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parećıan no acabar, por los consejos que a veces no supe escuchar, por el ánimo en momentos

cŕıticos, por las risas compartidas, en fin, por tu inmenso compromiso sin el cual esta tesis nunca

se hubiera realizado. Pero sobre todo quiero darte las gracias por confiar en mı́, por dejarme

hacer y por tu paciencia y comprensión, que aunque sabiendo muchas veces que teńıas razón
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Introduction

“Efficiency is doing better what

is already being done”

Peter F. Drucker

The present Ph.D. dissertation aims to contribute theoretically and empirically to understand

the extent to which the endogeneity problem, a major concern frequently observed in educational

production processes, affects the estimation of technical efficiency using the Data Envelopment

Analysis (DEA) technique. Furthermore, this research combines insights from impact evaluation

literature and nonparametric frontier techniques in order to provide potential solutions to deal

with this problem in educational empirical applications and obtain more accurate efficiency

estimates. To do that, three chapters are developed. Although they are closely related, they

have their own internal structure as they intend to be free-standing (in the sense that each

one can be read and understood independently). Still, some common concepts, definitions and

methodologies are exposed whenever required.

The evaluation of technical efficiency in the Public Sector has gained growing attention over

the last decades. Public services providers have a natural interest in efficiency assessments since

they face up increasing demands of quantities and quality together with financial constraints.

Within this framework, the measurement of educational technical efficiency is one of the current

major concerns as the education expenditure is one of the largest public budget items and the

public sector is usually the main provider of education in most modern countries.

Given that the investment in quality education is essential to ensure sustainable development

and economic growth (Barro and Lee, 1996, 2012; Hanushek and Kimbo, 2000; De la Fuente,

2011; Hanushek and Woessmann, 2012a, 2012b), several countries in the last decades have

significantly increased their public educational budget. However, these efforts have not always

been translated into better academic achievements. This fact has led researchers and policy-

makers to wonder why these additional investments in educational resources do not lead to

improvements in the quality of education. Although the answer is not evident, this fact alerts

about the presence of great inefficiencies in schooling production and has spurred the interest

in measuring these inefficiencies and explaining their main sources, with the ultimate goal of

correcting these behaviours.
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The educational production has, like most public sector production processes, some special

characteristics that complicate the estimation of accurate efficiency measures (i.e. the completely

unknown production technology, the lack of prices information or the frequent use of multiple

proxy variables to approximate the real output). In this sense, nonparametric techniques and

particularly the DEA model proposed by Charnes, Cooper and Rhodes (1978) and Banker,

Charnes and Cooper (1984) are the most commonly applied methods for measuring educational

technical efficiency (Worthington, 2001). This is mainly because of two reasons: its flexibility

allows to adapting it to the stated particularities of this sector, and the results of this technique

can be easily translated to stakeholders and politicians.

However, there is a major concern frequently observed in educational production processes

which has been overlooked in the context of the technical efficiency estimation: the endogeneity

problem. In statistical terms, this phenomenon implies the presence of a significant correlation

between one input and the error term, and it can arise as the result of multiple sources (e.g.

measurement errors, unobserved heterogeneity, the omission of relevant variables in the model

specification or the presence of simultaneity). In the context of the estimation of technical effi-

ciency with frontier techniques, this problem of endogeneity implies the presence of a significant

correlation between at least one input and the efficiency term (Peyrache and Coelli, 2009).

In the education provision framework, the most common source of endogeneity is the ed-

ucational self-selection. Students are not exogenously assigned to schools but their allocation

depends on decisions made by parents, teachers and schools’ principals. Indeed, this problem has

been one of the focuses of attention in econometrics along the last three decades. Endogeneity

has been argued to be the basis for multiple theoretical and empirical critiques of traditional

findings and multiple methods have been developed in the literature to deal with this problem

(Webbink 2005, Schlotter et al. 2011).

However, this widespread acknowledgement in the context of econometrics of the existence

of the self-selection or the endogeneity problem is ignored when we move into the world of

the efficiency estimation. There are only a handful of studies that using alternative simulation

strategies have tested the performance of DEA under some kind of endogeneity (Gong and

Sickles, 1992; Orme and Smith, 1996; Bifulco and Bretschneider, 2001, 2003; Ruggiero, 2003,

2004). Consequently, this problem is still an unknown and incipient issue in the literature of the

estimation of frontiers using DEA and thus it is frequently overlooked when practitioners apply

this technique.

Based on this background, the following three chapters of this Ph.D. dissertation address the

endogeneity problem, measure its effects on the estimation of technical efficiency and provide

different strategies to deal with it.

Chapter 1 analyses theoretically to which extent does the presence of endogeneity in the

production process affect DEA estimates in finite samples, so practitioners performing this tech-

nique can be aware of the accuracy of their estimates. To do this, we firstly illustrate the

endogeneity problem and its implications for the efficiency estimation from a conceptual per-
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spective. Secondly, using synthetic data generated in a Monte Carlo experiment we evaluate how

different levels of positive and negative endogeneity can affect DEA performance. We conclude

that, although DEA is robust to negative endogeneity (Bifulco and Bretshneider, 2001, 2003

and Ruggiero, 2003), estimates could be severely impaired under the presence of a significant

positive endogeneity, that is, when one input in the production process is highly positively cor-

related with the true efficiency term. This decline in DEA performance is further driven by the

misidentification of the most inefficient DMUs with low levels of the endogenous input.

From these findings, the question that arises is: how can we deal with this problem in

empirical research? In this direction, based on the Monte Carlo experiment results we propose

a simple heuristic to detect this phenomenon in empirical applications. In addition, we get

insights from causal inference literature, and particularly, from the Instrumental Variable (IV)

approach developed in econometrics, to provide a potential solution to deal with this problem:

the ’Instrumental Input DEA’ (II-DEA) strategy. Again, using a Monte Carlo experiment we

test the performance of this proposal in finite samples.

Building upon this evidence, Chapter 2 implements these strategies to deal with the endo-

geneity problem in applied research. Using data from Uruguayan public secondary schools we

use the proposed heuristic method to identify potential endogenous inputs. We actually found

that the school’s average socio-economic level (peer group) is highly correlated with schools’ ef-

ficiency. Given this result, we tackle this problem by applying the II-DEA strategy proposed in

Chapter 1 to obtain reliable technical efficiency estimates. We compare these results with those

that arise from the conventional DEA to empirically investigate the impact of not controlling for

the presence of endogeneity. Beyond estimating the efficiency potential improvements for each

school and identifying the better and the worst performers, we aim to explore the explanatory

factors of the efficient behaviours. Thus, once we have estimated the II-DEA efficiency scores, we

regress them on several contextual variables related to students and schools characteristics. The

results of this second stage allow us to draw conclusions about which educational policies and

practices would be desirable to design and promote in order to improve the quality of education.

The II-DEA strategy proposed in the first chapter and implemented in Chapter 2 requires

finding a good instrument. This is not an easy task and, in some contexts, it may not even be

possible to find one. In the third chapter, taking again insights from the impact evaluation liter-

ature we provide an alternative strategy to deal with the endogeneity problem in the estimation

of educational technical efficiency.

Chapter 3 focuses on the estimation of teachers’ technical efficiency and its effect on students’

academic results taking into account the presence of self-selection. To tackle this problem we

take advantage of a database for Spanish primary schools where we can identify those schools

where two classrooms were evaluated and where students were randomly assigned into these

classrooms. This implies that, on average, students in both classrooms are similar (both in

observable and unobservable characteristics), since parents can self-select into schools but they

cannot choose the classroom inside the school. Therefore, the only difference between classrooms

Gabriela Sicilia 3
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in each school is the teacher who was randomly assigned. This randomization produces a natural

experiment where by chance one classroom has been assigned to the most efficient teacher and

the other one to the least efficient teacher.

In sum, the strategy proposed in Chapter 3 consists on estimating the efficiency level for each

classroom within schools with random assignment, and on exploiting the exogenous efficiency

variation between classrooms within schools. This strategy allows us to obtain an unbiased

measure of the true teacher’s effect on students’ achievement and to explore the main drivers

of teachers’ efficiency. As in the previous chapter, we also perform the analysis without taking

into account the presence of self-selection to empirically quantify the effect of this problem in

terms of educational public policy recommendations.

To conclude, for conducting a research it is evident that having a novel and relevant moti-

vating question is crucial if we aim to contribute to better understand a specific problem or to

scientific progress. But it is not a sufficient condition. The best question in the world becomes

useless if we answer it with an inappropriate technique. Both a relevant question and an accu-

rate method to answer it are necessary. In this regard, this Ph.D. dissertation attempts to be a

helpful methodological contribution, which we expect it could be applied in the near future to

answer pertinent questions not only in the context of the measurement of educational technical

efficiency, as we do here, but also in other fields where the endogeneity problem is present.
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1. Dealing with the endogeneity problem in Data Envelopment Analysis

1.1 Introduction

The evaluation of technical efficiency of Decision Making Units (DMUs) is basic for adopting

organizational decisions in order to save resources, monitoring DMUs activity to detect best and

worst performers and for improving results. Public services providers have a natural interest

in efficiency assessments since they face both increasing demands of quantities and quality and

financial constraints. However, the special characteristics of the public sector production, i.e. the

lack of profit maximization behaviours, the completely unknown production technology or the

frequent use of multiple proxy variables to approach the real output complicate the estimation

of accurate efficiency measures (Bowlin, 1986).

In these contexts, nonparametric techniques, and especially Data Envelopment Analysis

(DEA), are the most commonly applied methods for measuring technical efficiency relative to

an estimate of an unobserved true frontier in multiple frameworks (Gattoufi et al., 2004). The

main reason is its flexibility and the few assumptions needed about the implicit technology that

relates inputs with outputs. Therefore, this technique does not assume a priori a particular

functional form for the underlying production technology (only some axiomatic assumptions,

i.e. monotonicity and concavity) or the inefficiency distribution. Thus the frontier is drawn

by the observed data resulting from an underlying and unknown data generating process. By

contrast, the most important and traditional limitation of this technique has been the lack of

statistical foundations and the inability to perform statistical inference. However, Banker (1993)

and Korotelev et al. (1995) were the first who demonstrated that, under certain assumptions,

DEA estimators are statistically consistent and have a known rate of convergence. Likewise,

the asymptotic distribution of DEA estimators has also been derived and different bootstrap

methods have been proposed for conducting valid inference about the true efficiency from the

DEA estimates in a multivariate framework (Gijbels et al., 1999; Kneip et al., 1998, 2008, 2011;

Simar and Wilson, 2008).

Within this framework, selecting the appropriate input and output variables to include in

the model is one of the most critical choices that practitioners will have to undertake in order

to obtain reliable efficiency scores. This point has also received a lot of attention in the DEA

literature over the past decades, where several works have analysed the effects of misidentification

on DEA estimates (Smith, 1997; Pedraja-Chaparro et al., 1999; Dyson et al. 2001; Simar and

Wilson, 2001; Galagedera and Silvapulle, 2003; Ruggiero, 2005; Morita and Avkiran, 2009;

Nataraja and Johnson, 2011). In addition, several studies have analyzed using simulated data

how the presence of random noise or measurement errors can affect the performance of DEA

estimates (Banker et al., 1993; Bojanic et al., 1998; Ruggiero, 2004; Simar, 2007; Krüger, 2012).

Moreover, different extensions of the technique have been developed in order to improve its

robustness, for example to correct for the presence of outliers or to include non-discretionary

inputs in the model1.

1See Simar and Wilson (2011) for a detail review of multi-stage models.
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However, there is another major concern, namely, the presence of endogeneity in the produc-

tion process, which is frequently overlooked when practitioners apply DEA. In statistical terms,

this phenomenon implies the presence of a significant correlation between the error term and at

least one explanatory variable. Peyrache and Coelli (2009) pointed out that in the estimation

of technical efficiency with frontier techniques framework, the endogeneity arises when at least

one input is correlated with the efficiency term. Although the potential distortions that this

endogeneity can cause on the estimation of economic models have been widely studied in the

econometrics literature, its effects on efficiency measures calculated using nonparametric frontier

techniques like DEA have not been analysed in depth yet. There are only a handful of studies

that using alternative simulation strategies have tested the performance of DEA under some

kind of endogeneity (Gong and Sickles, 1992; Orme and Smith, 1996; Bifulco and Bretschneider,

2001, 2003; Ruggiero, 2003, 2004). However, these previous works do not allow drawing general

conclusions about the potential distortions of this issue on DEA estimates.

Gong and Sickles (1992) compare Stochastic Frontier Analysis (SFA) with DEA using differ-

ent Monte Carlo experiments based on panel data generated by a CRESH production function

with three inputs and a single output considering different time periods. With regard to our

aim, they examine the effect that a rather low negative correlation (from -0.21 to -0.37) be-

tween inputs levels and technical efficiency may have on both techniques and conclude that

DEA measures are much closer to the true levels of efficiency than those estimated with SFA.

Orme and Smith (1996) also conduct a Monte Carlo simulation to evaluate the performance of

DEA under the presence of endogeneity in data. Their data generation process (DGP) relies

on a Cobb-Douglas production function with constant returns to scale and they only consider

a negative correlation between inputs and the efficiency. They conclude that the efficiency esti-

mates generated by DEA in the presence of this negative endogeneity can be subject to bias, in

the sense that inefficient units using low levels of the endogenous resource may be set tougher

efficiency targets than equally inefficient units using more resources.

More recently, Bifulco and Bretschneider (2001) use simulated data with the aim of assessing

the performance of two alternative methods (DEA and COLS) in different scenarios character-

ized by the presence of measurement error and a high level of negative correlation between

inputs and the efficiency term (ranging from 0.78 to 0.92). For that purpose, they also use a

log linear Cobb-Douglas production function and assume constant return to scale to generate

data. They conclude that without measurement error the performance of DEA does not change

substantially when negative correlation between inefficiency and one of the inputs is present

(consistent result with Gong and Sickles, 1992). Their main contribution was meant to be the

use of a production technology with two outputs and three inputs in an attempt to emulate

the characteristics of educational production contexts. Unfortunately, this function was incon-

sistent with economic theory2, since they were actually generating an increasing return to scale

2Essentially, the problem arises because the second output can actually be interpreted as the inverse of a fourth
input, since inefficiency is modelled as an output reduction of the other output.
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technology with one output and four inputs (Ruggiero, 2003). In a subsequent paper, Ruggiero

(2003) uses a corrected DGP based also on a Cobb-Douglas production function with only one

output and concludes that DEA provides decent measures of efficiency even in the presence of

negative endogeneity if there is not measurement error. Afterwards, Bifulco and Bretschneider

(2003) perform a new simulation study using the same corrected DGP and they conclude that

the primary results of their study remain. Finally, Ruggiero (2004) using simulated data is the

only work who analyses the effect of a positive correlation between true technical efficiency and

one non-discretionary environmental variable, showing that in this case DEA efficiency estimates

are biased upward. Although, naturally, non-discretionary variables differ from the inputs in the

DEA model specification, these results provide a useful basis for comparison with our results in

the Cobb-Douglas scenario.

Thus, the first aim of this research is to analyse more generally whether the presence of

endogeneity can bias or not the results obtained with DEA, so that practitioners using this

technique can be aware of the accuracy of their estimates. In this regard, we have attempted to

overcome some of the limitations of previous works in order to obtain more general conclusions

about the effect of endogeneity in the DEA estimates. Firstly, we focus the analysis only on DEA

performance and on determining how the presence of endogeneity affects DEA estimates instead

of comparing its performance with alternative methods to measure technical efficiency. Secondly,

we incorporate a more flexible Translog production function in addition to the traditional Cobb

Douglas, which fails to capture the potential nonlinear effects of inputs on the output variable3.

Thirdly, we conduct our simulations by performing a Monte Carlo experiment to provide more

robust results than most of previous studies that based their conclusions on a single replication.

Finally, we simulate different intensities of both the negative and the positive endogeneity,

whereas all previous studies only examine the effect of the negative correlation between the

inputs and the true efficiency.

The second objective of this chapter is more ambitious and challenging. As practitioners

we wonder how we can deal with the endogeneity issue in an empirical research. From this

question two issues arise: how to identify the presence of an endogenous input and, how to

tackle this problem in order to improve DEA estimations. In this direction, firstly, we propose a

simple heuristic to identify the presence of correlation between an input and technical efficiency.

Then, we propose an Instrumental Input DEA (II-DEA) strategy for dealing with this problem

in empirical DEA applications. Again, it is important to stress the relevance of these two

contributions for the nonparametric efficiency models literature, since although this issues have

receive considerably attention in statistics and econometrics, there are almost no previous studies

that have dealt with these issues in the context of efficiency models.

In this sense, Wilson (2003) explores a number of relative simple independence tests that

can be used in the context of efficiency estimation, and provides some empirical examples to

illustrate their use. However, his Monte Carlo results show that these tests have poor size

3This can be a significant weakness in complex production frameworks such as education or health provision.
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properties and low power in moderate sample sizes. Based on this work, Peyrache and Coelli

(2008) propose a semi-parametric Hausmann-type asymptotic test for linear independence and,

using a Monte Carlo experiment, they show that it has good size and power properties in

finite samples. However, the proposed test has a major limitation because it is based on the

distribution of the true technical efficiency, which is, of course, unobservable. To solve this,

the authors propose using the empirical distribution of the individual efficiencies estimated

via nonparametric techniques (DEA) or Free Disposal Hull (FDH) assuming that these are

consistent estimators of the true efficiency. However, for this consistency to hold true, inputs

and efficiency must be uncorrelated, which is the same hypothesis that is being tested. In this

sense, the heuristic to detect an endogeneity problem proposed in this chapter overcomes this

limitation as it is based on the correlations coefficients between inputs and the estimated DEA

efficiency scores, but does not require any previous assumption about the distribution of the

true efficiency or the consistency of their estimates.

