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This PhD was devoted to demonstrating that the nature and intrinsic features 
of a given pairwise interaction (covalent, electrostatic, van der Waals, etc.) 
defines a suitable framework to relate both molecular and bulk properties. To 
reach this goal, we have considered classical, well-established concepts from 
the field of condensed matter and translated them into the molecular realm, 
and vice versa.  

Pairwise interactions rest on the idea that the physical and chemical 
properties of a system can be accurately described considering only the 
potential energy curve between the neighbor atoms or, in other words, how 
the energy changes with the distance between the interacting particles. 
Several authors have demonstrated that the shape of the potential energy 
curve can be considered universal regardless that we consider a molecule or a 
crystal, implying that its general characteristics are also universally applicable 
and transferable from one system to the others. This procedure has been 
profusely applied in chemistry and physics of the solid state, but it has 
important the important limitation that to transfer the characteristic 
parameters it is required to fit specific experimental properties. In other 
words, the shape of the interaction potential is universal, but the 
characteristic parameters are not. Developing a methodology capable of 
providing truly universal parameters is one of the major challenges of this 
PhD thesis and one of its underlying motivations. 

Commonly used potential functions include those classical of Lennard-Jones, 
Born-Mayer and Mie-Grüneisen, or others borrowed from spectroscopy, like 
Rydberg, Morse and Sutherland. And an example of the success of considering 
the universality of the potential energy curve was provided in the introduction 
chapter of this PhD memo with the model relating the stretching force 
constant of diatomic molecules with the bulk modulus of their ionic, metallic 
and covalent counterpart crystals. The key ideas to put forward such 
relationship were: to assume that the distance dependence of the diatomic 
stretching force constant can be universally described, and that they can 
accurately describe the interaction between the same atoms in the crystal. 
These two assumptions can be only fulfilled if the pairwise potential shape is 
universal and its parameters can be universally transferred between molecules 
and crystals.  

The previous observations constitute by themselves quite a striking result and 
indicate that some well-established concepts in the field of condensed matter 
at high-pressure can be translated into the molecular realm. Special attention 
deserves the idea that under tensile conditions (negative pressure) the 
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interaction in a liquid or solid suddenly vanishes due to a mechanical 
instability, which is consequence of the intrinsic anharmonicity of the 
interaction potential. In this regard, our group has extensively demonstrated 
along two decades that such rupture conditions, also called the spinodal 
instability, represents an excellent reference to describe the thermodynamic 
equation of state and the mechanical behavior of crystals and liquids under 
pressure (positive and negative). Polymers, metals, covalent and ionic crystals 
have been analyzed under this approach, showing that their pressure-volume 
(p-V) data can be accurately and universally represented through the so-called 
spinodal equation of state. From the point of view of Thermodynamics, the 
spinodal limit is defined by the condition of a zero second derivative of the 
energy respect to the volume (zero bulk modulus or divergence of the 
isothermal compressibility) and corresponds to the maximum negative 
pressure which the systems can withstand before breaking.  

In condensed systems, approaching the spinodal limit requires the application 
of a homogeneous and simultaneous expansion of the system in all three 
dimensions. Although this is a very challenging experimental task, it is still 
feasible to induce tensions in liquids and local superheating in crystals. 
However, it is somewhat surprising that, being experimentally much simpler 
to produce stresses in mono- and two-dimensional systems (graphene and 
nanotubes are the most fashionable examples) the spinodal condition has not 
been considered so far as a reference in this scenario. In the course of this PhD 
Thesis, two related studies have been carried out on two-dimensional systems 
in order to validate our ideas in a different context: i) the limit of mechanical 
stability associated with the friction between graphene layers and ii) the effect 
of negative pressure (stress) in laminar materials. Nevertheless, these are not 
included here in order to preserve the scope of this PhD Thesis.  

In any case, since the properties of bulk systems can be represented by 
summing up pairwise interactions -by virtue of the Clausius’ virial theorem- 
the characteristics and properties of the (energy-volume) curve must recall 
those of the one-dimensional potential energy curve. Under this simplified 
view, the rupture limit of a one-dimensional interaction must be determined 
by the same conditions than in the bulk, but considering the distance, force 
and stretching force constant instead of the volume, pressure and bulk 
modulus, respectively. 

This hypothesis was corroborated analyzing the temperature dependence of 
the longitudinal optical phonon 𝜔LO (i.e. the temperature dependence of the 
spring force constant) of some diatomic solids. The value of 𝜔LO is mainly 
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determined by the spring force constant of the diatomic like atoms involved 
in the vibration, and therefore can be determined by the one-dimensional pair 
potential energy function between them. In terms of a pairwise interaction 
the stretching force constant can be expressed as the ratio between the 
spinodal force and distance difference between the equilibrium and the 
spinodal values. We assume a Mie-Grüneisen type potential, although the 
formalism is equivalent in other functional forms. In order to evaluate the 
temperature dependence, we refer all the frequencies to a given value and 
assume that the spinodal force and distance temperature dependence was the 
same as their bulk spinodal pressure and volume analogs which are described 
by the equation of state developed in our group. Nicely our model was not 
only able to reproduce the temperature softening of 𝜔LO, but also to separate 
the so called intrinsic and extrinsic contributions, which was a controversial 
problem in solid state physics. 

These results had a profound impact on this PhD thesis, because the idea that 
a one-dimensional potential energy curves display a rupture (spinodal) point, 
means that chemical bonds -or other bonding interactions of any kind- also 
break at a given distances that can be straightforwardly determined from the 
potential energy functions. To the best of our knowledge, this idea has never 
been considered so far, despite its evident implications in the understanding 
of reactive processes as well as to determine the stability range of potential 
novel materials and new molecular compounds. We should not forget that we 
are facing the possibility of establishing a criterion for defining the conditions 
under which bonds are formed or broken, and under what conditions these 
bonds will or will not be stable from a mechanical point of view and, according 
to the conclusions of this PhD Thesis, also from an electronic and chemical 
points of view.  

At this point, it should be mentioned that despite the suitability of the 
spinodal criterion as a reference in condensed phases, its existence is nothing 
more than a conjecture, since the spinodal conditions cannot be reached 
experimentally (with the notable exception of the critical point in fluids) due 
to nucleation phenomena. For this reason, the few known data on spinodal 
parameters so far are based on extrapolation of experimental results in 
supercooled liquids or in superheated solids using pulsed laser techniques.  

But the above situation is even worse in the molecular field. Indeed, one of 
the main difficulties of this PhD thesis concerned the compilation of data able 
to corroborate our ideas. Along the manuscript we will see how it has been 
necessary to dive into spectroscopic, mechanochemical and reactivity data, as 
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well as to perform computational and topological analysis of the electron 
density, with the sole purpose to confirm that the models developed here 
accurately describe the chemical properties of the systems studied. For these 
reasons, only a few examples, although very relevant from the chemical point 
of view, could be analyzed in depth. 

In any case, the assumption that a given interatomic interaction has a limit 
of stability raises interesting implications, because the effect of pressure 
(positive or negative) must match with that resulting from chemical 
interactions, or in other words, the mechanical and chemical pressures can 
drive the same phenomena; and this is the underlying idea in most 
mechanochemical studies. In fact, the analogy between mechanical and 
chemical pressure (forces) has influenced, and sometimes dominated, the field 
of Solid State Chemistry, in which the substitution of one elemental atom or 
ion by another (structurally compatible) induces a compression or expansion 
in the original unit cell, leading to development of some well-established, well-
known structure-property rules. In this regard, in recent years, our group, in 
collaboration with the University of Oviedo, has been involved in the 
development and interpretation of a new quantum formalism named as DFT-
Chemical Pressure. Up to now several studies has been performed showing 
the potential application of this methodology to study intermetallic phases, 
vibrational modes and chemical bonds. However, the DFT-Chemical Pressure 
formalism has been not so far applied to characterize molecules or high-
pressure effects. 

In this PhD Thesis we have used the above methodologies to show that the 
existence of a limit of stability for a given bond is reflected in electron density 
reorganizations (for instance, in covalent bonds, there is a transition between 
a bonding share-electron regime to a radical-type state). Furthermore, by 
describing chemical bonds are pairwise interactions, we have shown that bond 
stability limits can be calculated from available experimental data of 
dissociation energies and stretching force constants at equilibrium. Moreover, 
the study of the C-C bond evidenced that bond stability limits are indeed an 
intrinsic property governed by the type and nature of its main bonding 
interaction, and therefore it is not strongly dependent either on the external 
chemical effects (e.g. dispersive or negative hyperconjugation) or the 
stretching/compressive mechanism (chemical or mechanical).  

We follow up with an analysis of non-covalent interactions to analyze whether 
the spinodal criterion still holds when the nature of the interaction is changed. 
This analysis leads us to propose the Chained Interaction conjecture, which 
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essentially establishes that the stability conditions of the successive 
interactions (covalent>electrostatic>van der Waals) overlap, giving rise to 
a natural sequence of mechanical (and electronic) instabilities close to the 
respective spinodal conditions. The most interesting conclusion derived from 
this study is that the spinodal criterion may serve to classify the type of 
bonding interaction present in a molecule or crystal according to the 
interatomic distances observed in the experiment or derived from first 
principles calculations.  

Finally, applying again our mechanical-chemical analogy through the DFT-
Chemical Pressure formalism, we have shown that the negative pressure 
(attractive) and positive pressure (repulsive) regions in a molecule define a 
picture of the molecular bonding structure which is fully compatible with the 
classical separation into bonds and lone pairs. This formalism also allowed us 
to quantify the chemical activity of the lone pairs and relate it to the 
electronegativity of the host atom. As a consequence, we have been able to 
introduce a stress-redox equivalence principle that explains two well-
established phenomena typical of Solid State Chemistry, namely: (i) that a 
metal sublattice is expanded or contracted after hosting a non-metallic 
element, but maintains its original topology/structure and (ii) that during the 
formation of an inorganic compound, an increase or decrease of the effective 
charge of the anion is produced with respect to the charge already present in 
the interstices of the metal sublattice. Both are intrinsic mechanisms to the 
metal sublattice resulting from a electronegativity equalization between the 
host metal sublattice and the guest anions, in the line of the 1980’s principle 
of Sanderson and Pearson.  

Let us conclude this summary by emphasizing that the work developed in this 
PhD thesis has provided us with a unique insight into how pairwise 
interactions can be used to describe the main types of chemical interactions 
and several high-pressure phenomena. We have shown that a given chemical 
bond has a defined range of stability and that a limit of stability must exist, 
or at least it can be univocally defined. In addition, we have demonstrated 
that the existence of such a limit of bond stability -mechanical, chemical or 
both- enables us to define a convenient reference for a true universal behavior 
of chemical bonds.  
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El objetivo central de Tesis Doctoral ha sido demostrar que las características 
intrínsecas de una interacción entre pares de átomos dada (covalente, 
electrostático, van der Waals, etc.) permite establecer un marco interpretativo 
excelente para relacionar las propiedades mecánicas y químicas de las 
moléculas y los sólidos cristalinos caracterizadas por dicho tipo de enlace. Para 
alcanzar este objetivo, hemos tomado como base conceptos clásicos y 
ampliamente aceptados en materia condensada y los hemos trasladado al 
campo molecular; pero en otras ocasiones hemos recorrido el camino inverso, 
con el objetivo de demostrar que dichos conceptos pueden ser -y lo son de 
hecho- intercambiables entre sistemas materiales muy dispares.   

Las interacciones entre pares de átomos se fundamental en la idea de que las 
propiedades físicas y químicas de un sistema pueden describirse con precisión 
considerando sólo la curva de energía potencial entre los átomos vecinos; en 
otras palabras, cómo cambia la energía con la distancia entre las partículas 
que interaccionan. Algunos autores han demostrado en las últimas décadas 
que la forma de la curva de energía potencial puede considerarse universal, 
independientemente de que consideremos una molécula o un cristal, lo que 
implica que las características generales del potencial de interacción son 
también universalmente aplicables y transferibles de un sistema a otro. A 
pesar de que esta metodología se ha aplicado de forma exitosa y extensa en 
las áreas de la Química y la Física del Estado Sólido, tiene la limitación de 
que para transferir los parámetros característicos entre dos sistemas es 
necesario ajustar los parámetros característicos del potencial de interacción a 
propiedades experimentales específicas. En otras palabras, la forma del 
potencial de interacción es universal, pero los parámetros característicos no lo 
son. En consecuencia, uno de los mayores retos de esta Tesis Doctoral y una 
de sus motivaciones originales ha sido el de desarrollar una metodología capaz 
de proporcionar parámetros verdaderamente universales. 

Los potenciales de interacción más comúnmente utilizados incluyen los 
clásicos de Lennard-Jones, Born-Mayer y Mie-Grüneisen, y otros provenientes 
del campo de la espectroscopia, como el Rydberg, el de Morse o el de 
Sutherland. Un ejemplo del éxito de considerar la universalidad de la curva 
de energía potencial es el descrito en el capítulo introductorio de esta memoria 
con el desarrollo del modelo que relaciona la constante de fuerza de moléculas 
diatómicas con el módulo de compresión volumétrico de sólidos cristalinos 
iónicos, metálicos y covalentes. Las ideas clave para justificar dicha relación 
estaban basadas en dos premisas: 1) que la dependencia de la distancia de la 
constante de la fuerza en una molécula diatómica puede ser descrita 
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universalmente, y 2) que se puede describir con precisión la interacción entre 
los mismos átomos en el sólido cristalino. Pero es importante recalcar que 
ambas premisas sólo pueden cumplirse si la forma potencial entre pares es 
universal y sus parámetros son universalmente transferibles entre moléculas y 
cristales.  

Las observaciones anteriores constituyen por sí mismas un resultado muy 
relevante, y sugieren que algunos conceptos bien establecidos en el campo de 
la materia condensada -en concreto, aquellos empleados en el área de las altas 
presiones- podrían ser trasladados al campo molecular. Merece especial 
atención la idea de que, bajo condiciones de tensión (presión negativa) 
creciente, llega un momento en el que se pierde a cohesión en un líquido o 
sólido debido a una inestabilidad puramente mecánica, consecuencia de la 
naturaleza anarmónica del potencial de interacción. Dicho esto, es preciso 
recordar que nuestro grupo ha demostrado ampliamente – y a lo largo de más 
de dos décadas- que dicho límite de estabilidad mecánica, conocido como 
inestabilidad espinodal, representa una excelente referencia para describir la 
ecuación de estado termodinámica y el comportamiento mecánico de cristales 
y líquidos bajo presión (positiva y negativa). El estudio de polímeros, metales, 
cristales covalentes e iónicos utilizando este original enfoque ha demostrado 
que los resultados experimentales presión-volumen (p-V) pueden ser 
representados de manera precisa y universal a través de la denominada 
ecuación de estado espinodal. Desde el punto de vista de la Termodinámica, 
el límite espinodal está definido por la anulación de la segunda derivada de la 
energía con respecto al volumen (anulación del módulo de compresión 
volumétrico o divergencia de la compresibilidad isotérmica) y corresponde a 
la presión negativa máxima que los sistemas pueden soportar antes de 
disgregarse.  

En sistemas condensados, acercarse al límite espinodal requiere la aplicación 
de una expansión homogénea y simultánea del sistema en las tres dimensiones. 
Si bien ésta es una tarea experimental muy complicada, sí es factible inducir 
tensiones en líquidos y sobrecalentamientos locales en sólidos. No deja de ser 
curioso que, siendo experimentalmente mucho más sencillo inducir tensiones 
en sistemas mono- y bi-dimensionales -el grafeno y los nanotubos son los 
sistemas de moda- la condición espinodal no ha sido considerada hasta ahora 
como una referencia en dichos sistemas. En el transcurso de esta Tesis 
Doctoral se han llevado a cabo dos estudios relacionados con sistemas 
bidimensionales para comprobar estas ideas en diferentes contextos: i) límite 
de estabilidad mecánica en relación con la fricción entre capas del grafeno y 
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ii) efecto de presión negativa (tensión) en materiales laminares. No obstante, 
estos dos estudios no se han incluido en esta memoria para mantener el 
enfoque de esta Tesis Doctoral.  

En cualquier caso, dado que las propiedades de los sistemas volumétricos 
pueden obtenerse sumando interacciones por pares -en virtud del Teorema del 
Virial de Clausius- las características y propiedades de la curva (energía-
volumen) deben ser idénticas a las de la curva de energía potencial 
unidimensional. En esta visión simplificada, el límite de ruptura de una 
interacción unidimensional debe ser determinado imponiendo las mismas 
condiciones que en el caso volumétrico, pero considerando ahora la distancia, 
la fuerza y la constante de fuerza, en lugar del volumen, presión y el módulo 
de compresión volumétrico, respectivamente. 

Esta hipótesis fue corroborada analizando del fonón óptico longitudinal 𝜔LO 
de algunos sólidos diatómicos. Conviene recordar que el valor de 𝜔LO está 
determinado principalmente por la constante de la fuerza de los dos átomos 
involucrados en la vibración, y por lo tanto viene determinado por la forma 
funcional del potencial de interacción entre pares de átomos. Teniendo en 
cuenta esta aproximación, la constante de la fuerza depende de la ratio la 
fuerza espinodal y la diferencia entre las distancias de equilibrio y espinodal. 
Con el fin de simplificar al máximo el tratamiento, se utilizó un potencial de 
interacción de tipo Mie-Grüneisen, aunque se puede demostrar fácilmente que 
el formalismo es equivalente para otras formas funcionales. Para evaluar la 
dependencia de la temperatura de 𝜔LO, simplemente se toma el valor a una 
temperatura de referencia y se considera que la dependencia con la 
temperatura de la fuerza espinodal y la distancia interatómica era la misma 
que la presión espinodal y el volumen, que pueden ser calculados fácilmente 
mediante la ecuación de estado espinodal desarrollada en nuestro grupo. Pues 
bien, nuestro modelo no sólo fue capaz de reproducir fielmente la disminución 
de 𝜔LO al aumentar la temperatura, sino que también se pudieron discriminar 
las denominadas contribuciones intrínseca y extrínseca, hecho este último muy 
relevante, dado que la separación de ambas contribuciones constituye un tema 
bastante controvertido en Física del Estado Sólido.  

Los dos ejemplos descritos en los párrafos precedentes tuvieron un impacto 
muy profundo y determinante a la hora de plantear los objetivos de esta Tesis 
Doctoral, puesto que la comprobación de que una curva de energía potencial 
unidimensional muestra un punto espinodal, significa que los enlaces químicos 
-o interacciones de enlace de cualquier otro tipo- también deben romperse a 
una distancia dada, y que debe poder determinarse directamente si se conocen 
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los  parámetros del potencial de interacción. Hasta donde sabemos, esta idea 
nunca había sido considerada hasta ahora, a pesar de sus evidentes 
implicaciones en la comprensión de muchos procesos reactivos o en la 
determinación del rango de estabilidad de nuevos materiales o nuevas 
entidades moleculares. No olvidemos que estamos ante la posibilidad de 
establecer un criterio para decidir las condiciones en las que se forman o 
rompen enlaces y en qué condiciones dichos enlaces van a ser o no estables 
desde el punto de vista mecánico y, de acuerdo con las conclusiones de esta 
Tesis Doctoral, desde el punto de vista electrónico y químico.  

Llegados a este punto, debemos reconocer que, a pesar de la idoneidad del 
criterio espinodal para referir el comportamiento fases condensadas, su 
existencia no es más que una conjetura, ya que las condiciones espinodales no 
se pueden alcanzar experimentalmente (con la notable excepción del punto 
crítico en fluidos) debido a la nucleación de la nueva fase de equilibrio, dado 
que estamos en un régimen de inestabilidad termodinámica o simplemente 
energética. En definitiva, los escasos datos de parámetros espinodales 
conocidos hasta el momento se basan en la extrapolación de resultados 
experimentales en líquidos subenfriados (bajo tensión) o sólidos 
sobrecalentados localmente mediante técnicas de láser pulsado.  

Pero la situación anterior es aún peor en el campo molecular. De hecho, una 
de las principales dificultades a la hora de abordar esta Tesis Doctoral era la 
recopilación de datos, experimentales o computacionales, que pudieran 
corroborar nuestras premisas. A lo largo del manuscrito veremos cómo ha sido 
imprescindible analizar cuidadosamente muchos datos espectroscópicos, 
mecanoquímicos y de reactividad, así como realizar complejos cálculos 
computacionales y análisis topológicos de la densidad electrónica, con el único 
propósito de confirmar que los modelos desarrollados aquí describen con 
precisión las propiedades de los sistemas elegidos para nuestro estudio. Por 
ello, sólo ha sido posible analizar unos pocos ejemplos en profundidad, aunque 
afortunadamente se de sistemas muy relevantes desde el punto de vista 
químico. 

En cualquier caso, la suposición de que cada interacción interatómica tiene un 
límite de estabilidad único y definido tiene muchas implicaciones interesantes, 
porque las presiones (positivas o negativas) deben tener su equivalencia en 
determinadas interacciones químicas; en otras palabras, las presiones 
mecánicas y químicas den conducir a los mismos fenómenos, y ésta es 
precisamente la idea subyacente en la mayoría de los estudios 
mecanoquímicos. De hecho, la analogía entre la presión (o fuerza) mecánica y 
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química ha influido, y a veces dominado, el campo de la Química de Estado 
Sólido, en el que la sustitución de un átomo elemental o un ion por otro 
(compatible estructuralmente), induce una compresión o una expansión de la 
celda unidad original, lo que ha permitido establecer una serie de reglas 
“estructura-propiedades” ampliamente utilizadas en Química. En este sentido, 
en los últimos años, nuestro grupo, en colaboración con la Universidad de 
Oviedo, ha participado en el desarrollo e interpretación de un nuevo 
formalismo mecano-cuántico denominado Presión Química-DFT. Hasta ahora 
se habían realizado varios estudios que demostraban el potencial de la 
aplicación de esta metodología en el estudio de fases intermetálicas, modos 
vibracionales y el enlace químico. Sin embargo, el formalismo de la Presión 
Química-DFT no había sido aplicado hasta ahora para estudiar moléculas o 
los efectos de alta presión. 

En esta Tesis Doctoral hemos utilizado esta metodología para demostrar que 
la existencia de un límite de estabilidad para un enlace dado se refleja en una 
reorganización de la densidad electrónica (por ejemplo, en los enlaces 
covalentes, hay una transición desde un régimen de compartición de electrones 
hacia un estado de tipo radical). Además, la descripción de los enlaces 
químicos como interacciones entre pares nos ha permitido demostrar que los 
límites de estabilidad de los enlaces pueden calcularse directamente a partir 
de datos experimentales de las energías de disociación y de constantes de 
fuerza en las condiciones de equilibrio. Además, el estudio del enlace simple 
C-C puso de manifiesto que los límites de estabilidad de dicho enlace son una 
propiedad intrínseca que viene dictada únicamente por el tipo y la naturaleza 
del enlace (en este caso una interacción covalente). Por lo tanto, los límites 
de estabilidad no experimentan variaciones significativas por la presencia de 
interacciones químicas externos (por ejemplo, fuerzas de dispersión o 
hiperconjugación negativa) ni dependen del mecanismo a través del cual se 
produce la elongación/compresión del enlace (químico o mecánico).  

Continuamos nuestro estudio con un análisis de las interacciones no-
covalentes con para comprobar si el criterio espinodal sigue siendo válido 
cuando se cambia la naturaleza de la interacción. Este análisis nos ha llevado 
a proponer la conjetura de Interacciones Encadenadas que, en esencia, 
establece que las condiciones de estabilidad para sucesivas interacciones 
(covalente>electrostático>van der Waals) se superponen, dando lugar a una 
secuencia natural de inestabilidades mecánicas (y electrónicas) que coinciden 
aproximadamente con las respectivas condiciones espinodales. La conclusión 
más interesante de este estudio es que el criterio espinodal puede servir para 
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clasificar el tipo de interacción presente en un determinado enlace de una 
molécula, o de un cristal, tomando como único criterio de clasificación las 
distancias interatómicas, que pueden obtenerse de medidas estructurales o a 
partir de cálculos de primeros principios.  

Nuestra última aportación resulta de aplicar nuevamente la analogía mecano-
química a través del formalismo de la Presión Química-DFT. Así, hemos 
demostrado que las regiones de presión negativa (atractiva) y positiva 
(repulsiva) en una molécula delinean una imagen de la estructura molecular 
que es totalmente compatible con la separación clásica en enlaces y pares 
solitarios. Este formalismo también nos ha permitido cuantificar la actividad 
química de los pares solitarios y relacionarla con la electronegatividad del 
átomo huésped. Una consecuencia inmediata de estos resultados es que hemos 
sido capaces de introducir un principio de equivalencia “estrés-redox” capaz 
de explicar dos fenómenos bien establecidos en Química del Estado Sólido, a 
saber: i) que una subred metálica se expande o contrae después de alojar un 
elemento no metálico, pero mantiene su topología/estructura original, y ii) 
que durante la formación de un compuesto inorgánico se produce un aumento 
o disminución de la carga efectiva del anión con respecto a la carga ya presente 
en los intersticios de la subred metálica. Ambos son mecanismos intrínsecos a 
la subred metálica resultantes de una ecualización de la electronegatividad 
entre la subred metálica huésped y los aniones huésped, y que corrobora el 
principio de Sanderson y Pearson establecido en la década de los 1980s.  

Finalizaremos este resumen haciendo especial énfasis en que el trabajo 
desarrollado en esta Tesis Doctoral nos ha proporcionado una visión única de 
cómo las interacciones entre pares pueden utilizarse para describir los 
principales tipos de interacciones químicas y algunos fenómenos de alta 
presión. Hemos demostrado que un determinado enlace químico tiene un rango 
de estabilidad bien definido y, además, que siempre debe existir un límite de 
estabilidad (o al menos se puede definir unívocamente). Además, hemos 
demostrado que la existencia de tal límite de estabilidad del enlace -mecánico, 
químico o ambos- nos permite definir una magnífica referencia para definir un 
verdadero comportamiento universal de los enlaces químicos.  
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Preliminaries 
The field of application of this PhD thesis lies at the boundary between 
Physics and Chemistry, with the notion that pressure, positive or negative, is 
a fundamental magnitude for understanding and rationalizing the behavior of 
material systems.  

Our goal is to develop interpretative models on the nature of the chemical 
bond in molecules, prototypical chemical reactions, and crystalline solids, by 
applying two basic principles: 1) the existence of a universal behavior in the 
conditions of stability for an interaction between two atoms (pairwise 
interaction), and 2) there exists a direct correspondence between mechanical 
(physical) and chemical pressures, both at macroscopic and microscopic levels.  

From the methodological point of view, we wanted to reconcile and translate 
some classical ideas about pair interactions and the mechanical stability of 
condensed phases to the field of chemical reactivity, which is understood in 
terms of rupture and bond formation. However, it has often been necessary to 
follow the opposite reasoning. This dynamics in the rationale very likely 
constitutes the biggest obstacle for sorting the arguments and the results 
collected in this PhD thesis, but at the same time it also represents one of its 
most important contributions. 

The Limit of Mechanical Stability 
Underlying our reasoning scheme is the concept of spinodal instability, which 
establishes that the limit of mechanical stability can be taken as a reference 
to reproduce and to predict the behavior of the system when it is subjected 
to an external pressure, either positive or negative. This is a very well-
established concept in our research group, as we have successfully used it over 
two decades for the development of predictive models of thermodynamic 
properties and the equation of state of liquids and solids. Polymers, metals, 
covalent and ionic crystals have been analyzed under this approach, showing 
that their pressure-volume (p-V) data can be accurately and universally 
represented through the so-called spinodal equation of state. From the point 
of view of Thermodynamics, the spinodal limit is defined by the condition of 
a zero second derivative of the energy respect to the volume (zero bulk 
modulus or divergence of the isothermal compressibility) and corresponds to 
the maximum negative pressure which the system can withstand before 
breaking. In condensed systems, approaching the spinodal limit requires the 
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application of a homogeneous and simultaneous expansion in all three 
dimensions. Although this is a very challenging experimental task, it is still 
feasible to induce tensions in liquids and local superheating in crystals. 
However, it is somewhat surprising that, being experimentally much simpler 
to produce stresses in mono- and two-dimensional systems (graphene and 
nanotubes are the most fashionable examples) the spinodal condition has not 
been considered so far as a reference in this scenario. In the course of this PhD 
Thesis, two related studies have been carried out on two-dimensional systems 
in order to validate our ideas in a different context: i) the limit of mechanical 
stability associated with the friction between graphene layers and ii) the effect 
of negative pressure (stress) in laminar materials. Nevertheless, these are listed 
at the end of this chapter, but are not included here in order to preserve the 
scope of this PhD Thesis.  

But along this PhD thesis the spinodal concept reaches a renewed value when 
it is extended to analyze the stability limit of a chemical bond. In such 
scenario, the limit of stability can be determined by applying the same 
conditions than in the bulk, but considering the distance, force and stretching 
force constant instead of the volume, pressure and bulk modulus, respectively. 
A couple of examples demonstrating this analogy are given the next section 
and constitute the first genuine results in this dissertation. We advance here 
that these results had a profound impact on the development of this PhD 
thesis, because they confirm that the spinodal concept may be used to study 
the bonding parameters in diatomic molecules.  

The notion that a diatomic potential energy curve also presents a rupture 
(spinodal) point can be generalized to any chemical bond in a molecule or a 
crystal. To the best of our knowledge, this idea has never been considered so 
far, despite its evident implications in the understanding of reactive processes 
as well as to determine the stability range of potential novel materials and 
new molecular compounds. Unfortunately, it must be emphasized that the 
spinodal conditions cannot be reached experimentally (with the notable 
exception of the critical point in fluids) because it implies deep metastable 
states and nucleation of the stable phase takes place before reaching the 
spinodal. Only few data on spinodal parameters have been reported so far and 
are based on the extrapolation of experimental results in supercooled liquids 
or superheated solids. The situation is even worse in the molecular field, 
because the highly reactive species generated after breaking a bond.  

Thus, one of the main difficulties of this PhD thesis concerned the compilation 
of data able to corroborate our ideas. In the particular case of molecular data, 



Chapter 1 p.21 
 

 

 

we seek for specific spectroscopic, mechanochemical and reactivity results to 
confirm the suitability of the models developed here. That is why a significant 
number of the results included in this dissertation come from rigorous 
quantum-mechanical calculations, modern topological analyses of the 
electronic density, and novel formalisms such as the DFT-Chemical Pressure. 
In addition, this formalism has allowed us to verify in this PhD thesis the 
scope and applicability of the models based on the spinodal instability as well 
as to put into context our results in the scope of the stability of the chemical 
bond and its chemical reactivity, structural inorganic chemistry, and several 
phenomena in the field of high pressures. 

Some Supporting Results 
As stated in previous sections of this introductory chapter, there are not 
previous results to show that the spinodal instability criterion can be applied 
to chemical bonds. Therefore, in this section we are summarizing two 
preliminary studies which demonstrate that we can translate some ideas 
concerning the spinodal instability that are grounded in condensed matter to 
the molecular field. 

The first example concerns the correlation between the bulk modulus of 
diatomic crystals and the spring force constant derived from an interatomic 
potential for diatomic molecules. Let us emphasize here that many models 
have been put forward for correlating molecular and bulk properties through 
decades with different degrees of success, and that simple models considering 
only nearest neighbor interactions and effective pair potentials are thought to 
be incorrect. However, we will demonstrate below that the spinodal force (the 
one-dimensional analogous to the spinodal pressure) follows the same 
potential law in diatomics and crystals. 

The spinodal pressure in bulk systems is defined as: 

 𝑝
𝑠𝑝

= −𝛽

𝐵
𝑇0

𝐵′
𝑇0

 (1.1)

where psp is the spinodal pressure 𝛽 is universal exponent that characterizes 
the divergence of the isothermal bulk modulus 𝐵

𝑇0
 and 𝐵′

𝑇0
 is its pressure 

derivative. 

In the linear (molecular) case, the spinodal condition is equivalent to the 
definition: 
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 𝐹
𝑠𝑝

= −𝛽

𝐵
𝑇0𝐿

𝐵′
𝑇0𝐿

 (1.2)

where Fsp is the force defined at the inflection point of the energy-distance 
curve of the bond, 𝛽 is a universal scaling constant, and 𝐵

𝑇0𝐿
 and 𝐵′

𝑇0𝐿
 are, 

respectively, the linear compression modulus and its derivative with respect 
to the force: 

 
𝐵

𝑇𝐿
= 𝑟

𝑑
2
𝐸

𝑑𝑟
2

= 𝑟𝑘(𝑟) → 𝐵
𝑇0𝐿

= 𝑟
𝑒
𝑘

𝑒
 (1.3)

 

 𝐵′
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=

𝑑𝐵
𝑇𝐿

𝑑𝐹

=

𝑑𝐵
𝑇𝐿

𝑑𝑟

𝑑𝑟

𝑑𝐹

=

𝑑𝐵
𝑇𝐿

𝑑𝑟

1

𝑘(𝑟)

→ 𝐵′
𝑇0𝐿

= 1 +

𝑘′
𝑒
𝑟
𝑒

𝑘
𝑒

 (1.4)

where re is the equilibrium distance, ke is the spring constant, and k’e is the 
derivative of the spring constant with respect to the force. Now, we may write 
Fsp as: 

 
𝐹

𝑠𝑝
ൌ െ𝛽

𝑟
𝑒
𝑘

𝑒

2

𝑘
𝑒
+ 𝑘′

𝑒
𝑟
𝑒

 (1.5)

Figure 1.1. Correlation between the spinodal force and the mechanical coefficients 
for diatomics 
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Using available data for the RKR potential of diatomics as a reference, we 
obtain the correlation scheme shown in Figure 1.1, that demonstrates that the 
value of 𝛽 is constant with a value close to 0.67, in excellent agreement with 
the value obtained in crystalline solids[1-3]. 

The second example deals with the temperature dependence of the 
longitudinal optical phonon, 𝜔LO, of diatomic solids. The value of 𝜔LO is 
determined by the spring force constant of the diatomic-like atoms involved 
in the vibration, and therefore it can be determined from a known pair 
potential energy function. 

