Al/InN (8 nm/30 nm thick respec-
tively) for outer refractive indices in the range 1.3950-1.4089 calculated at 900 nm.
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Fig.5. Displacement of the resonant wavelength with the change of the outer refrac-
tive index for the device of Fig. 4 (bi-layer Al/InN, 8 nm/30 nm thick respectively).
The slope of the curve renders an average sensitivity around 10,800 nm/riu.

Table 1
Summary of achieved sensitivities for different InN layer thickness.

InN thickness Average sensitivity Refractive index range

(nm) (nm/RIU) (@ mean wavelength)

20 11,800 1.4153-1.4292 (@ 1000 nm)
30 10,800 1.3950-1.4089 (@ 900 nm)
40 4300 1.3252-1.3905 (@ 1050 nm)

Again the stability test was done after some time without any
special care in the conservation of the fabricated transducers. The
transmittance remained unchanged between several transducers
fabricated with the same method while there was practically no
drift in the resonance wavelength for the same values of outer
refractive index. The reversibility of the measurements is complete,
no changes are observed when the refractive index is decreased
instead of increased. The fluctuations in the measurements are
quite small, of the order of the resolution of the spectrometer, and
there can exist a quite slight dependence on temperature, which
only provide minor deviations in the refractive index values, below
the resolution limit of the spectrometer. The stability, repeatability
and reversibility of the measurements have never been issues in
SPR sensing with DLUWTSs and the use of InN does not change this
fact.

A further device was fabricated with the InN layer 20 nm thick.
For this transducer the central measured resonance wavelength is
around 1000 nm (again shorter than the measured with the InN
40 nm thick) for the outer refractive index range from 1.4153 to
1.4292. A further increase of the outer refractive index beyond this
value is not measured since the cutoff wavelength of the fiber is
below the expected resonance one. In this case, the average sensi-
tivity is around 11,800 nm/RIU, again a remarkably high value.

InTable 1, the summary of the measured sensitivity for the three
devices is shown. As can be observed, it increases as the dielec-
tric layer decreases, although, of course, the resonance that can be
observed inside the detection spectral range appears for higher val-
ues of outer refractive index each case, which must be taken into
account when selecting the application of the devices.

4. Conclusions

In this work the suitability of the use of Indium Nitride for the
development of SPR-based sensors has been demonstrated. This
material offers some advantages when the transducers must be
functionalized in order to provide recognition of a specific analyte,
since it has a high number of free nitrogen bounds on the surface
that can be used to fix the recognizing elements.

A complete characterization of the dependence of the transduc-
ers behaviour with the InN thickness has been carried out, finding
out that its relative high refractive index makes the layer thin-
ner than the needed when metal-oxides like Al,O3 or TiO, are
used. Furthermore, the increase of the sensitivity as the InN thick-
ness decreases has also been shown, getting sensitivity as high as
11,800 nm/RIU when the thickness is of 20nm for the range of
indices between 1.415 and 1.429, a remarkable value comparable
with the most sensitive devices presented up to date. The resolution
of the sensors changes between 2 x 10~% and 8 x 10> depending
on the range for a rather modest resolution of the spectrometer of
1nm.

Also the reliability of the transducers has been tested with mea-
surement series at long term intervals, showing that the behaviour
is stable and repeatable even without any special care in conser-
vation of the devices. Thus the presented device could be a start
up point to the generalization of the use of DLUWTSs in chemical
sensing and biosensing.
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