Finally, it is worth noting that the endogeneity problem has been also considered recently in

the estimation of technical efficiency using parametric frontier techniques in empirical research.

For example, Soĺıs et al. (2007) employ a switching regression model to handle the selection

bias in hillside farmers under different levels of adoption of soil conservation in El Salvador

and Honduras. Greene (2010) proposes a simple way to extend the Heckman sample selection

model to the stochastic frontier analysis framework and apply it to measure state health system

performance. Perelman and Sant́ın (2011) address the endogeneity problem of school choice in

Spain using instrumental variables. Finally, Mayen et al. (2010); Bravo-Ureta et al. (2012) and

Crespo-Cebada et al. (2013) apply propensity score matching to American dairy farms, farmers

in Honduras and education in Spain, respectively.

The rest of the chapter is organized as follows. Section 1.2 conceptually illustrates the

endogeneity issue and the potential effects that can arise on DEA estimates. Section 1.3 describes

the methodology used to generate the synthetic data in our Monte Carlo experimental design

and the main results obtained in the analysis. The fourth section is devoted to describe the

proposed methods to tackle the endogeneity problem in empirical applications. The chapter

concludes with a discussion of the main implications of our findings for practitioners using DEA

to measure technical efficiency in different contexts, as well as with some directions for future

research.

1.2 The endogeneity issue and its potential effects on DEA

1.2.1 The endogeneity issue

The analysis of data in the presence of endogeneity is one of the main recent contributions

of econometrics to statistical science (Blundell and Powell, 2003). Consider the multiple-input

single-output productive function:

yi = f(xi) + εi i = 1, 2, ..., n (1.1)
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where yi is the level of observed output for DMU i, f is an unknown production function to be

estimated, xi ∈ <m is the vector of observable inputs and εi represents the unobservable error

term, which can also be identified as the distance to the true productive frontier. In fact, if we

limit the estimation of f to the non-stochastic frontier models, we can assume that all those

deviations are due to technical inefficiency and therefore εi ≤ 0 i = 1, 2, ..., n.

In order to properly estimate the Equation 1.1 using a regression model, some crucial as-

sumptions are required, including that the error term be uncorrelated with all the observed

inputs E(ε|X) = 0 ; i.e., all regressors must be exogenous. In this context, the presence of

endogeneity implies that xi and εi are correlated, thus the latter assumption cannot be hold in

practice and E(ε|X) 6= 0 . This phenomenon can arise as the result of multiple sources, such

as measurement errors, unobserved heterogeneity or the omission of relevant variables in the

model specification; although perhaps the most common cause is the presence of simultaneity

or two-way causal relationships between the dependent and independent variables (Wooldridge,

2012). The idea behind this concept is that some inputs are not exogenous and are determined

within the model.

The education sector is a good example to illustrate this issue (Mayston 2003), where the

endogeneity problem is frequently observed. Actually, in this framework the presence of the

self-selection problem has been argued to be the basis for multiple theoretical and empirical

critiques of traditional findings using conventional econometric techniques and multiple methods

have been developed in the literature to deal with this problem (Webbink 2005, Schlotter et al.

2011). For example, it is claimed that more motivated parents tend to devote more time and

resources to choose the best schools (those with better peer group and academic outcomes) for

their children than less motivated parents (see more example in Evans et al. 1992, Hoxby, 2000

or McEwan, 2003). But this parents’ motivation, which is generally positive associated with

families’ socio-economic background at school level, is unobserved. As a result, groups of pupils

from more advantaged backgrounds, and thus the school they attend, will tend to obtain better

academic results for two reasons. Firstly, they have better average socio-economic level which is

an essential input for producing educational output. Secondly, because these students are also

more motivated and this fact positively affects school’s efficiency. Consequently, we will observe

that schools whose students come from a high socio-economic background are more prone to be

fully efficient. To be fully efficient implies obtaining better results compared with other schools

with similar inputs, so once again, these schools will attract more motivated parents reinforcing

the endogeneity issue. This mechanism results in a positive correlation between the school’s

average socio-economic background (input) and technical efficiency: E(ε|X) ≥ 0

The same reasoning can be applied for the teacher’s self-selection problem in many public

education systems. Highly qualified and more motivated teachers tend to choose school first, self-

selecting into smart schools with higher academic results, better facilities and students coming

from higher income families. Again, this process derives in a positive correlation between the

input level and the school efficiency. The intensity of this correlation will depend not only on the

importance of parents, students or/and teachers motivation, but also on the correlation between
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these unobservable variables and the observed input (socio-economic level).

However, the endogeneity problem in the education sector can also arise in the opposite

direction when a direct negative feedback from outputs to resources is observed (simultaneity).

This applies for example when school funding systems operating compensatory policies allocate

more resources to schools with poorer academic results in order to improve the performance of

these schools (Orme and Smith 1996 and Levacic and Vignoles 2002). If poorer results are due

to a high inefficiency, then the reverse causality problem implies allocating more resources to

inefficient schools causing a negative correlation between resources (input) and the true efficiency:

E(ε|X) ≤ 0.

The presence of correlation between inputs and technical efficiency can be also observed in

many other production processes. For example, large firms can usually attract better managers

(more qualified and motivated) as they can offer better salaries and conditions than small firms.

As large firms use more inputs to produce outputs than small firms, again, one would also expect

a positive correlation between the firm technical efficiency and the levels of input (Wilson 2003).

In short, endogeneity is a very frequent issue in production processes. It exceeds the scope of

this work making an exhaustive analysis of all potential endogenous settings. Regardless of each

specific endogeneity source, the target of this chapter is to address how this potential problem

can affect DEA technical efficiency estimates.

1.2.2 The potential effects of endogeneity on DEA

In principle, it might seem that DEA should not be influenced by the presence of endogene-

ity, since it constructs a boundary around feasible combinations of inputs and outputs without

assuming a parametric functional form (Orme and Smith 1996). However, if we apply insights

from Kuosmanen and Johnson (2010) and interpret the DEA model as a constrained variant of

the convex nonparametric least squares regression (Kuosmanen 2008), we can derive straight-

forward that the same problems of bias caused by the presence of endogeneity in econometrics

explained above can also arise within this approach.

DEA is a mathematical programming approach that was originally proposed by Charnes,

Cooper and Rhodes (1978) (DEA-CCR) and Banker, Charnes and Cooper (1984) (DEA-BCC)

to measure the productive efficiency of a set of decision-making units (DMU) under constant and

variable returns to scale respectively (CRS and VRS hereafter). The output-oriented problem

under VRS can be specified using the following linear programming (LP) expression (multiplica-

tive DEA efficiency measure):

ϕi = max
λ,ϕ
{ϕ|ϕyri ≤

n∑
i=1

λiyi;xki ≥
n∑
i=1

λix1;

n∑
i=1

λi = 1;λ ≥ 0 ∀i = 1, 2, ..., n} (1.2)

where xk denotes input k, yr stands for output r and i represents the production units. Multi-

pliers λi are referred as intensity weights of each DMU determined by the program solution. The

technical efficiency score of the ith DMU is equal or greater than one, where ϕ̂i = 1 represents
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an efficient unit, whereas ϕ̂i ≥ 1 indicates that the ith DMU is inefficient.

According to Banker (1993), the variable returns to scale DEA estimator of a production

function f can be formally defined as:

fDEA(x) = max
λ∈Rn

+

{y|y =

n∑
i=1

λiyi;x ≥
n∑
i=1

λixi;

n∑
i=1

λi = 1;λ ≥ 0 ∀i = 1, 2, ..., n} (1.3)

Substituting f in the equation 1.1 by the DEA estimator, we can observe that the DEA

efficiency scores for each unit can also be obtained as the optimal solution to the following LP

problem (additive DEA efficiency measure):

εDEAi = min
λ,ε
{ε|y =

n∑
i=1

λiyi + εi;x ≥
n∑
i=1

λixi;

n∑
i=1

λi = 1;λ ≥ 0 ∀i = 1, 2, ..., n} (1.4)

Therefore, Kuosmanen and Johnson (2010) expose that the formulations 1.2 and 1.4 are

equivalent in the single-output setting and thus: ϕDEAi = 1 − εDEAi

yi
. In fact, the authors

demonstrate in their work that the DEA problem can be interpreted as a nonparametric least-

squares model under the assumption that εi ≤ 0 (Kuosmanen and Johnson 2010, p. 152).

This connection between the nonparametric regressions and the mathematical programming

approaches contributes to developing the statistical foundation of DEA. As a result, we can derive

that DEA estimators will be consistent if all the assumptions in the least-squares regression

model are fulfilled. However, in the case that εi is correlated with at least one input, the

assumption E(ε|X) = 0 does not hold and, therefore, efficiency estimates ϕ̂i in Equation 1.2 can

be biased. To better understand these ideas hereinafter we graphically illustrate this problem.

Figure 1.1 represents a single-input (x) / single-output (y) production setting in which true

efficiency ϕi is exogenously distributed, i.e., E(ε|X) = 0. In this scenario, the frontier estimated

by DEA is very similar to the true one for the entire data range. Fully efficient DMUs are

correctly identified, and efficiency is randomly spread along the production frontier.

However, as noted above, we may well find in real-world production processes some kind

of correlation between the true efficiency and the level of input that is significantly different

from zero: E(ϕ|X) 6= 0 . This correlation can be either positive or negative, as mentioned

previously in the examples of different educational settings. Figure 1.2 illustrates the situation

where endogeneity is positive, E(ε|X) > 0.

In this case, although microeconomic theory establishes that the input level and the true

efficiency are independently distributed, the existence of this positive endogeneity can break this

assumption. According to Figure 1.2, DMUs with higher levels of input (and outputs), e.g., dots

C and D, are generally closer to the true frontier, whereas DMUs with lower input levels are less

efficient. However, as DEA estimates efficiency scores are based on observed data, the frontier

built by DEA will find and classify several DMUs that have low input level and are in fact highly

inefficient as efficient. This is the case for dots A and B in Figure 1.2, which are actually far away
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from the true frontier but are identified by DEA as efficient units. Consequently, the frontier

estimated by DEA will be far away from the true one in the lower input frontier region. This

means that efficiency improvement targets will (incorrectly) be more demanding for observations

with a higher input level than for those with a low input level. For example, while unit E is

clearly closer than unit F to the true frontier in terms of output, both units appear to have a

similar estimated technical efficiency because the actual production frontier is wrongly identified

at low inputs levels. Since efficiency scores are relative measures, the misidentification of some

DMUs distorts all efficiency estimates and the performance ranking. This result could have very

important implications, particularly, if DEA is conducted for benchmarking and performance-

based policy making.

On the other hand, the existence of a significant negative correlation between the input level

and the true efficiency seems to just slightly affect DEA estimates. Figure 3 illustrates this

context where in terms of the true production frontier more efficient units show low input levels

and more inefficient units are those with high input levels.

It is worth to note, that at the region of high input level the estimated frontier shifts slightly

down from the true one. But in this case the most inefficient DMUs (those with high input

level) remain far enough away from the DEA estimated frontier to be still identified as the

most inefficient producers compared with other DMUs. The main reason for conserving the

high relative distance to the frontier for high input level DMUs is the monotonicity assumption.

Monotonicity impedes DEA to pursue inefficient DMUs to drawing the estimated production

frontier. In addition, the negative correlation between the input and the technical efficiency

provides more information to DEA in order to correctly identify and estimate DMUs efficiency.

The reason is that negative endogeneity reinforces the major microeconomic assumption behind

the measurement of efficiency, i.e. for a constant output level, using higher level of inputs

implies greater inefficiency. For instance, unit G is highly inefficient, and although the DEA

frontier is closer to G that the true one, the distance between G and the estimated frontier is

still large enough in terms of output to be recognized as one of the most inefficient producers.

In general, inefficiency is correctly identified since all DMUs keep their relative position. Thus,

it is expected that under the presence of negative endogeneity the efficiency scores estimated

by DEA will better match the true relative positions, and thus the estimated ranking will not

be significantly different from the true one. However, negative endogeneity could move upwards

average efficiency scores because now the DEA frontier is closer to the most inefficient DMUs

than the true one.

Now, these potential implications of the presence of different kinds of endogeneity have to

be measured in quantitative terms. On this ground, we test DEA performance in finite samples

using data from a Monte Carlo experiment by simulating endogeneity through a significant

positive or negative correlation between the true technical efficiency and one input.
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1.3 Monte Carlo experiment

1.3.1 MC experimental design and DGP

In order to illustrate the ideas developed above we perform a Monte Carlo experiment applied

to seven scenarios. Firstly, we compute a baseline dataset without endogeneity (from now on,

the exogenous scenario); then, six alternative settings were simulated taking into account the

presence of correlation between the true efficiency (ϕi) and one observed input (from now on,

the endogenous scenarios). Results from each endogenous scenario are then compared to the

baseline one in order to measure the effects that endogeneity introduces on DEA estimations.

All datasets were defined in a single output framework with three inputs. The first decision to

be made in the DGP in order to carry out the experimental design was to choose the functional

form for the production function.

1.3.1.1 The production function

Almost all previous studies in the literature have simulated data using the Cobb-Douglas

production function. Hence, in order to obtain comparable results we also draw data from a

Cobb-Douglas with a single output and three inputs:

ln yi = α1 ln x1i + α2 ln x2i + α3 ln x3i (1.5)

where yi represents the output, and x1 x2 and x3 are the observed inputs. The inputs weights

assigned in this work where α1 = 0.3, α2 = 0.35 and α3 = 0.35, assuming constant returns to

scale4. Although this functional form is the most commonly used in economics and operational

research, it involves a significant drawback represented by the assumption of constant input-

output elasticities. This means that no matter the scale of production, the marginal effects of

inputs on outputs are the same; so it fails to capture potential non linear effects of those resources.

Since the main aim of this work is testing the accuracy of DEA in an experimental setting that

reproduces a more realistic context, we carried out our experimental design also considering

a more flexible technology, the Translog production function introduced by Christensen et al.

(1971).

ln yi = β0 +
K∑
k=1

βk ln xki +
1

2

K∑
k=1

K∑
j=1

βkj ln xki ln xji (1.6)

where y denotes the output and xk (k = 1, 2, 3) are the three inputs. We assume β0 = 3.5;β1 =

0.5;β2 = 0.3;β3 = 0.5;β11 = −0.1;β22 = −0.05;β33 = −0.1;β12 = β13 = β23 = 0.01. These

parameters were defined in order to obtain a well-behaved production function within the bounds

imposed by the inputs distribution that are uniformly distributed over the interval [5, 50].

Therefore, after having generated the data we checked for two desirable conditions at each

simulated data point.

4Similar results were obtained using increasing returns to scale and decreasing returns to scale.
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Firstly, we verify the monotonicity condition, where in a single output case requires that all

marginal products must be non-negative ∂y/∂xk ≤ 0. For the Translog production function this

implies:

∂y/∂xk =
y

xk
.
∂ ln y

∂ ln xk
=

y

xk
.{βk +

K∑
j=1

βkj ln xj} =
y

xk
.sk ≥ 0 ∀k (1.7)

where y/xk is the average product and sk is the elasticity of y with respect to xk. As the average

product y/xk is always positive, monotonicity implies that all input-output elasticities sk must

be non-negative for all DMUs across all inputs range.

Secondly, we test for concavity in all inputs, which implies that all marginal products apart

from being non-negative must be decreasing in inputs, i.e. the law of diminishing marginal

productivity must be fulfilled (Coelli et. al, 2005). For the Translog production function this

implies that all inputs must satisfy the following expression throughout all simulated data range:

∂2y/∂2xk =
y

x2k
[βkk + (βk− 1 +

K∑
j=1

βkj ln xj)(βk +
K∑
j=1

βkj ln xj)] =
y

x2k
[βkk + (sk− 1)sk] < 0 ∀k

(1.8)

Finally, the selected parameters and the distribution of inputs define the production scale

elasticity. We perform the simulation assuming decreasing returns to scale (DRS), where scale

elasticity ranges from 0.56 to 0.97, with a mean value of 0.69. These results are consistent with

most complex production processes that take place in the public sector. For example, in the field

of education if the initial endowments of all school inputs are doubled, it would be reasonable

to expect an increase in students’ test scores but in a less proportion than double, particularly

at high levels of educational achievements (Essid et.al., 2013).

1.3.1.2 Data Generation Process

The baseline scenario represents the exogenous case, where all inputs are uncorrelated with

the true technical efficiency, and it is simulated using the following procedure:

1. Generate randomly and independently three input vectors x1, x2 and x3 using a uniform

distribution over the interval [5, 50] for N DMUs, n = 1, 2, ..., N .

2. Calculate the efficient level of output as yi = exp(lnyi) using ln yi = f(.), where f(.) is

Equation 1.5 or Equation 1.6 respectively.