We will assume a Mie-Grüneisen type potential for simplicity as an effective 
anharmonic model for vibrations [4], although the formalism is equivalent in 
other functional forms. Our procedure involves linking the potential 
parameters to the limit of mechanical stability, a concept that has been often 
referred to in the literature as the Born spinodal instability condition [5]. The 
temperature dependencies of the characteristic potential parameters are 
evaluated within the Mie-Grüneisen formalism using a standard procedure 
borrowed from equation of state studies [6].  

The generalized Mie potential is usually written as a function of the 
interatomic distance, r, in the form: 

 
𝑈(𝑟) = 𝐷

𝑚𝑛

𝑛 − 𝑚

[

1

𝑛

(

𝑟
𝑒

𝑟

)

𝑛

−

1

𝑚

(

𝑟
𝑒

𝑟

)

𝑚

] (1.6)

where n and m are constants characterizing the repulsive and attractive parts 
of the potential, respectively, D is the dissociation energy, and re is the 
equilibrium distance. And the quasi-harmonic frequency for the Mie potential 
can be written as: 

 
𝜔 ൌ (

𝑛𝑚𝐷
𝑟𝑒

2
𝜇

)

1/2

 (1.7)

where  μ is the reduced mass. 

If we apply the instability condition to the Mie potential, d2U/dr2 = 0, which 
is illustrated in Figure 1.2 for the Mie (12,6) potential, the following 
relationship is obtained: 

 
𝑟
𝑠𝑝

= 𝑟
𝑒
(

𝑛 + 1

𝑚 + 1

)

1

𝑛−𝑚

 (1.8)
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where rsp is the internuclear distance at the limit of stability.  

Figure 1.2. Schematic representation of the stability limit from the Mie potential. 
N and m has been assumed equal to 6 and 12 respectively. (See text for discussion) 

The dissociation energy can be related to the force (in tension) acting on the 
system at the limit of stability, defined as Fsp = -[dU(r)/dr]r=rsp, through the 
following relation, 

 𝐹
𝑠𝑝

=

𝐷

𝑟
𝑒

𝑓(𝑛,𝑚) (1.9)

where f(n,m) is a rather complex function of n and m whose details are of 
little interest here. Actually, the interesting point is that the temperature 
dependence of D is modulated by the changes in Fsp and re and the above 
expression confirms that the thermal expansion of the crystal has a two-fold 
effect in changing the phonon frequency. This recalls the widely assumed 
approximation that the temperature dependence of each phonon frequency 
consists of two additive contributions: the implicit contribution due to the 
thermal expansion of the lattice, and the explicit contribution that arises from 
anharmonic interactions between phonons. However, our approach accounts 
for both contributions simultaneously. 
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In order to evaluate the temperature dependence of 𝜔LO in diamond we refer 
all the frequencies to a given value and assume that the spinodal force and 
distance temperature dependence was the same as their bulk spinodal pressure 
and volume analogs which are described by the spinodal equation of state[7]. 
Thus, the frequency can be calculated from the expression:  

 
𝜔ሺ𝑇ሻ ൌ 𝜔

𝑟𝑒𝑓
[

𝐷(𝑇 )

𝐷(𝑇
𝑟𝑒𝑓

)

]

1/2

(

𝑟
𝑒
(𝑇

𝑟𝑒𝑓
)

𝑟
𝑒
(𝑇 )

) (1.10)

The force at the instability Fsp is the linear analog to the spinodal pressure pS 
in the bulk crystal[8] and we shall use this analogy to account for the 
temperature dependence of Fsp, and the predicted values of 𝜔LO(T) in 
diamond as an example of diatomic solid. Our results are compared to the 
experiment in Figure 1.3.  

Figure 1.3. Solid line: prediction of the temperature dependence of the triply 
degenerate Raman-active phonon of diamond (see text). The intrinsic contribution 
is represented by the dashed lines.  

Our model gives an excellent prediction considering the discrepancies between 
different experimental sources. In any case, or results demonstrate the validity 
of using the spinodal criterion to account for the spring force constant in 
diatomics.  
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Aims and Objectives 
The aim of this PhD Thesis is demonstrating that the nature and intrinsic 
features of a given pairwise interaction (covalent, electrostatic, van der Waals, 
etc.) defines a suitable framework to relate both molecular and bulk 
properties. To reach this goal, we have considered classical, well-established 
concepts from the field of condensed matter and translated them into the 
molecular realm, and vice versa. Such an approach can lead to the 
understanding of different chemical phenomena such as bond nature, 
reactivity and even a pressure description of chemical interactions. More 
specifically, we pursue the following specific goals: 

• Introduce and provide theoretical evidences that the spinodal concept 
can constitute an accurate reference to understand the distance range where 
interactions are stable. 

•  Provide experimental evidences of bond stability limits as well as to 
explore its chemical implications to detect interaction changes and reactive 
models. 

• Demonstrate that the analogy between force and pressure can be a 
useful tool to understand chemical phenomena and high-pressure experiments. 

Organization of this Dissertation 
We have organized this dissertation into eight chapters.  

This first chapter is focused on establishing the main principles on which the 
PhD thesis develops and summarizes some key results that support our 
premises.  

In chapter 2, we analyze the spinodal concept in a framework of pairwise 
interaction and how it can be considered as a reference for defining the 
stability of the chemical bond in a generic manner. Both topological analyses 
of the electron density and electron localization function have been carried 
out along the (stretching) potential energy curves in order to relate the 
mechanical instability limit with changes in the electronic properties. In 
addition, considering that bonds are pairwise interactions, we will 
demonstrate how these limits can be determined from experimentally 
accessible equilibrium properties: the dissociation energy and the stretching 
force constant at the equilibrium distance. 
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Chapters 3 and 4 explore the chemical implications of the bond stability limits 
in two archetypical chemical bonds: C-C (Chapter 3) and OH (Chapter 4). 
Transition state distances, vibrational frequencies and histograms derived 
from structural data (equilibrium distances) for the C-C bond are used to 
provide some clues about the implication of our ideas into mechanochemistry 
and reactivity -including synthetic chemistry- since our model can be used to 
anticipate the stability conditions where a compound can be (meta)stable or 
not. Our analysis of the C-C bond finalizes evidencing the applicability of the 
bond stability limits as a tool to detect and to classify interaction changes 
and anticipates the Chained Interaction conjecture discussed in Chapter 4 
using the O-H bond as a working example. 

Chapters 5 and 6 are devoted to demonstrating that the recently developed 
formalism known as DFT-Chemical Pressure provides a reliable basis to 
understand some relevant chemical phenomena in molecules and crystals. 
More specifically, in Chapter 5 we explore what the DFT-Chemical Pressure 
formalism can tell us about chemical bonds and lone pairs. We provide the 
pressure distributions in prototypical molecules, classified according to the 
Valence Shell Electron Pair Repulsion (VSERP) theory where we show how 
chemical concepts such as lone pair activity and nucleophilic/electrophilic 
behavior can be quantified in terms of attractive and repulsive forces. In 
Chapter 6 we see how the effects of the pressure can be related to a chemical 
interaction to explain the formation and structural stability of inorganic 
solids. We introduce the equivalence between mechanical and chemical 
pressures to study two several phenomena with implications in Solid State 
Chemistry.  

The main contributions of the PhD thesis are summarized in Chapter 7, and 
we have added Chapter 8 to elucidate and discuss some emerging directions 
of work in which we are already engaged and that follow the core ideas settled 
out of this PhD thesis. 

Supplementary results and data are included in each chapter and in the 
amended Appendixes.   

Related Publications 
Manuscripts published: 

 Chemical pressure–chemical knowledge: squeezing bonds and 
lone pairs within the valence shell electron pair repulsion 
model. 
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A. Lobato, H.H. Osman, M.A. Salvadó, M. Taravillo, V.G. Baonza and 
J.M. Recio.  
Phys. Chem. Chem. Phys. 21, 12585-12596 (2019). DOI: 
10.1039/C9CP00913B   

 Generalized Stress-Redox Equivalence: A Chemical Link 
between Pressure and Electronegativity in Inorganic Crystals 
A. Lobato, H.H. Osman, M.A. Salvadó, P. Pertierra, A. Vegas, V.G. 
Baonza and J.M. Recio.  
Inorg. Chem. (2019). Published  in ASAP. DOI: 
10.1021/acs.inorgchem.9b01470  

Manuscripts in preparation: 
 Bond Stability Limits: A Dual Mechanical and Electronic 

Perspective  
A. Lobato, J.M. Recio, M. Taravillo and V. G. Baonza.  

 Universality in the Rupture Distances of C-C Single Bonds 
A. Lobato, M. Taravillo and V. G. Baonza.  

 A Chained-Interactions Conjecture for the Chemical Bond: The 
Case of Hydrogen Bonding 
A. Lobato, M. Taravillo and V. G. Baonza.  
 

The following publications are devoted to support the fundamental ideas of 
this thesis, but these are not included in this PhD dissertation in order to 
preserve the scope of the PhD Thesis.  

 Computational Modeling of Tensile Stress Effects on the 
Structure and Stability of Prototypical Covalent and Layered 
Materials 
H. Chorfi, A. Lobato, F. Boudjada, M.A. Salvadó , R. Franco , V.G. 
Baonza and J.M. Recio. 
Nanomaterials.  Manuscript ID: nanomaterials-608869.  

 Temperature effects on the friction-like mode of graphite.  
C. Menéndez, A. Lobato, V.G. Baonza and J.M. Recio. 
Theor. Chem. Acc. 136, 40 (2017). DOI: 10.1007/s00214-017-2072-4 

 Anharmonicity effects in the frictionlike mode of graphite. 
C. Menéndez, A. Lobato, D. Abbasi-Pérez, J. Fernández-Núñez, V.G. 
Baonza and J.M. Recio. 
Phys. Rev. B 93, 144112 (2016). DOI: 10.1103/PhysRevB.93.144112   
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Introduction 
Interaction or bond distances have been stablished as one of the mainly 
parameters to describe chemical interactions. Its relationship with bond 
dissociation energies, bond orders or bond strengths reflects the well-known 
chemical interconnection between geometry and properties [1,2]. However, 
whereas equilibrium distances have been widely studied, characterized and 
therefore tabulated, bond breaking distances has been little explored. A simple 
question such as, when a bond breaks or forms is still controversial [3,4], even 
though it is crucial to understand and define chemical interactions and so 
chemical reactivity [5-7]. 

Although fundamental in nature, this question is continuously repeated in 
different ways trough the chemical bibliography. For example, in the case of 
covalent chemistry it is manifested as what are the longest C-C distance?  or 
equivalently, what is it the maximum C-C distance which can be reached 
without breaking its bond? [8,9]. In chemical reactions, bond ruptures 
distances are considered as the main parameters to characterize the 
mechanism along where the reaction takes places. They usually define the 
transition state geometry, and consequently chemical modifications can be 
performed to reduce the activation energy barrier, improving the reaction 
rate. The relevance of the bond formation and bond breaking distances also 
extends to supramolecular chemistry. Hydrogen bond lengths are continuously 
revisited trying to figure out what are the main characteristics of this union 
and consequently where are the distances between the covalent and weak 
interactions. 

Of course, bond breaking (forming) processes or equivalently bond stability 
limits, leads the molecule to be in an unstable state, and consequently are 
difficult to characterize. Unstable processes generally occur in short periods of 
time, making its experimental detection limited [10,11]. In addition, from the 
point of view of theoretical chemistry, bond breaking (formation) requires an 
accurate description of multireference states [12,13] which sometimes are not 
easily accessible. Up to now, several approaches have been used to define the 
bond breaking and interaction distances. Specifically, the capability of 
electron density and related scalar fields to fully characterize intermolecular 
effects have shown that changes in the charge distribution can be related to 
bond type transitions and consequently with rupture and interactions points 
[refs]. recovering the chemical idea that bond breaking involves a transition 
from shared bonding electrons to atoms or ions. 
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In the same way, bond ruptures have been also studied in terms of the 
mechanical characteristics of the bonds. In this approach, bond breaking is 
defined in terms of the maximum force supported on the bond, either applied 
externally as in the case of the mechanochemistry [14,15] or by chemical 
interactions [16,17]. Accordingly, equilibrium properties and bond strength 
define also the unstable molecular states. To cite a few examples, through a 
systematic study of the potential energy stretching curves of the several 
molecules, Beyer demonstrates that the maximum forces and therefore 
breaking distances at which a given covalent bond in a molecule becomes 
unstable, directly depends on their dissociation energy and stretching force 
constant [18,19]. Likewise, Torro-Labbe introduced the idea of reaction force, 
realizing that the maximum force exerted on the molecule along a chemical 
reaction corresponds to a highly molecular distorted state where some bonds 
can be broken or formed [20,21]. Such a maximum force state allows the 
electronic reorganization and clearly depends on the equilibrium bond 
strength characteristics of the reactive. This view supports the chemical idea 
that equilibrium properties and bond strength define also the unstable 
molecular states. 

The aforementioned approaches have evidenced that interaction and bond 
ruptures are produced at characteristic distances which depends on the atoms 
involved, as the case of the equilibrium distances. However, regardless its 
success, a general relationship between bond unstable states and bond 
properties is still lacking. In this work, we will apply a different approach to 
bond ruptures. Based on the analysis of the potential stretching energy curves 
we will show that bond stability limits are intrinsically determined in terms 
of the energetic characteristics of the bond. Accordingly, we define the 
minimum and maximum distances at which any covalent interaction could 
extend. Moreover, assuming a simple analytical model we provide strong 
evidences that unstable distances depends on the bond strength characteristics 
of the bond, which are universally applicable. Finally, an electronic analysis 
in the bond stability range of several covalent bonds let us to depict a clear 
connection between the unstable points of the potential energy and the 
chemical picture of bond ruptures based on the idea of an electron density 
transference form the internuclear region to the atoms.  

Computational Details 
All the molecular calculations has been carried out with the gaussian09 (g09) 
[22]. code at the CCSD level using Dunning’s cc-pVTZ basis set [23]. 



Chapter 2 p.35 
 
 

 

Geometry optimizations were carried out using analytical gradients [24], 
according to the Berny algorithm [25]. Dissociation curves were always 
performed fixing the bond length and partial optimizing the rest of the 
coordinates. For each partial optimization we use as a guest the previous step, 
up to the first where the optimized geometry was used as an input. The 
keyword stable during the optimization was used in order to check and ensure 
the sanity and stability of the wavefunction. 

Electron density analysis was performed using AIMALL package [26]. 
Electron localization function and topology was calculated using CRITIC2 
code [27]. The visualization of the results was carried out with VESTA [28] 
and Chimera [29] software. 

Equilibrium bond lengths, dissociation energies and equilibrium stretching 
force constants for all the optimized states are presented in Table S.2.1 of the 
supplementary material. 

Defining Bond Stability Limits 
Definition of bond stability limits requires a general criterion able to relate an 
energetically unstable state with some characteristic structural parameter 
such as the rupture distance. In this regard, all the energetic changes which 
characterizes a given bond are represented through their potential energy 
curves (PECs), and therefore its stability conditions must be somehow 
reflected within them. The question remains if these unstable points can be 
accurately determined in terms of physical and chemical backgrounds.  

Let us consider a diatomic molecule, a test-bed example of a bond PEC. In 
this case, the bond energy depends only on the interatomic distance. At 
equilibrium, the bond displays a potential energy minimum and is in a stable 
configuration defined by its equilibrium distance (𝑟

e
) and its dissociation 

energy (𝐷
e
). When the bond is compressed, the energy steeply increases up 

to the zeroenergy crossing, where it changes from negative to positive (see 
Figure 2.1).  

In as much as, stable interactions must have a negative potential energy, if 
not, only the repulsive term to the energy will drive the interaction, this point 
can be considered as the compression stability limit of the bond.  In analogy 
with the hard sphere potentials used in thermodynamics, we have named this 
zeroenergy crossing distance as the hard sphere distance (𝑟

hs
) and can be 

interpreted as the closest interatomic distance at which the atoms can 
approach maintaining their potential energy negative. On contrary, when the 
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bond distance is increased, the potential energy approaches to zero 
asymptotically up to the limit of infinite internuclear distance, where has a 
value of zero.  

Usually this limit has been considered as the point where the bond is totally 
broken and therefore no interaction between the atoms exits. Nonetheless this 
is not an unstable point in the PEC, but a stable configuration between two 
non-interacting atoms. Indeed, as manifested in typically chemical reactions, 
bond ruptures occur at lower distances than infinite atom separation. Hereof 
the stretching bond instability must occur at intermediate distances between 
equilibrium point and the infinitely separated atoms.  

Figure 2.1. PEC of a generic diatomic bond potential. The hard sphere and the 
spinodal points are represented by red and green dots respectively. The stability 
region of the bond is displayed by the blue shaded area. 

Suppose that we exert a tensile force along the diatomic bond which, for 
instance, can be produced by an AFM tip or an attractive chemical 
interaction. Under this external force, the diatomic state will move along its 
potential energy curve up to a distance 𝑟 > 𝑟

𝑒
 given by the condition of total 

null force. To be stable, the stretched diatomic bond requires that its hessian 
must be positive definite, otherwise under a slight perturbation the bond 
internal force will not balance the external one and the system will evolve to 
another state with lower energy. The latter condition implies that the second 

0 1 2 3 4 5 6 7 8
-1.2

-0.8

-0.4

0.0

0.4

r
e

r
hs

B
on

d 
E

ne
rg

y 
(r

) 
(a

rb
. u

ni
t)

r (arb. unit)

r
sp

Stable
Bond



Chapter 2 p.37 
 
 

 

derivative of the energy respect to the distance, the stretching force constant 
𝑘(𝑟), must be positive. In Figure 2.2 we have represented the force and the 
stretching force constant as a function of the interatomic distance for a 
generalized diatomic PEC. Notice that the force represented is the tensile 
external one and is equal to minus the internal force on the bond. As the 
interatomic distance increases the force increases up to a point where it is 
maximum. Here, the bond force constant has a value of zero and becomes 
negative if the bond is further elongated. This point, which corresponds to the 
inflexion/turning point of the PEC, represents the limit where the attractive 
interactions such as the nuclei-electron ones cannot balance the external 
tensile effects, i.e. the bond is broken. 

Figure 2.2. External Force (black) and stretching force constant (blue) as a 
function of the internuclear separation for a generic diatomic bond potential. The 
condition of mechanical stability limit is represented in green by the maximum force 
(Fmax) and zero stretching force constant, 𝑘(𝑟) = 0 condition occurring at the 
spinodal distance 𝑟

sp
. 

Again, a clear resemblance with the thermodynamic realm can be provided. 
In this field, for a one component with fix number of particles, the limit of 
stability, also known as the spinodal locus, is defined by the condition of zero 
second derivative of the internal energy respect to the volume. At this point 
the system is said to be mechanically unstable. The onedimensional bond 
analogs of the volume and the internal energy can be considered the distance 
and the bond stretching energy represented by its PEC. In this regard, the 
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condition of zero stretching force constant must be understood as the 
mechanical stability limit between the stable and unstable stretching 
regimens. For this reason, henceforth we will refer to the diatomic rupture 
energy and distance as the spinodal energy, Esp, and spinodal distance, rsp. 

In the case of a molecule, the PECs are n-dimensional representations of the 
energy respect to the all internal coordinates, thus bond stretching curves 
depends on the spatial atomic rearrangement. Nonetheless those effects can 
be included in the stretching potential energy curve. Accordingly, bond 
stability conditions in a molecule or a solid can be determined analogously as 
we have done to diatomic bonds giving to our model a general applicability. 

Finally, it is worth to mention, that during the last decade several examples 
have evidenced that the spinodal point can be related to bond ruptures, 
although it has not been defined as it. A clear example is provided through 
the mechanochemistry reactions. The measured dissociation reaction forces of 
covalent bonds provided by force spectroscopy experiments have 
demonstrated that the maximum tensile effect which can be exerted on the 
bond is related to the maximum force obtained by the analysis of the 
stretching PEC.[18] However, not only force effects have been related with 
the spinodal constrain but also chemical processes. For instance, Toro-labbe 
et al [16,17] introduced the concept of reaction force and reaction force 
constant to study different chemical phenomena such as isomerization 
processes, cycloadditions and dissociation reactions. The key feature of their 
analysis recall in the idea that during a chemical reaction the reactive attains 
a maximum force state allowing the electronic rearrangement necessary to 
form the product. Such a maximum force state involves at least a one normal 
mode zero force constant and it is related with a highly distorted molecular 
state. Under this perspective, during a chemical process an unstable molecular 
state is obtained which can be interpreted as its bond stability limit. 

From Bond Strengths to Bond Stability Limits 
Once we have defined the stability region, it is interesting to check 
quantitatively the critical distances and energies displayed by the prototypical 
bonds. To this end, we have calculated the hard sphere and spinodal limits of 
the potential energy curves of 70 diatomic molecules determined from its 
spectroscopic parameters according to the RKR procedure[30,31]. This data 
covers almost any interaction type. They include single, multiple, polar 
covalent and ionic bonds as well different ground state multiplicities. In Table 
2.1, we have summarized the critical bond stability limit distances and 
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energies of some representative diatomic molecules which cover the full range 
of interactions studied. All the computed data along with the parameters used 
in the RKR potentials are shown in the supplementary material 2. Critical 
parameters display a wide broad range of values. For instance, hard sphere 
and spinodal distances spreads from 1.17 to 3.21 Å and from 1.91 to 3.91 Å 
respectively, whereas the spinodal energies are almost 10 eV different from 
the lower to the highest energetically bond. The variety across the bond 
stability limit parameters is in concordance with the disparity in their 
equilibrium values and reflects the different nature of bonds studied. 
Nonetheless, when critical parameters are compared with their own 
equilibrium ones, the percentage of variation in energy and distance is roughly 
constant and equal to the 25 % for each bond. 

Table 2.1. Equilibrium and bond stability limit distances for different diatomic 
molecules obtained from the RKR data. 

Bond re (Å) rsp(Å) rhs(Å) Esp/De rsp/re 
BCl 1.7159 2.223 1.209 0.715 1.29 
C2 1.243 1.538 0.954 0.740 1.24 
CH 1.1199 1.492 0.759 0.771 1.33 
Cl2 1.9879 2.354 1.634 0.741 1.19 
SiCl 2.058 2.564 1.573 0.791 1.25 
CN 1.1718 1.459 0.893 0.747 1.25 
LiF 1.5639 2.295 0.945 0.728 1.47 
H2 0.7414 1.130 0.377 0.762 1.52 
OH 0.9696 1.288 0.661 0.720 1.32 

MgO 1.749 2.157 1.285 0.754 1.23 
O2 1.2075 1.48773 0.941 0.696 1.23 
SiO 1.5097 1.89014 1.129 0.768 1.25 
P2 1.8934 2.28922 1.510 0.750 1.21 
Si2 2.246 2.75463 1.754 0.768 1.22 

A similar relationship between the equilibrium properties and the mechanical 
stability limit was also observed in the reaction force analysis performed by 
Murray et al. [32] during diatomic dissociation reactions. These authors also 
study the spectroscopic RKR potentials of a reduced group of 13 diatomic, 
aiming to probe that the distance dependence of the force stretching constant 
it is related with the electronic changes during the dissociation path. They 
observed that the energy and distance needed to transit between a diatomic 
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and an atom like state was about 22% of its equilibrium value in clear 
agreement with our spinodal analysis.  

Either way, given the variety of bond types included in our study it is 
surprising that multiple, single, polar covalent and ionic bonds present equal 
relative stability limits. Considering the different dissociation energies and 
equilibrium stretching force constants included in our analysis, one could 
expect that different bonds will exhibit different energetic and mechanical 
ratios at the unstable points of the PEC. It seems that, regardless the bond 
type, bond ruptures occur when all bonds are distorted a given amount from 
its equilibrium conditions. Under this perspective, bond breaking and forming 
processes does not depend on the stretching mechanism, either produced by 
an external force or by a chemical interaction but are an intrinsic bond 
property.  

To further explore the latter relationship, it is useful to assume an analytically 
potential energy function which may allow us to derive a close expression 
between the bond strength equilibrium parameters and bond stability limits. 
In this regard, we have assumed the potential developed by Ferrante, Smith 
and Rose [33] as an analytical functional form for bond the stretching PECs. 
Such a function been used as an universal binding energy relationship (UBER) 
due its capability to describe the distance dependence of diatomic molecules, 
covalent, and metallic solids as well as chemisorption processes [34,35], and 
therefore it can be considered as a reference to proof the validity of the bond 
stability limit model across different chemical interactions.  

As defined by Ferrante et al., UBER relationship is based on a scaled Rydberg 
type potential: 

 𝐸/𝐷
𝑒

= −(1 + 𝑎
∗
)𝑒

−𝑎
∗ (2.1)

where 𝑎∗ is a scaled distance defined in terms of the dissociation energy, 𝐷
e
, 

and the equilibrium stretching force constant 𝑘
e
 : 

 𝑎
∗

=

𝑟 − 𝑟
𝑒

(𝐷
𝑒
/𝑘

𝑒
)
1/2

 (2.2)

Equating this potential to zero one obtains that the hard sphere distance is 
defined through the condition 𝑎∗

= −1 and therefore, 

 
𝑟
ℎ𝑠

= 𝑟
𝑒
− (𝐷

𝑒
/𝑘

𝑒
)
1/2 (2.3)
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Likewise, the scaled distance at which the second derivative of the energy 
respect to the distance is zero has a value of one, thus the spinodal distance 
read as, 

 𝑟
𝑠𝑝

= 𝑟
𝑒
+ (𝐷

𝑒
/𝑘

𝑒
)
1/2 (2.4)

Interestingly, in the UBER potential, the bond stability limits are 
symmetrically disposed around the equilibrium position spaced by a constant  

Figure 2.3. (De/ke)1/2 scaled parameter of the UBER potential against the difference 
between the spinodal and the equilibrium distances for several diatomic molecules. 
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Two extensions of the graph are shown in the bottom. The straight line is defined 
by (De/ke)1/2 = 0.96(rsp  re). 

quantity which depends on the dissociation energy and the bond stretching 
force constant, the two typical chemical measurements of the bond strength.  

In order to confirm the latter relationship, we have plotted in Figure 2.3 the 
difference between rsp and re obtained from the spectroscopically RKR data 
against the scaling parameter (𝐷

𝑒
/𝑘

𝑒
)
1/2. Most of the bonds display a 

spinodalequilibrium distance difference grouped in the range between 0.3 and 
0.5 Å pointing towards the observed constancy in the relative bond stability 
limits. A detailed analysis also shows that as the ionic character of the bond 
is increased the distance difference to the stability limits also increases (see 
Figure 2.3 extensions) in agreement with the expected long-range character 
of the ionic electrostatic interactions. Indeed, a nice linear correlation between 
our calculated values and the RKR ones is obtained with a slope of 0.96 
evidencing the connection between the equilibrium bond characteristics and 
the bond stability limits. A similar plot is obtained when we represent the 
hard sphere distance in agreement with our UBER potential analysis where 
these two points are opposite defined.  

According to our results, the amount of distortion which can be exerted on a 
given bond is determined by its equilibrium properties. Consequently, bond 
ruptures are produced at particular distances which depend on the bond 
strength characteristics. In this regard, rigid bonds with highly stretching 
force constants and low dissociation energies will display rupture distances 
closer to its equilibrium one. From this point of view, a clear connection with 
the Hammond postulate will be provided. More reactive bonds are those which 
its rupture distance is closer to their equilibrium one.  

This view is confirmed when we realize that the diatomic molecules with the 
smaller distance differences between the spinodal and the equilibrium distance 
are those with multiple and halogen bonds such as C2, O2, F2 and FO. If bond 
in diatomic molecules can be assimilated with bond in molecules those are the 
ones which commonly appears in organic reactions.  

At this point, it should be mentioned that the spinodal relationship provided 
in the analysis of the UBER potential also holds for other analytical energy 
functions. Indeed, the so claimed universality of pairwise interactions 
demonstrated by the spectroscopic relationships given by Parr et al., the bond 
softness constant of the Morse potential or the bond valence potentials are 
based on reduced potential energy functions with a scaled distance involving 
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the square ratio between the dissociation energy (De) and the equilibrium 
force constant (ke) [36-39]. These potentials lead to similar expressions for the 
bond stability limits, and therefore the relationship between the bond 
equilibrium properties and bond ruptures can be consider as a general 
principle. These results support us in using the bond stability limits in what 
follows as a reference to define bond ruptures along chemical processes. 

An ElectronicMechanical Perspective of 
Covalent Bond Ruptures 
So far, we have demonstrated that bond stability limits in diatomic molecules 
may constitute a reliable criterion to bond ruptures which can be defined in 
terms of the energetic and mechanical properties of the bond. Nonetheless, 
our ultimate goal is to seek for a relationship between the 
energeticmechanical instabilities and the traditional chemical electronic 
picture depicted for bond ruptures. 

According to the latter, when the bond ruptures are produced, a quite 
dramatic change occurs in the electronic distribution of the molecule. The 
bonding shared electrons migrates from the internuclear axis to the cores 
giving as a result two interacting, but nonbonded atoms. In the same way, 
when the molecule is compressed up to the limit where the electronic repulsion 
dominates, the electrons are confined in a really tiny space, the cores began 
to interact and formally, the bond disappear forming an inner valence shells 
interaction with the electrons highly localized along the internuclear axis. 
Under this traditional view, unstable states are completely different for bonds 
and therefore, if bond stability limits are actually and energetic-mechanical 
indicator of this processes we must expect that the electronic rearrangements 
occurs at similar distances at which bond stability limits are produced. 

Among all the electronic criteria developed to detect interaction changes, the 
topological analysis of the electron density and the electron localization 
function (ELF), are perhaps the ones which have provided more fruitful 
chemical interpretations of electronic rearrangements in terms of the reliable 
basis of quantum mechanics [40-43]. Bond ruptures, chemical reactions, 
intermolecular processes or even the appearance of highly localized electrons 
has been defined and rationalized in terms of the topological characteristics 
of this scalar fields. Therefore both, the electron density and the ELF analysis 
can be considered as a reference to characterize electronic changes, and a 
framework to validate our bond stability limits from a chemical electron 
perspective.  
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As we are interested in rupture and highly accumulations of the electron 
density due to core interactions, we have selected the typical indicators used 
in this scalar fields to detect such processes. In the case of the electron density 
analysis, we have chosen the Laplacian sign change and the signature change 
of the electron density at the bond at the bond critical point as a bond rupture 
and highly localized electron criteria respectively. The Laplacian sign change 
evidences a transition from a shared to a closed shell regime which is 
interpreted as a depletion of electron density along the internuclear axis. For 
pure covalent bonds, this topological change can be related with the covalent 
bond rupture; the shared bonding electrons (shared shell) are transferred to 
the atoms, closed shell entities. It must be emphasized that when the ionic 
character of the bond is increased such a criterion not necessary hold. As the 
partial charge of the atoms is increased, their electronic distributions resemble 
more to the ions, which formally are closed shell entities. On the other hand, 
the signature change of electron density at the bond critical point reflect the 
changes in the curvatures of the electron density. Typically, upon compression 
a transition from a saddle point to a nonnuclear maxima (NNM) is produced 
reflecting the presence of highly localized e- along the internuclear region [44].  

Analogously, in the case of the ELF function their topology along the 
stretching curves, can be analyzed terms of the bonding evolution theory 
(BET) [45,46]. This theory recovers Lewis’s picture of the bonding [43,47] and 
defines different stability structural domains in which the electronic 
rearrangements are revealed as topological catastrophes classified according 
to the Thom´s theory [48]. Within this framework, both homolytic and 
heterolytic bond ruptures can be differentiated. Homolytic ruptures are 
defined as a dual cusp catasthrophes, where the ELF maxima representing 
the two shared bonding electrons annihilates and transform into two new 
maxima and one saddle point. In this process a disynaptic basin transform 
into two monosynaptic basins which identifies the radical character of the 
atoms. On contrary, heterolytic ruptures are identified as a fold type 
catastrophe where the disypnatic bond pair basin evolves to a monosypnatic 
basin with the creation of two new critical points. 

Let us start discussing the electronic changes in the bond compressive 
regimen. As it can be seen in Table 2, for all homonuclear bonds studied, the 
appearance of NNM seems to coincide with the hard sphere distance. The 
signature change of the electron density at the bond critical point occurs at 
distances lower than 0.1-0.15 Å from the one predicted at the hard sphere 
point. As expected by our analysis of the PECs, the latter similarity on the 
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distances reflects that, at the compression limit, the cores began to interact 
producing a highly electronic accumulation along the internuclear region 
which results in an overall repulsive effect.  

This behavior contrast with the results displayed for heteroatomic bonds. Not 
any of them display this topological feature, even at shorter distances than 
our compression limit. However, does not mean that core interactions and 
highly electron accumulation cannot be produced in those bonds. The hard 
sphere distance is intrinsically a repulsive state and therefore it is produced 
regardless the atoms involved in the bond. As stated by Pendás et al. [44] the 
appearance of NNM in heteronuclear diatomic molecules it is very unlikely 
due to the narrow convex region of electron density tails which difficulties the 
fulfillment of negative parallel curvature in a nonfixed critical point. In these 
cases, the expected core effects do not lead to a NNM maxima but they must 
be produced in a similar way as in homonuclear bonds.  

Table 2.2. Bond stability Limits and electron instabilities distances for the bonds 
studied. rLap, rNNM, rBET and rBET-Hs stands for the distance at which is produced the 
sign change at the bond critical point, the nonnuclear maxima, the bond rupture 
catastrophe and the catastrophe in the highly compressed state respectively. All unit 
are in Å. 