3. Draw a random error term vi from a N(0; 0.04), representing the random statistical per-

turbation in the production function. Since the main aim of this research is to test the

performance of DEA under endogeneity, we do not simulate different magnitudes of the

random shocks. As it has been demonstrated in previous studies, the larger the measure-

ment error the poorer the performance of DEA (e.g. Bifulco and Bretshneider, 2001).

Therefore, we choose a small measurement error in order to have, as in the real world,

some noise but not so large that it distorts the analysis of endogeneity.
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4. Randomly and independently generate N values of ui using a half-normal distribution

ui ∼ |N(0; 0.25)| and compute the vector ϕi = exp(ui). Then, compute the true technical

efficiency level for each DMU 0 ≤ θi =
1

ϕi
≤ 1.

5. Compute the observed output as: ŷi = yi.exp(vi).θi.

The remaining six scenarios were developed through a similar DGP, but taking into account

the existence of endogeneity, which was modelled through the Pearson’s correlation coefficient

between the true technical efficiency θi and one observed input. Therefore, in each dataset we

substitute the exogenous input x3 by an endogenous input E. In order to compute the latter with

the same distribution as the exogenous inputs (x1, x2, x3) and with a specific level of correlation

with θi, for each endogenous scenario we follow this procedure:

1. Select the desired Pearson’s correlation coefficient ρE,θ between the endogenous input E

and the true technical efficiency θ.

2. Draw a random matrix A = (a1, a2) from a multivariate normal distribution N(0; Σ),

where Σ =

[
1 ρE,θ

ρE,θ 1

]
.

3. Compute an identification number variable (ID) from 1 to N.

4. Match the ID with the vector a1 obtaining: B = [ID a1]. Sort B by a1 in an ascending

order (the ID variable will be unsorted): B′ = [IDa1 a1].

5. Generate an independent vector xn×1 from a uniform distribution over the interval [5, 50]

and sort it in an ascending order obtaining xS .

6. Compute a new C matrix by merging B′ with xs: C = [IDa1 a1 xs].

7. Sort C by the ID variable in an ascending order: C ′ = [ID a1,ID xID].

8. The latter vector of C ′, (xID), will be defined as the endogenous input, E = xID.

9. Match ID with the vector a2 obtaining: D = [ID a2]. Sort D by a2 in a descending order

(the ID variable will be unsorted): D′ = [IDa2 a2].

10. Randomly and independently generate N values of ui using a half-normal distribution

ui ∼ |N(0; 0.25)|. Then, compute the vector ϕi = exp(ui) and sort this variable in an

ascending order obtaining ϕs.

11. Compute a new H matrix by merging D′ with ϕs: H = [IDa2 a2 ϕs].

12. Sort H by the ID variable in an ascending order: H ′ = [ID a2,ID ϕID].

13. The latter vector of H ′ (ϕID), is used to computed the true technical efficiency level for

each unit, θi = 1/ϕID. The generated average true efficiency in each experiment ranges

from 0.828 to 0.859 with standard deviations values between 0.097 and 0.116.
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14. Using the exogenous inputs x1 and x2 generated in the baseline scenario and the en-

dogenous input E, compute the efficient level of output as yiend = exp(lnyiend) using

lnyiend = f(.), where f(.) is Equation 1.5 or Equation 1.6 respectively.

15. Finally, calculate the observed output using the random term vi computed in the baseline

dataset and the true efficiency level θi computed in step 13: ŷiend = yiend.exp(vi).θi.

Two factors were allowed to vary in order to generate the six endogenous settings: the sign

(negative or positive) and the intensity (high, medium or weak) of the correlation coefficient

between the true efficiency and the endogenous inputs (ρθ,E). Table 1.1 summarizes the main

descriptive statistics of the correlation coefficients that have actually been obtained in each

simulated scenario.

All scenarios were replicated using the Cobb-Douglas and the Translog production functions

for a sample size of 100 DMUs5. Finally, for each dataset we estimate the efficiency scores θ̂i,

by running an output oriented DEA model under CRS and VRS. As a result, 28 scenarios were

analysed (the exogenous scenario, six types of endogeneity with different intensities and signs,

two production technologies and two types of return to scale). In order to make the results more

reliable, we undertake a Monte Carlo experiment where B, the number of replicates is 1,000;

consequently, all measures are computed in each replication and finally averaged to obtain the

results presented in the next section6.

1.3.2 MC experiment results

1.3.2.1 Accuracy measures

In order to test the adequacy of DEA under endogeneity in finite samples we present a set

of accuracy measures. Firstly, we are interested in measuring the ability of DEA to correctly

rank observations. For this purpose, we compute Spearman’s rho (rs) correlation coefficients

between the true efficiency and estimated scores pairs:

rs = 1−
6
N∑
i=1

d2i

n(n2 − 1)
(1.9)

where di = rank(θ̂i)−rank(θi) is the difference between the rank assigned to the i-unit according

to DEA estimations and the place that i-unit actually has when we rank observations by the

true efficiency value (in an ascending order). The higher the correlation coefficient rs, the

better the ability of DEA to identify the true efficiency distribution. The first two columns

of Table 1.2 contain these coefficients for DEA-CRS and DEA-VRS models under different

5We replicated the analysis for sample sizes 40 and 300 and results did not change significantly. Results are
available under request.

6Simulations were carried out using MATLAB 7.9.0 software.
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endogenous scenarios compared to the exogenous baseline assuming data coming from a Cobb-

Douglas production function. Table 1.3 contains the analogous results for a Translog DGP.

Secondly, we are interested in testing the capability of the method to estimate the true

level of efficiency. For this purpose, we average the estimated efficiency scores (mean estimated

efficiency) to compare this value with the true mean efficiency. If the former is larger (smaller)

than the second, DEA overestimates (underestimates) the true efficiency level. Finally, we also

calculate the Mean Absolute Error (MAE).

MAE =
1

N

N∑
i=1

|θ̂i − θi| (1.10)

The MAE arises from computing the sum of absolute deviations of DEA estimated scores

from the true efficiency level for each observation and averaging them. A low MAE implies

that, on average, the estimates are near the true efficiency values; therefore, small values are

preferred. All Monte Carlo results are provided in Table 1.2 and Table 1.3 for data generated

from the Cobb-Douglas and the Translog production technology respectively; and under both

CRS and VRS assumed.

Finally, following Bifulco and Bretschneider (2001), we present a performance measure based

on a quintile analysis. Observations were first divided into quintiles according to their true

efficiency score, and then we examined the ability of the technique to place observations in the

appropriate quintile. This complementary measure allows us to evaluate the technique accuracy

at different points of the distribution and hence, it is a helpful tool to locate the main drawbacks

of the technique. For example, if the objective of the research is to identify the best practices,

we will be especially interested in the percentage of top quintile observations that DEA assign

correctly to the top quintile rather than in the overall ranking accuracy. Results from this

analysis are presented in Table 1.4 and Table 1.5 for the Cobb-Douglas and the Translog DGP

respectively, under CRS and VRS assumptions.

1.3.2.2 Baseline scenario results

The results confirm that DEA performs reasonably well in the exogenous case regardless

the production function or the returns to scale assumed. These findings are similar to those of

previous studies (Bifulco and Bretschneider, 2001; Ruggiero, 2003; Krüger, 2012). However, as

expected, CRS-DEA estimates outperform VRS-DEA when data was generated with a Cobb-

Douglas production function, and vice versa for data derived from the Translog one. For example,

under the Cobb-Douglas technology Spearman’s correlation coefficients between the true and

estimated efficiency is 0.78 under CRS and 0.67 under VRS; conversely for the Translog these

figures are 0.67 and 0.73 respectively. This finding highlights the importance of making a correct

choice of the returns to scale assumed before conducting a DEA efficiency analysis. Given this

evidence, hereafter we will refer to DEA-CRS for the results estimated from the Cobb-Douglas

under CRS and to DEA-VRS for the results estimated from the Translog scenarios under VRS.
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Results from Table 1.4 and Table 1.5 also confirm the accurate performance of DEA in the

exogenous case. Almost 50% of observations are placed in the correct quintile and about only

one of every eight units is placed two or more quintiles away from the right one. From columns

5 to 12 it can be concluded that the major weakness of DEA lies in the ability to correctly

identify the most efficient DMUs. While about three quarters of the most inefficient units are

correctly assigned to the bottom quintile, this proportion drops to around 50% for units properly

identified in the top quintile. Moreover, the percentage of units placed in the bottom quintile

being actually in the first two is near to zero in the exogenous case; but this figure arises to 7%

and to 12.3% for observations in the bottom quintile assigned to the top one under CRS and

VRS respectively. This evidence should be taken into account specially if DEA is conducted

with the purpose of performance-based reforms, for there would be some units identified as

benchmarks when they actually are not.

1.3.2.3 Endogeneity effects on DEA

The accuracy of DEA under endogeneity depends on the direction and intensity of the cor-

relation between the endogenous input and the true technical efficiency. However, the overall

effects on DEA-CRS and DEA-VRS estimates are similar, being on the latter more pronounced

than on the former. For instance, in the baseline scenario the Spearman’s correlation coefficient

between the true efficiency and DEA estimates is 0.778 under CRS and 0.729 VRS; while when

high and positive endogeneity is introduced these correlations fall down to 0.52 and 0.342 re-

spectively. This performance can be explained by the fact that under VRS the technique is more

sensitive to changes in the distribution of data than under the CRS assumption. Given that

VRS is a more realistic and frequent assumption in real world applications, and that conclusions

are similar under both type of returns to scale, hereafter we will comment more in depth results

only for DEA-VRS (Table 1.3 and Table 1.5)7.

The main finding that arises from our simulations is that positive and high endogeneity

is the worst possible scenario, shattering DEA performance. As the intensity of this positive

endogeneity decreases to medium, DEA improves its results and the errors mitigate progressively

to the extent that for the case of only low positive endogeneity DEA estimations are very close

to those in the baseline scenario. As Table 1.3 shows, the exogenous dataset simulations yield

a Spearman’s correlation coefficient of 0.729 between estimated and actual efficiency, which is

reduced to 0.342 in the presence of high and positive endogeneity and to 0.612 in the case of

medium positive endogeneity. The MAE remarks this result, which in the positive and high

endogeneity scenario reaches a 0.116 value, significantly higher than 0.072 calculated in the

exogenous baseline one. Another way to observe the effects over the estimated efficiency level

is throughout the average estimated efficiency (column 4 of Table 1.3). It reveals that under

both types of endogeneity (negative and positive) DEA overestimates the true mean technical

efficiency, particularly when the input and the efficiency are highly correlated.

7The results are presented also under CRS for the most interested readers.
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An alternative approach to evaluate the damage caused by the endogeneity is through the

proportion of units assigned to the correct quintile by DEA. According to Table1.5 the DMUs

correctly assigned to their quintile falls from almost 47% in the exogenous setting to 28% (40%)

under high (medium) and positive endogeneity. Additionally, the proportion of units assigned

two or more quintiles away from the correct one almost triples the baseline percentage (from

13% to 35% respectively) in the case of high positive endogeneity. The quintile analysis allows

us to note that the decline in DEA performance is further driven by the fact that under positive

and high endogeneity, the technique identifies as efficient several units that actually are some

of the most inefficient ones. Only 40% of units assigned by DEA to bottom quintile were

actually in the bottom quintile when high and positive correlation between true efficiency and

one input is observed while in the exogenous scenario this percentage reaches 75%. In addition,

the proportion of DMUs placed in the top quintile but which were actually in the two last

quintiles is almost tripled compared to the baseline scenario. These results confirm what it was

discussed in Figure 1.2: at low levels of the endogenous input the estimated frontier by DEA

(which is driven by the data shape), is located further from the true one, identifying as very

efficient such many inefficient units.

As we have exposed earlier DEA efficiency scores are relative measures, therefore the misiden-

tification of the true frontier at low levels of input leads to inaccurate estimated scores for all

observations. This implies that the ability of DEA to correctly identify the most efficient DMUs

is also deteriorated under such endogeneity. For instance, the proportion of units properly

assigned to the top quintile drops from 47% to 33%. Furthermore, while in the absence of en-

dogeneity we cannot find units assigned to the bottom quintile that are actually ranked in the

two first ones; under high positive endogeneity we observe that this happens for a 8% of DMUs.

Finally, under negative endogeneity Monte Carlo simulations evidence that DEA estimates

remain robust. Only in the scenario where negative endogeneity is high, estimations seem to

be slightly damaged. These results are similar to those obtained by Bifulco and Bretscneider

(2003) and Ruggiero (2003) where they conclude that for the same measurement error of our

simulation, the performance of DEA does not change substantially under negative endogeneity.

This finding can be explained by the fact that the negative endogeneity correlates the input

and the efficiency in the same way that DEA assumes to construct the frontier (i.e. the higher

input level, the lower technical efficiency). In other words, endogeneity in this case reinforces the

microeconomic assumption behind the DEA program, and therefore, estimates are unaffected

by endogeneity.

In summary, our results allow us to conclude that DEA-CRS and DEA-VRS provide accurate

efficiency measures in all scenarios except when there is a medium or high positive correlation

between one input and the true efficiency. It should be highlighted again that DEA estimates

will be far away from the actual efficiency values in the presence of a high positive endogeneity

regardless of the assumed functional form. This is a very remarkable result since those endoge-

nous scenarios are similar to those that are likely to be found in public sector efficiency analysis

applications (due to a two-way causality or an omitted variable) and specially in sectors like
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education where school choice plays an important role. Therefore, this evidence suggests that

in those cases, the estimation of the technical efficiency using DEA models, without taking into

account the presence of endogeneity, could lead to misleading efficiency estimates; and thus

inappropriate performance-based recommendations.

Drawing on these findings, two key issues arise now: how can we detect the presence of an

endogenous input? And, how can we deal with this problem in DEA empirical applications to

overcome this problem and improve estimations?

1.4 Dealing with the endogeneity in DEA estimations

In this section, we propose a simple heuristic method which allows practitioners to identify

the presence of an endogenous input in an empirical research. In addition, we propose a potential

solution to deal with this problem in order to improve DEA estimations: an ’Instrumental Input

DEA’ strategy (II-DEA from now on). We evaluate the performance of both proposals in finite

samples problems using synthetic data generated in a Monte Carlo experiment as in the previous

section.

1.4.1 How to identify the endogeneity problem?

In this section we propose a simple heuristic method to identify the presence of an en-

dogenous input in a DEA application. From the Monte Carlo experiment we observe that the

distribution of the correlation coefficients between the inputs and the estimated efficiency scores

θ̂i considerably differ in each simulated scenario (Figure 1.4 and Figure 1.5). From a microe-

conomic viewpoint and assuming that inputs are exogenous, the correlation coefficient between

the inputs and the DEA estimated efficiency scores should be slightly negative and close to zero

(or at least non-positive), as DEA assumes that for a given output, the higher input level the

higher inefficiency. Then, our proposed heuristic method is based on these expected correlation

coefficients in order to classify the nature of each input included in the DEA model. In practice,

we proceed in six steps as follows:

1. From the empirical dataset χ = {(Xi, Yi) i = 1, ..., n} randomly draw with replacement a

bootstrap sample B=1,000 χ∗b = {(X∗ib, Y ∗ib) i = 1, ..., n}

2. Compute the efficiency scores θ̂∗ib =
1

ϕ∗ib
≤ 1 i = 1, ..., n using the DEA-VRS LP

ϕ∗i = max
λ,ϕ
{ϕ|ϕyri ≤

n∑
i=1

λiyi;xki ≥
n∑
i=1

λix1;
n∑
i=1

λi = 1;λ ≥ 0 ∀i = 1, 2, ..., n} (1.11)

3. For each input k = 1, ..., p compute the Pearson’s correlation coefficient between the esti-

mated efficiency score θ̂∗ib and the input k ρ∗kb = corr(x∗ik, θ̂
∗
i ) i = 1, ..., n k = 1, ..., p

4. Repeat steps 1-3 B=1,000 times in order to obtain for k = 1, ..., p a set of correlations:

{ρ∗kb, b = 1, ..., B}
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5. For each input k compute γ∗k =
1

B

B∑
b=1

[I[0,1](ρ
∗
k)]b for k = 1, ..., p where I[0,1](ρ

∗
k) is the

Indicator Function defined by:

I[0,1](ρ
∗
k) =

1, if 0 ≤ ρ∗k ≤ 1;

0, otherwise.
(1.12)

6. Finally, classify each input using the following criterion:

• If γ∗k < 0.25→ Exogenous/Negative endogenous input k

• If 0.25 ≤ γ∗k < 0.5→ Positive LOW endogenous input k

• If 0.5 ≤ γ∗k < 0.75→ Positive MIDDLE endogenous input k

• If γ∗k ≥ 0.75→ Positive HIGH endogenous input k

1.4.2 The Instrumental Input DEA strategy

In order to improve DEA estimates under the presence of a positive and significant correlation

between one input and the true efficiency we propose a semi-parametric strategy that introduces

the well-known Instrumental Variables (IV) approach (e.g. see Greene, 2003 or Wooldridge,

2012) into the conventional DEA model specification, which we call ’Instrumental Input DEA’.

The intuitive idea behind this proposal is the same as in the IV strategy, to include in the DEA

specification only the exogenous part of the endogenous input. To do this, we propose replacing

the endogenous input by an exogenous variable, which only contains the exogenous information

of the original one, that is, that part which is uncorrelated with the technical efficiency.

Consider the single-output multi-input productive dataset χ = {(Xi, Yi) i = 1, ..., n}, where

one input is significantly positive correlated with the true efficiency term (hereafter the endoge-

nous input E). As in the classic IV approach, the first step is to find a good instrumental input

G which must satisfies at the same time two basic conditions:

i. Relevance: the instrument G must be significantly correlated with the endogenous input E,

i.e. E(E|G) 6= 0;

ii. Exogeneity: the instrument G must be uncorrelated with the true efficiency term, i.e.

E(ϕ|G) = 0

The first condition can be contrasted in empirical applications by testing the significance of

the parameter τ in the following estimated regression E = α + τG+ ξ. If we do not rejectH0 :

τ = 0, we can assume that the instrument is relevant. However, the second condition cannot

be directly tested because true efficiency is not observed in empirical settings. In this case,

the exogeneity condition can be interpreted as the absence of a causal relationship between the

instrumental input G and the output variable Y. That is, G should have no partial effect on Y

(beyond the effect through the endogenous input). As Wooldridge sets ’...we must maintain this
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condition by appealing to economic behavior or introspection’ (Wooldridge, 2012 p.514). The

II-DEA procedure is implemented following two simple steps:

1. The aim of the first step is to isolate the exogenous component of the endogenous input

that is uncorrelated with the true efficiency. To do this, regress the endogenous input (E)

over the instrumental input (G) and the rest of the exogenous inputs

E = α+ δ1x1 + ...+ δk−1xk−1 + φG+ µi (1.13)

where xk−1 are the k-1 exogenous inputs, G is the instrumental input and µi is a random

white noise component.

2. Secondly, in order to obtain the corrected DEA efficiency scores for each DMU replace the

endogenous input (E) by the estimated exogenous variable Êi in the conventional DEA

linear program 1.2.

1.4.3 Monte Carlo results

We test the performance of the II-DEA strategy to control for the presence of endogeneity

in finite sample problems. To do this, we reproduce the experimental design presented in the

previous section but, in this case, we additionally generate a new variable: an instrumental

input G. Like the remaining inputs, G is uniformly distributed U [5, 50] and is uncorrelated

with the true efficiency level E(ϕ|G) = 0 and moderately correlated with the endogenous input

E(E|G) ≈ 0.258.

After generating the dataset we estimate the efficiency scores using the conventional DEA

and the II-DEA model proposed in order to compare their performance. Results from the Monte

Carlo simulations are reported in Table 1.6 and Table 1.8 for the Cobb Douglas DGP and in

Table 1.7 and Table 1.9 for the Translog technology.

The first conclusion is that under both specifications results do not show significant differ-

ences. For this reason, hereafter we will only discuss the results for DEA and II-DEA under

VRS from the Translog DGP, because it is a more realistic assumption in real educational

applications9.

From the results showed in Table 1.7 we find that in the worst scenario, i.e. under high

and positive correlation between efficiency and one input, the II-DEA model outperforms the

conventional DEA not only in terms of the Spearman’s correlation coefficient but also in terms of

MAE. In fact, in terms of Spearman’s correlation the results from the II-DEA are very similar

to those observed from the conventional DEA in the baseline scenario under the exogeneity

assumption. However, in the case of the MAE the proposed method outperforms the results of

8In real data we seldom find instruments with greater correlation, previous research found similar correlations
(Wooldridge 2012, pp. 519-520).

9However, results are also reported for the Cobb-Douglas DGP under CRS.
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the conventional DEA in the presence of high positive correlation, but it shows not as good results

as under the assumption of exogeneity. On the other hand, we confirm that conventional DEA

is robust under the presence of a negative correlation or a low positive one, and instrumenting

the endogenous inputs in these cases conducts to considerably detrimental results.

Following the previous Monte Carlo simulations, now we also test the ability of the proposed

II-DEA method to place observations in the appropriate quintile in order to know what are the

main improvements of the technique over the situation in which endogeneity is not corrected.

As we have mentioned before, it only has sense to apply the II-DEA when conventional DEA

estimations are damaged, therefore, hereafter we only discuss the results for the scenarios where

ρ = 0.4 and ρ = 0.8.

The results show that the outperformance of the II-DEA method in the worst scenario, i.e.

when ρ = 0.8, is further driven by its ability to correctly identify the most inefficient units. In

this case, the percentage of units correctly assigned to the bottom quintile considerable increases

from 41% to 76% under the VRS assumption. Recall that in this scenario, the most inefficient

units are those with low input level, so this finding confirms that the proposed method can deal

with the misidentification of the true frontier at this region. In addition, the percentage of units

actually in the two last quintiles wrongly assigned to the top one is halved when II-DEA is

applied instead of the conventional DEA method. As the DEA estimates are relative measures,

this improvement also affects the technique ability to correctly identify the most efficient units.

In this sense, we observe a substantial reduction in the percentage of efficient units assigned

to the bottom quintile by the II-DEA under significant endogeneity, which drops from 8% to

almost zero.

Under the assumption of a moderate correlation between the true efficiency and one input

(ρ = 0.4) both techniques DEA and II-DEA show similar results, which implies that the proposed

method is not powerful enough to overcome the damage caused by such endogeneity at low input

levels. In this case, the exogenous part of the endogenous input that is included in the II-DEA

specification through Êi does not seem to provide enough information to correctly identify

the true frontier at low inputs levels. From these results it seems that the final decision about

whether or not to instrument the endogenous input in the case of a moderate positive correlation

will depend on the empirical application aims. In terms of Spearman’s correlation the II-DEA

dominates the conventional DEA and vice versa, the latter dominates in terms of MAE. For

instance, in many educational applications the main purpose is focused on benchmarking schools

and then analysing which are the main drivers of efficiency, rather than on correctly estimate

the true mean efficiency. In these cases, it would be preferable to apply the II-DEA.

1.5 Concluding remarks

Endogeneity, and the distortions that it causes on the estimation of economic models, is a

usual problem in the econometrics literature. As a result, some empirical research is starting to

apply conventional econometric approaches to deal with this problem in the estimation of pro-
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duction frontiers using parametric techniques. However, the effects of endogeneity on efficiency

estimates obtained with nonparametric methods like DEA have received less attention in the

literature so far.

In this chapter we analyze to which extent can the presence of endogeneity in the produc-

tion process affect DEA estimations in finite samples. For this purpose, we simulate different

intensities of negative and positive endogeneity through the correlation between one input and

the true efficiency using synthetic data generated in a Monte Carlo experiment. In line with

previous studies, we find that DEA is robust to the presence of negative endogeneity. However,

a significant positive endogeneity, i.e. a significant positive correlation between one input and

the true efficiency level, severely biases DEA performance. In addition, we find that this decline

in DEA performance is further driven by the misidentification of the most inefficient DMUs with

low levels of the endogenous input. These findings take greater significance since high positive

endogenous scenarios are similar to those that are likely to be found in public sector production

processes (due to a two-way causality or an omitted variable problem) and specially in sectors

like education. In this context, the estimation of the technical efficiency using DEA models

without taking into account the presence of endogeneity leads to inaccurate efficiency estimates.

The main reason behind this result is that many of the most inefficient DMUs are identified as

benchmarks, which will lead to inappropriate performance-based recommendations.

In this sense, we propose a simple heuristic method which allows practitioners to identify

potential endogenous inputs in empirical research. In addition, getting insights from econo-

metrics, we provide a potential solution to deal with this problem in order to improve DEA

estimations: the ‘Instrumental Input DEA’ strategy. Monte Carlo simulations show that the

II-DEA outperforms the conventional DEA model when one input exhibits a high and positive

correlation with efficiency. Furthermore, we can conclude that the II-DEA strategy can deal

with the misidentification of the true frontier at low inputs levels and hence, it can correctly

identify the most inefficient units located in this frontier region.

To summarize, this study provides new insights about a major concern in economics and

alerts DEA practitioners about the accuracy of their estimates when they suspect that there

might be some significant positive endogeneity in their data, providing potential solutions to deal

with this problem in empirical applications. More research is still needed in different directions

but that exceeds the scope of the present work. Although the experimental Monte Carlo design

tries to replicate a general production setting and is in line with several previous studies, results

must be cautiously interpreted as they depend on the parameters and functional forms assumed

and cannot be generalized to all contexts. In this sense, we think that deriving the asymptotic

properties of the proposed II-DEA estimator, extending the analysis to multi-output settings

and researching how other nonparametric efficiency techniques (Free Disposal Hull, order-m,

order-alpha, total factor productivity indexes based on DEA, conditional efficiency models and

so on) can be affected by the endogeneity could be three of the most promising contributions.
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1.7 Figures and Tables

Figure 1.1: True frontier and DEA-BCC estimates under the assumption of exogenously dis-
tributed true efficiency

 

Figure 1. DEA-BCC estimates when efficiency is exogenous 
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Figure 1.2: True frontier and DEA-BCC estimates under positive and high correlation between
the true efficiency level and one input
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Figure 1 True frontier and DEA-BCC estimates under the assumption of exogenously distributed true 

efficiency 

 

Figure 2 True frontier and DEA-BCC estimates under positive and high correlation between the true 

efficiency level and one input 
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Figure 3 True frontier and DEA-BCC estimates under negative and high correlation between the true 

efficiency level and one input 

 

 

Table 1 Spearman’s correlations between true efficiency and the endogenous input in Monte Carlo 

scenarios 

  Negative correlation Positive correlation 

  
HIGH       

(≅ 
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Note: Mean values after 1,000 replications. Sample size N=100.  
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Table 1.1: Descriptive statistics of the correlation between true efficiency and the endogenous
input in Monte Carlo scenarios
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Figure 3 True frontier and DEA-BCC estimates under negative and high correlation between the true 
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Table 2 Accuracy measures of DEA estimates in Monte Carlo simulations (Cobb Douglas) 

  
Spearmanʹs correlation  Estimated mean efficiency  MAE 

CRS  VRS  CRS  VRS  CRS  VRS 

 ≅ - 0.8  0.695 0.574 0.898 0.937 0.058 0.085 

 ≅ - 0.4  0.774 0.689 0.887 0.916 0.049 0.067 

 ≅ - 0.2  0.778 0.686 0.885 0.913 0.048 0.064 

 ≅ 0  0.778 0.671 0.884 0.912 0.049 0.065 

 ≅ 0.2  0.754 0.622 0.886 0.915 0.051 0.068 

 ≅ 0.4  0.715 0.560 0.890 0.919 0.055 0.073 

 ≅ 0.8  0.520 0.300 0.911 0.942 0.073 0.094 

Note: Mean values after 1,000 replications. Sample size N=100.  

 

 

Table 3 Accuracy measures of DEA estimates in Monte Carlo simulations (Translog) 

  
Spearman's correlation Estimated mean efficiency MAE 

CRS VRS CRS VRS CRS VRS 

 ≅ - 0.8  0.713 0.708 0.800 0.957 0.089 0.097 

 ≅ - 0.4  0.717 0.765 0.803 0.895 0.084 0.073 

 ≅ - 0.2  0.700 0.757 0.808 0.893 0.083 0.071 

 ≅ 0  0.669 0.729 0.815 0.893 0.083 0.072 

 ≅ 0.2  0.619 0.675 0.827 0.898 0.084 0.078 

 ≅ 0.4  0.564 0.612 0.841 0.905 0.086 0.085 

 ≅ 0.8  0.305 0.342 0.892 0.936 0.105 0.116 

Note: Mean values after 1,000 replications. Sample size N=100.  

 
 

Note: Mean values after 1,000 replications. Sample size N=100.
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Table 1.3: Accuracy measures of DEA estimates in Monte Carlo simulations (Translog)
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Table 1.6: Accuracy measures for conventional DEA and II-DEA estimates in Monte Carlo
simulations (Cobb Douglas)
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Table 6 Accuracy measures for conventional DEA and II-DEA estimates in Monte Carlo 

simulations (Cobb Douglas) 

  
Spearman's correlation Estimated mean efficiency MAE 

DEA  II-DEA DEA II-DEA DEA II-DEA 

 ≅ - 0.8  0.695 -0.270 0.898 0.849 0.058 0.136 

 ≅ - 0.4  0.774 0.146 0.887 0.794 0.049 0.133 

 ≅ - 0.2  0.778 0.289 0.885 0.777 0.048 0.134 

 ≅ 0  0.778 --- 0.884 --- 0.049 --- 

 ≅ 0.2  0.754 0.586 0.886 0.750 0.051 0.138 

 ≅ 0.4  0.715 0.693 0.890 0.744 0.055 0.139 

 ≅ 0.8  0.520 0.881 0.911 0.732 0.073 0.141 

Note: Mean values after 1,000 replications. Sample size N=100. DEA and II-DEA were estimated under CRS 

 
 

Table 7 Accuracy measures for conventional DEA and II-DEA estimates in Monte Carlo 

simulations (Translog) 

  
Spearman's correlation Estimated mean efficiency MAE 

DEA II-DEA DEA II-DEA DEA II-DEA 

 ≅ - 0.8  0.708 0.128 0.957 0.893 0.097 0.127 

 ≅ - 0.4  0.765 0.362 0.895 0.846 0.073 0.109 

 ≅ - 0.2  0.757 0.439 0.893 0.831 0.071 0.105 

 ≅ 0  0.729 --- 0.893 --- 0.072 --- 

 ≅ 0.2  0.675 0.605 0.898 0.810 0.078 0.100 

 ≅ 0.4  0.612 0.657 0.905 0.804 0.085 0.099 

 ≅ 0.8  0.342 0.760 0.936 0.794 0.116 0.097 

Note: Mean values after 1,000 replications. Sample size N=100. DEA and II-DEA were estimated under VRS. 

 

 
  

Note: Mean values after 1,000 replications. Sample size N=100.

Table 1.7: Accuracy measures for conventional DEA and II-DEA estimates in Monte Carlo
simulations (Translog)
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2. Measuring educational efficiency drivers under endogeneity: an application to public schools in Uruguay

2.1 Introduction

The interest in improving school performance and educational attainment through efficiency

gains is growing basically in response to three main findings. First, improved academic outcomes

have been proven to have a positive impact on development and economic growth (Barro and

Lee, 2012;Hanushek and Woessmann, 2012). Second, public expenditure on education is one

of the largest public budget items, and the public sector is the main provider of education

in most countries. In fact, the public sector is the main provider of secondary education in

Uruguay where, in 2012, 84% of the students were enrolled in public schools1. Thirdly, there

is still no concluding empirical evidence to show that a higher level of resources leads per se to

better results, which leads to the suspicion that there are great inefficiencies in several education

systems (Hanushek, 2003).

The level of educational expenditure and its percentage share of GDP are indicators com-

monly used to measure a country’s educational investment. In this sense, Public expenditure

on education accounted for 3.53% of Uruguay’s GDP in 2000, whereas ten years later it had

risen to 4.5%2. But unfortunately this significant budgetary effort has not been accompanied

by adequate reforms and public policies leading to better educational achievement in public

schools. Conversely, the Uruguayan education system has entered into stagnation and reces-

sion in recent years, particularly at the public secondary education level, which has recorded

high repetition and drop-out rates as well as a steady decline in academic performance. For

example, the repetition rate from 1st to 4th grades in public schools has increased between 2003

and 2012 from 21.3% to 27% while the attainment rate was reduced from 72.7% to 67.4% in

the same period3 . In addition, as evidenced by the latest results published in the PISA 2012

(Programme for International Student Assessment) Report from the OECD (Organisation for

Economic Co-operation and Development), results in public schools remain steady across the

first three waves in which Uruguay has participated, showing a downward trend in the last cycle

(416, 420, 419 and 399 average points in 2003, 2006, 2009 and 2012, respectively). Part of this

educational decline could be explained by the increase in public secondary school enrolment

that has occurred in the last decade (4.3% from 2006 to 2012)4. In general, students who joined

the public system have poorer socio-economic status and educational outcomes. However, given

the significant increase in resources, it would have been expected that they were invested in

promoting educational practices that would enable a properly adaptation of these students, so

they could achieve similar results to those already in the public system.

As a consequence of these poor results, the Uruguayan public educational system problems

are a recurring concern, not only for educational policy-makers and the government but also

for teachers and families involved in the education process. Still, in many cases, the discussion

1Education Observatory, National Administration of Public Education (ANEP).
2The GDP grew by 33% in real terms over this period (Uruguayan Central Bank (BCU)).
3Education Observatory, National Administration of Public Education (ANEP).
4Education Observatory, National Administration of Public Education (ANEP).
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primarily focuses on increasing public resources expended on education, although as we noted

above there is no concluding empirical evidence to show that a higher level of resources leads

per se to better results.

These contexts highlight the need to evaluate the current public education system from a

different perspective based not only on educational outcomes, but on exploring the existence of

inefficient behaviours in the production process and exploring the sources of these inefficiencies.

The presence of inefficient schools in the education system means that it is not being made the

most of the educational resources and, therefore, that it would be feasible to increase academic

results with the current levels of resources, which is one of the educational authorities main

targets.

The most popular models applied for explaining the sources of inefficiency in public sector are

the semi-parametric two-stage models popularized by Ray (1991) and McCarty and Yaisawarng

(1993)5. Under this approach, in a first stage a Data Envelopment Analysis (DEA) model is used

to estimate a production frontier, which defines both the efficient and inefficient units. In the

second stage, a regression technique is applied to explain the inefficient behaviours taking into

account student and school contextual variables6. There are several international educational

efficiency studies applying semi-parametric two-stage models for explaining schools efficiency

(Charnes et al. 1997; Grosskopf et al. 1997; Xue and Harker 1999; Mancebón and Mar-Molinero

2000; Afonso and St.Aubyn 2006; Hoff 2007; Simar and Wilson 2007; Cordero et al. 2008;

2010; Alexander et al. 2010; De Jorge and Sant́ın 2010)7. However, in the Latin American

context, there is little available research and in particular, to the best of our knowledge, for the

Uruguayan case there are no studies using this efficiency approach8.