Bond rsp rLap rBET rhs rNNM rBET-hs 
C-Cl (CH3Cl) 2.20 2.15 2.20 1.30 -- 1.20 
C-Br (CH3Br) 2.40 2.30 2.40 1.50 -- 1.40 
C-C (CH3CH3) 1.95 2.20 2.00 1.00 1.10 0.95 
C-N (CH3NH2) 1.85 1.95 1.90 1.05 -- 1.00 
C-O(CH3OH) 1.85 1.85 1.85 1.00 -- 0.90 
Cl-Cl (Cl2) 2.40 2.05  2.40* 1.65 1.55 1.45 

Si-Cl (SiH3Cl) 2.65 2.80 2.70 1.60 -- 1.50 
OO (O2) 1.55 1.40  1.55* 0.95 0.85 0.85 
NN (N2) 1.45 1.65 1.40 0.85 0.95 0.75 

CC (CH2CH2) 1.70 2.15 1.60 0.95 1.15 1.00 
CO (H2CO) 1.60 1.75 1.60 0.90 -- 0.85 

*These distances are those at which two valence shell are completely formed. See text for explanation. 

An example of this situation is shown in Figure 2.4, where the ELF isosurfaces 
and the position of the ELF bond attractors for the CH3OH molecule in this 
highly compressed state are represented. Notice that a cusp catastrophe where 
the bond ELF maxima transform into a saddle point and two new attractors 
has occurred. Each ELF basing yields 0.8e- for the bond attractors, and a 
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substantial increment of the number of electrons associated with the lone pair 
(3.4e-) and hydrogens (1.9e-). Similar situations with topological changes in 
the index of the ELF bond attractor and high e- populations in the bond axis 
are obtained for the other molecules. In the light of these results the hard 
sphere limit corresponds to the point where the cores began to interact giving 
as a result a highly electronic localization in the internuclear axis. Not 
surprisingly, the unstable points of the PEC are associated with bonding 
electronic changes according to the intuitive chemical idea.  

Figure 2.4 ELF isosurfaces for the CH3OH (ELF isovalue 0.78) along with bond 
attractor represented as purple spheres at C-O distances a) 1.45 Å and b) 0.95 Å. 

This connection becomes even more evident in the analysis of the rupture 
distances. For single covalent bonds, we can see an excellent agreement with 
the distances at which the mechanical and electronical rupture is predicted.  

Whereas the Laplacian change sign is produced always within 0.1-0.15 Å 
around mechanical stability limit, the distance difference between BET 
catastrophe (cusp or fold), which results in the annihilation of the bond 
disypnatic basin, and the spinodal point is smaller than 0.05 Å or in the 
majority of the cases almost coincident. The only exception is the Cl2 molecule 
where the cusp catastrophe has already occurred at the equilibrium distance 
and, neither the Laplacian, nor the homolytic BET indicator are suitable to 
reveal the rupture process.  

This molecule constitutes an example of a homopolar chargeshift bonding 
where the covalent contribution induces a destabilizing effect to the bond 
energy as a result of a covalent-ionic fluctuation of the electron-pair 
density[49]. The ionic contribution to the wavefunction is the responsible for 
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the disynaptic basin at equilibrium configuration and for the positive value of 
the Laplacian electron density at the critical point. 

Upon elongation, the charge shift character increases resulting in a bond 
electron density transference to the lone pairs. (see figure 2.5) In this case, a 
heterolytic rupture of the bond cannot be produced as in other charge shift 
bonds, where there is a substantial electronegativity difference between the 
atoms. In contrast, this process continues up to the formation of two unique 
valence shells in each Cl atom. Interestingly, in the Cl2 molecule such process 
occurs at 2.40 Å, again the same as the spinodal distance, and is accompanied 
by a topological change from two attractors to two (3,+1) critical points,  

Figure 2.5 Populations of the bond pair basin(s) and lone pair basins at difference 
Cl-Cl distances. 

highlighting once again that spinodal criteria it is a general chemical principle 
which also holds for homopolar charge shift bonds. 

Similar results are obtained for multiple bonds. Again, the spinodal distances 
coincides with the BET cusp catastrophe. However, the Laplacian of electron 
density criterion differs from the BET and spinodal criteria. Although the 𝜋-
bonds can be broken, a 𝜎 contribution is still joining the atoms and an amount 
of electron density still accumulated along the internuclear axis producing a 
negative value for the Laplacian of electron density. Also, if the charge shift 
character is elevated, even before the 𝜋 rupture, the Laplacian is positive. 
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This is the case of the O2 molecule. The cusp catastrophe occurs at 1.30Å, 
however as in the case of the Cl2 where the disynaptic bond basin is already 
at the equilibrium conditions, such a topological feature does not necessary 
implies an unstable bond, but a stabilized one by a covalent-ionic resonance 
energy. Again, a gradually transference of electrons from the internuclear axis 
to the atoms is produced up to the spinodal point (1.55Å), where the two O 
valence shells are formed. 

This remarkable agreement between electronic and mechanical criteria cannot 
be accidental. The spinodal mechanical instability indeed corresponds to 
intuitive chemical picture of electron density transference from the 
internuclear region to the atoms. Both the electronic and mechanical 
instability occurs simultaneously, and bond ruptures cannot be considered as 
dependent on the bond stretching mechanism but an intrinsic bond property 
which are produced at specific distances. A clear example is provided, through 
the analysis of the rupture distances in C-X bonds (X=Cl,Br). The pure 
stretching ruptures occur at 2.20 and 2.40 Å for C-Cl and C-Br respectively, 
whereas the ruptures along the symmetrical SN2 reactions [50] are 2.201 and 
2.398 Å. Bonds are unstable because its own properties not because the way 
they are elongated. According to these results, not any covalent interaction 
can be extended far beyond its single bond spinodal distance because is both 
mechanically an electronically unstable. Notice that such a statement is indeed 
a quite restrictive one. Chemical reactions where one and only one single 
covalent bond is broken or formed, cannot take places before the mechanical 
stability limit is produced.  

Moreover, in the previous section we empirically determine that reactive 
bonds are rigid and energetically unfavored because the spinodal distance 
depends on the square root ratio between De and ke. Now, under this 
electronic-mechanical perspective we can set some theoretical background for 
our previous conclusions. Covalent bond ruptures are produced as a result of 
an electron density transference from the internuclear region to the atoms. In 
general, this process is favored when the orbital overlapping is decreased, or 
when a covalent-ionic fluctuation of the pair density is increased. Therefore, 
in rigid bonds, where the electron density is effectively and extensively 
concentrated around the internuclear axis as a result of an extended orbital 
overlapping, an increase of the internuclear produces a substantial orbital 
enlargement. As a result, the orbital overlapping is dramatically reduced and 
ant the electron density is more effectively migrated to the nuclei. Likewise, 
the covalent-ionic fluctuation increases by the presence of lone pairs. The 
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latter ultimately lead to lower dissociation energies as a result of the repulsion 
between the lone pairs and the bonding electrons. Under this view the bonding 
characteristics determine the bond ruptures. Therefore, multiple and halogen 
bonds, where these two effects play a dominant role, are those where its bond 
ruptures are closer to the equilibrium distance. 
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Table S.2.1. Equilibrium values for the molecules calculated in this work. 

Bond re (Å) 
C-Cl (CH3Cl) 1.78 
C-Br (CH3Br) 1.95 
C-C (CH3CH3) 1.54 
C-N (CH3NH2) 1.47 
C-O(CH3OH) 1.42 
Cl-Cl (Cl2) 2.05 

Si-Cl (SiH3Cl) 2.10 
OO (O2) 1.20 
NN (N2) 1.10 

CC (CH2CH2) 1.35 
CO (H2CO) 1.20 

 

Table S.2.2. RKR parameters for the 70 diatomic molecules studied. 

Bond De (eV) re (Å) ke (N/m) rsp(Å) rhs(Å) 
Al2 1.572 2.466 97.3 2.978 1.957 

AlCl 5.15 2.1301 208.7 2.816 1.501 
AlF 6.94 1.6544 422.7 2.181 1.141 
AIH 3.163 1.6478 162.0 2.219 1.088 
AlO 5.33 1.6179 567.3 1.967 1.229 
AlS 3.878 2.029 328.3 2.460 1.593 
B2 3.085 1.589 358.4 1.965 1.217 

BCl 5.552 1.7159 347.3 2.223 1.209 
BeCl 4.052 1.7971 302.6 2.283 1.333 
BeF 6.337 1.361 560.3 1.790 0.935 
BeH 2.161 1.3426 226.8 1.749 0.951 
BeO 6.659 1.3309 751.3 1.691 0.954 
BeS 5.007 1.7415 412.5 2.171 1.300 
BF 7.896 1.2626 807.3 1.666 0.866 
BH 3.565 1.2324 304.7 1.670 0.799 
BN 5.793 1.281 833.0 1.652 0.947 
BO 8.396 1.2045 1366.1 1.525 0.890 
BS 6.083 1.6092 672 1.998 1.228 



p.58 Bond Stability Limits 
 
 

 

C2 6.325 1.243 1216.1 1.538 0.954 
Bond De (eV) re (Å) ke (N/m) rsp(Å) rhs(Å) 
CCl 3.393 1.645 395.4 2.020 1.274 
CF 5.751 1.2718 741.4 1.627 0.919 
CH 3.631 1.1199 447.6 1.492 0.759 
Cl2 2.514 1.9879 322.7 2.354 1.634 
ClF 2.666 1.6283 448.2 1.940 1.319 
HCl 4.617 1.2745 516.3 1.666 0.895 
LiCl 4.88 2.0207 142.4 2.770 1.279 
ClO 2.803 1.5696 471.3 1.891 1.260 
SiCl 3.855 2.058 262.7 2.564 1.573 
CN 7.888 1.1718 1629.2 1.459 0.893 
CO 11.226 1.1283 1901.9 1.435 0.820 
CP 5.357 1.5622 783.1 1.903 1.231 
CS 7.434 1.5349 848.9 1.915 1.160 
F2 1.658 1.4119 470.2 1.659 1.174 
HF 6.123 0.9168 965.7 1.247 0.598 
LiF 5.966 1.5639 250.1 2.295 0.945 
MgF 4.794 1.75 316.3 2.154 1.257 
NF 3.57 1.317 618.7 1.635 1.012 
NaF 5.363 1.9259 176 2.854 1.227 
OF 2.294 1.326 541.4 1.593 1.065 
P2 4.652 1.5897 497.4 1.989 1.202 
SF 3.563 1.6006 586.3 1.923 1.288 
SiF 5.623 1.6011 489.8 2.040 1.172 
H2 4.747 0.7414 575.1 1.130 0.377 
LiH 2.515 1.5957 102.5 2.244 0.968 
MgH 1.432 1.7297 127.4 2.170 1.305 
NH 3.671 1.0361 596.7 1.360 0.722 
NaH 1.952 1.8874 78.1 2.538 1.254 
OH 4.621 0.9696 780.4 1.288 0.661 
PH 3.165 1.4223 321.7 1.832 1.025 
SH 3.716 1.3409 423.2 1.718 0.965 

LiNa 0.916 2.81 20.8 3.675 1.971 
Mg2 0.053 3.8905 1.8 4.614 3.213 
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MgO 4.666 1.749 348.4 2.157 1.285 
MgS 3.578 2.1425 225.7 2.615 1.638 
Bond De (eV) re (Å) ke (N/m) rsp(Å) rhs(Å) 
MgS 3.578 2.1425 225.7 2.615 1.638 
Na2 2.234 3.0789 364 3.910 2.765 
N2 9.905 1.0977 2294.8 1.367 0.834 
NO 6.614 1.1508 1595.1 1.41514 0.893 
PN 6.443 1.4909 1016 1.81864 1.172 
SN 4.875 1.494 852.1 1.8077 1.191 
SiN 5.701 1.5718 728.8 1.93239 1.217 
O2 5.213 1.2075 1176.6 1.48773 0.941 
PO 6.226 1.4759 945.3 1.81032 1.151 
SO 5.43 1.4811 829.6 1.82314 1.157 
SiO 8.337 1.5097 924.2 1.89014 1.129 
P2 5.081 1.8934 556.2 2.28922 1.510 
Si2 3.242 2.246 215.2 2.75463 1.754 
S2 4.414 1.8892 495.9 2.2804 1.511 
SiS 6.466 1.9293 494 2.39291 1.510 
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Introduction 
In the last years, new organic compounds showing anomalous distances have 
been synthesized, pushing the chemical knowledge of what chemical bonds 
are, and confirming that the classical conception of a C-C single bond length 
of ~ 1.54 Å was long ago overcome. Kaupp and Boy in 1997 showed that 
highly strained or steric congested structures present overlong C-C bonds with 
values ranging from 1.60 to 1.67 Å [1]. Since then, the quest to produce 
untypically long C-C bonds has continued[2]. Dispersion forces and steric 
crowding have been able to generate new molecules with C-C bond lengths 
up to 1.80 Å[3,4]. Peculiar electronic effects such as negative hyperconjugation 
have also played a key role stretching the limits of these bonds, so distances 
up to 1.93 Å in Diamino-o-carboranes compounds have been reported[5], 
blurring the boundary between covalent and non-covalent interactions[6]. 

Nonetheless, not only extremely long C-C bonds have been studied, but also 
highly compressed ones. As demonstrated by Huntley et al. [7], confinement 
and Van der Waals (repulsive) forces can reduce the C-C single bond lengths 
to 1.31 Å, very close to the standard equilibrium distance of the C-C double 
bond in ethene. Such abnormal distances have evidenced again that the 
question What are the C-C bond stability limits? is still controversial, even 
though it is crucial to understand and to define chemical interactions, and so 
chemical reactivity.  

In this regard modern electron density analysis has been extensively applied 
to study C-C bond limits. For instance, Isea [8] observed a change from closed 
shell to open shell regime during the stretching curve of the ethane molecule 
evidencing that the covalent limit of this molecule occurs around 2 Å. 
Remarkably, in the aforementioned study of the diamino- o-carborane 
compounds the authors claimed the existence of a bond path between the 
longest C-C bonds that disappeared also at 2 Å. Moreover, Costales et al. [9] 
demonstrated that C-C bonds obeys a universal sequence of non-nuclear 
maxima (NNM) open shell closed shell regime with their transition points at 
the same distances of their diatomic counterparts, i.e. 1.15 Å and 1.9 Å. 

It is also remarkable that molecular dynamics, time resolved ultrafast 
spectroscopy, and electron density studies have shown that in Diels-Alder 
reactions both symmetrical and unsymmetrical transition states involve 
constant C-C bond distances distributions between 1.9 to 2.2 Å [10-12]. 
Moreover, Cope rearrangements which involves an aromatic chairlike C2h-
symmetry transition structure has also an inter-allylic bond length between 
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forming C-C bonds of 2.0 Å [13,14]. In summary, it appears that bond stability 
limit constitutes an underlaying, yet unexplored, universal chemical 
characteristic. 

Motivated by these observations, we seek to provide a general chemical model 
able to define the stability limits of the single C-C bond, showing that the 
maximum and minimum distances at which a bond can be distorted are deeply 
related to its bonding properties/features, and therefore they are intimately 
linked to its chemical reactivity. The discovery of such a general principle will 
undoubtedly have a huge impact on new chemical structural predictions, 
which will enable to define the boundaries within which novel compounds can 
be synthesized (stable) or not. 

Computational Details  
All the molecular calculations has been carried out with the gaussian09 (g09) 
[15]. code at the B3LYP level using Dunning’s cc-pVTZ basis set [16]. 
Geometry optimizations were carried out using analytical gradients [17], 
according to the Berny algorithm [18]. Dissociation curves were always 
performed fixing the bond length and partial optimizing the rest of the 
coordinates. The keyword stable during the optimization was used in order to 
check and ensure the sanity and stability of the wavefunction. 

Electron density analysis was performed using AIMALL package [19]. 
Electron localization function and topology was calculated using CRITIC2 
code [20]. The visualization of the results was carried out with VESTA [21] 
and Chimera [22] software. 

Potential energy curves, equilibrium bond lengths, dissociation energies and 
equilibrium stretching force constants for all the optimized states are 
presented in Table S.3.1 of the supplementary material. 

Rupture Distances in C-C Bonds. Linking the 
reactive processes and bond stabilities 
Different criteria such as distance histograms, electron density laplacian sign 
change at the critical point during the C-C stretching of the ethane molecule, 
and C-C distances in the transitions states of typical C-C forming reactions, 
indicate that C-C covalent interactions are broken or formed at a similar 
distance (~ 2Å). This means that there may be an upper distance limit at 
which the C-C covalent bond in no longer stable. Such a stability limit, if 
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any, implies that the rupture of a C-C bond does not depend on how it is 
produced and, therefore, the maximum distance at which it can be elongated 
must be similar to that at which the reactive processes do occur. To the best 
of our knowledge, the idea of a C-C bond stability limit has not been reported 
so far and, as stated above, we believe it requires further exploration, because 
it may provide a link between the equilibrium energetics, mechanical, and 
electron density characteristics of a stable bond and its potential reactive 
behaviour. 

Figure 3.1. Single C-C bond studied in this work (blue) and their respective 
compounds. Single C-C bonds used in calculations are labelled in blue. 

In this regard, it has been shown that the bond stability conditions can be 
accurately defined in terms of the bond stretching potential energy curve 
characteristics (See Chapter 2). Accordingly, the maximum elongation that a 
bond can withstand is governed by the so-called spinodal condition, which is 
defined as the distance at which the stretching force constant vanishes and 
determines the maximum external force that the bond can withstand without 
breaking.  In other words, the spinodal condition represents the limit of 
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mechanical stability of the bond. In the case of covalent bonds, such 
mechanical instability coincides with a transition between a shared electron 
regime to a radical-like state. Therefore, if the universal covalent bond 
stability limit does exist, C-C bonds affected by different effects (electronic, 
mechanical or any other kind of interaction) must present similar mechanical 
and electronical rupture distances. 

On this basis, we have calculated the pure stretching potential energy curves 
for selected C-C bonds in a series of molecules (see Figure 3.1) and we have 
determined the distances at which the electronic and spinodal instability occur 
(see Table 3.1). 

Table 3.1. Mechanical and electronic ruptures for the C-C bonds analysed in the 
molecules summarized in Figure 3.1. All units are in Å. rBET and rLAP stands for 
distance at the BET catastrophe and Laplacian sign change occurs. The ratio 
(De/ke)1/2 has been calculated from re and rsp using eq. 3.1 (see text for discussion).  

C-C Bond re rsp rBET rLap (De/ke)1/2

Ethane 1.534 1.985 2.00 2.25 0.451 
Cyclohexene 1.532 1.96 1.95 2.30 0.428 
Cyclohexene-mod 1.534 1.98 2.00 2.25 0.446 
(F3C)2 1.545 1.99 2.00 2.35 0.445 
Cyclobutane 1.549 1.99 1.95 2.20 0.441 
(TercC)2 1.573 2.03 2.05 2.25 0.457 
(Cl3C)2 1.579 2.03 2.10 2.30 0.451 
(Et2MeC)2 1.601 2.05 2.05 2.25 0.449 
(Et3C)2 1.635 2.08 2.10 2.40 0.445 
Adamantane-Dim 1.675 2.13 2.15 2.30 0.455 
Ph3C 1.735 2.16 2.20 2.40 0.425 

The spinodal distances, rsp, were calculated from the condition of null second 
derivative of the pure stretching potential energy curves. The values of rsp lie 
in the range 1.95-2.15 Å, in excellent agreement with the analysis of Isea [8], 
where compounds with C-C bonds lengths higher than 2.2 Å were never 
observed in a distance histogram. Notice that such a distance histogram is in 
fact a statistical representation of all the C-C bonds contained in the 
Cambridge Structural Database, and therefore it can be considered as an 
experimental evidence that no stable C-C bonds are experimentally found 
beyond these distances.  
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Likewise, the distances at which the BET catastrophe, which combines the 
topological analysis of ELF and catastrophe theory by Thom, lie within the 
2.00-2.25 Å range, which matches that obtained applying the spinodal criteria. 
It is interesting to note that values of the Laplacian sign change at the critical 
point, rLap perfectly correlate with both rsp and rBET, although it typically 
happens at slightly (ca. 10%) larger distances. In any case, it must be 
emphasized that which, the Laplacian sign change at the critical point and 
the BET catastrophe are the indicators considered as a reference to detect 
covalent bond ruptures [23,24], and both quantities are pretty consistent with 
the range of spinodal distances found in our analysis.  

The observed similarities between mechanical and electronical instability 
distances imply that the bond stability limit of the single C-C bond is an 
intrinsic property of the bond, which only depends on the C-C pairwise 
interaction and not on the type or nature of the external effects. This idea 
can be illustrated by thinking of all-fluorine (huge negative hyperconjugation 
effect) and the all-substituted tertbutyl derivate (stabilized by dispersive 
interactions) of ethane, or the highly strained cyclobutane molecule. If such 
dramatic interactions plays a dominant role, the electronic and mechanical 
rupture of the C-C bond will be of course influenced by these effects and will 
induce a different rupture mechanism, but the of the C-C bond will proceed 
in a similar fashion with similar rupture distances (within a difference of less 
than 0.1 Å).  

In fact, the mechanical instability is accompanied by an electronic 
reorganization between a shared electron (shared shell character) regime to a 
radical like (open shell character) state that in some extent does not depend 
on the origin of surrounding interactions. Typically shared shell-open to shell 
electronic transitions indicate processes where bonding electrons evolve to 
form a radical or electrostatic type interaction, so the bond stability distance 
can also be understood as the threshold between covalent and non-covalent 
interactions [25,26].  

That rupture distances depends only on covalent nature of the C-C bond 
implies that its equilibrium characteristics in a given chemical moiety must 
conform the constrains imposed by the mechanical stability limit. In this 
regard, a previous study (see Chapter 2) has demonstrated that the spinodal 
point, rsp, depends on the equilibrium bond-strength properties through the 
relationship: 

 𝑟
𝑠𝑝

= 𝑟
𝑒
+ (𝐷

𝑒
/𝑘

𝑒
)
1/2 (3.1)
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where re, De and ke are equilibrium quantities, namely distance, bond 
dissociation energy and stretching force constant, respectively. The spinodal 
distances calculated through the equation (1) perfectly matches those 
calculated numerically using the second derivate, as it can be confirmed from 
the values of (𝐷

𝑒
/𝑘

𝑒
)
1/2 presented in Table 1. Notice that this result implies 

that bond stability limits are produced as consequence of the equilibrium 
properties, therefore they not only constitute a distance stability limit, but 
also a mechanical energy limit. Interestingly, a detailed analysis of these data 
also reveals that the (𝐷

𝑒
/𝑘

𝑒
)
1/2 ratio is almost constant (0.45 ± 0.03) Å. 

Although we will thoroughly analyze this result in the next section, it is worth 
mentioning here that this constancy reinforces the idea that C-C covalent 
bonding can be universally described in terms of a universal potential energy 
function. 

Figure 3.2. Relaxed stretching potential energy curve of the C-C bonds in 
cyclohexene produced during the Diels-Alder reaction (Blue triangles). Inverse 
reaction path of the Diels-Alder reaction between ethylene and butadiene (Black 
dots). The energies have been scaled respect to the transition state energy, ETS = 
234.616 Hartree. 

We will attempt to outline the implications of the C-C bond universal stability 
limit in a reactive process. Up to now, we have defined the bond stability 
limits in terms of the maximum rupture force exerted on a given bond as 
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consequence of a pure elongation process. This description contrasts to the 
typical C-C reactions where the covalent bond is formed as consequence of 
the reagent’s interactions. However, chemical reactions can be also understood 
in terms of a force picture where the bond forming also corresponds to the 
rupture of the inverse reaction[27-29]. The attractive or repulsive interactions 
during a chemical process are manifestations of a chemical force which induces 
a distortion of the bonds elongating or compression inducing the bond 
ruptures. Moreover, in as much the reaction coordinate is the same in the 
direct and inverse process of a given chemical reaction, the transition states 
are unchanged and therefore the bond rupture points of the chemical bonds 
correspond also to the bond formation. 

In the latter reasoning we have considered that the forces are chemical in 
nature, but they can be also applied mechanically as for instance is done in 
mechanochemical experiments [30]. Indeed, in as much as these forces are 
applied along the same path there will be no difference between them, both 
will produce the same distorted states. Accordingly, the elongation of the 
chemical bonds along a reaction path can be assimilated to the its pure 
stretching potential curve. In this regard, we emphasize that models of 
reactivity, such as the acclaimed Marcus' kinetic theory, [31,32] have been 
already based on a similar hypothesis. In fact, if we compare the inverse Diels-
Alder profile of the ethylene and butadiene with the stretching potential 
energy curve of the cyclohexane C-C bonds formed during the reaction as a 
function of the C-C distance, the pure stretching curve and the reaction profile 
are almost coincident up the spinodal point. The results are plotted in Figure 
3.2, where the energy has been scaled and referenced to the transition state. 

This transferability of the pure stretching potential energy curve to the 
reactive process implies that the bond stability conditions also hold in 
chemical reactions. At this point a nice interpretation of the constancy in the 
C-C bond forming reactions can be displayed. In as much as the spinodal 
distance represent the threshold limit for a mechanical breaking of a bond, it 
is clear that it also defines the point beyond which the bond will exhibit a 
negative stretching force constant leading to the formation of a transition 
state. In a similar way, such a point must be associated with an electronic 
instability that allows the formation of a bond or, in other words, the 
transition from an open-shell regime, representing the two methyl radical like 
character of ethane, to a closed shell regime, associated with the 2 electron 2 
center C-C bond. Therefore, in spite of electronic substituents or the reaction 
conditions, all C-C forming and cleavage reactions will be produced at a 
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universal spinodal distance, which reflect both the bonding formation 
(rupture) and the mechanical-energetic limit able to produce a favorable 
(unfavorable) C-C covalent bond. 

The latter is clearly evidenced in the Diels-Alder reaction and Cope 
rearrangements, where the transition state distances are very similar to the 
C- C bond stability limits. However, we want to emphasize that the spinodal 
point it is not necessary the same as the transition state. It represents a local 
stretching force constant which is not defined in the hessian matrix where the 
second derivates of the energy are performed respect to the normal mode 
displacement. Only in concerted mechanisms, as those previously discussed 
here, where the reaction coordinate highly depends on the bond stretching 
length, the spinodal point will be very close to the maxima in the reaction 
coordinate. Nonetheless, this is an appealing feature of our model. Transition 
states are produced in terms of the balance between the attractive and 
repulsive forces between the reagents and not necessary involve broken of 
forming bonds. On contrary bond stability model determines the forces, 
energetics and electronic process needed to produce the bond rupture or 
formation and only depends on the bond nature of the pairwise interaction. 
Therefore, the bond rupture or formation of given chemical bond in any 
chemical reaction will be always produced at the distances determined by the 
bond stability limits. 

The reference C-C single bond. A Universal force 
constant and electron density distance model. 
In the previous section we have evidenced that bond stability limits may 
constitute a universal criterion which only depends on the nature of the 
pairwise interaction. However, our ultimate goal is to provide the subjacent 
basis behind this universality as well as to extend the implications of this 
model into the C-C bond electronic and mechanical properties. 

In this regard, during the C-C bond stability analysis, we realize that 
regardless the different external interactions produced in the compounds, the 
square root ratio between the dissociation energy and the equilibrium 
stretching force constant was quite consistent and approximately equal to 0.45 
Å. This result was remarkable since the chemical effects included in our 
analysis produce a range of C-C equilibrium distances which goes from the 
standard 1.54 Å up to 1.74 Å, almost a 13% of elongation. Here, it is worth 
to recall that (𝐷

𝑒
/𝑘

𝑒
)
1/2 has been usually defined as the scaling length of the 
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typical covalent potential energy functions like the Morse and Rydberg 
ones[33,34]. Consider for example the Rydberg potential, the energy is 
expressed as 

 𝐸/𝐷
𝑒

= −(1 + 𝑎
∗
)𝑒

−𝑎
∗ (3.2)

where 𝑎∗ is a reduced distance defined as, 

 𝑎
∗
=

𝑟 − 𝑟
𝑒

(𝐷
𝑒
/𝑘

𝑒
)
1/2

 (3.3)

A constant value of the scaling length makes possible to define a common 
reference equilibrium distance. Otherwise it will be necessary to change 𝑟

𝑒
 in 

other to accurately describe the stretching behavior of different bonds under 
this analytical form. As a result, the observed constancy in the C-C scaling 
length suggest that stable C-C bonds can be considered as fixed points along 
a reduced hypothetical universal potential energy curve of an isolated single 
covalent reference, which upon stretching behaves energetically and 
mechanically similar as the stable counterparts. 

For an isolated C-C single covalent bond, the reference equilibrium bond 
length will correspond to the distance where the repulsive forces between two 
isolated C nuclei balance the attractive forces between them and the electrons 
concentrated in the internuclear region. At this respect, Ganguly [35,36] have 
demonstrated that the equilibrium distance of a bond in standard conditions 
(dMM) can be expressed as the sum of two screened core lengths, defined in 
terms of the average orbital radii, plus a bonding transferable length equal to 
0.74 Å. The latter was calculated assuming a Borh model for the hydrogen 
molecule and considering that the bond formation involves two states. One 
arising from the charge-transfer of a hole which defines the attraction of the 
electron to the nuclei, and the other from an electron transfer which accounts 
for the repulsion between the two shared electrons. Within this model the 
bond length will not depend neither in any experimental data or molecular 
properties but only on the characteristics of two interacting C atoms. 
Accordingly, the isolated C-C bond length can be estimated in 1.54 Å. This 
value is very close to the equilibrium bond length of the C-C in the ethane 
molecule, which typically has been considered as the reference single C-C 
covalent bond, and is also in agreement with the experimental sum of the 
covalent radii statistically determined by X-Ray diffraction [37,38] reinforcing 
the idea that our reference corresponds to the prototypical single C-C covalent 
bond. 
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On this basis, we can provide an explanation for the constancy in the C-C 
rupture distances. Using equation 1 with a scaling and equilibrium distances 
of 0.45 and 1.54 Å respectively, the C-C bond reference rupture will be 
produced at 1.99 Å. Here we want to emphasize that the latter calculation 
only depends on a reference equilibrium bond distance and on a scaling length 
determined from ab-initio calculations, and therefore barely depends on the 
assumed potential energy function, rather it is a consequence of the universal 
energy-distance dependence experimented by all the pairwise interactions. 
Consequently, this rupture point represents the bond stability limit of a 
generalized single covalent interaction and no matter how C-C bonds will be 
elongated (structure, electronic, interaction or reactive effects), close to this 
distance they will be always unstable.  

The latter conclusion can be corroborated analyzing the dependence of the 
stretching force constant of the C-C bonds as a function the equilibrium 
distance. According to our reasoning, the force constant distance dependence 
of isolated C-C pairwise interaction must reproduce the experimental data 
and gradually decrease up to the spinodal point. As the C-C pairwise 
interaction corresponds to a hypothetical entity, it is necessary to assume a 
functional form to describe its force constant behavior. Considering a Rydberg 
type potential, the stretching force constant of our reference depends on the 
distance as 

 𝑘 = 𝑘
𝑒
(1 − 𝑎

∗
)𝑒

−𝑎
∗ (3.4)

The scaled distance, a∗, is defined using the previous equilibrium and scaling 
lengths. In the case of ke we have assumed that it is equal to the relaxed 
stretching force constant of the ethane (4.00 N cm-1) which displays a similar 
equilibrium distance. 

In Figure 3.3, we have represented the relaxed force constant data of the 70 
single C-C bonds of several compounds studied by Markopoulos and 
Grunenberg[39]. As expected, our isolated reference accurately describes both 
the compressed and overlong C-C single bonds. Notice how in the logarithmic 
plot the experimental data consistently decrease following the curvature of 
the isolated C-C bond reference up to the spinodal point evidencing that all 
stable C-C bond will break at the C-C bond stability limit. Such a behavior 
clearly contrasts with other empirical laws proposed in the literature such as 
the Badger one[40,41]. The latter is based on inverse power law relationship 
and have accurately described the distance dependence of numerous bonds. 
However, it is important to highlight that this correlation (as well as other 
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such as the exponential ones) does not consider the bond cleavage, only at 
infinite distance they predict a zero stretching force constant. 

Figure 3.3. Equilibrium stretching force constant of 70 single C-C bonds from 
reference X (empty circles) against its equilibrium distance. The triangle and square 
points stand for the ethane cation radical and compound 3b. Blue line isolated C-C 
bond reference model of this work. Green dash-dot line Badger rule from reference 
[42].  

The force constant distance dependence of C-C bonds has been and still is- 
a fruitful debate topic [43,44]. Recently, Grunenberg [42] have demonstrated 
that C-C bond accomplish the Badger rule up to the distances of 1.90 Å if 
one considers the ethane cation radical. Including the proposed Badger rule 
in Figure 3.3, we see how the latter clearly deviates at distances larger than 
1.6 Å, yet the ethane cation radical is accurately described under this model. 
At this respect we have calculated the stretching force constant of another 
overlong bond with a similar distance as the ethane cation radical, the cyclic 
C-C bond of the amino-o-carborane 3b compound[5]. Interestingly its 
stretching force constant clearly follows our isolated C-C single bond reference 
towards the bond rupture point. This discrepancy can be resolved recalling 
that the bond stability limit model is based on the assumption that the 
universal potential energy function corresponds to a single C-C covalent bond. 
When we analyze the electron localization function of the ethane cation 
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radical in the D3d geometry, we obtain a population of 0.35 e- for the C-C 
disynaptic basin with an electronic fluctuation variance of 0.276 e-. According 
to this result, the latter corresponds to a charge-shift bond[45] where a high 
contribution of an ionic character is present in the wavefunction and therefore 
cannot be considered a covalent C-C interaction. This is not the case of the 
diamino borane compound, which as it has been demonstrated fulfills the 
conditions to be considered a covalent bond [5]. Interestingly, this interaction 
change is reflected in the mechanical properties as a deviation from the 
covalent pairwise interaction. This result points out that bond stability limits 
not only evidence the bond rupture but also variations in the nature on the 
interaction. The latter involve changes in mechanical properties of the bond 
and thus in its potential energy function. As we will see next, this result has 
important consequences in the chemical conception of C-C multiple bonds  

The excellent agreement between the bond stability model and the force 
constant-distance data proves that an isolated pairwise interaction can 
provide fruitful chemical information about the bond properties. Moreover, 
reinforces the idea that the relationship between the spinodal distance and 
the equilibrium bond characteristics given by equation 1 can be of general 
applicability. This is a quite restrictive criteria, because given an equilibrium 
bond length, its dissociation energy and force constant must adjust in order 
to fulfill the universal bond stability limits of the isolated C-C pairwise 
interaction. Consider for example the all-meta-tert-butylhexaphenylethane 
compound. Many conventional computational methods fail to describe its 
dissociation energy, and London dispersion corrections have to be applied 
during the calculations in order to produce a stable interaction energy [46]. 
Using the computed data obtained by Wagner et al. [47] we obtain an 
equilibrium distance of 1.67 Å and a ke value of 237.47 kcal mol-1 Å-2. Readily 
we can say that this bond must be stable because is beyond the isolated C-C 
2Å limit. Moreover, if we assume that the scaling length is equal to 0.45 Å, 
we predict a dissociation energy for this C-C bond of 48 kcal mol-1, in fair 
agreement with the experimental one which ranges from 30 to 44 kcal mol-1 
depending on the calculation method [3]. 

Finally, it is worth to analyze our isolated C-C bond reference in terms of an 
electron density perspective. Interestingly, the idea of an isolated C-C 
reference able to describe the properties of a given bond has been also present 
in this field. Several authors have demonstrated that the electron density at 
the bond critical point of different C-C bonds follows the same distance 
dependence as the promolecular reference [6,9]. Notice, that in this case the 



Chapter 3 p.75 
 

 

 

electron density at a given distance is described in terms of the overlap of the 
electron density tails of the isolated atoms. The fact that two isolated C-C 
bond references accurately describes the mechanical-energetic and the electron 
density evolution of the C-C bond cannot be accidental. Indeed, in the well 
foundation basis of the density functional theory [48] the electron density is a 
functional of the energy, and therefore a model able to describe the energetic 
and mechanical properties of a bond must also reproduce its electron density 
behaviour.  

Let us try to depict how our universal pairwise interaction can be related to 
the electron density characteristics. Using the well-known Pauling bond order 
relationship [49], the potential energy function of a covalent bond can be 
expressed in terms of a bond order coordinate, n,  

 
𝑛 = 𝑒

−(𝑟−𝑟
𝑒
)/𝑏 (3.5)

Apart from the controversial definition of the bond order, it is clear that 
expression 5 defines to some extend a reduced magnitude related to the 
electron density properties of the bond. Assume for a moment that the 
constant b in the previous formula is equal to our scaling distance ሺDe/keሻ1/2. 
Then, the energy can be expressed as 

 𝐸/𝐷
𝑒

= −[1 − 𝑙𝑛(𝑛)]𝑛 (3.6)

Within this perspective, the mechanical properties are to some extend linked 
to the bond electronic behavior. Indeed, if we consider that the bond order 
can be defined as the ratio between the electron density at critical point (𝜌) 
at a given distance r and the electron density at the equilibrium (𝜌

𝑒
) [ref 

Bader], 

 𝑛 =

𝜌

𝜌
𝑒

 (3.7)

We predict a exponential dependence of the electron density with the distance, 
in clear resemblance with the promolecular model 

 𝜌 = 𝜌
𝑒
𝑒

−(𝑟−𝑟
𝑒
)/(𝐷

𝑒
/𝑘

𝑒
)
1/2 (3.8)

In the case of the isolated C-C bond, ሺDe/keሻ1/2must be equal to 0.45±0.03 Å 
and re =1.541 Å. Therefore, if our isolated C-C bond reference corresponds to 
the promolecular C-C bond, we must expect that expression 8 accurately 
describe the electron density of the different C-C bond. This view is confirmed 
in Figure 3.4, where we can see how using the value of 𝜌

𝑒
 of the ethane 
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molecule (1.569 e- Å-3) to describe our isolated C-C bond, the electron density 
variation perfectly matches the value of the different single C-C bond in the 
compounds studied within the limits of error (All the data are collected in the 
supplementary material 3).Under this view, the isolated C-C bond potential 
energy curve constitutes the functional of the electron density of the 
promolecular bond. In principle such a relationship must hold for any pairwise 
interaction, and therefore the bond stability limits can be considered an 
inevitable consequence of the interaction shape which is applicable to all the 
bonds.  

Figure 3.4. Electron density at the bond critical point against is equilibrium 
distance for the 11 C-C bonds studied in this work (empty circles). The black line 
corresponds to the isolated dependence given by expression 3.8. 

To sum up, through this section we have carefully provided a reliable 
theoretical basis to the bond stability limits, demonstrating that bond 
ruptures are an inevitable consequence of the pairwise interaction nature 
between two atoms. Our results clearly evidence that bond ruptures are 
produced at specific distances independently the way they are produced and 
therefore imposes a quite restrictive criteria to the bond dissociation energy 
and stretching force constant values. This relationship may allow the 
calculation of vibrational and thermochemical data in complex systems 
knowing the value of the scaling length. Moreover, in addition to the ideas 
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previously discussed we have provided a direct link between the mechanical 
properties and the electron density distance dependences pointing out that 
interaction changes must produce modifications of the potential energy 
function.  

Bond Stability Limits and interaction changes. 
The case of Multiple Bonds. 
Finally, it is interesting to explore the implication of our model in C-C 
multiple bonds. Several well-known relationships such as the bond order-bond 
length correlations [50,51] have settled up the idea the multiple C-C bonds 
has can be considered as compressed analogues of the single ones, leading to 
the conception that the mechanical and electronic properties of all the C-C 
bonds gradually change with the distance. Although this view has proved to 
be very useful, in our opinion it is somewhat confusing, because implies that 
upon compression a single bond can become a multiple one and therefore 
display a similar chemical behaviour. This situation clearly contrasts with the 
theoretical perspective of the multiple bonds where the pi interactions are 
clearly differentiated from the sigma ones in its energy and electron density 
distributions. 

In this regard, the previously discussed example of C-C bond in the ethane 
cation radical in the diamino-o-carborane 3b compound have evidenced that 
when the interaction type is modified its bond stability limits and thus its 
potential energy curve is also altered. Such a result is quite striking because 
it demonstrates that a change in the interaction type must produce abrupt 
transitions in the mechanical and energetic properties of the bonds. At this 
respect it is important to define what it is an interaction change. In our model 
we refer to it as any modification of the bond stability limit parameters which 
produce a different scaling length and therefore a different pairwise interaction 
reference. Notice that the interaction change also involves a modification in 
the promolecular reference and consequently in its electron density behaviour. 
Accordingly, if the chemical conception of a multiple bond it is correct, they 
will display the same bond stability limits as the single ones and therefore 
they will be described under the same universal potential energy curve. On 
this basis we have calculated the potential stretching curves of the ethane, 
ethylene and acetylene molecules, the three prototypical single, double and 
triple C-C bonds. As expected their bond ruptures consistently decrease from 
1.99 Å in the ethane to 1.75 Å and 1.59 Å in the ethylene and acetylene 
respectively as well as their scaling lengths does from 0.45 Å to 0.42 Å and 
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0.38 Å, reinforcing the idea that triple, double and single bonds are completely 
different in nature. This view is even more clearly confirmed when we plot in 
Figure 3.5, the previously discussed single C-C bond force constant of 
Markopoulus [39], the force constant of some double and triple bonds [52,53] 
and the force constant distance variation of the ethane, ethylene and 
acetylene. Notice how all the data follow the distance dependence of its 
prototypical bond partner as well as they are systematically lower as the 
multiple bond character is increased. The electron density variation shows a 
similar flaw as the force constant data, and the acetylene and ethylene curves 
are systematically lower than the corresponding to the ethane (See Figure X 
of the supplementary material). As a result, the single to multiple bond 
transition does not involve a gradually change not even the double and triple 
bonds can be considered as it,rather they correspond to different pairwise 
interactions described by different potential energy curves. Under this view, 
the multiple to single transition must be considered as chemical reaction like 
process, where the two potential energy curve crosses defining a transition 
state. 

Figure 3.5. Distance dependence of the equilibrium stretching force constant for 
single (empty circles), double (green diamonds) and triple (orange triangles) C-C 
bonds. The stretching force constant variations for ethane, ethylene and acetylene 
are shown as black, green dash-dot and orange dash lines.  
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Table S.3.1. Potential energy curves for the different C-C bonds. 

 

Ethane 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.1 -79.39085 2 -79.55447 
1.15 -79.4549 2.05 -79.54707 
1.2 -79.50324 2.1 -79.5398 
1.25 -79.53914 2.15 -79.53272 
1.3 -79.56518 2.2 -79.52587 
1.35 -79.5834 2.25 -79.51929 
1.4 -79.59546 2.3 -79.51298 
1.45 -79.60265 2.35 -79.50697 
1.5 -79.60603 2.4 -79.50126 
1.55 -79.60646 2.45 -79.49586 
1.6 -79.60459 2.5 -79.49075 
1.65 -79.60099 2 -79.55447 
1.7 -79.59608 2.05 -79.54707 
1.75 -79.59021 2.1 -79.5398 
1.8 -79.58366 2.15 -79.53272 
1.85 -79.57665 2.2 -79.52587 
1.9 -79.56936 2.25 -79.51929 
1.95 -79.56193 2.3 -79.51298 
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Cyclohexene 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.3 -234.67447 1.9 -234.6806 
1.35 -234.69143 1.95 -234.67401 
1.4 -234.70263 2 -234.66743 
1.45 -234.70937 2.05 -234.66121 
1.5 -234.71262 2.1 -234.65554 
1.55 -234.71314 2.15 -234.65008 
1.6 -234.7116 2.2  -234.6450 

1.65 -234.70849 2.25  -234.6401 

1.7 -234.70419 2.3 -234.6356 

1.75 -234.69902 2.35 234.6314 

1.8 -234.69325 2.4 -234.6275 

1.85 -234.68705 2.45 234.62405 
 

Cyclohexene-mod 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.3 -387.35789 1.9 -387.34801 
1.35 -387.37263 1.95 -387.34063 
1.4 -387.38188 2 -387.33325 
1.45 -387.38687 2.05 -387.32592 
1.5 -387.38854 2.1 -387.31871 
1.55 -387.38766 2.15 -387.31165 
1.6 -387.38484 2.2 -387.30477 
1.65 -387.38056 2.25 -387.29808 
1.7 -387.37519 2.3 -387.29161 
1.75 -387.36904 2.35 -387.28535 
1.8 -387.36234 2.4 -387.27931 
1.85 -387.35528 2.45 -387.27349 
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Cyclohexene-mod 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.3 -387.35789 1.9 -387.34801 
1.35 -387.37263 1.95 -387.34063 
1.4 -387.38188 2 -387.33325 
1.45 -387.38687 2.05 -387.32592 
1.5 -387.38854 2.1 -387.31871 
1.55 -387.38766 2.15 -387.31165 
1.6 -387.38484 2.2 -387.30477 
1.65 -387.38056 2.25 -387.29808 
1.7 -387.37519 2.3 -387.29161 
1.75 -387.36904 2.35 -387.28535 
1.8 -387.36234 2.4 -387.27931 
1.85 -387.35528 2.45 -387.27349 

 

(CF3)2 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.1 -673.84118 1.75 -674.06311 
1.15 -673.91047 1.8 -674.05635 
1.2 -673.96304 1.85 -674.04905 
1.25 -674.00233 1.9 -674.04138 
1.3 -674.03107 1.95 -674.03351 
1.35 -674.05141 2 -674.02555 
1.4 -674.0651 2.05 -674.01761 
1.45 -674.07352 2.1 -674.00976 
1.5 -674.07781 2.15 -674.00207 
1.55 -674.07884 2.2 -673.99458 
1.6 -674.07737 2.25 -673.98733 
1.65 -674.07395 2.3 -673.98033 
1.7 -674.06908 2.35 -673.97362 
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Cyclobutane 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.4 -156.72415 1.4 -156.72415 
1.45 -156.73205 2 -156.69311 
1.5 -156.73621 2.05 -156.68652 
1.55 -156.73744 2.1 -156.68004 
1.6 -156.73641 2.15 -156.67373 
1.65 -156.73365 2.2 -156.66762 
1.7 -156.7296 2.25 -156.66175 
1.75 -156.7246 2.3 -156.65615 
1.8 -156.71891 2.35 -156.65082 
1.85 -156.71276 2.4 -156.64579 
1.9 -156.70633 2.45 -156.64107 
1.95 -156.69974 2.5 -156.63667 

 

Cyclobutane 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.4 -156.72415 1.4 -156.72415 
1.45 -156.73205 2 -156.69311 
1.5 -156.73621 2.05 -156.68652 
1.55 -156.73744 2.1 -156.68004 
1.6 -156.73641 2.15 -156.67373 
1.65 -156.73365 2.2 -156.66762 
1.7 -156.7296 2.25 -156.66175 
1.75 -156.7246 2.3 -156.65615 
1.8 -156.71891 2.35 -156.65082 
1.85 -156.71276 2.4 -156.64579 
1.9 -156.70633 2.45 -156.64107 
1.95 -156.69974 2.5 -156.63667 
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(TercC)2 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.3 -315.71789 2.2 -315.72799 
1.35 -315.74321 2.25 -315.72174 
1.40 -315.76141 2.3 -315.71565 
1.45 -315.77395 2.35 -315.70972 
1.5 -315.78198 2.4 -315.70399 
1.55 -315.78645 2.45 -315.69842 
1.6 -315.78811 2.5 -315.69305 
1.65 -315.78757 2.55 -315.68788 
1.7 -315.78532 2.6 -315.68292 
1.75 -315.78177 2.65 -315.67818 
1.8 -315.77724 2.7 -315.67364 
1.85 -315.77198 2.75 -315.6693 
1.9 -315.7662 2.8 -315.66515 
1.95 -315.76007 2.85 -315.66119 
2.00 -315.75373 2.9 -315.65741 
2.05 -315.74728 2.95 -315.65381 
2.1 -315.7408 3.00 -315.65039 
2.15 -315.73435 -- -- 
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Adamantane-Dimer 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.3 -1089.87885 1.9 -1089.93841 
1.35 -1089.90101 1.95 -1089.93527 
1.4 -1089.91732 2 -1089.9319 
1.45 -1089.92872 2.05 -1089.92838 
1.5 -1089.93679 2.1 -1089.92477 
1.55 -1089.94203 2.15 -1089.92112 
1.6 -1089.94507 2.2 -1089.91747 
1.65 -1089.94639 2.25 -1089.91382 
1.7 -1089.9464 2.3 -1089.91019 
1.75 -1089.94538 2.35 -1089.90662 
1.8 -1089.9436 2.4 -1089.9031 
1.85 -1089.94122 -- -- 

 

(Ph3C)2 
r (Å) E (a.u.) r (Å) E (a.u.) 
1.3 -1089.87885 1.9 -1089.93841 
1.35 -1089.90101 1.95 -1089.93527 
1.4 -1089.91732 2 -1089.9319 
1.45 -1089.92872 2.05 -1089.92838 
1.5 -1089.93679 2.1 -1089.92477 
1.55 -1089.94203 2.15 -1089.92112 
1.6 -1089.94507 2.2 -1089.91747 
1.65 -1089.94639 2.25 -1089.91382 
1.7 -1089.9464 2.3 -1089.91019 
1.75 -1089.94538 2.35 -1089.90662 
1.8 -1089.9436 2.4 -1089.9031 
1.85 -1089.94122 -- -- 
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Table S 3.2. Electron density at critical point for the difference C-C bonds 
studied. 

C-C Bond re rsp 
Ethane 1.534 1.58388 
Cyclohexene 1.532 1.57995 
Cyclohexene-mod 1.534 1.55244 
(F3C)2 1.545 1.56053 
Cyclobutane 1.549 1.54879 
(TercC)2 1.573 1.46559 
(Cl3C)2 1.579 1.44442 
(Et2MeC)2 1.601 1.36482 
(Et3C)2 1.635 1.28148 
Adamantane-Dim 1.675 1.1861 
Ph3C 1.735 1.0218 
Compound-3b 1.928 0.70925 
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Figure S3.1. Distance dependence of the electron density at the C-C bond critical 
point for ethane (black squares), ethylene (red squares) and acetylene (green) C-C 
bonds. 
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Introduction 
Among the non-covalent interactions, hydrogen-bonding is perhaps of the 
most popular one and it is usually considered as a reference of such kind of 
unions [1]. Its relatively directional and strong interaction combined with 
complex dynamic properties has played a key role in chemistry. Numerous 
examples ranging from biological reactions and life processes[2,3] to molecular 
recognition [4-6], or hydrogen transfer reactions are continuously subject of 
new investigations[7]. 

Nonetheless, the nature and definition of hydrogen bonding is still ill defined. 
[8-10]. The traditional Pauli definition based on electrostatic point of view has 
been overcame. New interactions like, dihydrogen [11], or blue-shifted 
hydrogen bonds (HBs) [12,13], have evidenced that such a non-covalent 
interaction extends from the covalent regime to the van der walls limit. [1,14-
16] Of course such a broad range of interactions cause hydrogen bonding to 
be fundamental in chemistry, leading the possibility to stabilize transition 
states [17,18] or design new organic crystals [19], but also have opened several 
questions about the chemical connection between covalent and non-covalent 
interactions.  

In this regard, the different definitions of hydrogen bonding display almost 
any chemical criteria available to define chemical bonding and binding. The 
most important, and perhaps the most applied one, is the so called geometric 
constrains. Accordingly, hydrogen bonding is produced when the interatomic 
atomic distances are shorter than those corresponding to the sum of their non 
bonded distances or Van der Waals radii. This definition was the result of the 
chemical knowledge that HBs display an intermedium character between the 
purely covalent interaction and the dispersive ones. Indeed, geometrical 
constrains found support on numerous statistical analysis of the Cambridge 
Structural Data Base (CCSD) where well defined maxima in between the 
covalent and van der Waals distances distributions appear. Nice chemical 
correlations between HBs lengths data and bond strengths [20-22], bond 
valences [23] or vibrational frequencies [24,25] have been obtained, supporting 
the chemical idea that structure and properties are connected. However, 
although these geometrical empirical laws have provided further insight on 
the properties of the HBs, they have not been able to reveal the nature of this 
interaction. Furthermore, geometric criteria have been widely criticized 
because weak HBs as C-H·O display interaction distances bigger than their 
van der Waals radii sum [26]. 
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As in the case of covalent chemistry, energy has been also a criterion to 
distinguish the nature of HBs. Traditionally, HBs have been described as the 
sum of two potential energy functions, an electrostatic one, with a deeper and 
stepper curve, and a Van der Waals function [26] which reflects the 
intermediate character of this interaction. Indeed, as appeared in most 
common chemistry textbooks, HBs interaction energies are about 2-5 kcal mol-
1, in the middle range between covalent and Van der Waals limits. Nowadays, 
energy decomposition schemes [27,28] have been able to split up the 
interaction energies in different meaningful contributions evidencing that 
shorter HBs share common features with covalent bond whereas longer ones 
display an electrostatic/dispersive nature. Nonetheless energy criteria have 
not been able to explain why such an interaction can be spread in the range 
from covalent to van der Waals limits. Indeed, the well stablish chemical idea 
that each interaction can be represented by a characteristic potential energy 
function seem to disappear in favor of a continua energy change where the 
limits between covalentelectrosticVan der Waals regimens are not clearly 
defined. 

Finally, electron density has also played a key role in the classification of HBs. 
The analysis of the electronic distributions have stablished the idea that HBs 
display a continua of interactions.[14-16] Moreover, electronic properties have 
been able to reveal the existence of very weak hydrogen bonds ,such as 
dihydrogen bonds, where distances and energetic criteria do not suffice. 
Undoubtedly, charge distributions have become an invaluable tool in the 
modern classification of non-covalent interactions. However, it has to be 
mentioned that, as pointed out by Graboswky [8], electron density criteria 
also depend on the different values displayed by strong and weak hydrogen 
bonds. Additionally, electron charge distribution analysis it is usually 
combined with the previous energetic and geometric criteria, evidencing that 
a practical definition able to enclose the different HBs definitions is still 
lacking. 

To this end, in this communication we provide an intuitive chemical model 
able to explain the distances at which HBs can produce an interaction change. 
Recovering the chemical idea that each potential energy function defines a 
given interaction, we will show how the covalentelectrostaticVan der Waals 
regimens are chained through energetic constrains. Our model will be tested 
in the most widely studied hydrogen bond interaction, the O-H O system. 
Different criteria such as distances distributions, electron density and 
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energetic properties will be analyzed within this framework to prove its 
generality.  

The Chained Interaction Conjecture 
The different criteria to classify hydrogen bonds have manifested that the 
different interaction nature of a given pairwise interaction naturally evolves 
with this distance. For instance, short hydrogen bonds are classified as 
covalent bonds, and as the distance increase, they progressively go through 
an electrostatic and Van de Waals binding. 

This view implies that regardless the compound, the hydrogen bond 
interaction between two atoms can be described as a result of three potential 
energy curves, one covalent and the other electrostatic and Van der Waals 
interactions. Notice that although this picture naturally emerges from the 
classification criteria, clearly contrast with the traditional view of hydrogen 
bonds. In the latter, they are usually considered as a triatomic system where 
their energetic behavior is described by the sum of two potential energy 
curves. However, the distance evolution analysis point towards a diatomic or 
pairwise description where the only control parameter is the distance between 
the X =(O,F,N…) atom and the H involved in the interaction. 

At this point it is important to recall that despite its differences, the pairwise 
interaction model have found support in several electron density studies. 
Specifically, Espinosa et al. [16,29] in a series of works demonstrated that the 
electron density at the critical point, its Laplacian and even the energy density 
of O-H and F-H hydrogen bond follows the same dependence as their diatomic 
counterparts. As a result, they used the universal electronic evolution [30] 
presented by the diatomic reference, which experiences a covalent to 
electrostatic change as a consequence of a Laplacian sing change and a 
electrostatic to weak transition produced by an increase of the kinetic energy 
density, to define the critical distances at which hydrogen bonds interaction 
nature changes. Although this interaction sequence has been applied only to 
hydrogen bonds, we want to remark that is based on diatomic like bond and 
therefore can be considered as general applicability to any pairwise interaction 
type. 

This view provides an interesting picture of the chemical properties and the 
atomic distances of hydrogen bonds. Given a distance between two atoms they 
can only interact according to the behavior displayed by its electron density 
characteristics. Moreover, as it has been demonstrated (See chapter 3) this 
electron density changes also modifies the characteristic of the pairwise 
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interaction potential energy curve. Therefore, the different covalent, 
electrostatic and Van der Waals potential energy functions used in chemistry 
to define the different chemical interactions must be joined in such a way that 
they reproduce the same behavior as the electron density does. At short 
distances a covalent type interaction will be main one, in agreement with the 
covalent character displayed by shortest HBs. As distance increases, the 
covalent contribution will be reduced, and the electrostatic binding will 
become predominant giving as a result the interaction displayed by the most 
common HBs. At this point if HBs length is further stretched, a new 
interaction will come in to play resulting in a Van der Waals potential energy 
function. The question remains if such a gradually change in the interaction 
type occur at a given distances. The question remains if such a hydrogen bond 
interaction transitions can be accurately described.  

In this regard, it has been demonstrated that pair potential energy functions 
are characterized by two invariant points, which define the lower and the 
upper bounds at which a given interaction is stable.(See chapter 2) The first 
point also named hard sphere point (rhs), represent the closest interatomic 
distance at which the atoms can approach maintaining their potential energy 
negative. Similarly, the upper distance limit, the spinodal one, is related to 
the mechanical breaking point of the system. These interaction stability limits 
are symmetrically disposed around the equilibrium distance and are related 
with the equilibrium properties of the potential energy curve through the 
following relationships  

 𝑟
𝑠𝑝

= 𝑟
𝑒
+ (𝐷

𝑒
/𝑘

𝑒
)
1/2 (4.1)

 𝑟
ℎ𝑠

= 𝑟
𝑒
− (𝐷

𝑒
/𝑘

𝑒
)
1/2 (4.2)

As a result, each hydrogen bond interaction will be defined by a scaling length 
equal to (𝐷

𝑒
/𝑘

𝑒
)
1/2 and a equilibrium bond length 𝑟

𝑒
 which fix the maximum 

and minimum distances at they can be extend. Here, it is worth to recall that 
these potential energy functions stands for an universal potential energy curve 
able to describe all the different hydrogen bonds and therefore the equilibrium 
bond length must be understood as a reference length of an hypothetical 
isolated interaction which upon compression or elongation behaves 
energetically, mechanically similar as their counterparts in the compounds.  

Accordingly, we can assume that when a covalent hydrogen bond elongates 
to it spinodal or equivalently to its breaking point, the formation of an 
electrostatic interaction must occur. Nonetheless, if instead of considering the 
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stretching behavior of the same bond, we examine the inverse evolution of the 
distance, the electrostatic HBs will be compressed up to the shortest possible 
distance (rhs), where it will be unstable. This distance must coincide with the 
covalent spinodal limit since the system necessary will evolve to the previously 
regime. A similar reasoning can be applied to the electrostatic to van der 
Waals transition. In Figure 4.1 we have represented a schematic picture of 
this conjecture emphasizing that the spinodal point of previous interaction 
always coincides with the hard sphere distance of the next interaction 
producing a chain of interactions. This equality between the spinodal distance 
and hard sphere point of two consecutive interactions implies that the three 
different interactions are related to each other and therefore they will be 
distances where both interactions will be unstable. In similitude to the 
chemical processes where the cross between two potential energy curve crosses 
defined a transition state, we will refer hereafter to these unstable distances 
as a bond transition region. 

Figure 4.1. Schematic representation of the chained interaction conjecture. In 
black, the covalent interaction, blue and red represents the electrostatic and Van 
der Waals bonding respectively. Notice how the spinodal corresponds to the hard 
sphere distance of the next interaction. (See text for explanation) 
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The case of O-H Hydrogen bonds 
According our chained interaction model, the different interactions are 
described in terms of three reference universal potential energy curves, which 
transform to each other through an unstable state. Let us now consider the 
experimental implications of our model. In a potential energy curve, the 
compression our elongation induces a destabilization of the bond reference. As 
a result, any bond in a compound which display a different bond length than 
the reference one will be destabilized up to the spinodal point or the hard 
sphere limit where it becomes completely unstable. Under this view, if we 
analyze a statistically significant sample of the number of X-Y bonds which 
display a given interaction distance, we should expect that they reproduce a 
well-defined pattern of maxima and minima reflecting the equilibrium and 
rupture distances of the different interactions.  

In order to corroborate the latter hypothesis, we have calculated the O-H 
bond reference equilibrium and rupture distances. As it has been proved in a 
recent study (See chapter 3) the scaling length for a given interaction between 
the same atoms pairs is constant and can be determined from the experimental 
equilibrium properties of any of the stable compounds that represents. 
Accordingly using energetic and mechanical data and only one distance 
reference, we can calculate the rupture distances of the other interactions. 
The scaling length of the O-H covalent interaction can be obtained from the 
O-H stretching potential energy curve of the water molecule. A value of 0.37 
Å is obtained using a De and ke values of 118 kcal mol-1 and 6.1 mdyna Å-1 
respectively. Likewise, for the electrostatic interaction we can use the water 
dimer potential energy curve. As this respect Mokomura et al. [27] calculated 
a De and ke values of 5 kcal mol-1 and 0.197 mdyna Å-1, giving as a result a 
value of 0.42 Å. Finally, the Van der Waals limits represent a rather weak 
interaction, where no much experimental data are available, therefore we have 
turned to the potential energy functions used in gas phase equation of state 
predictions. In this regard several potential energy functions such as the 
Stockmayer [31] potential includes a Lenard-Jones term responsible for the 
Van der Waals interaction plus an orientational dependent dipole or 
electrostatic contribution. According to the data provided by Hishfelder, and 
considering only the Lenard-Jones contribution the estimated the scaling 
length for this interaction is 0.32 Å. 

In order to fix a one reference distance, we have considered that the covalent 
bond distance is 0.97 Å, which corresponds to the sum of the O and H covalent 
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radii provided by Pykko [32]. Using expression (1) the covalent rupture 
distance is predicted at 1.34 Å. As this distance corresponds to the hard sphere 
point of the electrostatic contribution, using expression (2) we predict an 
equilibrium distance for the electrostatic interaction of 1.76 Å. Applying the 
same procedure, the electrostatic rupture or equivalently the Van der Waals 
hard sphere limit will occur at 2.18 Å. Finally, the equilibrium bond length of 
the latter contribution can be estimated to be 2.50 Å. 

Figure 4.2. Distance histogram for the O-H contact. Covalent, electrostatic and 
Van der Waals contacts have been represented as black blue and green bins 
respectively.  

In Figure 4.2, we have plotted the number of O-H constants as a function of 
the distance for all the compounds included in the crystallographic data base. 
We have considered only neutron diffraction data where the position of H 
atoms can be accurately defined. In order to facilize the discussion we have 
differenced the covalent contacts provided in the crystallographic data base 
(black bins) from those classified as non-contact interactions (Blue and green 
binds. As it can be expected because the Pykko covalent radii are determined 
from the distance histograms, our covalent reference distance coincides with 
the fist maxima in the distribution. More interestingly is the position of the 
first minima. It occurs in a range between 1.2 and 1.4 Å in clear agreement 
with our predicted covalent spinodal distance which is 1.34 Å. The number of 
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contacts produced at this distance is less than 20 units in more than 1000 
compounds. Moreover, statistically this distance is not a favored one neither 
for covalent nor for electrostatic interactions. To the best of our knowledge 
the existence of such a minimum in the distance distributions has been 
considered as an experimental fact lacked from theoretical justification. 
However, when we realize that such a distance corresponds to the bond 
stability limits of the interactions, it is clear that few compounds can exhibit 
this distance, at this point covalent and hydrogen bonds are mechanically 
unstable and therefore compounds will avoid them because they will evolve 
to a more stable configuration.  

According to our chained interaction model we should expect other maxima 
at the electrostatic reference length (1.76 Å). Again, the latter is clearly 
reproduced in the experimental pattern, which occurs between 1.75 and 1.85 
Å. This electrostatic interaction was calculated only from the OH covalent 
reference distance and the dissociation energy and stretching force constant 
of the water dimer based on the assumption that the latter is constant for all 
O-H hydrogen bonds. Therefore, bond interaction between two atom pairs 
evolves with the distance in a chained way as imposed by the universal bond 
stability conditions. Notice that under this view hydrogen bonds are not so 
different from other chemical interaction. Indeed when we realize that the 
rupture distance of the electrostatic interaction is produced at 2.18 Å, again 
very close to the distance as the second minima in the distribution appears 
(2.1-2.4 Å) we can see that hydrogen bond classification is a natural 
consequence of the different interaction displayed between two atoms. Finally, 
our model predicts another maxima and rupture distance for a van der Waals 
interaction. The latter it is not observed in the distance diagram mainly 
because as it has been pointed out by several authors [33] [34] , it includes a 
monotonically increasing non-contact distance distribution which modify the 
statistics of this regimen. However, it is worthy to highlight that out chained 
interaction model predicts a Van der Waals spinodal distance of 2.85 Å, only 
0.15 Å lower than the sum of the O and H Van der Waals radii predicted by 
Alvarez et al[33] and 0.4 Å larger than the estimations provided by electron 
density analysis [35]. 

An interesting feature of the model is the existence of bond transition regimes 
associated to the rupture and hard sphere points of the interactions. To the 
best of our knowledge such an idea of unstable distances has not been already 
reported although it can provide a huge information about chemical processes. 
Consider for example the bond transition distance between the covalent and 



Chapter 4 p.105 
 
 

 

electrostatic interaction. At these points neither covalent (hydrogen) bonds 
nor electrostatic hydrogen bonds interaction can be stable, as a result it is 
expected that chemical compounds try to avoid this configuration. 
Consequently, knowing the rupture distances, we can predict chemical 
(un)stable compounds.  

Figure 4.3. Stretching force constant data for covalent O-H bonds (grey symbols) 
and hydrogen bonds (non-filled triangles). Black and blue lines correspond to our 
force constant distance model for the O-H covalent reference bond and O·H 
electrostatic reference bond respectively.  

Notice that the existence of this transition regimes implies that the electron 
density and force constant properties will not evolve continuously with the 
distance (See chapter 3). As the spinodal or rupture point is based on the 
condition of zero stretching force constant we will start analyzing this 
property. Notice that as we know the equilibrium distances and the scaling 
lengths, we can predict a dependence of the stretching force constant with the 
distance assuming an analytical potential energy function for the pairwise 
interaction. In this case we have selected the Morse potential, 
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where b is the softness parameter an it is related with the scaling length 
through the expression [36] 

 
(

𝐷
𝑒

𝑘
𝑒

)

1/2

= 𝑏

√

2

𝑙𝑛 (2)
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If we derivative twice this potential, the stretching force constant distance 
dependence read as, 

 𝑘(𝑟) = 𝑘
𝑒
(−1 + 2𝑒

−(𝑟−𝑟
𝑒
)

𝑏 ) 𝑒

−(𝑟−𝑟
𝑒
)

𝑏  (4.5)

Where ke represents the equilibrium stretching for constant of the reference 
bond. In our case we have assumed a value of 6.1 and 0.25 mdyna Å-1 for the 
covalent and electrostatic interactions. These values have been obtained from 
the average value of the bibliographic data of compounds with the same 
equilibrium distance as our reference bond length [37]. In Figure 4.3 we have 
plotted the predicted stretching force constant dependences for the covalent 
and electrostatic pairwise interaction along with several data for different 
covalent and hydrogen bonds [38,39]. Interestingly, two different trends are 
observed one for the covalent interaction and the other for the electrostatic 
ones. In each case the data follows our predicted potential models and 
consistently decrease towards the predicted rupture points evidencing a highly 
unstable state. 

Regarding the electron density, several studies have considered that the 
dependence of this property with the distance is accurate described by a single 
exponential model [15] In contrast, the chained interaction model predicts a 
slope change of their convex behavior with the distance.  