Two-stage models differ primarily in the regression model specified in the second stage to

explain efficiency scores. The most commonly applied methodology has been the censored

regression model (Tobit), followed by ordinary least squares (OLS) and the truncated regression.

Xue and Harker (1999) were the first to point out the main drawback of the two-stage approach.

They underline that two-stage model results are bound to be biased due to the fact that the radial

efficiency scores estimated in the first stage (the dependent variable in the second stage) depend

on each other. Hence, conventional inference methods are invalid in this context because the error

term is serially correlated, and this violates the basic econometric assumption of independence

within the sample. To overcome this drawback, Simar and Wilson (2007, 2011) proposed a new

estimation methodology based on the use of bootstrapping. However, as the discussion about

which is (are) the best model(s) to be run in the second-stage regression is ongoing, we run

four different second-stage specifications following the available literature in order to check the

5In a recent Study Liu et al. (2013) surveys the DEA literature by applying a citation-based approach and
find that ’two-stage contextual factor evaluation framework’ is the most active DEA sub-area in recent years.

6See Simar and Wilson (2007) for a detailed review of two-stage models.
7For a more detailed review see Simar and Wilson (2007).
8In Uruguay, interest has traditionally focused on education system coverage rates, the system’s redistributive

effect and its impact on poverty and growth rather than the quality of the services provided and the academic
outputs (Llamb́ı and Perera, 2008; Llamb́ı, Perera and Messina, 2009; Fernández, 2009).
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robustness of the results9.

As we evidenced in Chapter 1, there is a major and recurrent issue in production processes,

namely, the presence of endogeneity, which is frequently overlooked when practitioners apply

DEA (that is, the first stage in semi-parametric models). In fact, the education sector is one

of the most illustrative contexts where this problem can be frequently observed (Webbink 2005,

Schlotter et al. 2011). For example, highly motivated parents invest more time and money in

choosing the best schools for their children. If parent motivation is correlated with family socio-

economic level (Hoxby, 2000; Sacerdote, 2001), such pupils (and thus the school they attend)

will tend to obtain better academic results for two reasons. First, because socio-economic level

is an essential input in the educational production function. Second, because parents motivation

(which is unobserved) also positively affects pupil academic achievement. As a result, schools

with pupils from high socio-economic backgrounds will be more prone to be fully efficient.

In this case, the mechanism of self-selection results in a positive correlation between schools

technical efficiency and their average pupils socio-economic background. The same reasoning

can be applied for teachers motivation. Not only the most disadvantaged students are less

motivated, but also teachers and principals in these schools are less motivated (due to a self-

selection problem if teachers can choose the school to teach or because, even if they were more

motivated at the beginning, in more disadvantaged contexts they loose their initial motivation).

Again, this process derives in a positive correlation between the input level and the school

efficiency. The intensity of this correlation depends not only on the importance of parents,

students or/and teachers motivation, but also on the correlation between this unobservable

variables and the observed input (socio-economic level). That is, the greater stratification in the

education system, the higher level of endogeneity.

If we analyze the Uruguayan academic results more in detail, we observe that pupils’ socio-

economic contexts have a great impact on schools performance. In fact, in the last PISA 2012

Report Uruguay shows the higher score gap between students by socio-economic level in mathe-

matics of all Latin American countries who participated in the study10. If we consider the level

of educational resources in public schools, the differences between schools are notably less pro-

nounced than in the case of educational outcomes. This situation leads us to suspect that public

schools from more disadvantaged contexts not only have pupils from poorer socio-economic sta-

tus and poorer educational resources, but they are also less efficient than public schools from

more advantaged contexts. Moreover, in Uruguay the school type is strongly associated with

pupils socio-economic status. Figure 2.1 shows the distribution of pupils into public and private

schools, from which we can observe almost a perfectly split market. Students from high income

families attend private schools, while pupils from more disadvantaged backgrounds are enrolled

in public schools. This great segmentation reinforces the endogeneity problem in the public sec-

tor where schools do not have to compete to attract students (making it possible for inefficient

9See Hoff (2007), Banker and Natarajan (2008), Mc Donald (2009) and Ramalho, Ramalho and Henriques
(2010).

10For a detailed analysis see http://idbdocs.iadb.org/wsdocs/getdocument.aspx?docnum=38667314
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schools to survive over time). This great market segmentation by school type suggests that pub-

lic and private sectors operate under different circumstances and they use different technologies,

therefore to estimate the efficiency level in both sector they should be analyzed separately.

In the previous chapter, using synthetic data generated in a Monte Carlo experiment we found

that although DEA is robust to negative endogeneity, the presence of a higher or medium positive

endogeneity severely biases DEA performance. However, this problem is frequently ignored when

practitioners apply non parametric techniques, included DEA, to estimate technical efficiency in

the education sector. In this chapter, we take this problem into account. To do this, we apply

the proposed method to detect the presence of endogenous inputs in the Uruguayan public

secondary education system and we apply the proposed Instrumented Input Data Envelopment

Analysis (II – DEA) method to deal with this problem in order to obtain more reliable DEA

estimates.

The aim of this research is twofold. First, we explore the sources of inefficiency of the

Uruguayan public secondary schools in order to provide new timely and complementary ev-

idence for the current national debate about which public policies and educational practices

could contribute to improve public schools academic results with the current resources. For this

purpose, using data from PISA 2012 we apply a semi-parametric two-stage model that incor-

porates a new II-DEA in the first stage which allow us to take into account the presence of the

endogeneity problem. Secondly, we investigate the impact of considering or omitting this issue

in empirical terms and the implications for public policy recommendations. To explore that, we

also provide the results using the conventional DEA in the first step and we compare them with

those from the II-DEA method.

The chapter is organized as follows. In section 2.2 we present the main methodological

concepts. Section 2.3 briefly describes the Uruguayan education system, the PISA program and

presents the selected variables for the analysis. In section 2.4 we discuss the results. Finally,

the last section 2.5 is devoted to the conclusions and their implications in terms of educational

public policies.

2.2 Methodology

2.2.1 The Educational Production Function

The concept of educational production function refers to the relationship between inputs

and outputs for a given production technology. The theoretical approach used in this paper

for linking resources to educational outcomes at the school level is based on the well-known

educational production function proposed by Levin (1974) and Hanushek (1979), and more

recently by Hanushek et al. (2013)

Ai = f(Bi, Si) (2.1)

where sub index i refers to school, and Ai represents the educational output vector for school i,

normally measured through the average student score on standardized tests. On the other hand,
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educational inputs are divided into Bi , which denotes the average student family background,

and Si which are school educational resources.

The educational production function can be estimated considering the possible existence of

inefficient behaviours in schools. Differences in efficiency may be due to multiple factors, such

as poor teacher motivation, teaching and class organization issues, teacher quality or school

management. All these factors may affect student performance significantly. In this case, we

estimate a production frontier where fully efficient schools would belong to the frontier. These

relatively efficient units achieve the maximum observed result given their resources allocation.

Inefficient units do not belong to the estimated frontier, and their inefficiency level is measured

by the radial distance between each school and the constructed frontier. The production frontier

to be estimated at school level would be

Ai = f(Bi, Si).ui (2.2)

where 0 ≤ ui ≤ 1 denotes the school efficiency level. Values of ui = 1 imply that the analyzed

schools are fully efficient, meaning that given the initial input endowment and the existing

technology, these schools are maximizing and correctly managing the resulting outputs. Lower

than one values ui ≤ 1 would indicate that the school is inefficient.

In short, three types of variables are involved in the production process: educational outputs

(Ai), educational inputs (Bi, Si) , and the estimated efficiency level ui for each school. Ray

(1991) and McCarty and Yaisawarng (1993) were the first to propose applying a semi-parametric

two-stage model to estimate efficiency scores and identify the main drivers. This approach uses

a DEA model in the first stage which measures the technical efficiency, whereas a regression

analysis conducted in the second stage seeks out the main explanatory factors of efficiency. A

more detailed description of both stages of these semi-parametric models follows.

2.2.2 First stage: DEA and II-DEA models

The estimation of efficiency is associated with Farrel’s concept of technical efficiency (Farrel

1957); who defines the production frontier as the maximum level of output that a decision-making

unit (DMU) can achieve given its inputs and the technology (output orientation). In practice,

the true production frontier and the technology are not available and should be estimated from

the relative best practices observed in the sample.

There are basically two main groups of techniques for estimating the production frontier:

parametric or econometric approaches (see Battese and Coelli 1988, 1992, 1995 for a review)

and non-parametric methods based on mathematical optimization models. Although the use

of the parametric approaches has increased in the last decades11, nonparametric methods have

been the most extensively applied for measuring educational technical efficiency.

11See, for example, Perelman and Sant́ın (2011) and Crespo-Cebada et al. (2013).
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Since the pioneering work by Charnes, Cooper and Rhodes (1981) and Banker, Charnes and

Cooper (1984)12, the DEA13 model has been widely used to measure efficiency in several areas

of public sector production. The main reason for its widespread application is its flexibility:

it accounts for multiple outputs, for the uncertainty about the true production technology and

for the lack of price information, making it well suited to the peculiarities of the public sector.

In addition, it is a technique that can be easily translated to stakeholders and politicians, who

are often not familiar with econometrics and statistics and therefore are somewhat reluctant to

these techniques. The DEA model applies a linear optimization program to obtain a production

frontier that includes all the efficient units and their possible linear combinations. As a result, the

estimated efficiency score for each DMU is a relative measure calculated using all the production

units that are compared. The formulation of the output-oriented DEA program under variable

returns to scale (DEA-BBC model) for each analysed unit is

ϕi = max
λ,ϕ
{ϕi|ϕyi ≤ Y λ;xi ≥ Xλ;n1′λ = 1;λ ≥ 0} ∀i = 1, ..., n (2.3)

where, for the ith DMU, ϕi ≥ 1 is the estimated efficiency score, yi is the output vector (q × 1)

and xi is the input vector (p× 1), and thus X and Y are the respective input (p×n) and output

(q × n) matrices. The (n× 1) vector λ contains the virtual weights of each unit determined by

the problem solution. When ϕi = 1, the analyzed unit belongs to the frontier (is fully efficient),

whereas ϕi > 1 indicates that the ith unit is inefficient, ϕi being the radial distance between the

ith unit and the frontier. In other words, indicates the equiproportional expansion over outputs

needed to reach the frontier. Therefore, the higher the score value ϕi, the greater the inefficiency

level.

In the previous chapter, using synthetic data generated in a Monte Carlo experiment we

found that although DEA is robust to negative endogeneity, the presence of a higher or medium

positive endogeneity severely biases DEA performance. Also, in the introductory section we have

discussed the potential presence of endogeneity in public secondary schools in Uruguay associated

with students socio-economic level. That is, we suspect that exists a positive correlation between

the true technical efficiency of schools and the average students socio-economic level. To take

this potential problem into account, in this chapter we adapt the conventional two-stages models

by introducing a correction method in the efficiency estimates at the first stage. We apply the

’Instrumental Input DEA’ strategy proposed in section 1.4 in Chapter 1.

The idea behind this proposal is to include as an input in the DEA specification only the

exogenous part of the endogenous input. To do this, we replace the endogenous input by an

exogenous variable, which only contains the exogenous information of the original one, that is,

that part which is uncorrelated with the efficiency.

12The DEA-CCR model and DEA-BBC model, respectively.
13See Worthington (2001, p. 253f) for a detailed review of available research that measures efficiency in

education through frontier techniques and mostly DEA models.
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Consider the single-output multi-input productive dataset χ = {(Xi, Yi) i = 1, ..., n}, where

one input is significantly positive correlated with the true efficiency term (hereafter the endoge-

nous input E). As in the classic Instrumental Variables (IV) approach, the first step is to find a

good instrumental input G, which must satisfy at the same time two basic conditions:

i. Relevance: the instrument G must be significantly correlated with the endogenous input E,

i.e. E(E|G) 6= 0;

ii. Exogeneity: the instrument G must be uncorrelated with the true efficiency term, i.e.

E(ϕ|G) = 0

The first condition can be contrasted in empirical applications by testing the significance of

the parameter τ in the following estimated regression E = α + τG+ ξ. If we do not rejectH0 :

τ = 0, we can assume that the instrument is relevant. However, the second condition cannot

be directly tested because true efficiency is not observed in empirical settings. In this case,

the exogeneity condition can be interpreted as the absence of a causal relationship between the

instrumental input G and the output variable Y. That is, G should have no partial effect on

Y (beyond the effect through the endogenous input). The II-DEA procedure is implemented

following two simple steps:

1. The aim of the first step is to isolate the exogenous component of the endogenous input

that is uncorrelated with the true efficiency. To do this, regress the endogenous input (E)

over the instrumental input (G) and the rest of the exogenous inputs

E = α+ δ1x1 + ...+ δk−1xk−1 + φG+ µi (2.4)

where xk−1 are the k-1 exogenous inputs, G is the instrumented input and µi is a random

white noise component.

2. Secondly, in order to obtain the corrected DEA efficiency scores for each DMU replace the

endogenous input (E) by the estimated exogenous variable Êi in the conventional DEA

linear program (2.3).

In this research we apply both methods, the conventional DEA and the II-DEA, to investigate

the empirical implications for educational public policy recommendations of considering or not

the endogeneity problem. After estimating efficiency scores, these are regressed on different

contextual variables to explore the sources of the inefficient behaviours of public secondary

schools.

In order to test if the students’ socio-economic level is an endogenous input in our sample, we

apply the simple heuristic proposed in section 1.4 in chapter 1. This method relies on the analysis

of the correlation coefficients between the inputs and the estimated efficiency scores. From a

microeconomic viewpoint and assuming that inputs are exogenous, the correlation coefficient

between the inputs and the DEA estimated efficiency scores should be slightly negative and
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close to zero (or at least non-positive), as DEA assumes that for a given output, the more input

level the higher inefficiency. Then, the proposed heuristic is based on these expected correlation

coefficients in order to classify the nature of each input included in the DEA model. In practice,

we proceed in six steps as follows:

i. From the empirical dataset χ = {(Xi, Yi) i = 1, ..., n} randomly draw with replacement a

bootstrap sample B=1,000 χ∗b = {(X∗ib, Y ∗ib) i = 1, ..., n}

ii. Estimate θ̂∗ib =
1

ϕ∗ib
≤ 1 i = 1, ..., n using the LP (2.3)

iii. For each input k = 1, ..., p compute the Pearson’s correlation coefficient between the esti-

mated efficiency score θ̂∗ib and the input k ρ∗kb = corr(x∗ik, θ̂
∗
i ) i = 1, ..., n k = 1, ..., p

iv. Repeat steps 1-3 B=1,000 times in order to obtain for k = 1, ..., p a set of correlations:

{ρ∗kb, b = 1, ..., B}

v. For each input k compute γ∗k =
1

B

B∑
b=1

[I[0,1](ρ
∗
k)]b for k = 1, ..., p where I[0,1](ρ

∗
k) is the

Indicator Function defined by:

I[0,1](ρ
∗
k) =

1, if 0 ≤ ρ∗k ≤ 1;

0, otherwise.
(2.5)

vi. Finally, classify each input using the following criterion:

• If γ∗k < 0.25→ Exogenous/Negative endogenous input k

• If 0.25 ≤ γ∗k < 0.5→ Positive LOW endogenous input k

• If 0.5 ≤ γ∗k < 0.75→ Positive MIDDLE endogenous input k

• If γ∗k ≥ 0.75→ Positive HIGH endogenous input k

2.2.3 Second stage specifications

The estimated efficiency scores ϕ̂i ≥ 1 are regressed on a vector Z = (z1, z2, ..., zr) of school

and student contextual variables, which are not inputs but are related to the learning process

ϕ̂i = f(Zi, βi) (2.6)

The most used estimation method in this second stage is the censored regression model

(Tobit), followed by ordinary least squares (OLS)14, from which the main explanatory factors

14Some authors actually estimate both models simultaneously to verify results robustness.
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of the efficiency scores can be drawn15

ϕ̂i = f(Zi, β̂i) + εi (2.7)

Xue and Harker (1999) argued that these conventional regression models applied in the

second stage yield biased results because the efficiency scores estimated in the first stage (ϕ̂i)

are serially correlated. Accordingly, there has been a lively debate in recent years about which

would be the most accurate model to perform in this second stage in order to provide consistent

estimates. According to Simar and Wilson (2007) (hereinafter referred to as SW2007), the

efficiency rates estimated by the DEA model in the first stage are correlated by construction (as

they are relative measures), and therefore estimates from conventional (2.7) would be biased.

Additionally, the possible correlation of the contextual variables Zi with the error term εi in

(2.7) is another source of bias.