Indeed, as it has been demonstrated the electron density at the critical point 
can be expressed in terms of the scaling length of the potential as 

 
𝜌 = 𝜌

𝑒
𝑒

−(𝑟−𝑟
𝑒
)/(𝐷

𝑒
/𝑘

𝑒
)
1/2 (8)

Notice that an interaction change modifies the scaling length and therefore 
the exponential decay factor. In Figure 4.4 we have displayed the electron 
density behavior of several O-H bonds [39]. As expected, two different linear 
trends are observed with slopes equal to 0.35 and 0.42 Å in excellent 
agreement with the covalent and electrostatic scaling lengths of our chained 
interaction model.  
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Figure 4.4. Electron density at the bond critical point for different O-h bonds. 
Black and blue lines correspond to the model proposed in this work. (See tect for an 
explanation)  
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Chapter 5 
 

Chemical Pressure Chemical Knowledge: 
Squeezing Bonds and Lone Pairs within 
the Valence Shell Electron Pair 
Repulsion Model 
A. Lobato, H. H. Osman, M. A. Salvadó, M. Taravillo, V. G. Baonza and J. M. Recio 

 

The Valence Shell Electron Pair Repulsion (VSEPR) model is a demanding 
testbed for modern chemical bonding formalisms. The challenge consists in 
providing reliable quantum mechanical interpretations of how chemical 
concepts such as bonds, lone pairs, electronegativity or hyper-valence 
influence (or modulate) molecular geometries. Several schemes have been 
developed so far to visualize and characterize these effects but, to the best 
of our knowledge, none has yet incorporated the analysis of the premises 
derived from the ligand close-packing (LCP) extension of VSEPR model. 
Within the LCP framework, the activity of the lone pairs of the central 
atom and the ligand-ligand repulsions constitute the two key features 
necessary to explain some controversial molecular geometries that do not 
conform the VSEPR rules. Considering the dynamical picture obtained 
when electron local forces at different nuclear configurations are evaluated 
from first principles calculations, we explore the chemical pressures 
distributions in a variety of molecular systems, namely: electron deficient 



molecules (BeH2, BH3 and BF3), several AX3 series (A: N, P, As; X: H, F, 
Cl), SO2, ethylene, SF4, ClF3, XeF2, and non-equilibrium configurations of 
water and ammonia. Our chemical pressure maps clearly reveal space 
regions totally consistent with the molecular and electronic geometries 
predicted by VSEPR and provide a quantitative correlation between the 
lone pair activity of the central atom and the electronegativity of the 
ligands in agreement with the LCP model. Moreover, the analysis of the 
kinetic and potential energy contributions to the chemical pressure allows 
us to provide simple explanations on the connection between ligand 
electronegativity and the electrophilic/nucleophilic character of the 
molecules, with interesting implications in their potential reactivity. NH3, 
NF3, SO2, BF3, and the inversion barrier of AX3 molecules are selected to 
illustrate our findings. 

Phys. Chem. Chem. Phys. DOI: a10.1039/C9CP00913B 
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Introduction 
From the very beginning, chemists have been trying to predict molecular 
geometry without any other knowledge than the constituent atoms, being 
conscious of the fact that molecular geometry eventually determines the 
molecular properties. From the old Lewis’s eight electron rule,[1] several 
concepts such as bond pairs, lone pairs, electronegativity, or hypervalency 
have emerged in chemistry, allowing the description and rationalization of 
bonding, structure, and reactivity of molecules and solids. 

Although these concepts play a key role in recent chemistry, they are not 
always unequivocally defined and are usually the focus of modern chemical 
bonding formalisms, looking for a rigorous physicochemistry basis of such 
concepts. In this regard, the topological analysis of scalar fields related to 
electron density and its derivatives have demonstrated that a reliable 
connection between chemical intuition and quantum mechanical laws is 
feasible.[2] Indeed, the valence shell electron pair repulsion (VSEPR) theory, 
which is perhaps the chemical model that has demonstrated the most 
invaluable capability to predict molecular geometry,[3,4] has become a 
demanding testbed example for such formalisms. Based on Pauli’s exclusion 
principle, VSEPR describes the molecular and electronic geometries as those 
that have valence electrons distributed in pairs, minimizing Pauli’s repulsion. 
Indeed, identifying such electron pairs as bond and lone pairs and using 
chemical concepts such as the number of electrons per bond and 
electronegativity, Gillespie ordered the electronic repulsions leading to three 
well-known rules that govern molecular structures.[5,6] Such rules can be 
summarized in terms of the so-called electron pair domains where their size 
and shape determine the magnitude of repulsion between the electron pairs. 
The VSEPR theory reveals that chemical concepts affect molecular geometries 
and must be somehow described as objects within modern chemical bonding 
formalisms.[7] 

In particular, approaches based on the analysis of local properties of electronic 
media, such as electron localization function (ELF),[8] Laplacian of electron 
density,[9] or molecular electrostatic potential (MEP)[10] have been and still 
are applied to determine rigorous connections between quantum mechanical 
laws and chemical concepts emerging from the VSEPR model. For example, 
in 1998, Bader et al. analyzed the Laplacian of the electron density of 
prototypical VSEPR molecules for this purpose.[11,12] They found that the 
local maxima of this scalar field replicate the positions of the electron pairs 
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because of the spatial localization of the Fermi hole, thereby establishing one 
of the first evidences of the deep connection between VSEPR chemical 
concepts and quantum mechanics. Later, Savin[13] and Silvi[14] demonstrated 
that ELF basins define space regions that are associated with bonding, 
nonbonding, and lone electron pairs. The analysis of MEP has also been used 
as the criterion to describe lone pairs and how the VSEPR model can be 
suitably reproduced within this methodology.[15,16] A different, but related, 
approach has been made from the point of view of valence bond (VB) and 
molecular orbital (MO) theories. Based on an orbital description, these 
theories have demonstrated that electron pairing reveals a localized–
delocalized picture capable of linking the VSEPR domains with chemical 
entities (such as hybrid orbitals).[17] Nonetheless, VSEPR has its own 
drawbacks. Some geometries resist following the arrangement according to the 
minimization of the principle of electron pair repulsions of VSEPR when lone 
pairs are involved. For example, AX2E2 and AX3E molecules exhibiting bond 
angles greater than 109.50 do not follow the VSEPR rules and need to be 
explained by the weak activity of the A lone pairs due to the low 
electronegativity of the ligands.[18,19] This is very well explained within the 
ligand closepacking [20,21] (LCP) ideas presented by Gillespie and Robinson 
as an extension of VSEPR. Ligand–ligand repulsions also dominate the 
controversial trends in the bond angles of the AX3E series (A: N, P; X: F, Cl, 
H), where, although F and Cl are more electronegative than H, the bond 
angles follow the electronegativity sequence in NX3 but not in PX3.[22] AX6E 
molecules (BrF6

-, SeCl62-) lead to non-VSEPR octahedral geometries that the 
LCP model explains again in terms of the impossibility of an active role for 
the lone electron pair of the central atom. These and other molecular geometry 
exceptions in the angles and distances have been and still being explored and 
characterized in an attempt to prove and rationalize the influence of both the 
Pauli’s exclusion principle and the ligand–ligand repulsions in molecular 
charge organization. Indeed, the description and quantification of lone pairs 
as real quantities is still a worthwhile topic of discussion.[23-27] Because of its 
generic applicability, addressing the combined VSEPR-LCP model as a whole 
constitutes a pertinent challenge for these modern chemical bonding 
formalisms.[28,29] Not only electron pair domains have to be identified, but 
also the ligandinduced effect on the activity of lone pairs should be 
determined. 

Chemical pressure (CP) is a scalar field that is able to describe chemical 
interactions in terms of electronic pressure exerted by the molecular charge 
distributions. Based on the quantum stress density formalism within the 
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framework of density functional theory (DFT), CP provides a dynamical 
picture of how local forces (CPs) are distributed around the nuclei. Indeed, 
CP has been successfully applied to describe several chemical phenomena, 
such as chemical bonding,[30] bond breaking[31] or size effects in intermetallic 
compounds.[32] Nonetheless, despite its capabilities, CP formalism has never 
been applied to systematically study how the local pressures distributed 
around the chemical entities affect molecular geometries. 

In this article, we apply CP formalism to several VSEPR prototypical 
molecules that appear in most common chemistry textbooks. Through the 
analysis of CP maps, we shall show how regions of positive and/or negative 
CP enclosed by zerovalue isolines are totally consistent with the positions of 
chemical bonds and lone pairs predicted by the VSEPR model. Interestingly, 
a straightforward correlation between the electronegativity of ligands (as 
compared with that of the central atoms) and the value of the CP associated 
with the central atom lone pairs can be easily derived. The more negative the 
CP value at the lone pair domain, the higher is the effect of this lone pair on 
molecular geometry. This is an appealing result within the spirit of the LCP 
model. 

Since CP maps are formulated from the balance between the kinetic and 
potential energy contributions, a richer chemical interpretation of the 
concepts involved in the VSEPR-LCP model can be derived. In particular, we 
are interested in illustrating how: (i) our approach allows us to extend the 
conclusions on the structural role played by the ligand electronegativity of the 
chemical activity of the central atom identifying its electrophilicity 
/nucleophilicity character; (ii) antibonding regions naturally emerge in our 
maps too, providing the necessary support to the LCP model in its 
explanation of VSEPR exceptions such as angle trends found in molecules 
along the PX3 series (X: F, Cl, H); and (iii) CP maps of some nonequilibrium 
geometries (linear water, planar ammonia) draw interesting conclusions on 
the interconnection between the VSEPR entities, LCP geometries, and 
molecular reactivity. 

In addition, some potential drawbacks of the CP-DFT approach will also be 
pointed out as we introduce and apply it to our set of selected molecules 
within the context of the VSEPR model. In particular, special care has to be 
taken when selecting adequate parameters illustrating the VSEPR domains in 
2D and 3D maps. Other limitations are related to the impossibility of separate 
s and p interactions in multiple bonding molecules or the difficulties to 
differentiate each of the lone pairs associated with the ligands. We will see 
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that none of these limitations avoid extracting new chemical information 
regarding the molecular geometries in terms of the calculated local pressures. 
This paper is organized in three sections. In the next section, methodological 
and computational details of our CP-DFT approach are presented. Section 3 
contains the results and discussion and is further divided in four subsections. 
The first one contains the description of the VSEPR prototypical molecules 
in the light of the CP approach. This is followed by the study of some VSEPR 
exceptions and their explanation using LCP ideas supported by CP formalism. 
In the third subsection, we show how the analysis of the kinetic and potential 
energy contributions of the CPs in the lone and bond pair regions provides 
valuable information on the chemical (electrophilic/nucleophilic) activity of 
the selected molecules. In the last subsection, ammonia and water 
nonequilibrium configurations are examined to illustrate how their CP maps 
are consistent with non-VSEPR geometries anticipated by the LCP model. 
Energetic inferences on the inversion barrier of AX3E molecules are given. The 
paper concludes with a summary of the main conclusions of our investigation. 

Chemical Pressure Methodology 
In the CP formalism the total DFT energy of the system is expressed as an 
integral all over the space of the energy density 𝜌

𝐸𝑛𝑒𝑟𝑔𝑦
 

 𝐸
𝐷𝐹𝑇

= ∫𝜌
𝐸𝑛𝑒𝑟𝑔𝑦

𝑑𝜏 (1)

In analogy with the thermodynamic macroscopic pressure, CP is thus defined 
as the derivative of the local energy with respect to the local volume, where 
the local energy 𝜀

𝑉𝑜𝑥𝑒𝑙
 is calculated in each of the small parallelepipeds 

(voxels) of 𝑉
𝑉𝑜𝑥𝑒𝑙

volume in which the 3D space is divided: 

 𝑝
𝑉𝑜𝑥𝑒𝑙

= −

𝜕𝜀
𝑉𝑜𝑥𝑒𝑙

𝜕𝑉
𝑉𝑜𝑥𝑒𝑙

 (2)

In order to perform such a derivative, we adopt the procedure proposed by 
Fredrickson in which the energy density is calculated in the real space and 
then, we perform numerically the derivative with respect to the volume. 
Technical details about the procedure can be found in Ref. [33] and references 
therein. The energy density is obtained as the sum of the kinetic (KE) 
(expressed in its positive definite form), Hartree, local pseudopotential (PSP), 
and exchange-correlation (EXC) energy densities. Other terms contributing 
to the total energy, are treated simply as a homogeneous background energy 
(𝜌

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
): 
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 𝜌
𝐸𝑛𝑒𝑟𝑔𝑦

= 𝜌
𝐾𝐸

+ 𝜌
𝐻𝑎𝑟𝑡𝑟𝑒𝑒

+ 𝜌
𝑃𝑆𝑃

+ 𝜌
𝐸𝑋𝐶

+ 𝜌
𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

 (3)

By including all of them, the integral in Eq. (1) gives the correct total energy. 
Such an energy decomposition allows us to map each of the contributions or 
compute the total CP. The later approach is very appealing since within this 
definition, a CP map will contain information not only about the kinetic 
energy density, and so about the electron pair localization, but also about the 
electrostatic and exchange-correlation terms. Therefore, CP analysis will give 
a global picture both in a qualitative and quantitative manner of the chemical 
interactions. Moreover, our previous detailed discussion of the kinetic and 
potential energy contributions to the total CP in molecules and solids (see 
Ref. 30) reveals that the regions associated with bonds and lone pairs are 
much better identified when the total CP is depicted than when particular 
contributions are considered. 

Recalling the definition of pressure, it is easy to realize the connection between 
this atomic level and the macroscopic realms. Being pressure the force exerted 
per unit area, we see that positive values are associated with compressed zones 
where in order to relax, the system must expand. On the other hand, negative 
pressure values represent space regions where the energy lowers if the volume 
is reduced. Equivalently, CP reveals in the microscopic realm the capability 
of electronic domains to accept or repel electron density when an electronic 
reorganization induced by an isotropic strain occurs in the chemical system. 
Positive pressure values represent potential expansions in the electron density 
distribution, thus, they are associated with repulsive interactions or 
antibonding regions. On the other hand, negative CP values represent space 
regions of cohesion where the electron density will tend to be accumulated 
(compressed) in order to lower the energy of the system, i.e. bonding regions 
or attractive interactions. 

Computational details 
Calculations have been performed according to the following procedure. First, 
in order to have a good starting geometry for CP analysis, molecular 
geometries have been optimized at MP2/6-311G* level of calculation using 
gaussian09 (g09) program.[34] Next, DFT geometry optimizations were 
carried out using the ABINIT software package[35,36] under the LDA 
approximation. All ABINIT calculations have been done using HGH pseudo-
potentials[37] and ecut values selected from convergence studies (differences 
between cycles were less than 10-5 hartree). 10x10x10 Å3 unit cells were used 
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to ensure that calculations represent an isolated molecule. The optimizations 
were stopped when forces were less than 5·10-5 hartree/bohr. Using the 
optimized coordinates, three single point ABINIT calculations corresponding 
to equilibrium, expanded and contracted volumes (0.5% respect to the 
equilibrium one) were performed to obtain the necessary input for the CP 
program.[38] 

In order to assure that convergence has achieved, we have checked that 
negligible modifications are obtained when lower expansion/contraction 
percentages are used. In all the cases, the core unwarping procedure was used 
to reduce the strong features around the cores. Two different types of CP 
maps will be used to illustrate our results. Both are designed using the VESTA 
program.[39] The best way to describe the topology of the chemical pressure 
field, i.e. how the values of CP are distributed around the nuclei of the 
molecule, is by means of 2D and 3D maps. 2D maps are the common so-called 
heat-maps where a color code evolves from low to high values of chemical 
pressure. Of course, as with other scalar fields, one has freedom to select which 
are the relevant planes to visualize. Usually, if the number of atoms is not 
high, as it occurs in this study, symmetry planes or those containing molecular 
nuclei are natural options for the 2D maps. In this representation, a zero 
chemical pressure isoline depicted in solid black will be of utmost importance 
since it separates, and many times encloses, meaningful regions of positive 
and negative chemical pressures. In the case of 3D maps, isosurfaces represent 
the spatial distribution of chemical pressure. We select particular positive 
(white) and negative (black) isovalues with the aim of enclosing and 
differentiating regions containing local extrema of chemical pressure. For this 
purpose, the CP values of the 2D maps are very helpful. Although, in general, 
this can be a tedious task when the number of these critical points of the 
chemical pressure field is high, we have seen that it has not been the case in 
this VSEPR study. 

Molecules Studied 
Molecules studied are summarized in Table 1 along with their molecular 
geometry and their VSEPR nomenclature (A, X, and E stand, respectively, 
for the central atom, the ligands, and the lone pairs). Bond lengths and bond 
angles along with computational details are available for all of them in the 
supporting information file. In the text, only those molecules more relevant 
to highlight the connection between CP and chemical concepts will be 
described in detail. We notice that it is in molecules with lone electron pairs 
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where geometry departs from ideal symmetry and VSEPR rules may not be 
fulfilled needing LCP explanations. 

Table 5.1. Molecules, VSEPR nomenclature and geometry. 

Molecule 
VSEPR 

Nomenclature 
Geometry 

BeH2 AX2 Linear 
BF3, BH3 AX3 Trigonal Planar 
Ethylene AX3, AX3 Trigonal Planar 
SO2, H2O AX2E2 Bent 
NH3, NF3, PH3,PF3,PCl3, 
AsH3 AX3E Trigonal Pyramidal 

SF4 AX4E Seesaw 
ClF3 AX3E2 T-Shaped 
XeF2 AX2E3 Linear 

 

Towards VSEPR Model 
Let us start our discussion describing the CP distribution of an electron 
deficient molecule with no lone pairs, BeH2. Each of the two differentiated 
negative CP regions displayed in Figure 5.1 appears in each of the zones 
corresponding to Be-H bonds.  

Figure 5.1. 3D isosurfaces of CP distributions within the BeH2 molecule. Isosurface 
values: CP = +0.00417 (white) and 0.0016 (black). Green and gray spheres indicate 
beryllium and hydrogen atoms, respectively. 

This feature clearly agrees with chemical intuition, where we expect that a 
reduction in the volume will lower the energy of the system as a consequence 
of the charge density accumulation produced by the attractive interaction 
between the Be and H atoms. Further, we observe a toroid-like positive CP 
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isosurface around the Be atom representing the shape of its core region where 
the electron density is willing to expand. In terms of the VSEPR model, the 
negative CP lobes resemble the tendency of charge density accumulation 
produced by the bond electron pairs, which are distributed in a 1800 
disposition as expected from an AX2 molecule. Similarly, the electron-deficient 
BH3 molecule shows an equivalent pattern with a positive p-like isosurface 
around the B nucleus and negative CP lobes along the B–H bonds (see Fig. 
S5.1 in the Supplementary Material 5). 

To continue with our discussion, Figure 5.2 shows how CP describes ammonia, 
a molecule with just a single lone pair. Evidently, three negative CP regions 
appear in the zones corresponding to three N–H covalent bonds. Again, these 
features indicate the charge density accumulation produced by the attractive 
interaction between the N and H nuclei. Further, we observe a positive CP 
isosurface along the C3 rotation axis associated with the position of the N 
lone pair. This positive CP isosurface does not show any space division, 
highlighting that there is only one lone pair. Furthermore, its positive value 
reflects the fact that this lone pair tends to spread out in space, and therefore, 
any charge density accumulation in this region would increase the 
interelectronic repulsion. This is a clear sign of the expected chemical 
(re)activity of this center, as discussed later. Further, we notice that this 
result correlates with the fact that H is a weak electronegative ligand in this 
molecule, inducing a loose lone pair in N. 

Figure 5.2. 3D isosurfaces of chemical pressure (CP) distributions within the NH3 
molecule. Isosurface values: CP=+0.028 (white) and -0.045 (black). Brown and blue 
spheres indicate nitrogen and hydrogen atoms, respectively. 

Nevertheless, using the VSEPR language, our results support the fact that 
repulsions involving the lone pair are greater than those between bond pairs, 
as revealed by the bond angle being slightly below 109.50. Overall, the 
distribution of CPs in an ammonia molecule leads to a set of four CP lobes, 
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three associated with N–H bonds and one associated with the lone pair, which 
is in complete agreement with the electron pair domains defined by the 
VSEPR theory. 

Figure 5.3. CP analysis of SO2 molecule (yellow = S; red = O). (a) 2D map of the 
plane containing S and O nuclei. Black curves: CP = 0 isolines. (b) 3D isosurfaces 
with CP = +0.08 (white) and CP = 0.04 (black). 

In the case of SO2 (Figure 5.3a), a molecule with one lone pair but also with 
multiple bonds, we obtain three different CP regions surrounding the central 
atom, as expected for a molecule with AX2E stoichiometry. Two are associated 
with the S–O bonds and one corresponds to the S lone pair. As depicted in 
the heat map along the plane that contains the SO2 molecule (Figure 5.3b), 
bond regions have CP values ranging from 1.5 to 1.0 a.u., whereas the S lone 
pair has CP values from 0.15 to 0.0 a.u. Contrary to the NH3 molecule, S lone 
pair is characterized by a negative CP value. It should be noted that in this 
molecule, oxygen is a strong electronegative ligand inducing a clear lone pair 
in S. Although we will later comprehensively explain why the CP sign of lone 
pair changes and how it is related to chemical concepts, it is worth mentioning 
here that CP values in the lone pair regions are always less negative (or 
positive) than those in the bonding regions. Once again, such values of CP 
denote that lone pairs are less attracted to the nucleus, and therefore, occupy 
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larger volume regions than bonds. All these facts support the idea that the 
VSEPR rule of lone pair repulsions are greater than those of the bonding 
pairs. 

The two oxygen lone pairs are clearly enclosed in a single region of negative 
CP. Although this result is not transcendent in the VSEPR discussion, it 
should be noted that the CP analysis is not able to clearly identify different 
lobules for the lone pairs of the ligands. Nevertheless, it is noteworthy that a 
positive CP region with a shape resembling a p-like orbital can be observed 
at the oxygen positions. These positive CP values indicate that the 
accumulation of charge density in the regions perpendicular to the bond axis 
produces an expansion of the electron density distribution, resulting in the 
weakening of the S=O bond. In the molecular orbital language, this feature 
would be called an antibonding region.[40] Incidentally, such CP features are 
not exclusive to S–O double bonds, but they are a general characteristic of 
the inherent chemical information contained in the CP analysis of multiple 
bonds.  

Figure 5.4. Chemical pressure heat-maps of the ethylene molecule. Cross sections 
are shown for (a) the plane containing C atoms and perpendicular to the molecular 
plane and (b) the molecular plane containing all C and H atoms. Black curves: CP 
= 0 contour. 

For instance, in the prototypical ethylene molecule, a similar pattern 
associated with the double bond is displayed. In Figure 5.4a, we observe a 
similar p-like shape with a positive CP value emerging perpendicular to the 
bond axis and out of the molecular plane. In addition, zero CP isolines enclose 
three negative pressure regions in this plane. Two of them are equivalent and 
are not chemically meaningful as they originate from the projections of the 
negative CP values associated with the C–H bonds that will be discussed later. 
The third region between the C atoms can be used as a signature of a multiple 
bond in the CP framework and is associated with the charge density 
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accumulation resulting from the existence of the C–C double bond. The 
strength of this interaction is exhibited by the low values of CP along the C–
C bond axis (dark blue) and above and below the molecular plane (green and 
yellow). Although a similar bonding pattern is observed between the two C 
atoms when the CP is depicted in the plane containing the molecule (see Fig. 
4b), here, only one region of negative CP is obtained. C–H and C–C bonds 
are not differentiated in this plane by zero CP isolines, but they can be clearly 
identified by the particular negative values of CP along the C–H (light blue) 
and C–C (dark blue) directions. At this point, it should also be noted that 
our CP analysis does not reveal the differences between s and p contributions 
to the C–C bond as far as the two 2D maps of the ethylene molecule are 
concerned. This seems to be a limitation of our study, which necessitates 
further studies in other molecules exhibiting multiple bonds. 

Amore comprehensive topological analysis in progress, and out of the scope of 
this VSEPR study, would allow us to characterize the double bond in a 
quantitative manner. With regard to a lone pair system, another interesting 
question worth addressing is the nonequivalence of the axial and equatorial 
positions in the AX4E geometries. The VSEPR theory postulates that there 
exists lower repulsion at the equatorial plane of the trigonal bipyramid than 
that at the axial one.[7] Therefore, if the CP formalism is consistent with the 
VSEPR model, our CP maps should reflect the different behavior of such 
positions. It should be noted that we do not pursue to provide a rigorous 
proof, but only formulate a test on the reliability of our approach since we 
are investigating the equilibrium geometry of the molecule. In order to 
illustrate if there is a preference between the two planes for the electron 
density to be located, Figure 5.5 shows the CP heat maps of the axial and 
equatorial planes of the SF4 molecule. Both contain two S–F bonds and the 
region associated with the lone electron pair. As the electron density is more 
comfortable in such molecular regions with negative CP values, we expect to 
see wider zones with lower CP values in the 2D equatorial map. Indeed, this 
is observed in Figure 5.5(a) and (b). Whereas S–F axial bonds are 
characterized by less negative pressure, indicated by an almost uniform green 
color in the heat map, equatorial bonds exhibit a dark blue-green pattern. 
Moreover, the region of the lone pair with low negative CP values is 
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asymmetrically distributed along the axial and equatorial planes, showing 
bigger extension of the equatorial plane. 

Figure 5.5. CP heat maps of the SF4 molecule. Cross sections are shown for the (a) 
equatorial and (b) axial planes containing S and F atoms. Black curves: CP = 0 
contour. Pressures are expressed in atomic units. 

In the light of these results, several compelling conclusions can be drawn. 
First, this lone pair asymmetry is due to a larger size of the lobe along the 
equatorial plane, and consequently, these negative CP values indicate that 
electron density tends to accumulate around these positions. This is in 
agreement with the VSEPR model: the equatorial plane is the one where the 
electronic repulsions between the lone pairs and bond pairs are minimized. A 
second unequivocal conclusion emerges when hypervalency is invoked to 
explain the bonding pattern in the SF4 molecule. According to our 
calculations, all S–F bonds exhibit well-defined and equivalent CP covalent 
profiles.[30] This is in agreement with the work of Noury, Silvi, and 
Gillespie.[41] These authors found the same ELF basin populations of two 
electrons in all the bonds involving hypervalent atoms. Our results confirm 
the similarity of all the bonds as well as their covalent character, regardless 
of the hypervalence of the S atom in the SF4 molecule. These results highlight 
the capability of the CP formalism to describe bonds in molecules with 
hypervalent atoms, although we believe that a more comprehensive analysis 
is necessary to explain the role of other factors, such as retrodonation and d 
character, which are usually invoked to explain these molecules. To continue 
through this CP analysis of the VSEPR molecules, we will now examine how 
this formalism can describe molecules with more than one lone electron pair. 
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Figure 5.6a shows the CP isosurfaces and heat map along the plane that 
contains the nuclei of ClF3, an AX3E2 molecule. As that in the previous cases, 
negative CP appears again around the Cl–F bonds, with values ranging from 
5 to 2 a.u., whereas the lone pairs exhibit fewer but negative values (from 0.6 
to 0.0 a.u.). We notice again that these values correlate with a stronger 
electronegative ligand (F). 

Figure 5.6. Chemical pressure plots of molecular ClF3. (a) 3D isosurfaces with CP 
= +0.096 (white) and CP = ─0.14 (black). Green and violet spheres indicate chlorine 
and fluorine atoms, respectively. (b) 2D map of the (100) plane containing Cl and 
F atoms. (c) 2D map of the (110) plane containing the lone pairs. Black curves: CP 
= 0. Pressures are given in atomic units. 

From the color map representation along the plane perpendicular to the one 
that contains the molecule, the lone pair plane (Figure 5.6b) exhibits two 
minima of CP at a separation of 1200 (blue regions), suggesting the most likely 
positions of the Cl lone pairs. Such a result shows, one more time, the 
agreement with the VSEPR theory, which describes the AX3E2 molecules as 
having T-shaped morphology and the lone pairs are set at disposition of 1201 
in order to minimize Pauli repulsion.  
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A final challenging example with multiple lone electron pairs (AX2E3) 
concerns the linear XeF2 molecule. The spatial positions of these pairs are not 
well reproduced by the VSEPR model and it is, therefore, interesting to 
investigate the results from our CP approach. The CP isosurfaces of the XeF2 
molecule shown in Figure 5.7 clearly reveal that Xe lone pairs are distributed 
on a torus (doughnut-like) region of negative CP around the central atom. 

This topological feature agrees with Linnet’s theory,[42] which establishes that 
in the case of linear molecules, contrary to the VSEPR model, lone pairs are 
not presented as opposite spin pairs but they rather have their most probable 
locations equally distributed around the molecular axis. A further examination 
of the XeF2 CP heat map (Figure 5.7) reveals that the torus surrounding the 
Xe atom has four minima equally distributed along the zero pressure isobar. 
Similar features have been observed in the topology of ELF and Laplacian of 
electron density,[7] which highlight the capability of CP formalism to reveal 
the electronic and geometrical structures of such molecules. Incidentally, the 
existence of an antibonding p-like region of positive CP at the F position and 
perpendicular to the Xe–F bond should be noted, which is similar to the one 
discussed in the SO2 molecule. These regions are responsible for repulsions 
between the ligands, as discussed later. 

Figure 5.7. Chemical pressure analysis of XeF2. (a) Cross section along the (100) 
plane. Black curves: CP = 0 isolines. (b) 3D isosurfaces of CP = +0.05 (white) and 
CP = ─ 0.01 (black). 

Rationalization of VSEPR and LCP results: 
Exceptions in the light of CP formalism 
One of the VSEPR rules asserts that as the central atom’s electronegativity 
decreases in a series of molecules with a common ligand, bond–pair repulsions 
also decrease because the valence electrons of the central atom are less 
attached to the nucleus. Therefore, lone pair domains increase their activity, 
forcing bond angles to decrease in order to minimize the lone pair–bond pair 
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repulsions. To test how our approach describes this trend, we have calculated 
the CP maps of a series of molecules with a common ligand and different 
central atoms of decreasing electronegativity. In Figure 5.8a, the CP heat 
maps of the XH3 molecules (X: N, P, and As) are shown. 

Clearly, a sequence in the colors of the bonding and lone pair regions is 
detected. However, CP values for the bonds increase from higher to lower 
negative values; in the case of lone pairs, these values decrease from being 
positive to slightly negative. Such a behavior indicates a correlation between 
the difference in the electronegativity between the ligand and central atom 
because of the lone pair, which becomes more active as its CP value decreases. 
This correlation between the activity of the lone pair that we detect in terms 
of low (negative) CP values and the electronegativity of the ligands is in 
accordance with the LCP model. In NH3, the ligand-induced activity of the 
lone pair is not important as H is a weak electronegative ligand (as compared 
to N). This is revealed by the positive CP values at the N lone pair positions 
and a decrease in the bond angle from the ideal tetrahedral value of less than 
31. In contrast, the electronegativity of H is higher than that of As; as evident 
from the small region of negative CP associated with the As lone pair, it leads 
to a bond angle of only 90.60. Contrary to this well-behaved trend, one of the 
drawbacks of the VSEPR theory was the inability to explain why although F 
and Cl are more electronegative than H, the angles in the PH3 molecule are 
smaller than those in PF3 and PCl3. Gillespie and Robinson also realized that 
ligand repulsions play a key role in molecular geometry, and therefore, the 
VSEPR theory must consider ligands as a part of bond pair domains [19]. 

Ligand repulsions can be considered as repulsive noncovalent interactions, and 
therefore, are difficult to characterize using the ELF and Laplacian of electron 
density. However, a simple interpretation of the CP maps of these three 
molecules provides a coherent explanation of the observed trend. We associate 
an increase in the activity of the corresponding lone pair along the PH3, PCl3, 
and PF3 series with lower and negative CP regions at the P lone pair positions, 
which is in agreement with the correlation established above. It should be 
noted that this activity results in lower bond angles in PH3 than those in NH3 
or lower in PF3 than those in PCl3; however, this does not explain why the 
bond angle in PH3 is lower than that in PF3 or PCl3. The consideration of the 
ligand–ligand repulsions needs to be taken into account, too. Figure 5.8b 
shows a positive CP p-like region around the F and Cl nuclear positions in 
PF3 and PCl3, respectively; however, in PH3, this feature is absent. These 
positive CP values, representing space regions where the electron density 
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tends to expand, were previously associated with antibonding interactions. 
Here, this feature highlights the higher electrostatic repulsions of the F and 
Cl ligands (as compared to H), and therefore, serves to explain the angle trend 
found in these molecules. 

Figure 5.8. CP 2D heatmaps containing the nuclei of (a) XH3 hydrides, where X 
= N, P, and As, and (b) PX3 halides, where X = H, F, and Cl. Black curves: CP = 
0 isolines are shown in all the panels. 

Recovering chemical concepts from CP 
formalism 
In the previous sections, we have shown how CP values and isosurfaces can 
recover space regions that resemble the electron pair domains defined in the 
VSEPR theory. These features are associated with the kinetic and potential 
energy pressure contributions, which, as demonstrated by the ELF, ELI, or 
quantum electronic pressure defined by Tao,[43-45] contain information about 
electron pair localization. However, some other striking aspects have appeared 
through the previous analysis of the CP maps. For example, earlier cases have 
shown that the CP sign changes from positive to negative, with lone pairs 
having positive or less negative values than those of bond pairs. One would 
expect, as that with NH3, that lone pairs would be characterized by positive 
pressure isosurfaces because they represent space regions where an 
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accumulation of charge density would increase the electronic repulsion 
between them (lone pairs are only attached to one core nucleus). However, 
since CP formalism also comprises the potential electrostatic pressure, its sign 
also depends on the partial charges of the atoms, and therefore, on the 
electronegativity difference between the central atom and ligands. 

When electronegative ligands or double bonds are attached to the central 
atom, their force distribution tends to partially delocalize. Therefore, an 
excess of positive charge is set on this atom and this can accumulate, lowering 
the energy and increasing the charge density. Such a simple reasoning is also 
valid for understanding why CP values of lone pairs are always less negative 
than those of bond pairs. Although lone pairs can accumulate a certain 
amount of charge density, their electron repulsion prevents its considerable 
accumulation as compared to that in bond pairs. To highlight how much 
chemical information can be gained from the combined analysis of the 
potential and kinetic pressures, we have compared the CP maps of NF3 and 
NH3 molecules. This comparison also allows us to extend our conclusions 
beyond the correlation previously proposed within the LCP model. NF3 and 
NH3 are excellent examples to illustrate these ideas. Although NH3 is a well-
known basic and nucleophilic compound, NF3 does not exhibit any basic 
properties (under extreme conditions, it behaves as a Lewis acid) and has been 
characterized as an electrophilic molecule. As shown in Figure. 5.9, the 
substitution of H ligands by F ligands produces a change in the sign of the 
CP isosurface associated with the lone pairs. This is the expected behavior 
after our analysis of ligands with different electronegativities. Now, the 
conclusions regarding the chemical activity of the molecule can also be 
derived.  

Figure 5.9. CP distributions visualized with 3D isosurfaces with (a) CP = +0.028 
(white) and CP = 0.045 (black) for the NH3 molecule and (b) CP = +0.05 (white) 
and CP = 0.045 (black) for the NF3 molecule, both at their corresponding 
equilibrium geometries. 
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CP formalism can not only reveal the static electronic structure involved in 
the bonding pattern of the molecules, but also can be dynamically related 
with chemical reactivity. As positive CP values correspond to space regions 
where electrons tend to expand, and consequently, yield regions in which the 
electron density could be shared with other chemical species, their presence 
reveals basic or nucleophilic regions. In the case of negative values, they 
indicate space regions in which the charge density tends to accumulate, and 
therefore, should be related to acidic or electrophilic behavior. Therefore, our 
analysis is in tune with the chemical activity of NH3 and NF3 molecules. To 
further illustrate this result, we choose a prototypical Lewis acid molecule 
with empty orbitals capable to accept electron pairs (e.g., BF3). It is also a 
deficient electron molecule within the VSEPR context. As explained above, 
we should expect a negative CP distribution around the B atom, suggesting 
a preferred region to host electron pairs. Such an expectation is confirmed 
through the analysis of the 3D CP distribution in the BF3 molecule, where a 
negative pressure isosurface surrounds the B atom (Figure 5.10). In addition, 
in Figure S5.2 (Supplementary Material 5), we include a 2D CP map of the 
molecular plane of BF3. Only a very small region of positive CP associated 
with the core of B appears subsumed inside the domain of negative CP 
corresponding to the B–F bonds. The absence of an external positive CP 
region at the B position, as those in the other electron-deficient molecules 
explored earlier (BeH2 and BH3), is justified here due to the strength of the 
B–F bonds, and this is in accordance with the high electronegativity of F.  

Figure 5.10. Chemical pressure distributions visualized with 3D isosurfaces with 
(a) CP = +0.03 (white) and CP = −0.04 (black) for the BF3 molecule. 

Bearing in mind these ideas, we can extend our discussion to some other 
features that have been overlooked in the previous sections. For example, 
regarding SF4 and SO2 molecules, we can see that the value of CP minima of 
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the S lone pair is around 0.5 a.u. in SF4, whereas its value decreases to 0.15 
a.u. in the case of SO2. In accordance with the LCP model, such a difference 
is due to the electronegativity difference between the F and O atoms and 
illustrates (which is in agreement with chemical intuition) that SF4 is a 
stronger Lewis acid than SO2. A correlation between the CP values at the 
minima is associated with the central atom lone pair and the acid–base 
character is, therefore, disclosed. Moreover, it is well known that SO2 can also 
behave as a Lewis base, while SF4 does not. Such a result is not surprising 
considering that the CP values of lone pairs of SO2 are relatively close to zero. 
We can propose that SO2 can act as both an acid as well as a base depending 
on the CP values of the molecule with which it reacts. If the approaching 
molecule exhibits lower (greater) CP values than SO2, then SO2 is expected 
to behave like a base (acid). 

At this point, another interesting and related concluding thought can be 
pointed out. As the CP values describe the local forces on atoms through the 
balance of the potential and kinetic energy pressure, both highly positive and 
highly negative pressure values indicate that strong forces are needed to either 
increase or decrease the electron density. Therefore, most likely interactions 
with other approaching molecules will be those that balance the pressure 
difference or, in other words, those that equalize the CPs. This simple 
reasoning is fairly similar to the analysis of hard–soft interactions,[46] where 
it is concluded that hard acids prefer hard bases and vice versa. Indeed, such 
a result is not surprising if we recall that the concept has been widely reviewed 
through the analysis of molecular electrostatic potential,[47,48] which actually 
is also somehow encoded in CP formalism. 

Local pressures in nonequilibrium geometries 
To the best of our knowledge, the influence of electronic structure domains 
within the VSEPR and LCP models into nonequilibrium geometries has not 
been studied yet, and it could provide simple chemical rules that can predict 
chemical reactivity. Only a few attempts of potential applications of VSEPR 
model in this regard have been described in the literature. For example, 
Naleway et al.[49] studied the energy and electron density distributions of the 

molecular orbitals of water for different H–O–H angles within the range from 
900 to 1800. Their results showed that deformations of the electron density 
can be rationalized in terms of the VSEPR theory, although these authors 
were more focused on the understanding of the water equilibrium geometry 
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rather than the implications of the VSEPR theory in nonequilibrium 
geometries.  

It was not until 2016 that, for the first time, Andres et al.[26] explicitly 
analyzed the implications of the VSEPR model on chemical reactivity and 
nonequilibrium geometries. By means of ELF and bonding evolution theory, 
they analyzed the electron density transfer in chemical reactions. According 
to their work, two scenarios in chemical reactivity can be presented. With 
regard to VSEPR compliance, the electron density transfer induces the 
evolution of one structural stability domain into another through the 
reorganization of the electronic domains of the valence shell. In the other, the 
molecule remains in the same structural stability domain in a nonequilibrium 
configuration called VSEPR defective. In the latter case, the authors explain 
that VSEPR rules are not fulfilled. 

For example, repulsion between the bonding domains is greater than the 
repulsions between the nonbonding domains as that in the case of the 
inversion of ammonia, where a trigonal bipyramid arrangement is preferred. 
VSEPR-defective configurations would lead to unstable structures, and 
therefore, they are expected to be chemically reactive. The spirit of the 
VSEPR model lies in the minimum repulsion principle of the valence shell 
domains, leading to rules wherein nonbonding domain repulsions are greater 
than those between bonding domains for molecules at equilibrium. However, 
when equilibrium geometry is distorted, it is always followed by electron 
density reorganization; hence, a modification of the shape and volume of the 
pair domains is induced. In such situations, the previous rules cannot be 
applied, and more generic ones are necessary. Given the capacity of CP 
formalism for providing the reactivity information of molecules because of the 
combination of kinetic and potential energy pressures, it is interesting to 
explore if further insight can be gained on the interaction rules of 
nonequilibrium geometries through the analysis of these local pressures. In 
order to analyze how local pressures are distributed in nonlocal geometries, 
we shall start our discussion with a well-known example: the inversion of NH3. 
During planarization, N atoms go from sp3 to sp2 hybridization; as a 
consequence, the 2pz atomic orbital of N does not participate in the formation 
of N–H bonds and formally hosts the lone pair electrons. Figure 5.11 shows 
the CP maps of the NH3 molecule in the equilibrium (C3v) and planar (D3h) 
configurations. 

In this case, D3h bond lengths were obtained from the optimized transition 
states of inversion, as provided by Xu et al.[50] Clearly, when the H–N–H 
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angle increases toward the value of 1200 of a planar configuration, it is evident 
that the positive pressure isosurface associated with the lone pair spreads out 
in a direction perpendicular to the molecular plane, shaped in a p-like orbital 
in the D3h geometry, thereby increasing the participation of the 2pz N orbital 
as a nonbonding orbital. Furthermore, a detailed analysis of the CP maps also 
reveals that such a change is accompanied by an increase in the lone pair 
pressure from 0.4 to 0.6 a.u.  

Figure 5.11. CP 2D heat maps of NH3 molecule with different configurations. (a) 
Cross section along the (110) plane containing the N–H bond with angular geometry. 
(b) Cross section along the (100) plane with planar geometry. 3D isosurfaces of CP 
are shown in both the panels for the two geometries. CP = +0.028 (white) and CP 
= 0.045 (black). (Brown = N; blue = H). Black curves: CP = 0 isolines are shown 
in the 2D panels. 

At this point, it is interesting to recall the definition of pressure. This quantity 
is defined as minus the derivative of energy with respect to the volume, an 
increase in the CP value reveals that during inversion, the lone pair energy 
increases and volume of the lone pair decreases simultaneously. Such a volume 
reduction can only be explained if we realize that when planarization occurs, 
the electron density associated with the lone pair of N occupies a pz orbital 
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perpendicular to the molecular plane. This fact formally implies that, on 
average, one electron is above and one electron is below the molecular plane; 
consequently, in terms of the Pauli’s exclusion principle, the electrons are less 
repelled, and therefore, occupy less volume. Immediately, such a volume 
reduction displayed by the CP formalism allows us to conclude that in the 
planar configuration of NH3, bond pair repulsions are stronger than lone pair–
bond pair repulsions. This is contrary to the standard VSEPR rules for 
equilibrium configurations, but in agreement with the conclusions by Andres 
et al.[26] Moreover, as demonstrated through the analysis of AX3E molecules 
in the section “Towards the VSEPR Model”, the increase in the positive CP 
value of the N lone pair is associated with a weakening of the lone pair activity 
on the geometry of the molecule, leading to the ideal 1200 angle of the D3h 
geometry. Such a conclusion agrees well with the idea that planar ammonia 
formally has, in VSEPR and LCP nomenclatures, the expected geometry from 
an AX3 molecule, where the absence of lone pairs in the valence shell can be 
understood in planar NH3 as a result of the compensation of one electron 
above and one electron below the molecular plane. Interestingly, this result 
also allows us to draw a conclusion about the inversion barriers of AX3E 
molecules: the more active the lone pair, the more energetic is the inversion 
transition. 

Figure 5.12. 3D isosurfaces of the chemical pressure distribution within H2O 
molecule. Isosurfaces of CP = +0.04 (white) and CP= ─0.02 (black) are visualized 
for (a) the equilibrium geometry (b) the linear configuration. Pressures are given in 
atomic units. 

For example, as evident before (Figure 5.8), the CP associated with the lone 
pair region is lower in PH3 than that in NH3, and consequently, PH3 lone pair 
is more active. Such a result unequivocally implies that P lone pairs occupy 
bigger volumes than those by N lone pairs. Therefore, in D3h geometry, the P 
valence shell exhibits stronger directionality, and therefore, stronger lone 
pair–bond pair repulsions than those in NH3, leading to a larger inversion 
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barrier. Such a conclusion becomes even more categorical when we collate the 
experimental energetic barriers, which is about 5 kcal mol-1 for NH3 and 34 
kcal mol1 for PH3.[50] From Figure 5.12, changes in the CP distribution 
around the O–H lone pairs are evident. In particular, the two positive 
isosurfaces observed in the equilibrium configuration become a positive CP 
isosurface with a torus shape surrounding the O atom at 1800 as expected for 
a linear configuration. As compared to the linear XeF2 molecule discussed 
earlier, this lone pair region presents a positive CP isovalue indicating that, 
besides the constraint imposed by linear geometry, the low electronegativity 
of H induces weak activity to the O lone pairs.  

Indeed, when we analyze the 1D-CP profiles along the O–H bond for the two 
configurations (Figure 5.13), it is evident that the CP minima located around 
0.15 Å from the O nucleus decrease from the equilibrium configuration to a 
linear one. Such a minimum corresponds to the lowest pressure associated 
with the O atom. Therefore, as the negative pressure represents attractive 
interactions, such a value indicates the maximum attraction of electrons, and 
therefore, it is related with the electron density accumulated around oxygen. 
Consequently, the decrease in the minimum CP indicates that the O–H bond 
increases their ionic character, which is in agreement with the classical picture 
provided by the valence bond and molecular orbital theories where the 
transition from an angular (sp3-like) configuration to a linear (sp-like) one 
reflects an increase in the s character of the O–H covalent bonds. 
Furthermore, in the 3D representation of the linear configuration, a positive 
pressure isosurface around the O–H bonds (Figure 5.12) is observed, which 
does not appear in the angular ones. Such positive isosurfaces, associated with 
an expansive zone, confirm the latter results and reveal that the electron 
density tends to accumulate close to the O nucleus rather than that in the 
bond region. Interestingly, the CP representation of the H2O bond distortion 
provides further insight into the validity of the VSEPR and LCP theories to 
study nonequilibrium results. As discussed, the linearization of the H2O 
molecule is accompanied by a decrease in the lone pair activity, as evidenced 
by the increase in the ionic character of the O–H bond. Such a result is in 
agreement with the examples given by Gillespie in their study of AX2E2 
molecules, where oxygen was the central atom. In the case of highly 
electronegative and small ligands, the bond angle is lower than the tetrahedral 
ideal one, as that in the case of equilibrium OF2 and H2O molecules, 
evidencing strong directionality of the O lone pairs. On the contrary, the 
presence of low electronegative ligands, such as Li in Li2O, leads to an almost 
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anion-type spherical distribution of the valence shell electron of the O with a 
bond angle of 1800, which is higher than the tetrahedral ideal one. 

Figure 5.13. 1D CP profiles along the O–H bond of H2O molecule. Blue dashdot 
line at 1800 configuration; black line: equilibrium geometry. All the values are 
expressed in atomic units. 

Conclusions 
For the first time, CP formalism, a full stress tensor methodology comprising 
all the energetic contributions (kinetic, Coulombic, and exchange correlation), 
has been applied to systematically study certain prototypical molecules within 
the VSEPR model taking into account the premises of the LCP model, too. 
Potential difficulties in the selection of appropriate parameters for formulating 
illustrative 2D and 3D CP heat maps can be overcome in these simple 
molecules using molecular and symmetry planes. Other limitations of the CP-
DFT formalism have been pointed out in the manuscript (impossibility of 
separation of s- and p-type interactions or single domains containing multiple 
lone pairs in ligands), but none of them deter the successful interpretation of 
the molecules within the VSEPR-LCP model. We have demonstrated that the 
CP is distributed along the molecules, revealing the positions of bonds and 
lone electron pairs (VSEPR) and providing correlations between the relative 
strength of the ligand and effect of the central atom lone pair in the molecular 
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geometry (LCP). Indeed, recalling that negative pressures are associated with 
space regions where the electron density tends to accumulate and positive 
ones with expansive zones of the electron density, we have recovered 
nonbonding and antibonding regions associated with the size of the ligands 
that explain some non-VSEPR trends in the bond angles of AX3 molecules, 
as well as the nonequivalence of the axial and equatorial regions in SF4. As 
the CP formalism also comprises potential energy contributions, we have 
demonstrated and quantified how the sign and value of pressure in the lone 
pair regions of the central atom are related not only with its effect on the 
molecular geometry, but also with the nucleophilic (base) and electrophilic 
(acid) character of the molecule. Furthermore, as CP is related with the 
tendency of the electron density to expand and contract, we have rationalized 
why SO2 can act as both an acid and base depending on the CP values of the 
molecule with which it reacts. Our results have led to the conclusion of the 
well-known chemical analogy that like dissolves like or the hard–soft scenario: 
most likely interactions between molecules will be those which balance the 
pressure difference, i.e., those which equalize the CPs. Finally, we have 
applied the CP formalism to nonequilibrium geometries. Analyzing both 
planarization and linearization of NH3 and H2O molecules, we have intuitively 
correlated the CP topology and values with the activity of the central atom 
lone pairs and energetic barrier of inversion in AX3 molecules, respectively. 
Such results reveal the capability of CP to provide information regarding 
reactive processes. 
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Computational details of studied molecules 

Table S5.1: Calculation details and geometrical parameters of the molecules 
studied. 

Molecule ecut (ha) k-points nfft grid 
Bond 

Length 
(Å) 

Bond 
Angle 
(deg) 

H2O 270 1x1x1 288x288x288
d(O-H) = 
0.97120 

α(H-O-H) = 
104.92 

NH3 220 1x1x1 256x256x256
d(N-H) = 

1.0217 
α(H-N-H) = 

107.26 

NF3 300 1x1x1 300x300x300
d(N-F) 

=1.37301 
α(F-N-F) = 

101.70 

NF3 300 1x1x1 300x300x300
d(N-F) 

=1.37301 
α(F-N-F) = 

101.70 

AsH3 280 1x1x1 288x288x288
d(As-H) 
=1.52132 

α(H-As-H) 
=90.62 

PH3 240 1x1x1 270x270x270
d(P-H) 

=1.42719 
α(H-P-H) = 

91.83 

PF3 290 1x1x1 300x300x300
d(P-F) 

=1.56403 
α(F-P-F) = 

97.44 

PCl3 270 1x1x1 290x290x290
d(P-Cl) 

=2.03959 
α(Cl-P-Cl) 
= 100.36 

SO2 260 1x1x1 288x288x288
d(S-O) = 

1.4281 
α(O-S-O) = 

119.54 

SF4 280 1x1x1 290x290x290

d(S-F)ax 
=1.6482 
d(S-F)eq 
=1.5541 

α(F-S-F)ax = 
173.07 

α(F-S-F)eq = 
100.61 

ClF3 360 1x1x1 324x324x324

d(Cl-F)ax 
=1.6921 
d(Cl-F)eq 
=1.6026 

α(F-Cl-F)ax 
= 176.9 

α(F-Cl-F)eq 
= 88.19 

XeF2 
380 1x1x1 340x340x340 d(Xe-F) = 

2.0084 
α(F-Xe-F) 
= 179.99 

BeH2 
290 1x1x1 290x290x290 d(Be-H) = 

1.3167 
α(H-Be-H) 
= 179.99 
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Molecule ecut (ha) k-points nfft grid 
Bond 

Length (Å) 
Bond Angle 

(deg) 

BeH2 290 1x1x1 290x290x290
d(Be-H) = 

1.3167 
α(H-Be-H) 
= 179.99 

BH3 280 1x1x1 280x280x280
d(B-H) = 

1.1983 
α(H-B-H) = 

120.00 

BF3 320 1x1x1 320x320x320
d(B-F) 
=1.3104 

α(F-B-F) = 
119.99 

Ethylene 300 1x1x1 300x300x300

d(C-C) 
=1.3309 
d(C-H) 
=1.0852 

α(H-C-H) = 
119.49 
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Chemical Pressure distribution in BH3 Molecule 

Figure S5.1. 3D isosurfaces of chemical pressure (CP) distributions within the BH3 
molecule. Isosurface values: CP=+0.013 (white) and 0.013 (black). Green and 
white spheres indicate boron and hydrogen atoms, respectively.  

Chemical Pressure distribution in BF3 Molecule 

 

Figure S5.2. Chemical pressure heat-maps of the BF3 molecule along the molecular 
plane. Black curves: CP = 0 contour. 



 

 

 

Chapter 6 
 

Generalized Stress-Redox Equivalence: A 
Chemical Link between Pressure and 
Electronegativity in Inorganic Crystals 

A. Lobato, H. H. Osman, M. A. Salvado, P. Pertierra, Á. Vegas, V. G. Baonza and J. 
M. Recio 

 

The crystal structure of many inorganic compounds can be understood as a 
metallic matrix playing the role of a host lattice in which the nonmetallic 
atomic constituents are located, the Anions in Metallic Matrices (AMM) 
model stated. The power and utility of this model lie in its capacity to 
anticipate the actual positions of the guest atoms in inorganic crystals using 
only the information known from the metal lattice structure. As a pertinent 
test-bed for the AMM model, we choose a set of common metallic phases along 
with other nonconventional or more complex structures (face-centered cubic 
(fcc) and simple cubic Ca, CsCl-type BaSn, hP4-K, and fcc-Na) and perform 
density functional theory electronic structure calculations. Our topological 
analysis of the chemical pressure (CP) scalar field, easily derived from these 
standard first-principles electronic computations, reveals that CP minima 
appear just at the precise positions of the nonmetallic elements in typical 
inorganic crystals presenting the above metallic subarrays: CaF2, rock-salt 
and CsCl-type phases of CaX (X = O, S, Se, Te), BaSnO3, K2S, and NaX (X 
= F, Cl, Br, I). A theoretical basis for this correlation is provided by exploring 



 

the equivalence between hydrostatic pressure and the oxidation (or reduction) 
effect induced by the nonmetallic element on the metal structure. Indeed, our 
CP analysis leads us to propose a generalized stress-redox equivalence that is 
able to account for the two main observed phenomena in solid inorganic 
compounds upon crystal formation: (i) the expansion or contraction 
experienced by the metal structure after hosting the nonmetallic element while 
its topology is maintained and (ii) the increasing or decreasing of the effective 
charge associated with the anions in inorganic compounds with respect to the 
charge already present in the interstices of the metal network. We 
demonstrate that a rational explanation of this rich behavior is provided by 
means of Pearson-Parr’s electronegativity equalization principle. 

 

Inorg. Chem. DOI: https://doi.org/10.1021/acs.inorgchem.9b01470 

 



Chapter 6 p.155 
 

 

 

Introduction 
The literature on the theories and formalisms describing chemical bonding in 
inorganic crystal structures is very extensive,[1-6] and the models can 
typically be classified into either classical or quantum types. Among them, 
the approach of Pauling has been the paradigm for describing and 
rationalizing the crystal structures of ionic compounds over the last century 
[1,7,8]. The limitations of the ionic model, which have also led to a number of 
misconceptions about the crystal structure and the bonding network, were 
discussed by O’Keeffe and Hyde using alternative approaches [9,10]. These 
authors put the emphasis on the description of the structures of oxides as 
oxygen-stuffed alloys, since their cationic sublattices adopt the structures of 
either elements or simple alloys. Interestingly, this concept can also be applied 
to the naked metallic structure if the valence electrons localized in the empty 
spaces of the structure are conceived as coreless pseudoanions. In fact, the 
term electride was introduced after an extensive quantum-mechanical 
treatment of a high-pressure modification of metallic cesium that led to denote 
this phase as Cs+e− [11]. Prior to these calculations, Schubert already proposed 
that the valence electrons might be well-located at the voids of the 
metals/alloys structures [12]. This idea was also applied by Vegas et al. in a 
more recent work[13]. 

The consideration of the metallic matrix of a compound as a host lattice for 
nonmetallic atoms was indeed formalized later by Vegas et al. [14,15] in the 
so-called anions in metallic matrices (AMM) model. According to the AMM 
model, the electronic structure and the atomic arrangement of the metallic 
sublattice induce the equilibrium positions of the nonmetallic atoms in the 
crystal. This idea culminated a wide variety of studies that take into account 
not only a dense packing of atoms, as in metals and/or alloys, but also more 
open metal skeletons such as those present in AlX3 structures (X = F, Cl, 
OH)[15]. The AMM model found support from several theoretical calculations 
in a variety of systems including the AlX3 crystals, boron phosphide in the 
zinc blende phase, and high-pressure phases of Na and K, to cite a few [16-
18]. Topological analyses of the electron density of these structures reveal that 
the valence electrons of the metal are found to be localized in interstitial 
positions, where anions are found in inorganic compounds, or close to the sites 
of bonding and lone electron pairs. These electronic domains were named 
pseudoanions and preceded the concept of Interstitial Quantum-Atoms later 
introduced by Miao and Hoffmann [19,20]. In other examples (face centered 
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cubic (fcc) and simple cubic (sc) phases of Ca), the topology of the electron 
localization function (ELF) was also evaluated to reveal the correlation 
between the interstitial positions of ELF attractors in the corresponding unit 
cells and the positions of the oxygen atoms in the rock-salt and CsCl-type 
phases of CaO [21]. The same result is obtained when the ELF topology in 
the high-pressure CsCl-type phase of BaSn alloy is evaluated to anticipate the 
preferential positions of oxygen in the perovskite BaSnO3. 21 In all these cases, 
the topological evidence appears and/or is enhanced when the metal is 
explored in the actual strained configuration presented at the equilibrium 
structure of the inorganic crystal. The enhanced effect induced by the 
nonmetallic atom is an inherent feature of the AMM model that corresponds 
to the concept of pressure-oxidation equivalence and requires further 
exploration[22]. 

This equivalence between chemical oxidation and external macroscopic 
pressure was proposed by Martínez-Cruz et al. [23] and more exhaustively 
illustrated for a large set of compounds by Vegas and Jansen [14,23]. Cations 
are not independent chemical entities filling voids in the corresponding anionic 
subarrays as usually described by the ionic model. They are instead arranged 
keeping the same lattice structure as in the isolated metals but showing 
strained unit cells induced by the embedding of nonmetallic atoms. If the 
effect of the nonmetallic atom is strong enough, the metallic sublattice in the 
inorganic crystal may display a structure not stable at its equilibrium 
conditions but another one among those present in the metal/alloy phase 
diagram. To cite a couple of examples that will be analyzed later in this work, 
the potassium sublattice in K2S is the hP4 phase found in metallic K at very 
high pressure,[18] and BaSn alloy in BaSnO3 presents the high pressure CsCl-
type structure to which the CaSi-type zero pressure structure transforms. The 
physical principle or explanation behind this behavior has not been reported, 
to the best of our knowledge. 

Recently, a simple implementation of the quantummechanical stress density 
formalism has been developed, [24-28] the chemical pressure (CP) approach 
[29]. This new scheme provides bonding patterns in which the various types 
of interatomic interactions (ionic, covalent, metallic, H-bond, dispersion) are 
clearly differentiated [30] and can also be used to track the bond formation 
and rupture processes in crystalline solids [31]. The CP method is now widely 
applied for analyzing the atomic size effects and the corresponding 
interactions with the surrounding atoms in the solid state [32-35]. For our 
purposes, the exploration of two-dimensional (2D) and three-dimensional (3D) 
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CP maps in metals and inorganic crystals is especially convenient, since those 
regions in the maps with low chemical pressure are identified with unit cell 
positions showing a preference for electron density accumulation. In addition, 
since the CP field is not a scaled property (as it happens, e.g., with the ELF), 
variations of CP values either induced by hydrostatic pressure or by the 
presence of other chemical elements provide useful information about the 
observed correlation between these two effects that deserves further 
investigation. 

In this Article, our first goal is to examine whether or not the CP formalism 
supports the AMM model. To this end we choose a research test bed involving 
metal structures of different complexity as the fcc- and sc-Ca, CsCl-type 
BaSn, hP4-K, and fcc-Na lattices. Once the assessment of the AMM model is 
verified, our next focus will be to explain why the positions of the anions in a 
given inorganic crystal can be anticipated just resorting to its subjacent 
metallic sublattice. Plausible answers associate these positions to particular 
topological features in the electron density, the ELF, or the CP maps of the 
metallic structures. However, our challenge here is to find an underlying 
justification to account for both the positive and negative strains experienced 
by the metallic sublattices as a result of the effect induced by the nonmetallic 
guest elements. We show that atomic sizes do not necessarily account for the 
observed distortions and that a more profound explanation in terms of the 
host and guest capacity to attract/donate electron density is needed. The goal 
will be accomplished after proposing a generalized stress-redox equivalence, 
which is further supported by Pearson-Parr’s electronegativity equalization 
principle [36-38]. In essence, by modifying the size of the metallic lattice, the 
charge located at the interstice positions changes in a way that correlates with 
the electronegativity of the nonmetallic element occupying those positions. 
This reasoning will be illustrated using density functional theory (DFT) CP 
results on the metallic lattices collected above and on a number of halide and 
chalcogenide inorganic crystals containing these metallic arrays. 

The Article is divided into four more sections plus a supplementary material 
6. Computational details of the electronic structure calculations and the CP 
approach are presented in the following section. In Section 3, the AMM model 
is checked in the light of the DFT-CP approach using a number of metal 
(alloy)/inorganic crystal couples. Section 4 contains the results of the new 
generalized stress-redox correlation with a discussion guided by the 
electronegativity equalization principle. The Paper ends with a summary of 
our findings and the most relevant conclusions of our study. In the 
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Supplementary Material 6, we included some technical details about the 
calculations together with the CP analysis of fcc- and sc-Mg and the 
electronegativity-CP correlations for fcc-Mg and fcc-Na. A brief description 
of the unit cell of the structures discussed in the main text is also provided. 

Computational Details 
DFT-chemical pressure calculations were performed on the pair systems 
Ca/CaO, BaSn/BaSnO3, K/K2S, and Na/NaX (X = F, Cl, Br). The local 
density approximation (LDA) exchange-correlation functional of Goedecker, 
Teter, and Hutter [39] and Hartwigsen-Goedecker-Hutter norm-conserving 
pseudopotentials [40] were used under the formalism of DFT as implemented 
in the ABINIT software package [41-43]. The semicore electrons of all the 
metals were included in the calculations. The geometrical optimization of the 
unit cells was performed with the Broyden-Fletcher-Goldfarb-Shanno 
minimization algorithm. Further details regarding cutoff energies and 
Monkhorst−Pack k-point [44] grids are collected in the Supplementary 
Material 6. 

In the Chemical Pressure formalism, the total DFT energy of the system is 
expressed as an integral all over the space of the energy density (𝜌

𝐸𝑛𝑒𝑟𝑔𝑦
): 

 𝐸
𝐷𝐹𝑇

= ∫𝜌
𝐸𝑛𝑒𝑟𝑔𝑦

𝑑𝜏 (6.1)

In analogy to the thermodynamic macroscopic pressure, a microscopic 
chemical pressure (𝑝

𝑉𝑜𝑥𝑒𝑙
) is defined as the derivative of the local energy with 

respect to a volume voxel 𝑉
𝑉𝑜𝑥𝑒𝑙

, where the local energy 𝜀
𝑉𝑜𝑥𝑒𝑙

 is calculated in 
each of the small parallelepipeds (voxels) in which the 3D space is divided: 

 𝑝
𝑉𝑜𝑥𝑒𝑙

= −

𝜕𝜀
𝑉𝑜𝑥𝑒𝑙

𝜕𝑉
𝑉𝑜𝑥𝑒𝑙

 (6.2)

To perform such a derivative, we adopt the procedure proposed by 
Fredrickson in which the energy density (Energy) is calculated in the real space, 
and then we perform numerically the derivative with respect to the volume. 
Further details are given elsewhere [32-35,45]. To apply the same scheme to 
all the systems reported in this work, three single-point calculations were 
always performed over a volume change of 0.5% around the corresponding 
equilibrium unit cell volumes using the Fredrickson group CP package [29]. 
In all the cases, the core unwarping method was used to reduce the strong 
features around the cores as explained in our previous works [29,35]. 
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The above computational details define the standard DFTCP scheme followed 
in previous papers (see, e.g., refs [30] and [45] and refs therein). Nonetheless, 
we checked that differences are not meaningful when CP maps obtained with 
the standard procedure followed in this paper are compared with those 
obtained from generalized gradient approximation (GGA) calculations 
(computational details and maps are collected in the Supplementary Material 
6). The CP maps were then rendered using the VESTA program [46]. Pressure 
values are given throughout the manuscript in atomic units unless otherwise 
specified (1 au = 29421 GPa). Bader atomic charges [47] and electron density 
integrations in the positive pressure regions enclosed by CP = 0 contour 
isosurfaces were performed using Critic2 code [48] with the Yu−Trinkle 
integration method [49]. 

Assessment of the anions in metallic matrices 
model 
The basic premise of the AMM model states that the metallic arrangement 
and its electronic structure reveal the specific positions of the anions in the 
corresponding inorganic crystals [50]. In this section, we aim to illustrate 
whether the CP formalism is able or not to support the basis of the AMM 
model. Bearing in mind this idea, we selected several common metallic phases 
along with other nonconventional or more complex structures (fcc and sc-Ca, 
CsCl-BaSn, hP4-K, and fcc-Na), where nonmetallic elements such as 
chalcogenides and halides form typical inorganic crystals as CaF2, CaX (X = 
O, S, Se, Te), BaSnO3, K2S, and NaX (X = F, Cl, Br, I). This selection 
constitutes a large enough number of examples going from stable zero pressure 
to high pressure phases, displaying different guest positions and allowing us 
to finally address the linking between the effect of mechanical pressure and 
chemical oxidation. 

Let us start describing the main features emerging from the application of the 
CP formalism to the fcc structure of Ca. This is the stable phase of Ca at zero 
pressure and low temperature with a lattice parameter of a = 5.588 Å. Figure 
6.1a shows the 2D CP map of the fcc-Ca unit cell in which intense positive 
CP features (red) around the nucleus reflect the semicore [3s23p6] electrons of 
the Ca atom. This positive CP gradually and radially decreases as we move 
from the nuclear position toward the neighboring atoms through a plateau 
region of negative CP (blue). In addition, each atomic position is surrounded 
by a contour line (black) of zero chemical pressure, which turns to be of a 
spherical shape in the 3D space and contains the atomic nucleus and the core 



p.160 Stress-Redox Principle 
 

 

 

electron pressure of the metallic atom. Such CP features are common to all 
results hereafter. This is in concordance with the so-called free electron model 
of metals [51,52]. According to the CP formalism, [30] positive values indicate 
that, in these regions, a decrease of the volume will increase the energy. 
Therefore, they are associated with repulsive regions, where the electron 
density tends to expand. In contrast, the negative CP background, 
representing the delocalized sea of valence electrons, is associated with the 
cohesion of the nuclei, because in these regions the electron density looks for 
a reduction of volume to decrease its energy as dictated by eq 6.2. 

Figure 6.1. CP analysis of fcc-Ca at equilibrium conditions. (a) Cross section along 
the (001) plane containing the Ca atoms. The CP = 0 contour is shown with a black 
solid line. (b) 3D isosurfaces with CP= +0.001 (white) and CP = −0.0274 (black). 
Pressures are given in atomic units. 

However, a closer analysis of the negative background reveals inhomogeneities 
in the local CP distribution that are crucial to validate the AMM model, as 
we will show in the ongoing discussion. By selecting appropriate negative and 
positive values, with the purpose of representing regions enclosing CP minima 
and maxima, the 3D CP plot of fcc-Ca can be constructed (see Figure 6.1b). 
Two nonequivalent isosurfaces of negative (black) pressures clearly appears in 
the unit cell. One of those negative CP isosurfaces is located at the tetrahedral 
8c sites (1, 1, 1), with a CP value of −0.0278 au, whereas the other appears 
at the 4b positions with a value of −0.0275 au. In agreement with the AMM 
model, these are exactly the coordinates where fluoride atoms in the 
archetypical fluorite structure and chalcogenide elements in the rock-salt 
structure are situated, respectively. 