SW2007 state the need for bootstrapping to overcome these drawbacks. In their paper,

SW2007 propose two algorithms16 which incorporate the bootstrap procedure in a truncated re-

gression model. They run a Monte Carlo experiment to examine and compare the performance

of these two algorithms, and they prove that both bootstrap algorithms outperform conventional

regression methods (Tobit and truncated regressions without bootstrapping), yielding valid in-

ference methods. For small samples (problems with fewer than 400 units and up to three outputs

and three inputs), Algorithm 1 fits results better than Algorithm 2, which is more efficient as

of samples that exceed 800 units17. Since the sample analysed in our research is lower than 400

units, we apply the simple Algorithm 1 proposed by SW2007 (p. 41), which is described below.

1. Estimate efficiency scores ϕ̂i∀i = 1, 2, ..., n solving DEA (2.3)

2. Estimate β̂i y σ̂ε by maximum likelihood in the truncated regression of ϕ̂i on zi (Equation

(2.6)), using m < n observations, where ϕ̂i > 1.

3. Loop over the next steps ([3.1]-[3-3]) L times to obtain a set of bootstrap estimates A =

{(β̂∗, σ̂∗ε )}Lb=1

(a) For each i = 1, ....,m extract εi from a normal distribution N(0, σ̂2ε) left-truncated in

(1− Ziβ̂)

(b) Again, for each i = 1, ...,m compute ϕ̂∗i = ziβ̂ + εi

(c) Using maximum likelihood, estimate the truncated regression of ϕ∗i one zi, obtaining

β̂∗ and σ̂∗ε

15For a detailed review of estimation methods used in the second stage of semi-parametric models, see Simar
and Wilson (2007).

16The authors propose a simple Algorithm 1 and a double Algorithm 2. The difference lies in the fact that
Algorithm 2 incorporates an additional bootstrap in the first stage, which amends the estimates of the efficiency
scores.

17For a more detailed analysis of the results, see Simar and Wilson (2007, p. 45f.).
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4. Use the bootstrap values in A and the original β and σε to construct estimated confidence

intervals for β and σε

Later, Hoff (2007), McDonald (2009) and Ramalho, Ramalho and Henriques (2010) took

up the discussion about the use of OLS, Tobit and fractional regression models in the second

stage. Unlike Hoff (2007), who concluded that both (Tobit and OLS) models yield consistent

estimations, McDonald (2009) shows that only the Tobit produces consistent results. Meanwhile,

Banker and Natarajan (2008) (BN2008) provide a statistical model which yields consistent

second-stage OLS estimations. Simar and Wilson (2011) again took part in the ongoing debate

and compared the consistency between truncated regressions and the BN2008 OLS specification.

They conclude that only the truncated regression model proposed by SW2007 and, under very

particular and unusual assumptions, the OLS model presented by BN2008 provide consistent

estimates. Furthermore, they prove that in both cases only bootstrap methods were capable of

statistical inference.

Building upon this evidence we conclude that there is yet no agreement in the available lit-

erature about which is (are) the most consistent regression model(s). For this reason, two-stage

model practitioners find the selection of the second-stage regression model baffling, as they are

unsure about whether or not results will vary significantly with their choice of specification. To

clarify this point, we have chosen to estimate four alternative regression models in the second

stage and compare the results. First, we specify the conventional Tobit (censored regression

model), as it is the most commonly used in the literature. Then, we estimate three regression

models applying the bootstrap procedure: Algorithm 1 proposed by SW2007 based on a trun-

cated regression; and a Tobit regression and an OLS model with bootstrapping. The aim here

is to explore the real implications of this methodological discussion for policy recommendations

derived from an empirical analysis of real educational data.

2.3 Data

2.3.1 Brief description of the Uruguayan education system

The Uruguayan national education system is composed of four levels: three years of infant

education (three to five years old), six years of primary education (six to eleven years old), six

years of secondary education (twelve to seventeen years old), and tertiary education from age

eighteen. Secondary education is divided into three years of basic secondary education (Ciclo

Básico Común) and three years of upper secondary education (Bachillerato)18. Compulsory

education covers 14 years: the two last years of early education (four and five years old), primary

and secondary education19.

18In Uruguay there are two types of institutions to study secondary education: secondary schools and technical
vocational schools.

19Art. 10 of the General Education Law N.18.437 of December 12, 2008.
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In terms of public and private education coverage, the public sector takes absolute primacy

over the private sector in all education levels, and particularly in secondary education. In 2012,

88% of high school students attended public schools (Education Observatory, National Admin-

istration of Public Education). This highlights how important the performance of public insti-

tutions is for national academic results, and therefore the need to assess both the management

and the teaching practices implemented by these schools.

Uruguay has historically occupied a leading position in Latin America in terms of educational

achievement, according to the main standard indicators and international studies. However, the

Uruguayan public education system (particularly at the secondary level) is currently undergoing

a phase of stagnation and recession. The major budgetary effort made by the government in the

last decade has not been accompanied by effective reforms and policies that achieve improved

educational outcomes.

The results of PISA 2012 corroborate that Uruguay is still in an advantageous position

within the region20, but also confirm that results have not improved compared to previous

waves. In addition, test scores in the three analysed areas are more highly dispersed than in

other countries, which mirror the high social segmentation of the education system. Comparing

student’s performance by the school’s socio-economic context, it is noteworthy that while almost

89% of students who attend to schools in “very unfavourable circumstances” do not reach the

minimum ’competence threshold’ defined by the OECD in mathematics21., this figure drops to

13%22 for students who attend to schools in “very favourable circumstances”23. By contrast,

analysing the percentage of top-scoring students (performance levels four to six) defined by

PISA analysts, we find that this proportion rises to almost 30% of students in “very favourable

circumstances” whereas students from “very unfavourable circumstances” account for less than

1%. As we exposed in the introduction section, this great inequality in academic results leads us

to suspect for the presence of endogeneity related to the school’s socio-economic context. That

is, schools from more disadvantaged contexts not only have pupils from poorer socio-economic

status and poorer educational resources, but they are also less efficient than schools from more

advantaged contexts.

20Uruguay is placed in the third position in the three evaluated areas between all Latin American countries
that participated in PISA 2012.

21”At Level 2 students can interpret and recognise situations in contexts that require no more than direct
inference. They can extract relevant information from a single source and make use of a single representational
model. Students at this level can employ basic algorithms, formulae, procedures, or conventions. They are capable
of direct reasoning and making literal interpretations of the results”.For more details, see OECD (2013a)

22National Administration of Public Education (ANEP), “Informe Ejecutivo Preliminar Uruguay en PISA
2012”. Available at http://www.anep.edu.uy/anep/index.php/presentaciones-2012

23Schools are classified into five levels of socio-economic context based on the quintile distribution of the average
socio-economic background of the students who attend to these schools (the average ESCS PISA index for each
school). Levels are defined as ’Very unfavourable’ (the bottom quintile), ’Unfavourable’, ’Medium’, ’Favourable’
and ’Very favourable’ (the top quintile).
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2.3.2 PISA database

PISA is the only public source of data available for Uruguay that provides appropriate

information about the academic results of students in secondary education schools -measured

by objective test- and that provides contextual information about the students and schools.

Moreover, the recent publication PISA allows us to obtain timely results for the current national

educational debate.

PISA 2012 is the fifth edition of an initiative promoted by the OECD as of the late 1990s as-

sessing 15-year-old students. The assessment focuses on measuring the extent to which students

are able to apply their knowledge and skills to fulfil future real-life challenges rather than eval-

uating how they have mastered a specific school curriculum. It is a cross-curricular assessment

which emphasis is on the mastery of processes, the understanding of concepts and the ability

to function in various situations within each domain. The evaluation addresses three knowledge

areas: reading, mathematical and scientific literacy, and each wave tests in depth a major do-

main. In 2000 and in 2009 the major domain was reading, in 2003 it was mathematics, in 2006

science and finally, in 2012, it is again mathematics. The measurement of student’s abilities or

skills is measured through the Rasch item response theory, from which a continuous scale score

for each test is obtained with a mean score of 500 and standard deviation of 100 among OECD

countries.

In addition to academic achievement data, the PISA database contains a vast amount of

contextual information about students, their households and the schools they attend. Addition-

ally, the database provides information through synthetic indexes, elaborated by OECD experts,

by clustering responses to related questions provided by students and school’s principals. The

advantage of working with these indexes is that they have been constructed considering both

theoretical and empirical studies, and have therefore been extensively tested at the international

level (OECD, 2013b).

The 2012 PISA cycle is the fourth wave in which Uruguay has taken part, and it assessed

5,315 students from 180 public and private schools. For the purposes of this research, this

database was refined. Firstly, as we are focused in the public sector, we eliminate private

schools. Secondly, we eliminate schools which only offer basic secondary education (1st, 2nd

and 3rd year of high school) or only offer upper secondary education (4th, 5th and 6th year

of high school). The cut-off age between the two cycles in Uruguay is just 15 years old and,

since PISA evaluates students of this age, those students attending schools where only basic

secondary education is offered are inevitably repeaters and, on the contrary, students attending

schools where only upper secondary education is offered are all non repeaters. As a result, in

schools where only basic secondary education is imparted, 100% of the assessed students in PISA

are repeaters in at least one previous course and, in those schools where only upper secondary

education is imparted, 100% of the assessed students are on the right course. Therefore, these

institutions are not comparable when estimating the production frontier.

This debugging based on the education levels offered in schools implies removing of the
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analysis of almost all public schools located in Montevideo, since these type of schools are

almost all located in the capital. On the contrary, in the interior of the country secondary

schools offer both cycles. In sum, this analysis is carried out for 71 mixed public schools (which

provide both cycles of secondary education) located in the interior of the country. Therefore,

as the context in the capital and outside it are different, the results from this research should

be interpreted as a first approach to the problem of educational efficiency in public secondary

schools and in the future it would be interesting to consider this problem in the PISA sample

design in order to have comparable information for the whole country.

2.3.3 Relevant variables

It is difficult to empirically quantify the education received by an individual, especially when

the focus is on analysing its quality beyond the years of education acquired. However, there is a

consensus in the literature about considering that educational outputs can be approximated by

the results obtained in standardized test, as they are difficult to forge and, above all, are taken

into account by parents and politicians when making decisions on education (Hoxby, 1999).

In fact, Hanushek (1986) found that two thirds of the educational studies use tests results as

measures of educational outputs. In this research, as PISA 2012 is focused in mathematics,

we selected the school average result in mathematics (Maths) as the output of the educational

process24.

Regarding educational inputs, three variables were selected taking into account the educa-

tional production function in Equation 1, which represent the classical inputs required to carry

out the learning process (raw material, physical and human capital):

• ESCS (economic, social and cultural status): is an index developed by the PISA analysts

to indicate the student socio-economic status. It therefore represents the “raw material”

to be transformed through the learning process25. It is the result of running a categori-

cal principal component analysis with three variables: the highest occupational status of

either parent (HISEI), the highest educational level of either parent measured in years of

education (PARED), and finally an index of home possessions (HOMEPOS)26.

• SCMATEDU (school educational resources): is an index of the quality of educational

resources in the school. It is therefore associated with the physical capital. It is elaborated

from the responses by principals to seven questions related to the scarcity or lack of

laboratory equipment, institutional materials, computers, Internet, educational software,

24The DEA technique can deal with multi-outputs problems but, since we apply the II-DEA technique described
in the preceding chapter, in order to maintain consistency with the Monte Carlo experiment results we decided
to only include one educational output. In future research, it would be interesting to extend the analysis to a
multi-outputs context and compare the results with those of the present study.

25Both the ESCS index and the clustered variables are standardized with mean to zero and standard deviation
equal to one across equally weighted OECD countries.

26For further details, see OECD (2013b).
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library materials and, finally, audiovisual resources. The higher the index, the better the

quality of the school’s material resources.

• PROPCERT (proportion of fully certified teachers): this index reflects the quality of

teachers, and therefore the school’s human capital. The index is constructed by dividing

the total number of certified teachers in the schools (with a teaching degree)27 by the total

number of teachers in the school. This variable is especially relevant in the case of Uruguay

since not all teachers have received the teaching training required to qualify as teachers.

To ensure a correct DEA model specification, it is necessary to verify the monotonicity as-

sumption, that is, all selected inputs must show a non-negative correlation with the output.

Table 2.1 presents the bivariate correlations of the selected output and inputs where all correla-

tions are positive.

As it was set in the introduction, the endogeneity problem is frequently observed in education

and, particularly, in the case of the public secondary education sector in Uruguay, where we

suspect that schools efficiency is positive and highly correlated with the school socio-economic

level. To deal with this issue, we apply the II-DEA proposed in the first chapter, for which we

need to find a good instrumental input for the school socio-economic background.

In order to know if it is necessary to apply the II-DEA we use the heuristic exposed in section

II to identify potential endogenous inputs. From Figure 2.2, we can observe that SCMATEDU

is classified as exogenous or negative correlated with the true efficiency term and PROPCERT

seems to be low positive correlated with the true efficiency. However, the school socio-economic

level (ESCS) appears to be a high positive endogenous input. As a result, we decide to instrument

it and correct our estimations.

In order to apply the II-DEA the first step is to find a good instrument, which is not easy

at all. As said in section 2.2, a good instrument should be correlated with the endogenous

input (ESCS) but uncorrelated with the true efficiency. In empirical applications this means

that there should not exist a clear causal relationship between the instrumental input variable

and the output variable (Maths). Following this, we find an instrumental input that fulfils both

conditions, the “Percentage of students in the school that have had access to Internet before

thirteen years old” (ACCINT hereafter). The correlation between this variable and the school

socio-economic levels is 0.2 (similar to the correlation assumed in the Monte Carlo experiment in

the previous chapter). Furthermore, there is not clear evidence in the literature that just having

access to Internet or TICs leads to better academic results per se; the effects will depend on

how they are used and on parental monitoring and supervision (Angrist and Lavy 2002, Fuchs

et al. 2004, Goolsbee and Guryan 2006). We apply the proposed heuristic to detect endogenous

inputs with this new data set (Maths, ACCNT, SCMATEDU and PROPCERT)28 and we find

27Certified teachers in Uruguay are required to complete a four-year degree at the Instituto de Profesores Artigas
(IPA), a higher education institution which provides specialized secondary teacher training.

28We run the II-DEA in order to compute the Pearson’s correlation coefficients between inputs and the estimated
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that in this case, all inputs are classified as exogenous inputs or negative correlated with the

efficiency term (Figure 2.3).

Finally, regarding the explanatory variables (Z vector in Equation (2.6)) of the estimated

efficiency scores considered in the second stage, based on international evidence we select four-

teen variables associated with students and schools that could be associated with technical

efficiency. These variables reflect not only students and schools characteristics, but also some

key aspects of management, school organization and the teaching-learning processes conducted

in the classroom.

• TECHVOC : dummy variable that takes value one if the institution is a vocational technical

school.

• RURAL: dummy variable that takes value one if the school is located in a town with less

than 3,000 inhabitants.

• SCHSIZE : total number of students enrolled in the school.

• PCTGIRL: the percentage of female students in the school.

• ICTSCH : an index developed by PISA analysts that reflects the Information, Commu-

nication and Technology (ICT) availability at the school. It is elaborated from student

responses to five questions regarding the availability at school of a desktop computer, a

portable laptop, Internet connection, a printer, and a USB (memory) stick. The higher

the index, the more ICT resources available at schools.

• PCTCORRECT : the percentage of students assessed in the school who are in the academic

year that a 15-year student should really be in. This variable reflects the grade retention

policy, and it is an important focus of attention in current educational discussions because

there is no consensus about its net effect on educational results.

• ANXMAT : the index of mathematics anxiety is constructed by PISA analysts using stu-

dent responses about the level of agreement to five statements when they are asked to think

about studying mathematics29: ’I often worry that it will be difficult for me in mathe-

matics classes’; ’I get very tense when I have to do mathematics homework’; “I get very

nervous doing mathematics problems’; ’I feel helpless when doing a mathematics problem’

and ; ’I worry that I will get poor grades in mathematics. The higher the index, the more

the anxiety observed in the student.

• PCTMATHEART : percentage of students in the school that have answered yes to the

statement ’When I study for a mathematics test, I learn as much as I can off by heart’.

This variable reflects the learning skills acquired along the student’s academic life.

efficiency scores.
29The levels of agreement are ’strongly agreed’, ’agreed’, ’disagreed’ or ’strongly disagreed’.
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• TEACHGOAL: percentage of students in the school that have reported that the teacher

sets clear goals in ’every lesson’ or ’most lessons’. This variable provides information about

the teaching practices in the classroom.

• TEACHCHECK : percentage of students that have reported that the teacher makes ques-

tions to check students understanding ’every lesson’ or ’most lessons’. Again, this variable

inform about the teaching practices in the classroom.

• HINDTEACH : is a dummy variable that takes value one when the school’s principal

perceives that the learning of students is hindered ’a lot’ or ’to some extent’ by the presence

of teachers not being well prepared for classes.

• TEACHMORAL:is a dummy variable that takes value one when the school’s principal

answers ’Strongly agree’ or ’Agree’ to the statement: ’The morale of teachers in this

school is high’.

• RESPCUR: the index of the school responsibility for curriculum and assessment was con-

structed by PISA analysts from the principals answers about the responsibility that differ-

ent stakeholders have related to four items: i) establishing student assessment policies; ii)

choosing which textbooks are used; iii) determining course content; and iv) deciding which

courses are offered. The ratio of the number of responsibilities that ’principals’ and/or

’teachers’ have for these four items to the number of responsibilities that ’regional or local

education authority’ and/or ’national education authority’ have for these four items was

computed. The higher index value, the relatively more responsibility for schools than for

local, regional or national education authorities.