Indeed, equivalent features have been observed by the ELF analysis in fcc-Ca 
[21]. In their paper, Vegas and Mattessini revealed the presence of an ELF 
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attractor at the (1/2, 1/2, 1/2) position, whereas in the case of the (1, 1, 1) 
position the situation was not so evident. In this regard, the CP formalism 
provides a neat picture for the potential guest positions in the fcc-Ca lattice. 
But what we would like to emphasize here is that the CP approach offers an 
extra insight about these preferential positions in the lattice informing when 
an accumulation of the electron density available for the anion formation is 
favored. For example, when pressure is applied to the fcc-Ca phase to achieve 
its volume in the rock-salt phase of CaO, the CP minima at the 8c and 4b 
positions decreases to −0.0422 and −0.0424 au, respectively. Such a decrease 
in the CP minima values can be attributed to an increase in the electron 
density accumulated through the interstitial positions. Although this feature 
will be discussed later, we want to remark that this behavior is a general result 
for the metallic phases and has a strong correlation with the rationalization 
of inorganic structures in the light of the AMM model. 

To continue with the link between the CP formalism and the privileged 
positions for the anions in the metallic matrices, we applied the previous 
strategy to the simple cubic sc-Ca phase. This is one of the high-pressure 
phases found in the polymorphic sequence of metallic Ca (see, e.g., ref [53] for 
a thorough study of the experimental phase diagram of Ca). 

Figure 6.2. 3D CP isosurfaces of sc-Ca crystal at (a) the equilibrium volume with 
CP = +0.001 (white) and CP = −0.032 (black) and (b) the volume of the CsCl-
CaO crystal with CP = +0.001 (white) and CP = −0.066 (black). Pressures are 
given in atomic units. 

Indeed, the more open sc phase displays a valence band with a greater d-band 
character than the low-pressure structures, as discussed by Errandonea et al 
[54]. and Rahm et al [55]. Therefore, this is an excellent example to test if the 
proposed methodology can support the AMM model in a different scenario. 
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At 39 GPa, sc-Ca presents a lattice parameter of 2.62 Å. In this structure, 
only one CP minimum appears in the unit cell at (1/2, 1/2, 1/2) suggesting 
this preferential position for the nonmetallic element. In fact, in the high-
pressure CsCl phases of CaX (X = O, S, Se, Te) crystals, X2− anions are 
situated at this same precise position identified by the CP formalism (see 
Figure 6.2). 

Once we have considered simple examples of a pure metal, let us explore how 
the CP analysis performs in the binary BaSn alloy. At high pressure, BaSn 
transforms from the CaSi-type to the CsCl-type structure [56], which can be 
considered as the metallic skeleton of the well-known BaSnO3 perovskite. 
Successfully, the 3D CP isosurfaces of the CsCl-type structure of BaSn, 
calculated at the equilibrium volume of the perovskite BaSnO3 phase (a = 
4.1168 Å), display six regions enclosing CP minima at the centers of the faces 
of the cubic cell forming an octahedral environment around the Sn atom (see 
Figure 6.3). The positions of these localized regions of negative CP coincide 
with the coordinates where O atoms are located in the perovskite structure of 
BaSnO3 in concordance also with the ELF topological analysis of Vegas and 
Mattesini [21]. 

Figure 6.3. 3D CP isosurfaces of BaSn lattice (Ba = green, Sn = blue) at the 
equilibrium volume of BaSnO3. White and black isosurfaces are of CP = +0.001 and 
CP = −0.0125 au, respectively. 

In the same way, metallic K adopts an hP4 phase at very high pressure 
analogous to the K-substructure of the Ni2In type phase of K2S obtained under 
pressure[57]. This K phase has been extensively studied, since Marques et al. 
[18] demonstrated that the topologies of the electron density and the ELF 
show local attractors at the unoccupied 2d (1/3, 2/3, 3/4) positions leading 
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to the consideration of this K phase as an electride. Showing the preference 
for these positions by means of the CP analysis is challenging given the low 
symmetry and the extreme conditions needed for the stabilization of this 
structure. Our CP results of the hP4-K phase show negative CP regions 
centered at the same positions where electrons in the electride and anions in 
the Ni2In-type structures of several dialkali-metal monochalcogenides such as 
Na2S, Rb2Te and K2SO4 are found (see Figure 6.4). 

Figure 6.4. 3D CP isosurfaces in the hP4 phase of metallic K at the volume of K2S 
compound. White and black isosurfaces are of CP = +0.001 and CP = −0.043 au, 
respectively. 

We now turn to the fcc structure of Na to complete our CP analysis of metallic 
lattices. Although body-centered cubic (bcc) Na is the stable phase at room 
conditions, the fcc structure is the one present in the low-pressure rock-salt 
phases of NaX crystals (X = F, Cl, Br). Our expectation from the CP analysis 
of these fcc-Na lattices at the different equilibrium dimensions of the 
corresponding halides would be at least the presence of negative CP regions 
at the 4b (1/2, 1/2, 1/2) positions, since these are the coordinates of the X 
halides in their rock-salt phase. In fact, these positions clearly appear in the 
3D CP representations shown in Figure 6.5. In addition, as in the first example 
discussed in this section (fcc-Ca), eight minima also appear at the 
(1/4,1/4,1/4) coordinates. We propose that these positions are potential sites 
for a hypothetical anion, although the stoichiometry requires a fractional 
negative charge of −0.5e- given the multiplicity of this position. Nevertheless, 
evidence of the preference of electrophilic entities for this position are provided 
when examining the minimum energy diffusion path of negative defects, which 
go through this position [58,59]. It is interesting to notice that the same 
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qualitative view is obtained regardless of the dimensions of the unit cell. The 
global analysis of the CP maps of the metallic sublattices of NaF, NaCl, and 
NaBr gives the following values for the black isosurfaces located at the 
expected 4b (1/2, 1/2, 1/2) positions of the anions: −0.0443, −0.0212, and 
−0.0172 au for NaF (2.31 Å), NaCl (2.56 Å), and NaBr (2.64 Å), respectively, 
while the CP minima at the 8c sites (1/4,1/ 4,1/4) are −0.0439, −0.0210, and 
−0.0170 au for the same latter crystals. Such a trend in the CP values points 
toward a relationship between the nature of the anion and the size of the 
metallic unit cell, supporting not only the AMM model but also pointing to 
the connection between oxidation and pressure that we will examine in the 
following section. 

Figure 6.5. 3D CP analysis of the fcc-Na sublattices at the equilibrium volume of 
(a) NaF (CP = −0.044 au), (b) NaCl (CP = −0.021 au), and (c) NaBr (CP = 
−0.017 au). White isosurfaces are of CP = +0.001. 

To sum up, through this section of the paper we carefully depicted the CP 
description of a number of metallic structures. Our results clearly demonstrate 
that CP minima reveal positions in the unit cell totally consistent with those 
that occupy nonmetallic elements in the inorganic compounds. Moreover, in 
addition to the ideas previously derived by the electron density and ELF 
analysis, CP provides a direct support to the AMM model in terms of 
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energetic considerations and electron density accumulations that will be 
disclosed in the next section. 

The pressure-oxidation equivalence in the light 
of the chemical pressure formalism 
4.1. Proving the Pressure-Oxidation Equivalence 

Pressure-oxidation equivalence is based on empirical evidence showing that 
nonmetallic elements induce similar stress in the metallic sublattices where 
they are hosted as hydrostatic pressure does on the isolated metal structure 
[21]. As an example, the lattice parameter of fcc-Ca at 12 GPa is the same as 
the lattice parameter of the rock-salt CaO phase at zero pressure. Therefore, 
it can be understood that the effect of oxygen in the fcc-Ca sublattice of rock-
salt CaO is equivalent to the mechanical compression shown by the metal 
structure at 12 GPa. If the pressure exerted by the nonmetal guest is high 
enough, the metal sublattice can eventually undergo a phase transition to a 
high-pressure structure, as in the case of the K2S crystal previously discussed. 
Extending this view to cases where the metal sublattice is expanded would 
lead to consider the effect of the nonmetallic atom as that of a negative 
pressure.  

To illustrate this apparent link between generalized stress and the redox state 
in a given structure under a broader perspective, we plot in Figure 6.6 the 
energy−volume equations of state of the fcc phases of Mg, Ca, and Sr metals 
emphasizing the pressures associated with the volumes of these lattices in the 
rock-salt phases of MgX, CaX, and SrX (X: O, S, Se, and Te) crystals. Our 
calculated values are in good agreement with the available experimental data 
of ref [53]. We assume that these pressures are induced in the metallic 
sublattices by the presence of the nonmetallic element. Whereas oxides are 
always in the repulsive part of the metal potential energy curves, thus 
indicating that the anion induces a compressive stress in the lattice, sulfides, 
selenides, and tellurides are always in the attractive regime, and therefore this 
fact could be viewed in these cases as a negative tensile stress (expansion) on 
the metallic lattice. Moreover, the expansion and contraction strains induced 
by the nonmetal guests seem to affect the different metallic lattices in an 
opposite direction. If we consider the oxygen anion, we can see how the 
compression effect increases from Mg to Sr; however, with the expansive 
anions the stretching behavior increases from Sr to Mg. These trends claim 
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for the existence of a generalized pressure-oxidation correlation, which 
actually depends on the metal and the nonmetallic element. 

Figure 6.6. Energy−Volume equation of state curves for fcc-metallic Mg (black), 
Ca (blue), and Sr (red) along with the pressures associated with the volumes of the 
metallic sublattices in the corresponding MX (X = O, S, Se, Te) zero-pressure 
crystals. MgX (black), CaX (blue), and SrX (red). 

Interestingly, similar trends are found when we analyze the evolution of the 
CP minima of the metallic lattices with volume. For instance, we display in 
Figure 6.7 how the CP minima found in the fcc-Ca structure increases 
monotonically with the lattice parameter. Using a simple Thomas-Fermi 
model, we can easily understand the obtained sublinear behavior. As in this 
framework the energy depends on the electron density to the 2/3 power, the 
CP (see eq 6.2) should correlate with the lattice parameter as the power of 
−5, in fair agreement with the results displayed in Figure 6.7. The labels are 
located at the cell parameters of metallic fcc-Ca, where the equilibrium 
structures of their corresponding CaX compounds are found. Notice that the 
lowest minima CP values are obtained in the fcc-Ca structures with a reduced 
volume (positive-pressure regime induced by compressive guest elements), 
whereas the higher CP minima values correspond to expanded lattices 
(negative-pressure regime induced by expansive guest elements). 
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Figure 6.7. CP values at 4b (1/2, 1/2, 1/2) positions of metallic fcc-Ca at the 
different equilibrium lattice parameters of their corresponding CaX inorganic 
crystals. The green star represents the fcc-Ca CP value at zero pressure (reference 
value). Dash dotted line represents the critical chemical pressure, CPcritic, splitting 
the compressive (oxidation) and expansive (reduction) regimes. 

From this analysis, a critical value for the CP at the minima can be defined 
considering the value of the fcc-Ca metal at zero pressure (CPcritic = −0.0275). 
This value serves to define a boundary between nonmetallic elements inducing 
compression or expansion on the metallic lattice. Moreover, the observed 
trend points toward a relationship between the oxidation capacity of the 
nonmetallic element, the CP at the minima, and the pressure (positive or 
negative) exerted on the lattice. This connection supports us in using the CP 
formalism in what follows as a way to prove the equivalence between effective 
stress and the redox state. 

Under the CP scheme, we can infer a correlation between these two quantities 
by analyzing the changes in the CP distribution in the unit cell of the fcc-Ca 
at zero pressure either by the application of external pressure or by the 
presence of nonmetallic elements leading to the rock-salt CaX phase. The 
comparison of the CP cross sections along the (001) plane of the rock-salt 
CaO structure (a = 4.829 Å) and the CP distributions of fcc-Ca at the same 
volume (p = 12 GPa) is shown in Figure 6.8. CP features around the Ca cores 
are mostly maintained, reflecting that the core−shell structure is essentially 
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preserved during the electron density reorganization induced by pressure or 
by oxidation. Negative CP values out of the core positions are also very similar 
in both Figure 6.8 a,b, except, of course, at the positions where oxygen atoms 
are located. 

Figure 6.8. 2D CP cross sections along the (001) plane of (a) rock-salt CaO crystal 
and (b) fcc-Ca at the same lattice parameter than the rock-salt CaO. Black lines 
correspond to the CP = 0 isoline. Pressures are given in atomic units. 

A more detailed analysis is provided in Figure 6.9 from the plot of the one-
dimensional (1D) CP profiles along the Ca−Ca path in the fcc-Ca lattices at 
0 and 12 GPa, and at zero pressure in the rock-salt CaO phase. It can be seen 
that both pressure and oxidation increase the CP maxima located at the core 
region from +0.6028 au in the zero-pressure metallic Ca to +0.7125 and 
+0.8571 au, respectively. This effect is accompanied by a lowering of the 
negative CP along the intermediate region of the interatomic path. 
Consequently, both positive pressure and oxidation lead to similar CP features 
in the core region and in the interstices. Therefore, CP indicates that electron 
density accumulation produced by the oxidation is also produced by the 
compression of the lattice in the line of the claimed pressure oxidation 
equivalence. 

Nonetheless the slight differences in the CP values reflect that such an effect 
is similar but not equal. Such differences can be attributed to the fact that, 
in the oxide Ca, atoms formally transfer two electrons to O forming Ca2+ and 
O2− ions, whereas in the case of fcc-Ca at 12 GPa such an electron transfer is 
not formally produced, at least to the same extend, because valence electrons 
are partially delocalized. 
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When compared with the 1D Ca−Ca profile in fcc-Ca at the same volume of 
the CaSe equilibrium structure (p = −2.40 GPa), an opposite effect is 
observed. A reduction of the CP values at the core regions and an increase at 
the interstitial voids are produced. As a result, the pressure-oxidation state 
principle seems to hold again. However, in this case this behavior is associated 
with a depletion (reduction) of the electron density at the interstices toward 
the nuclei positions due to the expansion of the lattice induced either by the 
nonmetallic atom or the (negative) pressure. 

Figure 6.9. 1D Ca−Ca CP profiles of metallic fcc-Ca at its equilibrium volume 
(blue line), metallic fcc-Ca at the equilibrium volume of the rock-salt CaO crystal 
(red line), metallic fcc-Ca at the equilibrium volume of the rock-salt CaSe crystal 
(magenta line), and within the rock-salt CaO crystal at its equilibrium volume (black 
line). 

Linking Pressure and Oxidation through Atomic 
Electronegativity 

So far, we demonstrated that metal oxidation induced by nonmetallic atoms 
and hydrostatic pressure lead to similar structural effects. Our ultimate goal 
is to seek for a chemical basis for this correlation. Traditionally, size effects 
have been invoked to explain the compressive or expansive behavior of the 
metallic sublattices in inorganic compounds [7,8]. We can apply this idea using 
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Shannon radii [60] for O, S, Se, and Te (1.40, 1.84, 1.98, and 2.21 Å, 
respectively) and the metallic radii of fcc Mg, Ca, and Sr (1.60, 2.00, and 2.15 
Å, respectively). For instance, on the one hand, considering CaX compounds 
as a test, an increase in the lattice parameter is predicted along the O, S, Se, 
and Te series, following the same trend as the ionic radii. On the other hand, 
only the Ca sublattice in CaTe should suffer an expansion effect, since Te 
radius is the only one greater than that of Ca in the fcc structure at 
equilibrium. However, this is not the observed result, as demonstrated in 
Figures 6.6 and 6.7, where the Ca sublattice in CaS and CaSe is also observed 
to show a larger lattice parameter than in fcc-Ca. Similar flaws of this purely 
geometric reasoning are also found for the Mg and Sr series. 

Analogously, the amount of charge density transferred from the metallic 
atoms to the guest elements could also be used as a means to throw light into 
the pressure-oxidation correlation, since cation/anion charges can inform on 
the oxidation strength of the nonmetallic element. By means of the Atoms in 
Molecules formalism, we calculated the following Bader charges for Ca in 
CaO, CaS, CaSe, and CaTe: 1.445, 1.423, 1.395, and 1.374, respectively. As 
expected, such a decrease in the charge of Ca correlates with a decrease in the 
oxidation power of the guest element and also with an increase in the lattice 
parameter. However, nothing can be inferred regarding the contraction 
/expansion observed in the zeropressure pure metallic Ca lattice upon crystal 
formation. In the case of a pure metal, Bader charges are always zero 
regardless the pressure (or volume) applied on the unit cell. In this sense, all 
the guest elements formally oxidize the submetal lattice, and therefore, it is 
not possible to prove if pressure regulates the amount of charge accumulated 
in the interstice voids of the pure metal. 

Consequently, we have to recall to further elaborated arguments to explain 
both the expansive and compressive regimes. For this, we will again invoke 
the Vegas’ hypothesis [15] on the equivalence between oxidation and pressure 
at the microscopic level, based on the fact that pressure induces an 
accumulation of electron density in the interstices of the metallic lattice. This 
is in concordance with the emergence of non-nuclear maxima [61] and the 
existence of electrides at high pressure [18-20]. According to this view, when 
the nonmetallic element is hosted just at the same positions in an unstressed 
metal, a similar effect on the electron density of the metal is expected. 
Whereas this result seems to hold in the compressive regime, this rule must 
be carefully applied when the metal subarray suffers an expansion induced by 
the nonmetallic atom. In such cases, the increased metal−metal interatomic 
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distances lead to a reduction of the electron density in the voids, which may 
be regarded as somewhat contradictory from the perspective of an oxidation 
process. Furthermore, according to the free electron model [48,49], metallic 
atoms transfer its valence electrons to the lattice interstices acquiring formally 
an oxidized state already in the zero-pressure metallic phase. 

This view can be quantitatively confirmed through the evaluation of the 
number of core electrons of the metal at different pressure (volume) 
conditions. As we saw in the previous sections, the CP = 0 contour in metallic 
Ca defines a boundary between the positive CP zone representing a sphere 
corelike region and the negative-pressure background associated with the 
delocalized sea of electrons (see, e.g., Figure 6.1a). A measure of the number 
of core electrons (ne), and therefore an estimation of the amount of charge 
transferred to the metal voids, can be given by integrating the electron density 
within this positive chemical pressure region. Values are collected in Table 
6.1, where we selected the zero-pressure metallic phase as our reference within 
the AMM model for the ongoing discussion. 

Table 6.1. Lattice Parameters (a), Pressures (p), Radii (Rcore), and Number of 
Electrons (ne) of the Core-like Region of fcc-Ca at Its Zero Pressure Equilibrium 
Volume and at the Corresponding Volumes of Different CaX Compounds (X =O, S, 
Se, Te). Δne stands for the difference between the number of electrons in the corelike 
region of fcc-Ca at different pressures with respect to the zero-pressure value. 

 a (Å) p (GPa) RCore(Å) ne Δne 
fcc-Ca (VCaO) 4.787 12 0.955 7.181 -0.216 
fcc-Ca (VCaeq) 5.410 0 1.007 7.397 0 
fcc-Ca (VCaS) 5.689 -1.75 1.043 7.520 0.123 
fcc-Ca (VCaSe) 5.916 -2.40 1.065 7.585 0.188 
fcc-Ca (VCaTe) 6.348 -4.01 1.119 7.714 0.317 

Indeed, when we compared the number of core-like electrons in the pure fcc-
Ca metal at the zero-pressure equilibrium volume with those corresponding 
to the volumes of their CaX compounds (see Table 1), then the generalized 
stress-redox relationship is clearly illustrated. For instance, in the case of Ca, 
an estimation of the redox effect induced in the pure metallic lattice as a 
consequence of the structural distortions associated with the guest elements 
(O, S, Se Te) is given by the number of core-like electrons transferred Δne. 
The latter quantity is calculated as the difference between the number of core-
like electrons of the pure metal Ca metal at the volumes of the respective CaX 
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compounds and the value of pure Ca metal at zero pressure (see Table 1). In 
the case of O atom, it exerts a pressure of 12 GPa on the lattice, which induces 
a core electron transfer of −0.215 to the interstitial voids producing an 
oxidation effect in the metallic lattice. On the contrary, the expansion effect 
induced by S, Se, and Te exerts −1.75, −2.40, and −4.01 GPa on the sub-
metal lattice, which corresponds to an electron core increase of 0.123, 0.193, 
and 0.317 au, respectively. Such an increase in the number of core electrons 
clearly manifests that S, Se, and Te induce a reduction effect on the lattice 
(previous to the oxidation produced by the formation of their respective 
anions). In summary, although in the global process the metal is formally 
oxidized, if we take the zero-pressure metal as a reference state, we can 
distinguish nonmetallic atoms behaving either as oxidizing or reducing agents. 
These redox processes are unequivocally manifested through the volume 
change of the metal sublattice providing further support to the pressure-
oxidation equivalence, which should be more appropriately renamed as general 
stress-redox correspondence, as we advanced in the previous section. 

The fundamental basis behind this general stress-redox equivalence is 
provided by the Pearson-Parr’s electronegativity equalization principle.37,38 
This principle explains not only the failure of the radius ratio rule but also 
the observed contraction−expansion trends. Accordingly, the electron density 
transferred from the metallic atoms to the guest element should correlate with 
the difference between the electronegativity of the nonmetallic element and 
the capacity of the metal to donate electron charge to the anion position. The 
latter can be either quantified by the value of the CP at the minima located 
at that 4b position, as we saw in the previous sections, or by the number of 
core electrons transferred Δne. 

Since both quantities increase (decrease) monotonically with the volume 
(pressure) of the metal phase, we can understand that the metal array fits its 
lattice parameter to fulfill the equalization principle. If this lattice parameter 
is fixed, then only nonmetallic elements within a narrow range of 
electronegativity values could be hosted by the metallic lattice. Under the 
equalization principle scheme, this electronegativity range would ideally be a 
narrow one with just the value that perfectly matches the metal capability to 
accumulate electron density at the anion position, which we demonstrated 
that can be quantitatively associated with the CP minimum value and/or the 
number of the core electrons transferred. 

This view is confirmed when we plot the CP values at the 4b positions and 
Δne of the fcc-Ca structure using the volumes of the respective CaX 
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compounds (X: O, S, Se, Te) with respect to the Pauling electronegativity of 
the different X atoms (see Figure 6.10). The linear correlations observed in 
Figure 6.10 seem to be quite general and support the generalized stress-redox 
correlation as a general principle. Following a referee recommendation, we 
would like to be very clear at this respect. 

Figure 6.10. Metallic fcc-Ca CP values at the 4b position (squares) and number of 
core-like electrons transferred Δne (triangles) for the different CaX (X = O, S, Se, 
Te) compounds against the Pauling electronegativity of the corresponding X atom. 
Black and red straight lines correspond, respectively, to the linear fittings of the CP 
data, CP = 0.0311−0.0211 χPauling., and ne data, Δne = 1.164−0.0398 χPauling. 

By “quite general” we mean that this type of linear trend also holds in other 
metals. For example, in the ones explored in this work (see, e.g., the plots for 
Na and Mg collected in the Supplementary Material 6 file) linear fittings of 
similar quality were obtained. It should be also pointed out that CP-χ values 
obviously depend on the metal and the particular structure, since the reference 
redox state varies from lattice to lattice. As a corollary, we can state that the 
Pearson-Parr’s equalization principle is the driving force expanding or 
compressing the metal structure to equalize the electronegativity of the guest 
element with the CP at the metal voids (or equivalently its charge), leading 
the formation of the inorganic crystal.  
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From the plot of Figure 6.10, a quite high value of 2.78 is obtained for the 
electronegativity of the zero pressure fcc-Ca lattice acting on the 4b position. 
Such a value does not represent the actual electronegativity of isolated Ca 
but a local value, which evidences that voids are preferred positions of the 
structure where formally the metal electron density is accumulated. 

From the plot of Figure 6.10, a quite high value of 2.78 is obtained for the 
electronegativity of the zero pressure fcc-Ca lattice acting on the 4b position. 
Such a value does not represent the actual electronegativity of isolated Ca 
but a local value, which evidences that voids are preferred positions of the 
structure where formally the metal electron density is accumulated. 

Interestingly enough, this linear trend also provides a way to infer either the 
electronegativity of the nonmetallic atom (group) located at the Ca 4b 
position or, alternatively, the equilibrium lattice parameter of an unknown 
CaX compound. For instance, in the case of the CaNH crystal we propose a 
Pauling electronegativity value for the NH group of 3.11 based on its lattice 
parameter of 5.05 Å. Using this value of electronegativity for the NH group, 
we can now estimate the lattice parameter of the hypothetical rock-salt MgNH 
compound by means of the CP-lattice parameter correlation of Mg depicted 
in Figures S6.4 and S6.5 of Supplementary Material 6. A value of 4.18 Å is 
obtained, which is not too far from the value of 4.35 Å derived for a cubic 
lattice assuming the same volume as the experimental zero pressure value 
determined for the hexagonal MgNH phase.[62] This result points to the 
transferability between the guest electronegativities obtained in this work but 
also highlights the potential of the chemical pressure to anticipate lattice 
parameters of unknown phases. Obviously, this feature has nothing to do with 
the possible determination of the stable phase of the compound at given p, T 
conditions (that requires the evaluation of the Gibbs energy), which up to 
now is in general far to be foreseen under the CP-AMM scheme. 

As negative CP and atom electronegativity represent the capability of the 
electron density to be accumulated, respectively, in the metal voids and in 
the nonmetallic atom, compressive effects will result when the atom capability 
is higher than that of the corresponding metal, whereas expansive effects will 
result from an excess of the electron density in the metal voids compared to 
one that the nonmetallic atom can attract. From another perspective, such a 
capability can be interpreted as the oxidation potential. Therefore, on the one 
hand, if the guest atom has a higher oxidation potential than the 
corresponding metal, a compressive effect (positive pressure) must be applied 
to equalize its capability. On the other hand, in the case of a lower oxidation 
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potential, the metal must move to the negative-pressure regime (expansion) 
to reach the oxidation state of the anion. 

Table 6.2. Total CP and Potential CP Contribution at the 4b Position of the 
Metallic fcc-Ca Structure at Different Pressures Corresponding to the Equilibrium 
Volumes of CaX (X = O, S, Se, Te) Compounds. The CP value at zero pressure is 
included for reference. 

 a (Å) p (GPa) CP(4b) (au) CPPot (au)
fcc-Ca (VCaO) 4.787 12 -0.0421 -0.0619 
fcc-Ca (VCaeq) 5.410 0 -0.0207 -0.0406 
fcc-Ca (VCaS) 5.689 -1.75 -0.0229 -0.0341 
fcc-Ca (VCaSe) 5.916 -2.40 -0.0200 -0.0310 
fcc-Ca (VCaTe) 6.348 -4.01 -0.0149 -0.0208 

Finally, as the CP formalism allows us to decompose chemical pressure into 
different meaningful contributions, [28] it is interesting to evaluate the 
contribution coming from the potential energy term, which is described in the 
CP program as the local pseudopotential (PSP) contribution. This is mainly 
responsible for the nucleus−electron interaction, and so it is connected to the 
tendency of a given unit cell position to attract the electron density, which 
we ultimately associate with the total electronegativity at that point. In Table 
6.2, we collected the total CP and the potential energy CP contribution at 
the 4b positions of fcc-Ca at pressures corresponding to the equilibrium 
volumes of different CaX (X = O, S, Se, Te) compounds. The potential energy 
pressure is by far mainly responsible for the overall negative pressure at such 
positions indicating that electronegativity dominates the guest insertion on 
the lattice. 

Furthermore, the more the pressure is applied on the structure the more is 
the potential contribution in absolute value. To further illustrate this 
behavior, we plotted in Figure 6.11 the potential energy contribution to CP 
(CPPot) against the number of core electrons transferred Δne for fcc-Ca at the 
different volumes of the CaX compounds. As we have previously seen, Δne 
represents the amount of charge transferred from the Ca cores to the 
interstitial voids and, therefore, in analogy with Bader charges in ionic 
compounds, can be used as an estimation of the electronegativity changes in 
the metal. Interestingly, a linear trend between potential energy CP and Δne 
is observed, thus evidencing that the increase of the potential energy CP (in 
absolute value) is ultimately related to the decreasing of the electronegativity 
of the metal, in total concordance with the clarifying analysis of a recent 
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publication of Rahm et al. [55] Furthermore, such a result leads us to propose 
that the expansion and the contraction of the unit cell are intrinsic 
mechanisms of the metal lattice to regulate its potential energy pressure and 
therefore its local electronegativity at the relevant interstitial positions. 

Figure 6.11. Potential energy contribution to CP (CPPot) against the number of 
core electrons transferred Δne for fcc-Ca at the different volumes of the CaX 
compounds. 

Conclusions 
Throughout this Manuscript, we have tried to take some steps forward in the 
understanding of inorganic crystalline structures. First, the DFT-CP 
approach has proved to be an efficient verifier of the premises of the AMM 
model. Minima of CP are clearly identified in a collection of metallic structures 
just at the precise positions where nonmetallic elements are situated in the 
corresponding inorganic crystalline compounds. Second, the pressure-
oxidation equivalence inherent to the AMM model has been explained and 
consequently generalized finding a robust support in the Pearson-Parr’s 
electronegativity equalization principle. Our results provide a clear conclusion 
on the structures of inorganic crystals. Ionic compounds are formed through 
the distortion of their underlying metal sublattice in such a way that the 
metallic structure adjusts its volume leading a value for the potential energy 
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chemical pressure (local electronegativity) at the relevant interstice positions 
to formally host the nonmetallic element with the same electronegativity. As 
far as we know, this is the first time that a clear connection between a local 
electronegativity acting on a specific position of a metal lattice is correlated 
to the formation of the corresponding ionic compound. 
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Computational Details 

Parameters used in the LDA-DFT calculations with ABINIT and the total 
energy of the crystalline solids studied are shown in Table S1.  

Table S6.1. Computational parameters and electronic energies per formula unit 
(f.u.) of the crystals calculated with ABINIT. 

Structure Ecutoff (Ha) k-point grid FFT grid E/f.u. (Ha)
fcc-Ca 190 6×6×6 128x128x128 -36.73850 
sc-Ca  120 8×8×8 80x80x80 -36.67165 
fcc-Mg 220 6×6×6 240x240x240 -252.52650 
sc-Mg 180 6×6×6 200x200x200 -63.11237 
fcc-Na 340 4×4×4 162x162x162 -45.70505 
BaSn (CsCl-type) 60 6×6×6 52x52x52 -29.19013 
hP4-K 100 6×6×4 72x72x100 -56.46768 
B1- CaO 300 6×6×6 144x144x144 -52.91820 
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GGA-LDA Comparison of chemical pressure maps 

GGA calculations have been performed using PBE functional from the 
reference Perdew, J. P.; Burke, k.; Ernzerhof, M. Generalized Gradient 
Approximation Made Simple, Phys. Rev. Lett. 1996, 77, 3865-3868. Same 
number of k points and FFT grid has been used in order to facilitate the CP 
maps comparison. As in the case of the LDA calculations, HGH 
pseudopotentials have been also used, but adapted to GGA calculation level 
as described in reference Krack, M; Pseudopotentials for H to Kr optimized 
for gradient-corrected exchange-correlation functionals, Theor. Chem. Acc. 
2005 114, 145. 

• fcc-Ca at zero pressure 

Figure S6.1. 3D CP isosurfaces of fcc-Ca crystal at equilibrium volume with CP= 
+0.001 (white) and CP = 0.0274 (black) at LDA and GGA calculation levels. 

Figure S6.2. LDA and GGA Cross-section along the (001) plane containing the Ca 
atoms for the fcc-Ca at zero pressure. The CP = 0 contour is shown with a black 
solid line. 
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• fcc-Ca at the equilibrium volume of the CaO  

Figure S6.3. LDA and GGA Cross-section along the (001) plane containing the Ca 
atoms for the fcc-Ca at zero pressure. The CP = 0 contour is shown with a black 
solid line. The chemical pressure at the 4b position in the GGA level is -0.04226 
whereas in the case of the LDA level is -0.04212. 
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Chemical pressure distribution in fcc and sc-Mg crystal 

Figure S6.4. 3D CP isosurfaces of fcc-Mg crystal at equilibrium volume with CP= 
+0.001 (white) and CP = 0.062 (black). Mg nuclei are represented by red spheres. 

Figure S6.5. 3D CP isosurfaces of sc-Mg crystal at equilibrium volume with CP= 
+0.001 (white) and CP = 0.046 (black). Mg nuclei are represented by red spheres. 
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Chemical Pressure Minima-Electronegativity correlations for fcc-
Na crystal 

Figure S6.6. Metallic fcc-Na CP value at the 4b position for the different NaX (X 
= F, Cl, Br, I) compounds against the Pauling electronegativity of the corresponding 
X atoms (black solid squares). Magenta dash dot line, CP critic value of fcc-Na 
crystal. Black line corresponds to the linear fit of the data, CP=0.061740.0256 
χPauling. 
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Chemical Pressure Minima-Electronegativity correlations for and 
fcc-Mg crystal 

Figure S6.7. Metallic fcc-Mg CP value at the 4b position for the different MgX (X 
= O, S, Se) compounds against the Pauling electronegativity of the corresponding 
X atoms (black solid squares). Red dash dot line, CP critic value of fcc-Mg crystal. 
Black line corresponds to the linear fit of the data, CP=0.0748  0.04838χPauling. 
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Chemical Pressure minima-lattice parameter correlation for fcc-Mg 
phase 

Figure S6.8. CP values at 4b (½, ½, ½) positions of metallic fcc-Mg at different 
lattice parameters. Dash dotted line represents the critical chemical pressure, CPcritic, 
splitting the compressive (oxidation) and expansive (reduction) regimes.  
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Description of metal structures 

 fcc-structure (Ca, Na, Mg)  

fcc is a cubic structure belonging to the space group Fm-3m. It contains 4 
atoms per unit cell located on the 4a sites at the (0,0,0) position.  

 sc-structure (Ca at high pressure) 

sc is a cubic structure belonging to the space group Pm-3m. This cubic phase 
contains 1 atom per unit cell located on the 1a sites at the (0,0,0) position. 

 CsCl structure (BaSn at high pressure) 

CsCl is a cubic structure belonging to the space group Pm-3m with 2 atoms 
per unit cell located on the 1a and 1b sites. Their positions are (0,0,0) and 
(1/2,1/2,1/2) respectively. 

 hP4 structure (K at high pressure) 

hP4 is a hexagonal structure belonging to the space group P63/mmc with 4 
atoms per unit cell located on the 2a and 2c sites at (0,0,0) and (1/3, 2/3,1/4) 
respectively. 
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Description of inorganic structures. 

 rock-salt structure. CaX (X = O, S, Se, Te), NaX (X = F, Cl, Br, I), 
MgX (X = O, S, Se) 

rock salt is a cubic structure belonging to the space group Fm-3m. with 4 
formula units per unit cell. Cations are located on the 4a sites at the (0,0,0) 
position, whereas anions are located on the 4b sites at the (1/2,1/2,1/2) 
position. 

 Fluorite structure (CaF2) 

Fluorite is a cubic structure belonging to the space group Fm-3m. with 4 
formula units per unit cell. Cations are located on the 4a sites at the (0,0,0) 
position, whereas anions are located at the 8c sites at the (1/4,1/4,1/4) and 
positions. 

 Perovskite structure (BaSnO3) 

Perovskite is a cubic structure belonging to the space group Pm-3m. Ba are 
located at 1a sites at the (0,0,0). Sn are located at 1b sites, whose position is 
(1/2,1/2,1/2). O are located at 3d sites with positions located at (1/2,0,0). 

 CsCl structure (CaX (X = O, S, Se) and NaX (X = F, Cl, Br, I) at 
high pressure) 

CsCl is a cubic structure belonging to the space group Pm-3m with 2 atoms 
per unit cell. Cations are located on the 1a and anions on 1b sites. Their 
positions are (0,0,0) and (1/2,1/2,1/2) respectively. 
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The purpose of this chapter is to summarize the main contributions of this 
Thesis, as well as to highlight those ideas that may lead to new research lines. 

Already from the introduction, we have demonstrated how a pairwise 
interaction formalism allows us to transfer some concepts well stablished in 
the high-pressure field to the molecular one, and vice versa. This 
transferability recalls in the fact that the shape of the potential energy curve 
can be considered universal and, therefore, the interaction between two atoms 
either in a molecule or in a crystalline solid or in any other condensed phase 
is described by the same distanceenergy relationship. This idea constitutes 
itself the first contribution of the PhD Thesis, where we have demonstrated 
that the bulk modulus of a crystal directly depends on the stretching force 
constant of its diatomic analogues. It is worth mentioning that the bulk 
modulus constitutes a fundamental parameter in the development of equations 
of state and, its value is usually considered as a criterion in the synthesis of 
super and ultrahard materials. Our model successfully reproduces the 
experimental data of ionic, covalent, and even metallic solids, and establish a 
theoretical framework about the bond characteristics needed to obtain 
materials with highest compression resistance possible. This is an interesting 
feature of our model with potential applications in material sciences, however 
the latter has not been completely developed here in order to maintain the 
focus of this PhD Thesis.  

Indeed, it is the relationship between the bulk modulus and the force constant 
what led us to consider that the spinodal criterion, or mechanical stability 
limit, can also be applied to chemical interactions. Up to now, the mechanical 
stability limit had been exclusively defined as the thermodynamic condition 
at which the bulk modulus of a macroscopic system is zero, thus determining 
the maximum negative pressure that bonds in a solid can withstand without 
breaking, or in the case of liquid phases, to split up. Nonetheless, our results 
evidenced that in one dimension, it corresponds to the distance where 
interaction stretching force constant is zero. This analogy also suggested that 
pressure and volume would scale with force and distance in one dimension 
respectively, leading to the definition of a spinodal force and spinodal distance. 

In order to proof this hypothesis, we have analyzed a classic example in solid 
state physics: the frequencytemperature dependence (i.e. energy) of the 
longitudinal optical phonon (𝜔LO, i.e. force constant) of some diatomic solids. 
According to the Born-von Karman model, the frequency 𝜔LO can be directly 
calculated through the stretching force constant of its pairwise interaction, 
and as we have shown, this can be expressed as the ratio between the spinodal 



p.200 Conclusions 
 

 

 

force and the difference of equilibrium and spinodal distances. To determine 
the temperature dependence of the 𝜔LO phonon, we assume that both the 
spinodal force and the distance difference vary with the temperature as the 
pressure and volume on the crystal do using the volumetric (thermodynamic) 
equation of state. Our model excellently reproduces the experimental results 
in prototypical crystals such as diamond and silicon and allow to separate the 
so-called extrinsic and intrinsic temperature contributions to the phonon 
frequency, a problem that had been extensively discussed in the literature in 
terms of thermal expansion and anharmonic interactions in the crystal. 
Moreover, thee spinodal concept allows to evaluate the variation of the 
phonon frequencies using a purely mechanical criterion through the variation 
of the shape of the interaction curve, and question if it is lawful to separate 
the intrinsic and extrinsic variations in the crystal. 

The previous results point out that the spinodal criterion is also fulfilled in 
one dimension and, therefore, can be used to determine the conditions in 
which the rupture (or formation) of a chemical bond occurs. The 
demonstration of this fact through different examples and methodologies has 
been the leitmotif of this PhD Thesis, and we can conclude that it has been 
successfully completed with examples of the C-C and O-H archetypical bonds. 

Using theoretical methodologies based on the topological analysis of electron 
density and related scalar fields, we have demonstrated how the mechanical 
stability limit is reflected as bonding electronic changes. Specifically, for 
covalent bonds, the distances at which mechanical instability occurs 
corresponds to a transition between a shared electrons regimen to radical like 
atoms state. Based on these results, we have defined the stability limits of a 
chemical bond. In addition, considering that bond are pairwise interactions, 
we have evidenced that these limits can be determined from experimentally 
accessible equilibrium properties: the dissociation energy and the stretching 
force constant at the equilibrium distance. 

The chemical implications of this idea have strong impact in diverse fields, 
including the nature of the chemical bond, reactivity, mechanochemistry, or 
synthesis of novel materials by predicting which compounds can be 
synthesized or not, and the conditions under they would be (meta)stable. 
However, we want to remark that these conditions represent mechanical 
instabilities and drastic electronic changes in the molecular bonds, therefore 
very few experimental results are available to generalize the validity of our 
hypothesis. As a result, in this thesis we have only been able to analyze in an 
exhaustive way the C-C and O-H bond, where there are enough transition-
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state data, frequencies and computational studies in a enough range of 
distances to analyze the rupture and formation of these bonds. 

Specifically, in the case of CC bond, we realized that different criteria, such 
as distance histograms, the Laplacian sign change of electron density and CC 
distances in the transition states of typical CC forming reactions evidences 
that CC covalent interactions are broken or formed over a similar distance (~ 
2Å). In this regard, we performed an analysis of the spinodal criteria of 
different CC bonds in stable compounds ranging from the typical of 1.54 Å of 
the ethane to 1.8 Å in the adamantane dimer. Interestingly, the stability limits 
of this bonds always occur in a narrow range of distances between 1.95 and 
2.15 Å. These results imply that the rupture of the C-C bond does not depend 
on external chemical factors, such as dispersive or hyperconjugative effects, 
and therefore neither should depend on how the stretching (chemically or 
mechanically) occurs. Comparing the potential energy curve of the C-C 
cyclohexene bonds with the analogous profile of the Diels-Alder reaction we 
evidenced how these were almost coincident to the spinodal point. The 
constancy in the C-C distances of the transition states was only because these 
bonds are mechanically unstable close to the spinodal distance. 

The latter should not be considered a specific characteristic of the C-C, but 
rather an intrinsic property of any interaction which only depends on its 
bonding nature. Moreover, assuming that there is a universal reference for the 
simple covalent C-C bond, we established a force constant model that 
perfectly reproduce the experimental results and predict a rupture distance of 
2 Å. When compared with other bibliographic models, we realize that when 
the nature of the interaction is modified, so are its spinodal references and 
therefore, the spinodal criterion may be used discriminate different chemical 
interactions. 

We want to be clear at this respect, we mean as an interaction change to any 
modification between the atoms that modify their stability conditions and 
therefore their electronic distributions. The latter include multiple bonds and, 
continuing with the same example above, they cannot be considered as 
distance analogs of its respectively single bonds, that is, a compressed single 
C-C bond is not a double bond. From this point of view, we believe that 
several correlations between the bond order, or the electronic density and the 
distance described in the literature should be reviewed and reconsidered. 

Based on the hypothesis that the spinodal criterion may be a criterion to 
detect interaction changes between two atoms that is, in their bonding 
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nature in this PhD Thesis we have proposed the Chained Interaction 
Conjecture. Essentially, it establishes that the mechanical and electronic 
stability conditions of the successive interactions are overlapped giving rise to 
a covalentelectrostaticvan der Waals sequence of interactions, similar as 
the one described by the electronic density. As a result, using only a reference 
equilibrium distance and the values of dissociation energies and stretching 
force constants (accessible by spectroscopic data or from equations of state in 
condensed phase), we are able to calculate the breaking points of the various 
interactions and, what is more suggestive from the chemical point of view, 
classify and determine the optimal distances to stabilize them. It should be 
remarked that this conjecture predicts transition distances between 
interactions in which any kind of union between the atoms is unstable. 
Accordingly, if a statistically significant sample of distances between two 
atoms in a collection of compounds were available, we should observe a 
sequence of maxima and minima associated with the equilibrium points and 
the transition distances of the successive interactions. Our hypothesis has been 
successfully validated by analyzing the OH distance histograms, which 
contains multitude of structural results. Its distance distribution clearly 
displays two maxima, associated with the most common distances of covalent 
and electrostatic interactions, and two minima, where less than 50 compounds 
are described in a sample of more than 10,000. The latter occur at the same 
distances as the bonding transitions and clearly determine the interaction 
changes. 

We would like to emphasize that, under this point of view, hydrogen bond is 
not an interaction that depends on the presence of another atom, that is, it is 
not a triatomic interaction as generally considered in chemistry, but a natural 
consequence that two atoms, at a given distance, interact according to the 
most favorable form in terms of its mechanical stability and depending on 
their electronic distributions. Interestingly, an experimental demonstration of 
this fact, stated here in molecular terms, is provided by the highpressure 
phase of ice (ice X), in which the hydrogen atom is located at the midpoint 
between two oxygen atoms. This example evidences how the pressure effect 
would be equivalent to the presence of a third atom of different 
electronegativity than H. 

All the results summarized above and based on the spinodal hypothesis, have 
underlaying evidenced that the effects exerted by a chemical or mechanical 
interaction are essentially analogous, that is, both modify the distance 
between two atoms and, consequently, the conditions of mechanical stability 
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of the bonds. In other words, there is an equivalence between the mechanical 
and chemical forces. Within this perspective we can rationalize the chemical 
effects in terms of pressures, or forces, as well as to understand the phenomena 
of high pressure as a modification of the chemical interactions. In recent years, 
our group, in collaboration with the University of Oviedo, has been involved 
in the development and interpretation of a new quantum formalism named as 
DFT-Chemical Pressure. Essentially, this formalism uses the latter hypothesis 
to describe the chemical properties at the atomic level. As a result, we have 
completed this PhD thesis, applying this methodology to two apparently very 
different problems, but which clearly illustrate what a pressure perspective 
can contribute to the atomic-molecular field. 

The first one, discusses how local pressures in molecules define regions totally 
consistent with the molecular bond and lone pairs, in clear analogy with the 
valence shell electron pair repulsion theory. Indeed, considering that a positive 
pressure is like a repulsion and a negative like an attraction, we have 
quantified the activity of the solitary pairs, and related them to the 
electronegativity of the atom to which they are attached. Our result gives a 
simple explanation to the electrophilic and/or nucleophile character displayed 
by some molecules. Likewise, we have studied several non-equilibrium 
geometries, demonstrating how a change in geometry varies the local 
distribution of pressures and, therefore, the activity of solitary pairs. 

In the final example of this PhD thesis, we have shown how the equivalence 
between mechanical and chemical pressure is able describe inorganic 
structures. Some previous studies had evidenced that anions in inorganic 
compounds induced an effect similar as the pressure does in the metal 
sublattice. However, to the best of our knowledge, this pressure-oxidation 
correspondence has relied only on empirical evidences and structural 
correlations. By means of a Chemical Pressure analysis, we have shown that 
CP minima appear just at the precise positions where the nonmetallic 
elements in typical inorganic crystals are hosted. Our results reveal that, when 
positive pressure is applied to metal sublattice, the pressure minima of these 
position decreases (becomes more negative), while increases (becomes less 
negative) under the effect of tensile macroscopic pressures. This analysis has 
led us to propose a generalized redox-stress equivalence that that is able to 
account for the two well stablish phenomena observed in solid state chemistry: 
(i) the expansion or contraction experienced by the metal structure after 
hosting the nonmetallic element while its topology is maintained and (ii) the 
increasing or decreasing of the effective charge associated with the anions in 
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inorganic compounds with respect to the charge already present in the 
interstices of the metal network Both are intrinsic mechanisms to the metal 
sublattice and can be understood as an equalization of the electronegativity 
between the metal subnet and the anion. 
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El propósito de este capítulo es resumir las principales contribuciones de esta 
Tesis Doctoral, así como resaltar aquellas ideas que abren futuras vías de 
trabajo.  

Ya en el capítulo introductorio hemos demostrado como el formalismo de las 
interacciones interatómicas en términos de un potencial de pares permite 
vincular y transferir algunos conceptos propios del campo de la alta presión 
al campo molecular, y viceversa. Esta transferibilidad reside en el hecho de 
que la forma de la curva de energía potencial se puede considerar 
prácticamente universal y, por tanto, la interacción entre dos átomos -ya sea 
en una molécula o en un sólido cristalino, o en cualquier otra fase condensada 
está descrita por la misma dependencia entre la distancia y la energía potencial 
de interacción. Esta premisa constituye en sí misma la primera contribución 
de esta Tesis Doctoral, con la demostración de que el valor del módulo de 
compresión volumétrico de un cristal correlaciona directamente con la 
constante de fuerza de sus análogos diatómicos. Cabe mencionar que el módulo 
de compresión volumétrico constituye uno de los parámetros fundamentales 
en el desarrollo de ecuaciones de estado y que su valor sirve de criterio en la 
síntesis de materiales super- y ultra-duros. Nuestro modelo reproduce con 
éxito los valores experimentales de sólidos iónicos, covalentes, e incluso 
metálicos, estableciendo así una referencia teórica de cuáles son las 
características que deben presentar los enlaces para obtener materiales con la 
mayor resistencia posible, lo que da lugar a interesante transferencia hacia la 
ciencia de materiales, aunque esta transferencia no se haya desarrollado aquí 
en toda su extensión para mantener el enfoque de esta Tesis Doctoral.  

Precisamente, esta relación entre el módulo de compresibilidad y la constante 
de fuerza de un enlace es la que nos llevó a plantearnos que el criterio 
espinodal, o de límite de estabilidad mecánica, puede aplicarse también a una 
interacción típicamente química. Hasta la fecha, la idea de estabilidad 
mecánica había sido definida exclusivamente como la condición 
termodinámica a la cual se anula el módulo de compresión de un sistema 
macroscópico, y determina la máxima presión negativa que podía soportar 
dicho sistema sin que se produjese la ruptura de sus enlaces en el caso de un 
sólido, o la disgregación en moléculas en el caso de un líquido. No obstante, 
nuestros resultados demuestran que, en una dimensión, dicho límite de 
estabilidad se corresponde unívocamente con la distancia donde se anula la 
constante de fuerza en una interacción interatómica. Dicha analogía también 
sugería que la presión y el volumen escalarían, respectivamente, con la fuerza 
y la distancia en una dimensión, desembocando en la definición de la fuerza 
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espinodal y la distancia espinodal. Para demostrar la validez de esta hipótesis, 
analizamos un ejemplo clásico en física del estado sólido: la dependencia con 
la temperatura (i.e. energía) que presenta la frecuencia del fonón longitudinal 
óptico (𝜔LO, i.e. constante de fuerza) de algunos sólidos diatómicos modelo. 
Acudiendo al modelo clásico de Born-von Karman, la frecuencia 𝜔LO puede 
calcularse directamente a través de la constante de fuerza de una interacción 
par, y aquí hemos demostrado que dicha constante de fuerza par depende 
directamente de la ratio entre la fuerza espinodal y la diferencia de distancias 
de equilibrio y espinodal. Para determinar la dependencia de 𝜔LO con la 
temperatura, asumimos que éstas varían de manera análoga a como lo hacen 
la presión y el volumen en el cristal, utilizando la ecuación de estado 
volumétrica (termodinámica) para evaluar dichas dependencias. El modelo 
propuesto predice de manera excelente los resultados experimentales de 
cristales como el diamante y el silicio y permite además discriminar las 
denominadas contribuciones extrínseca e intrínseca a la variación de la 
frecuencia fonónica, un problema que se había discutido extensamente en la 
literatura en términos de la expansión térmica e interacciones anarmónicas en 
el cristal. Estos resultados indican que el concepto espinodal permite evaluar 
la variación de las frecuencias fonónicas utilizando un criterio puramente 
mecánico a través de la variación de la forma de la curva de interacción, y 
cuestionan hasta qué punto es lícito separar las variaciones intrínseca y 
extrínseca en el cristal.   

Los resultados anteriores demostraban que el criterio espinodal se cumple 
también en una dimensión y, por tanto, puede utilizarse para determinar las 
condiciones en las que se produce la ruptura (o formación) de un enlace 
químico. La demostración de este hecho a través de diferentes ejemplos y 
metodologías ha sido el leitmotiv de esta Tesis Doctoral, y podemos concluir 
que se ha cumplido con éxito. 

Así, utilizando metodologías teóricas basadas en el análisis topológico de la 
densidad electrónica y campos escalares derivados, hemos analizado cómo la 
estabilidad mecánica se refleja en los cambios electrónicos. En concreto, para 
los enlaces covalentes, las distancias a las cuales se produce la inestabilidad 
mecánica llevan asociadas una transición entre un régimen de electrones 
compartidos a un estado de átomos radicalícos. Estos resultados nos han 
permitido definir los límites de estabilidad de un enlace químico. Además, 
considerando una interacción par para el enlace químico hemos demostrado 
que dichos límites pueden determinarse a partir de propiedades de equilibrio 
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accesibles experimentalmente: la energía de disociación y la constante de 
fuerza a la distancia de equilibrio.  

Las implicaciones en la Química de esta idea abarcan temas tan diversos como 
la naturaleza del enlace, la reactividad, la mecanoquímica o incluso, la 
posibilidad de delimitar qué compuestos son sintetizables o no, y en qué 
condiciones serían (meta)estables. No obstante, dado que éstas condiciones 
reflejan situaciones de inestabilidad mecánica y cambios electrónicos drásticos, 
hay muy pocos resultados experimentales que permitan generalizar la validez 
de nuestra hipótesis. Por ello, en esta tesis hemos podido únicamente analizar 
de forma exhaustiva los enlaces C-C y O-H donde hay datos de estados de 
transición, frecuencias y estudios computacionales en un rango de distancias 
suficientes como para analizar la ruptura y formación de estos enlaces.  

En concreto, para el caso de los enlaces C-C, nos dimos cuenta de que 
diferentes criterios, como los histogramas de distancia, el cambio de signo de 
la laplaciana de la densidad electrónica y las distancias C-C en los estados de 
transición de las reacciones de formación CC típicas, indican que las 
interacciones covalentes C-C se rompen o se forman en una distancia similar 
(~ 2Å). Por ello realizamos un análisis del criterio espinodal de diferentes 
enlaces C-C en compuestos estables que abarcaban distancias desde la típica 
de 1.54 Å hasta 1.8 Å y concluimos que el límite de estabilidad de este enlace 
ocurría siempre en un estrecho rango de distancias comprendidas entre 1.95 y 
2.15 Å. Estos resultados implican que la ruptura del enlace C-C no dependen 
de factores químicos externos, tales como efectos dispersivos o 
hiperconjugativos, y que por lo tanto tampoco debían de depender de cómo 
se produce la elongación. Comparando la curva de energía potencial de los 
enlaces C-C de ciclohexeno con el perfil análogo de la reacción de Diels-Alder 
vimos como estos eran prácticamente coincidentes hasta el punto espinodal. 
La constancia en las distancias C-C de los estados de transición se debía 
únicamente a que estos enlaces son mecánicamente inestables en el entorno 
de la distancia espinodal.  

Este hecho no se debe considerar especifico de los C-C, sino más bien una 
propiedad intrínseca de cualquier interacción que solo depende de la 
naturaleza del enlace. Es más, suponiendo que existe una referencia universal 
para el enlace C-C covalente simple establecimos un modelo de constante de 
fuerza que reproducía perfectamente los resultados experimentales y predecía 
un punto de ruptura para estos enlaces alrededor de 2 Å. Al compararlo con 
otros modelos descritos en la literatura, vimos que, cuando la naturaleza de 
la interacción se modifica, también lo hacen sus referencias espinodales y, por 
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lo tanto, desde este punto de vista, el criterio espinodal permite discriminar 
entre las diferentes interacciones químicas. 

En este sentido queremos dejar claro que nos referimos como cambio de 
interacción a cualquier modificación entre los átomos que altera sus 
condiciones de estabilidad y por tanto su distribución electrónica. Esto incluye 
a los enlaces múltiples y, continuando con el ejemplo anterior, no se pueden 
considerar como una evolución continua en función de la distancia, es decir 
un enlace C-C simple comprimido no es un enlace doble. Desde este punto de 
vista, creemos que varias de las correlaciones del orden de enlace, o la densidad 
electrónica, con la distancia descritas en la bibliografía deberían ser 
ampliamente revisadas y reconsideradas.  

Basándonos en la hipótesis de que el criterio espinodal debe servir de criterio 
para detectar cambios en el tipo de interacción entre dos átomos -esto es, en 
la naturaleza de su enlace- en esta Tesis Doctoral hemos propuesto la 
conjetura de interacciones encadenadas (Chained Interaction Conjecture). En 
esencia, ésta establece que se produce un solapamiento en las condiciones de 
estabilidad mecánica y electrónica de las sucesivas interacciones, dando lugar 
a una secuencia covalente-electrostática-van der Waals similar a la descrita 
por la densidad electrónica. De esta forma, conociendo únicamente una 
distancia de equilibrio y valores de energías de disociación y constantes de 
fuerza (accesibles mediante resultados espectroscópicos o a partir de 
ecuaciones de estado en fase condensada), nuestra aproximación permite 
calcular los puntos de ruptura de las diversas interacciones y, lo que es más 
sugerente desde el punto de vista químico, clasificarlas y determinar las 
distancias óptimas para estabilizarlas. Cabe destacar que esta conjetura 
predice distancias de transición entre interacciones en las cuales cualquier tipo 
de unión entre los átomos es inestable. Esto quiere decir que, si se dispusiese 
de una muestra estadísticamente significativa de distancias entre dos átomos 
en una colección de compuestos, deberíamos observar una secuencia de 
máximos y mínimos asociadas, respectivamente, a los puntos de equilibrio y 
las distancias de transición entre las sucesivas interacciones. Nuestra hipótesis 
se ha validado con éxito mediante el análisis de los histogramas de distancias 
OH, que sí están disponibles a partir de multitud de resultados estructurales, 
donde claramente hay dos máximos, asociados a las distancias más comunes 
de las interacciones covalentes y electrostáticas, y dos mínimos, donde hay 
descritos menos de 50 compuestos en una muestra de más de 10,000. Estos 
últimos ocurren a las mismas distancias que las zonas de transición entre 
enlaces y claramente determinan los cambios de interacción. Nos gustaría 
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señalar que, desde este punto de vista, el enlace de hidrogeno no es una 
interacción que dependa de la presencia de otro átomo, es decir, no es una 
interacción triatómica como generalmente se ha considerado en química, sino 
una consecuencia natural de que dos átomos, a una distancia dada, 
interaccionan de acuerdo a la forma más favorable, desde el punto de vista de 
la estabilidad mecánica, en función de sus distribuciones electrónicas. La 
demostración experimental de este hecho, formulado aquí en términos 
moleculares, la proporciona la fase X de alta presión del hielo, en la que el 
átomo hidrógeno se sitúa exactamente entre dos átomos de oxígeno, lo que 
demuestra que un puro efecto de presión sería equivalente a la presencia de 
un tercer átomo de diferente electronegatividad que el H.  

Todos estos resultados basados en la hipótesis espinodal han evidenciado de 
manera subyacente que los efectos ejercidos por una interacción química o 
mecánica son en esencia análogos, esto es, que ambos modifican la distancia 
entre dos átomos y, en consecuencia, las condiciones de estabilidad mecánica 
de su enlace. O, dicho de otro modo, hay una equivalencia entre la fuerza 
mecánica y química. Esta visión permite entender los efectos químicos en 
términos de presiones, o fuerzas, así como entender los fenómenos de alta 
presión como una modificación de las interacciones químicas. En los últimos 
años, nuestro grupo, en colaboración con la universidad de Oviedo, ha estado 
involucrado en el desarrollo y la interpretación del formalismo cuántico 
denominado Presión Química-DFT, que en esencia utiliza esta hipótesis para 
describir las propiedades químicas a nivel atómico. Por ello esta Tesis Doctoral 
se completa aplicando está metodología a dos problemas aparentemente muy 
dispares, pero que ilustran claramente qué puede aportar la variable presión 
al ámbito atómico-molecular. 

En el primero de ellos se discute como las presiones locales en moléculas 
permiten definir regiones totalmente consistentes con los pares de enlace y 
pares solitarios de las moléculas, en evidente analogía con la teoría de 
repulsión de pares de electrones de valencia. Así, considerando que una presión 
positiva constituye una repulsión y una presión negativa una atracción, hemos 
cuantificado la actividad de los pares solitarios, y la hemos relacionado con la 
electronegatividad del átomo al que están unidos, dando una explicación 
sencilla al carácter electrófilo y/o nucleófilo que presentan algunas moléculas. 
Así mismo, hemos estudiado varias geometrías de no equilibrio, demostrando 
cómo un cambio de la geometría varía la distribución local de presiones y, por 
tanto, la actividad de los pares solitarios.  
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En el último ejemplo de esta Tesis Doctoral hemos demostrado cómo la 
equivalencia entre la presión mecánica y la presión química permiten describir 
las estructuras inorgánicas. Algunos estudios previos habían propuesto que los 
aniones en compuestos inorgánicos inducían un efecto similar al de la presión 
en la subred metálica. Sin embargo, hasta donde nosotros sabemos, dicha 
correspondencia presión-oxidación estaba basada únicamente en evidencias 
empíricas y correlaciones estructurales. Aquí hemos demostrado, mediante un 
análisis de Presión Química, que los mínimos de presión negativa aparecen 
precisamente en las posiciones cristalográficas donde se alojan los aniones. 
Nuestros resultados indican que, al aplicar una presión positiva a la subred 
metálica, los valores de presión en los mínimos aumentaban, mientras que 
éstos disminuyen tras la aplicación de presiones negativas. Este análisis nos 
ha llevado a proponer una equivalencia redox-estrés generalizada que explica 
dos fenómenos bien conocidos en química estructural: (i) una sub-estructura 
metálica, manteniendo su topología, se expande o contrae después de alojar el 
elemento no metálico, y (ii) la carga efectiva de los aniones en las estructuras 
inorgánicas es diferente a la que ya está presente en los intersticios de la 
subred metálica. Ambos son mecanismos intrínsecos a la subred metálica y 
pueden entenderse como una ecualización de la electronegatividad entre la 
subred metálica y el anión. 
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The contributions developed in this PhD Thesis provides some directions for 
future work that worth to be explored in length. The purpose of this chapter 
is to summarize some of them, as well as to show their potential implications. 
We want to remark here that we have already several preliminary results, and 
some of them will be presented and discussed in this final section. 

 One of the ideas that this PhD Thesis has evidenced is that the 
application of pressure (positive or negative) may lead to effects like 
those resulting from chemical interactions. In this regard, the 
understanding of pressure effects in molecules can provide fruitful 
information about chemical processes as well as to understand the 
transformations (phase transitions or chemical reactions) observed in 
high pressure experiments. Unfortunately, a difficulty arises to calculate 
the pressure in molecules because the molecular volume is ill-defined. 
However, according to our Chained Interactions Conjecture, any 
interaction cannot be extended far beyond the van der Waals limit of 
stability, and any space excluded from this region should have negligible 
effects in the molecule. Under this assumption, the van der Waals 
surface constitutes a reliable limit of the effective molecular volume. As 
pointed by several authors, the van der Waals volume can by 
determined integrating the space region enclosed by the electron density 
isovalue of 1·10-3 a.u. Within this approximation, we have performed 
several calculations in adamantane by contracting all the bonds of this 
highly symmetric molecule from its equilibrium configuration. These 
calculations allow us to obtain pairs of (energy-van der Waals volume) 
data, from which the pressure can be estimated by applying directly 
the thermodynamic definition: the derivative of the energy respect to 
the volume. To check the validity of our approach, we have selected 
the adamantane molecule because it can be considered the smallest 
cluster of diamond preserving the local symmetry. With this in mind, 
we compare our calculated pressures in the adamantane molecule with 
those provided by the diamond equation of state in Figure 8.1, together 
with the equation of state of solid adamantane for the sake of 
comparison. Let us emphasize that compressing an isolated adamantane 
molecule in an experiment is virtually an impossible task, even in the 
solid phase, because the local pressure acting on the molecule is not 
known. As demonstrated in Figure 8.1, applying an external hydrostatic 
pressure to solid adamantane leads to a drastic reduction of the van der 
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Waals volume, but the pressure acting over the adamantane molecules 
is less than one order of magnitude.  

Figure 8.1. Pressure-Volume equation of state: Experimental data for 
diamond (grey dots), Experimental data for adamantane (green down 
triangles), and van der Waals volume of the adamantane molecule (blue up 
triangles, see text for explanation). 

On the other hand, the striking agreement between the equation of state 
of diamond and the (pressure, van der Waals volume) data of the 
adamantane molecule demonstrates that we are in the right way for 
predicting the effect of pressure in the length of the chemical bonds, a 
long-standing challenge in the high pressure field, where only few 
theoretical models are available. See for example reference 
[https://doi.org/10.1107/S0108768103010474].  

The huge difference in the pressure response of an adamantane molecule 
either isolated or in the molecular solid indicates that our previous 
approach can be very useful to study the effect of pressure in non-
covalent interactions. Such weak interactions are strongly modified by 
the application of moderate pressures, leading to sequential phase 
transitions and, ultimately, novel chemical reactivity. The validity of 
our model in this kind of interactions is shown in Figure 8.2, where we 
have estimated how distance between the two molecules in a benzene 
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dimer distance varies with pressure. Again, compared to the 
bibliographic data reported by R. Bini et al. our results are in excellent 
agreement. [https://doi.org/10.1038/nmat1803] 

Figure 8.2. a) Calculated distance between the two molecules in a benzene 
dimer (green triangles), and b) Experimental data from the solid phase 
(https://doi.org/10.1038/nmat1803).  

 Special attention deserves the idea that chemical reactions can be 
understood in terms of mechanical forces (pressures). Indeed, 
understanding the reaction mechanism from a combined electronic and 
mechanical perspective can provide a valuable information about the 
transition states and how to reduce the activation energy or even how 
to produce new reaction products. In this regard we have begun to 
develop chemical pressure calculations in non-hydrostatic conditions, 
where the volume modification is defined as the variation of van der 
Waals volume along the intrinsic reaction coordinate. Of course, the 
interpretation of this pressures recalls directly in the spinodal criteria 
as the maximum negative pressure which bonds can withstand. 
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 Another issue that deserves to be explored is the fact that pressures can 
provide reliable basis to understand atomic and molecular properties 
such as the electronegativity and lone pair activity. We are already 
exploring the possibility to integrate the chemical pressure field in the 
basins provided by the topological analysis of the electron density and 
the electron localization functions. The latter defines atomic regions, 
bond and lone pairs, where the integration of the chemical pressure can 
provide a quantitative account of the forces exerted by the atoms. The 
impact of these studies includes identification of inactive lone pairs, 
bond strength measurements, electronegativity estimations, and 
changes in the chemical interactions under pressure. As an example, we 
show in Figure 8.3, the variation of the local pressures of the Mg and 
O atoms in the MgO crystal as calculated from the integration of the 
chemical pressure in the Bader basins.  

Figure 8.3. Local pressures (pi) for the cation (black dots) and the anion 
(blue dots) at different pressures in the MgO crystal.  

Firstly, note that at zero pressure neither the pressure of the cations 
nor the one of the anions are zero, which can be understood as a 
consequence of the ionic interaction displayed by the charged species in 
MgO that induce a non-zero force in their electronic distributions. 
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Indeed, the pressure of the oxygen (anion) is negative whereas the 
cation is positive, thus reflecting the intuitive chemical idea that anions 
are those who tend to accumulate electron density and therefore are 
more compressible than the cations. As a result, the MgO structure at 
equilibrium results from an equilibration of the ionic pressures. 
Interestingly, when we analyze the effect of the compression on the 
crystal, we observe that the pressure of the cation is increased, while 
the pressure of the anion is reduced. This is in excellent agreement with 
our results displayed in chapter 6 and evidences an accumulation of the 
charge in the oxygen atoms resulting from a volume reduction. Based 
on our results of this PhD, we can state that the electronegativity of 
the oxygen is increased whereas that for Mg is decreased.  

 Finally, from the methodological point of view, up to now the DFT-
Chemical Pressure methodology was only available for Abinit software, 
a program devoted to calculations in crystals. Abinit uses periodic 
boundary conditions and pseudopotentials, which clearly limits the 
calculation methods and the potential systems which can be studied. 
So that, we are currently developing new code to calculate the chemical 
pressure distributions in molecules directly from all-electron first 
principles calculations. Specifically, our program uses the wavefunction 
file from gaussian 09 and the potential energy maps calculated with the 
critic2 code. 
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