• RESPRES : the index of school responsibility for resource allocation was constructed by

PISA analysts from the principals answers about the responsibility related to i) selecting

teachers for hire; ii) firing teachers; iii) establishing teachers’ starting salaries; iv) de-

termining teachers’ salary increases; v) formulating the school budget; and vi) deciding

on budget allocations within the school. The ratio of the number of responsibilities that

’principals’ and/or ’teachers’ have for these six items to the number of responsibilities that

’regional or local education authority’ and/or ’national education authority’ have for these

six items was computed. The higher index value, the relatively more responsibility for

schools than for local, regional or national education authorities.

Table 2.2 presents the main descriptive statistics of all selected variables: output, inputs and

contextual variables.
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2.4 Results

2.4.1 First stage results

Table 2.3 and Figure 2.4 illustrate the distribution of efficiency scores, , estimated by the

output-oriented II-DEA model under VRS. Results show that only 15.5% of the schools behave

efficiently. On average, educational results could be increased by 17% given the available re-

sources. We find that 25% of the evaluated schools could increase their academic achievements

by up to 10% if they were fully efficient and 22.5% of the schools could raise their educational

results between 10% and 20%. Moreover, a quarter of the evaluated schools could improve their

outcomes by 20% to 30% with their current inputs; while one in ten schools could improve their

results by over 30% to reach the frontier.

We also present the results from the conventional DEA model under the endogenous scenario

(i.e. using the ESCS as an input) in order to compare them with those obtained using the II-

DEA. We observe that in the first scenario not only the average efficiency is overestimated, but

the distribution of all estimated efficiency scores is shifted to the left (Figure 2.4). These results

are consistent with those arising from the Monte Carlo experiment presented in Chapter 1. As

a result, potential improvements in public schools educational outcomes are considerably lower

when we do not take into account the endogeneity problem, compared to those resulting from

the II-DEA estimation. Table 4 provides the mean estimated efficiency scores with both models

(DEA and II-DEA) and the mean ESCS by quintiles according to the endogenous input level

(the school socio-economic context), the estimated efficiency score using the conventional DEA

model (dhat-end) and the estimated efficiency score using the II-DEA approach (dhat-inst). We

also compute the estimated bias for each school as the absolute difference between the estimated

efficiency score from the II-DEA model and the estimated efficiency score from the conventional

DEA

biasi = ϕ̂i,II−DEA − ϕ̂i,DEA (2.8)

This complementary analysis allows us to evaluate the differences between both specifications

at different points of the distribution and hence, it is a helpful tool to locate the main damage

of the endogeneity in this empirical application. From Table 2.4 we verify that the main effect

of the endogeneity is on schools with a more disadvantaged socio-economic context. Schools

at the bottom quintile according to the socio-economic context show the greatest bias (0.206)

while for those schools located at the top quintile the bias is not significant at all. In fact, if

we take into account the endogeneity issue in our estimations, schools from the bottom quintile

could improve their results on average in 28.6% while, if we do not take into account this issue,

the potential improvement reduces to only 8%. For schools at the top quintile (from most

advantaged contexts) the potential improvements are similar in both scenarios, taking and not

taking into account endogeneity (7.6% and 7.9%). We also observe that the better the average

socio-economic schools context, the greater the estimated average school efficiency. On the

contrary, if we analyse schools performance by quintiles according to the estimated efficiency
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score using DEA (under endogeneity) we cannot find an association between the mean school

socio-economic level and the estimated efficiency scores. Again, these results corroborate what

we found in the Monte Carlo experiment in Chapter 1.

Finally, in Table 2.5 we present three individual examples to illustrate the effect of taking

or not into account the presence of endogeneity in the estimation of schools efficiency scores

using DEA30 . Schools A, B and C show similar average results in mathematics (Maths) and

socio-economic context (ESCS) but schools A and C have considerably more resources (inputs)

in terms of school’s educational material (SCMATEDU) and the proportion of certified teacher

at the school (PROPCERT) than school B. In other words, school A and C are really inefficient

schools compared with school B. However, as we discussed in Chapter 1, under the presence of

positive and high endogeneity conventional DEA misidentifies inefficient units with low levels

of the endogenous input (ESCS in our case). From Table 2.5 we confirm this result. The DEA

estimated efficiency scores for schools A and C are 1.036 and 1.045 respectively, which implies

that they only could improve their mathematics results in around 4%. Conversely, when we take

into account the endogeneity problem and estimate efficiency score using the II-DEA method,

they are correctly identified as highly inefficient schools and in this case they could increase their

results in almost 25% (21 percentage points more than with the conventional DEA estimation).

These findings should be taken into account specially if DEA is conducted with the purpose

of benchmarking or informing performance-based reforms, since there would be some schools

identified as benchmarks when they actually are not (e.g. schools A and C). Moreover, this

misidentification is also detrimental if we are focused in exploring the explanatory variables of

efficiency, because we will be trying to explain a dependent variable (the estimated efficiency

score) that significantly differs from the true efficiency level. Therefore, the identified associa-

tions in the second-stage will not reflect the true ones31.

2.4.2 Second stage results

We regress the II-DEA estimated efficiency scores over the contextual variables using four

model specifications: the truncated regression with bootstrap proposed by Simar and Wilson

(2007), the conventional Tobit, the Tobit regression with bootstrap and, finally, the OLS model

with bootstrap. Results are shown in Table 2.6.

The first conclusion from the comparative analysis of the four specified models is that there

are only minor discrepancies between the results. The sign and significance of almost all variables

are the same in all models, implying that the educational policy recommendations derived from

them would be basically the same, adding robustness to the findings discussed above. Taking

into account this general conclusion we will consider the specification proposed by Simar and

30In Appendix A we present the results for all analysed schools.
31In Appendix B we present the results of the second stage using estimated efficiency scores from the DEA

and the II-DEA where we corroborate that the results are totally different which also implies radically different
educational public policy recommendations.
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Wilson (2007) as a reference to discuss the results.

Firstly, there is a set of variables that do not affect efficiency scores. The first variable showing

no significant effect is the dummy variable that indicates whether the school is a secondary school

or a technical school (TECHVOC). Uruguayan public schools have on average better average

academic results than technical schools. The results of this research show that these schools

perform better due to higher initial input endowments and not due to a better management of

them. In the same vein, school location does not seem to affect the efficiency (RURAL). Again,

on average, schools in rural areas or small villages have worse educational outcomes than those

located in bigger cities. The fact that the town size does not affect significantly the efficiency

implies that the higher results are due to a greater allocation of educational resources and not

to a better use of them.

Thirdly, the scale of production represented by the school size seems to slightly affect the

schools efficiency (SCHSIZE). Larger schools which have on average better academic results, also

have on average higher levels of educational inputs and better efficiency results. On the other

hand, the percentage of female students at the school is not significant (PCTGIRLS), which

indicates that the gender composition of the school does not affect efficiency. The availability of

ICT in school (ICTSCH), or the fact that the teacher sets clear goals in lessons (TEACHGOAL)

do not affect efficiency either.

Finally, none of the three variables associated with schools autonomy are significant. De-

centralization of budget allocation decision, curriculum design or evaluation policies does not

affect the schools efficiency. This is an interesting finding, since the decentralization issue is

part of most current education discussions. International evidence shows that decentralization

is successful in countries where there is also a school accountability practice properly regulated

and with standardized criteria (Hanushek et al. 2013; OECD 2013b). This is not the case of

Uruguay, where there is great heterogeneity in accountabilities and where, in many cases, there

is not even a systematic way of presenting them. Therefore, the results of this research could

be associated with this international evidence, which points out that decentralization would

only have positive effects on improving academic results if it is carried out accompanied by an

appropriate accountability system. Another possible interpretation of this result lies in the fact

that the autonomy indexes were computed from the principals’ responses and their perceived

autonomy and therefore might not be reflecting the true degree of autonomy they actually have.

In Uruguay, public high schools generally have low levels of autonomy; however, the variables

included in this analysis show a certain degree of variance (Table 2.2), which could suggest

some distortion between reality and principals’ perceptions regarding their responsibility and

autonomy.

On the contrary, there is a group of variables associated with student’s characteristics and

teaching practices that are significant and show the expected sign. First, the percentage of

students that are in the right year (PCTCORRECT) appears to be a positive and significant

driver of efficiency. This result calls into question the adequacy of current Uruguayan grade
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retention policies at all levels of the education system. Therefore, it would perhaps be better to

attempt to identify younger (primary) students who are at risk of repeating and provide them

with additional support in order to prevent their retention.

Another variable associated with students that has a significant negative effect on the school

educational efficiency is the degree of anxiety of students to mathematics (ANXMAT). There

is international evidence that supports this behaviour can be induced by the attitudes and

expectations of teachers and parents (Zavaslvsky 1994). Thus it would be desirable to work

on reducing student anxiety when solving math problems (and other disciplines) both in the

classroom and at home. This means, not only to work at school but also to foster greater families

commitment to support students work at home. Although this research is focused in secondary

education, such practices should be encouraged from the beginning of the student’s academic

life in previous cycles, when it is most effective to impact on their non-cognitive skills (Heckman

and Kautz, 2013). Thirdly, studying for mathematics tests by heart (PCTMATHEART) also

has a negative impact on efficiency. This variable reflects the students study skills acquired

along their academic life and, as in the previous case, this ability could be associated with

classroom teaching techniques adopted by teachers. Thus, this factor should be considered by

school managers and educational authorities, especially in the early stages of the learning process

when students are assimilating the learning techniques to be used throughout their academic

life.

In addition, the fact that the teacher checks student understanding in lessons (TEACHCHECK)

positively affects efficiency and thus this practice should be promoted in order to obtain better

results. Fifthly, efficiency is positive and significantly affected by the fact that the school princi-

pal perceives that the learning of students is hindered by the presence of teachers not being well

prepared for classes (HINDTEACH). Therefore, this result suggests that principals who perceive

greater shortage of qualified teachers manage school resources in a better way, obtaining most

of their actual educational resources. This finding suggest that, it is not only necessary to have

prepared teachers to produce education but also crucial to make a better use of them. Finally,

teacher’s morale (TEACHMORAL) has a positive impact on efficiency. Therefore, this study

provides evidence that if one wants to improve the academic performance in Uruguayan public

secondary schools through efficiency it is necessary to foster an incentive based teaching career

or other similar tools in order to increase the morale of teachers in schools.

2.5 Concluding remarks

Modern countries agree about the need and importance of having a more and better educated

population in order to ensure economic growth based on the high productivity of a skilled

labour force. The high percentage of public expenditure invested in education reflects this

conviction. During the last decade, the Uruguayan government has made a huge effort to

increase educational resources; however, academic results have not improved. On the contrary,

public education system (especially public secondary education) is in a deep crisis and the
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current educational national debate mainly focuses on the need to put more resources into the

system instead of exploring how to make better use of available inputs, i.e., how to achieve a

more efficient education system. This is the main focus of this chapter: to explore the sources

of the inefficiency in Uruguayan public secondary schools and to provide new evidence to the

national educational debate.

To do that, we use one of the most popular methods applied in the literature: the semi-

parametric two-stage model. Under this approach, we estimate efficiency scores using a DEA

model and, in a second stage, we regress these efficiency scores over different contextual variables

related to students and schools. Two-stage models differ mainly in the regression model spec-

ified in the second stage to explain efficiency scores. However, as we discussed in the previous

chapter, these models are affected by a major and recurrent issue in educational production

processes which is frequently overlooked when practitioners apply DEA (that is, the first stage

of the semi-parametric models), namely, the presence of endogeneity.

The Uruguayan public secondary education sector is a very illustrative case of this issue,

for we observe that schools’ socio-economic context is highly positive correlated with schools

technical efficiency. As shown in Chapter 1, the presence of this high correlation severely biases

DEA performance. To overcome this problem, we apply the proposed Instrumental Input Data

Envelopment Analysis strategy in order to obtain more reliable estimates. In this respect, we also

aim to investigate whether taking or not into account this problem really matters in empirical

terms and which are its implications for public policy recommendations. To explore that, we

provide the results obtained using the conventional DEA in the first step, and we compare them

with those from the proposed II-DEA method.

Our first results evidence that the evaluated public secondary schools could increase their

results in mathematics on average by 17% if they were fully efficient. If we do not consider the

problem of endogeneity in our estimations, this potential improvement reduces to only 10%. We

also observe that not only the average efficiency is overestimated, but also the distribution of all

estimated efficiency scores is shifted to the left. In addition, we corroborate that the greatest

damage of the endogeneity problem in DEA efficiency estimates is in those schools with lower

levels of the endogenous input, i.e. schools from more disadvantaged socio-economic contexts.

Schools at the bottom quintile according to their socio-economic context show the greatest bias

(0.203) while schools located at the top quintile do not show almost any bias. In fact, if we

take into account the endogeneity issue in our estimations, schools from the bottom quintile

could improve their results on average in 28% while if we do not take into account this issue this

potential improvement reduces to only 8%. These findings evidence the importance of taking

into account the endogeneity issue in the efficiency estimation basically for two reasons. Firstly,

because under endogeneity DEA misidentifies the most inefficient schools which are in fact the

first schools which should work to improve their results. Secondly, if the efficiency scores are

biased, we cannot find the real sources or explanatory factors of the true inefficiencies. The

endogeneity problem associated with the socio-economic context of schools in terms of efficiency

implies greater inequality as the most inefficient public schools are those with students with fewer
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opportunities and more unfavourable contexts. Therefore, failing in considering this problem

in the estimation of educational efficiency has deep implications in terms of public educational

policy.

Additionally, promoting teaching and learning techniques to reduce student’s anxiety and im-

prove self-confidence in solving mathematics problems and to discourage students from studying

mathematics by heart would produce significant improvements in academic outcomes. Although

these practices should be promoted mainly in the classroom, commitment and parents support

at home is also needed to ensure the effectiveness of these practices. Therefore, educational

policies should also try to increase the involvement of families in the learning process of their

children. Although this research is focused in secondary education, most of the policies and

practices suggested above should be encouraged from the beginning of the students’ academic

life in previous cycles, when it is most effective to influence their non-cognitive skills.

Another relevant finding from our estimations is that school efficiency is positive and signif-

icantly affected by the fact that the school principal perceives that the learning of students is

hindered by the presence of teachers not being well prepared for classes. Thus, it seems that

principals who perceive a shortage of prepared teachers make a better use of them. Finally,

teacher’s morale is a key factor to improve efficiency in public secondary schools. In this sense,

it would be appropriate to promote teacher compensation systems that establish teacher incen-

tives (professional career, monetary incentives, etc.) linked to their performance (measured by

multiple tools).

It is noteworthy that these results should be interpreted with some caution. Although a

priori all these recommended practices do not generate additional direct costs, some of them

could lead to associated indirect costs for some individuals involved in the educational process.

Therefore, it is essential to achieve a general commitment by all stakeholders in the educational

process (authorities, teachers, students, families and society) to ensure effective improvements

of educational efficiency in public schools.

Finally, the results of this research should be interpreted as a first milestone to the efficiency

issue in Uruguayan public secondary schools and, therefore, further research is necessary in this

direction. Having access to national databases adapted to the Uruguayan reality seems to be

the logical first step to expand the scope of this research (both in geographical terms and to

other levels of the education system).
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2.7 Figures and Tables

Figure 2.1: Pupils distribution into public and private schools by socio-economic level in PISA
2012
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II.7 Figures and Tables 

Figure 1 Pupils distribution into public and private schools by socio-economic level in PISA 

2012 

 

Source: Own estimates using PISA 2012 data  
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Table 2.1: Bivariate correlations between inputs and Maths

ESCS SCMATEDU PROPCERT

Maths 0.693 0.083 0.101

Note: Pearson’s correlation coefficients // Sample size = 71 // All correlations are significant at 0.01%.

Figure 2.4: Estimated efficiency scores distribution (DEA-BBC)
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Figure 4 Estimated efficiency scores distribution (DEA-BBC) 

 

Note: Values equal to one represent full efficient units. Higher values of the score imply 
more inefficiency.  
Source: Author’s estimates using PISA 2012 data  

 

 

 

Table 1Bivariate correlations between inputs and Maths 

 
ESCS SCMATEDU PROPCERT 

Maths 0.693 0.083 0.101 

Source: Own elaboration based on PISA 2012 data 
Pearson's correlation coefficients // N = 71 
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Table 2.2: Descriptive statistics of output, inputs and explanatory variables of efficiency

Variable Mean Std. Dev. Min Max Q1 Q2 Q3 

Maths 382.7 44.2 270.9 466.5 354.9 388.2 411.7 

ESCS 2.20 0.42 1.35 3.29 1.88 2.08 2.53 

SCMATEDU 4.50 1.11 2.30 6.57 3.72 4.42 5.05 

PROPCERT 0.52 0.20 0.15 0.94 0.35 0.52 0.67 

ACCINT  0.86 0.08 0.60 1.00 0.81 0.86 0.90 

TECHVOCa 0.32 0.47 0 1 0 0 1 

RURALa 0.13 0.34 0 1 0 0 0 

SCHSIZE 910 645 74 3,292 442 797 1,281 

PCTGIRL 0.52 0.15 0.11 0.87 0.41 0.54 0.61 

ICTSCH 3.49 0.35 2.58 4.20 3.25 3.48 3.79 

PCTCORRECT 0.55 0.25 0 1 0.39 0.57 0.75 

ANXMAT 3.81 0.29 3.10 4.71 3.59 3.81 3.99 

PCTMATHEART 0.17 0.08 0.00 0.39 0.11 0.17 0.23 

TEACHGOAL 0.48 0.10 0.22 0.67 0.42 0.49 0.55 

TEACHCHECK 0.46 0.10 0.21 0.67 0.38 0.47 0.54 

HINDTEACHa 0.46 0.50 0 1 0 0 1 

TEACHMORALa 0.25 0.44 0 1 0 0 1 

RESPCUR 1.28 0.29 1.00 2.57 1.00 1.23 1.45 

RESPRES 1.05 0.09 1.00 1.44 1.00 1.00 1.10 

 
Note: (d) Dummy variables where the mean represents the proportion of schools in the reference cat-
egory // References categories are: vocational technical school (TECHVOC); school located in rural
are (RURAL);school’s principal perceives teachers not being well prepared (HINDTEACH) and school’s
principal perceives high teachers morale (TEACHMORAL).

Table 2.3: Descriptives of the estimated efficiency scores (DEA and II-DEA)

Efficiency Mean Std- Dev. Min. Max. Q1 Q2 Q3 

dhat-end 1.101 0.102 1.000 1.468 1.015 1.074 1.158 

dhat-inst 1.167 0.149 1.000 1.640 1.023 1.137 1.258 
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Table 2.4: Mean ESCS, efficiency scores and bias by quintiles (DEA and II-DEA results)
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Table 4 Mean ESCS, efficiency scores and bias by quintiles (DEA and II-DEA results) 

  
Mean ESCS

Mean        
dhat-inst 

Mean       
dhat-end 

Mean        
|Bias| 

Quintiles by ESCS 
 

Bottom quintile 1.68 1.286 1.079 0.206 

4th quintile 1.92 1.229 1.132 0.097 

3rd quintile 2.13 1.146 1.107 0.050 

2nd quintile 2.40 1.106 1.108 0.011 

Top quintile 2.82 1.076 1.079 0.003 

Quintiles by dhat-inst 
 

Bottom quintile 1.88 1.386 1.213 0.174 

4th quintile 1.92 1.233 1.126 0.111 

3rd quintile 2.37 1.139 1.100 0.043 

2nd quintile 2.50 1.059 1.049 0.021 

Top quintile 2.33 1.003 1.008 0.008 

Quintiles by dhat-end 
    

Bottom quintile 2.07 1.325 1.257 0.071 

4th quintile 2.29 1.202 1.139 0.075 

3rd quintile 2.24 1.115 1.070 0.059 

2nd quintile 2.27 1.107 1.026 0.082 

Top quintile 2.13 1.076 1.000 0.076 

Source: Author’s estimates using PISA 2012 data  

 

Table 5 Output, inputs and estimated efficiency scores DMUs 6, 7 and 8 

SCH  MATH ESCS SCMATEDU PROPCERT ACCINT dhat_end dhat-inst Bias 

A 367  1.72  4.4218  0.5170  0.86  1.0362  1.2478  0.2117 

B 363  1.72  2.3016  0.2220  0.60  1.0000  1.0000  0.0000 

C 368  1.74  4.6100  0.7310  0.86  1.0446  1.2467  0.2021 

Source: Author’s estimates using PISA 2012 data.   

Table 2.5: Outputs, inputs and estimated efficiency scores DMU’s A,B and C
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Appendix A: Data and estimated efficiency scores for each school 

Table 7 Database Uruguayan public schools and efficiency estimated scores for each unit 

ID_sch 
(A) 

MATH 
(B) 

ESCS    
(C) 

SCMATEDU 
(D) 

PROPCERT   
(E) 

ACCINT   
(F) 

dhat-inst   
(G) 

dhat-end  
(H) 

Mean Bias   
|(G) - (H)| 

7 363.46 1.72 2.3016 0.2220 0.60 1.0000 1.0000 0.0000 

25 382.07 1.95 2.3016 0.1530 0.78 1.0000 1.0000 0.0000 

27 410.63 2.00 4.4218 0.1530 0.88 1.0000 1.0000 0.0000 

42 410.66 2.28 3.8979 0.2910 0.75 1.0000 1.0546 0.0546 

44 411.74 2.28 2.8995 0.2340 0.83 1.0000 1.0053 0.0053 

45 450.51 2.29 4.6100 0.4960 0.83 1.0000 1.0000 0.0000 

47 426.32 2.34 3.3447 0.1530 0.94 1.0000 1.0000 0.0000 

54 407.43 2.53 2.3016 0.4500 0.86 1.0000 1.0000 0.0000 

55 457.89 2.54 4.4218 0.4280 0.89 1.0000 1.0000 0.0000 

61 466.49 2.66 6.5680 0.5970 0.88 1.0000 1.0000 0.0000 

63 433.47 2.72 2.8995 0.4280 0.85 1.0000 1.0000 0.0000 

71 456.32 3.29 5.0526 0.9210 0.83 1.0090 1.0090 0.0000 

23 386.07 1.92 4.2438 0.7100 0.67 1.0146 1.0492 0.0346 

33 427.45 2.05 5.7539 0.6730 0.79 1.0230 1.0000 0.0230 

35 412.26 2.07 2.6300 0.5080 0.93 1.0275 1.0275 0.0000 

67 410.43 2.86 2.6300 0.7370 0.85 1.0277 1.0277 0.0000 

56 446.22 2.55 4.8160 0.6850 0.87 1.0297 1.0286 0.0011 

65 428.74 2.81 3.3447 0.7500 0.86 1.0298 1.0310 0.0013 

64 406.67 2.78 5.3444 0.1560 0.91 1.0480 1.0480 0.0000 

69 446.15 3.01 5.3444 0.4690 0.89 1.0526 1.0616 0.0089 

60 432.76 2.63 4.8160 0.3900 0.91 1.0578 1.0000 0.0578 

59 427.56 2.62 5.3444 0.3930 0.90 1.0689 1.0645 0.0044 

38 393.71 2.20 2.8995 0.4120 0.79 1.0740 1.0142 0.0598 

51 426.61 2.40 4.6100 0.5718 0.88 1.0750 1.0642 0.0109 

29 407.00 2.00 4.2438 0.3480 0.84 1.0762 1.0762 0.0000 

70 430.45 3.22 5.7539 0.6350 0.89 1.0859 1.1443 0.0584 

11 374.63 1.82 4.8160 0.8300 0.71 1.0868 1.0023 0.0845 

36 429.24 2.08 6.5680 0.7140 0.89 1.0905 1.0905 0.0000 

68 414.74 2.93 4.0706 0.5718 0.95 1.0931 1.0896 0.0036 

52 383.34 2.41 4.4218 0.2640 0.81 1.1112 1.0848 0.0264 

40 401.94 2.26 3.7220 0.5710 0.83 1.1120 1.0457 0.0663 

39 403.38 2.22 4.6100 0.3930 0.84 1.1233 1.0692 0.0542 

37 409.87 2.17 5.0526 0.9440 0.82 1.1259 1.1330 0.0071 

62 407.37 2.68 5.3444 0.9250 0.97 1.1331 1.1331 0.0000 

41 388.24 2.26 4.4218 0.3480 0.87 1.1357 1.1563 0.0206 

53 405.48 2.52 6.5680 0.5160 0.89 1.1373 1.1283 0.0090 

Source: Author’s estimates using PISA 2012 data  

Table 8 Database Uruguayan public schools and efficiency estimated scores for each unit (cont.) 

Gabriela Sicilia 77



Essays on the estimation of educational thecnical efficiency under endogeneity

Table 2.8: Database Uruguayan public schools and efficiency estimated scores (cont)
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ID_sch 
(A) 

MATH 
(B) 

ESCS    
(C) 

SCMATEDU 
(D) 

PROPCERT  
(E) 

ACCINT  
(F) 

dhat-inst  
(G) 

dhat-end  
(H) 

Mean Bias   
|(G) - (H)| 

22 374.07 1.90 4.8160 0.5980 0.77 1.1527 1.0739 0.0789 

50 392.34 2.40 5.7539 0.4680 0.85 1.1563 1.1563 0.0000 

66 398.18 2.85 5.0526 0.7770 0.94 1.1594 1.1427 0.0167 

48 392.48 2.37 4.2438 0.5300 0.91 1.1609 1.0162 0.1447 

12 393.92 1.84 5.0526 0.6640 0.97 1.1688 1.0121 0.1566 

49 384.05 2.38 4.0706 0.5860 0.86 1.1776 1.1620 0.0156 

5 355.35 1.57 4.6100 0.3210 0.76 1.1784 1.1784 0.0000 

58 389.89 2.61 4.8160 0.7500 0.89 1.1857 1.0805 0.1052 

34 364.27 2.06 4.2438 0.6670 0.77 1.2025 1.0527 0.1498 

10 363.30 1.79 6.5680 0.4000 0.80 1.2064 1.2044 0.0020 

46 355.33 2.30 3.3447 0.2970 0.86 1.2252 1.0817 0.1435 

21 369.12 1.89 4.0706 0.5630 0.97 1.2305 1.0754 0.1551 

17 373.42 1.88 4.8160 0.5490 0.94 1.2390 1.1558 0.0832 

6 366.94 1.72 4.4218 0.5170 0.86 1.2447 1.0903 0.1544 

8 367.87 1.74 4.6100 0.7310 0.86 1.2467 1.0446 0.2021 

15 369.47 1.87 6.5680 0.5560 0.88 1.2478 1.0362 0.2117 

24 323.20 1.95 3.7220 0.3220 0.72 1.2585 1.0000 0.2585 

2 346.76 1.47 3.7220 0.2410 1.00 1.2585 1.2463 0.0122 

30 350.96 2.02 4.0706 0.5080 0.83 1.2628 1.2873 0.0245 

32 324.05 2.05 4.0706 0.3640 0.72 1.2762 1.2246 0.0516 

16 304.82 1.87 4.2438 0.5718 0.65 1.2780 1.1818 0.0962 

26 345.54 1.99 4.2438 0.5700 0.80 1.2798 1.2101 0.0697 

13 321.18 1.84 3.3447 0.3480 0.74 1.2902 1.1604 0.1298 

18 343.87 1.88 4.6100 0.3040 1.00 1.2967 1.1886 0.1080 

28 348.14 2.00 4.3779 0.3960 0.88 1.2975 1.2975 0.0000 

57 354.87 2.60 5.0526 0.8570 1.00 1.2980 1.1246 0.1734 

19 359.38 1.88 6.5680 0.9150 0.96 1.3012 1.1942 0.1071 

3 337.21 1.49 3.5628 0.5950 0.86 1.3170 1.0164 0.3006 

14 324.96 1.86 6.5680 0.3470 0.81 1.3493 1.3058 0.0435 

20 319.98 1.89 4.0706 0.4440 0.97 1.4134 1.2477 0.1658 

43 290.79 2.28 3.3447 0.2940 0.89 1.4881 1.4684 0.0197 

9 309.26 1.76 5.3444 0.5050 0.91 1.4925 1.2514 0.2411 

31 307.72 2.04 4.8160 0.7060 1.00 1.4932 1.3697 0.1235 

4 299.35 1.50 6.5680 0.7460 0.89 1.5584 1.1736 0.3848 

1 270.88 1.35 3.5628 0.5718 0.92 1.6396 1.0000 0.6396 

Source: Author’s estimates using PISA 2012 data  
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Table 2.9: Efficiency explanatory variables under the endogeneity and exogeneity assumptions
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Appendix B: Second stage estimations for DEA and II-DEA efficiency scores 

Table 9 Efficiency explanatory variables under the endogeneity and exogeneity assumptions 

Dependent variable:     

dhat 

Truncated + bootstrap (II-DEA) Truncated + bootstrap   (DEA)

Coef Std. Err. z   Coef Std. Err. z   

TECHVOC(d) 0.0097 0.057 0.17 0.0536 0.990 0.32 
 

RURAL(d) -0.0062 0.074 -0.08 -0.0255 0.087 -0.29 
 

SCHSIZE -0.0001 0.000 -1.81 * -0.0001 0.000 -1.53 
 

PCTGIRL 0.0249 0.165 0.15 -0.1433 0.166 -0.87 
 

ICTSCH -0.0395 0.067 -0.59 -0.0395 0.049 -0.80 
 

PCTCORRECT -0.2898 0.117 -2.47 ** -0.1300 0.089 -1.46 
 

ANXMAT 0.2410 0.077 3.14 *** 0.1255 0.064 1.96 **

PCTMATHEART 0.5081 0.268 1.89 * -0.0087 0.243 -0.04 
 

TEACHGOAL 0.3965 0.253 1.57 -0.3214 0.227 -1.41 
 

TEACHCHECK -0.5443 0.228 -2.39 ** -0.0017 0.189 -0.01 
 

HINDTEACH(d) -0.0873 0.039 -2.24 ** -0.0497 0.037 -1.35 
 

TEACHMORAL(d) -0.1056 0.049 -2.13 ** -0.0253 0.036 -0.71 
 

RESPCUR -0.0962 0.064 -1.50 -0.0661 0.072 -0.92 
 

RESPRES 0.1902 0.199 0.95 0.1696 0.221 0.77 
 

_cons 0.5361 0.423 1.27 1.0170 0.401 2.53 
 

/sigma 0.0926 0.01 8.65   0.0751 --- ---   

Note: 'Coef' is the estimated coefficient, S.E. is the robust standard error of the estimated coefficients.  

N = 71.  ***p-value < 0.01 ;  **p-value < 0.05  ; *p - value < 0.10 

Source: Author's estimations using PISA 2012 data.   

 

 

Note: Left-truncated regression at value one // 2,000 bootstrap replications //’Coef’ are the estimated
coefficient. Negative values increase efficiency // Std.Err. are the robust standard error of the estimated
coefficients // Sample size = 71 // ∗ ∗ ∗p − value < 0.01; ∗ ∗ p − value < 0.05 ; ∗p − value < 0.10
// (d) Dummy variables where the mean represents the proportion of schools in the reference category
// References categories are: vocational technical school (TECHVOC); school located in rural are (RU-
RAL);school’s principal perceives teachers not being well prepared (HINDTEACH) and school’s principal
perceives high teachers morale (TEACHMORAL).
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3. The teacher effect: an efficiency analysis from a randomized natural experiment in Spanish schools

3.1 Introduction

The number and quality of the years of education received by an individual throughout his

live will determine his future welfare. More and better educated people have on average not only

better access and adaptability to the labour market but also higher salaries as a consequence

of their greater productivity. For this reason, the investment that a country makes in quality

education is essential to ensure its sustainable development and economic growth (Barro and Lee,

1996, 2012; Hanushek and Kimko, 2000; De la Fuente, 2011; Hanushek and Woessmann, 2012a,

2012b). Thus, it is not surprising that public expenditure on education is one of the largest public

budget items, and that the public sector is the main provider of education in most countries.

Indeed, in most OECD countries the trend has been to increase the public expenditure devoted to

education, although this process stopped and even reversed in some countries as a consequence of

the global economic crisis. However, can we conclude that more educational resources guarantee

better educational quality? The answer to this question is not straightforward and, at least

in developed countries with an actual high educational expenditure, the evidence is negative.

In this context, governments should not be concerned only with improving academic results

through educational public expenditure and more attention should be put to making a better

use of this expenditure, that is, to be more efficient in the use of educational resources.

In this regard, teachers play a key role because it is inside the classrooms where the educa-

tional production process takes place and the innovation in teaching methods and educational

practices can actually improve educational quality. Drawing on the Coleman’s Report (Coleman

et al., 1966) many studies have argued in the last decades that differences in school resources have

a limited influence in academic outcomes, concluding that family background and the peer group

effect are the most important variables to explain education results. Furthermore, in the last

decade some works demonstrate that teachers’ observed characteristics (experience, academic

training, etc.) do not show a consistent relationship with students’ test scores (Rivkin et al.,

2005; Hanushek and Rivkin, 2006; Clotfelter et al., 2007; Kane et al., 2008). This lack of relation

could be interpreted as teachers’ quality not mattering in their effectiveness or –alternatively- it

could reveal that quantifiable teacher variables are not good proxies for their quality. (Hanushek

y Rivkin, 2012).

Based on this evidence, researchers and policy makers are turning their attention to the

impact measures of teachers’ performance, using the value added in the academic outcome

of students as the main indicator of the quality and effectiveness of teachers (Hanushek and

Rivkin 2010; Rothstein, 2010). In fact, several recent studies have shown that there exist

substantial differences in teachers’ quality and that these differences have large impacts not only

over students’ test scores (Rockoff, 2004; Rivkin et al., 2005; Gordon et al., 2006; Hanushek and

Rivkin, 2010; Aaronson et al., 2007; Kane and Steiger, 2008; Kane et al., 2008) but also on their

long term earnings (Chetty et al. 2011). However, most of these works do not consider the fact

that students are generally not randomly allocated neither in schools nor in classrooms within

schools. Therefore, estimations about teachers’ true impact on students’ academic outcomes
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could be biased if this endogeneity problem is not taken into account (Rothstein, 2010; Hanushek

and Rivkin, 2012).

The aim of this research is to shed new light about the differences in teachers’ quality and

their impact on students’ academic results controlling by the presence of endogeneity. For

this purpose, we employ a different methodological approach through the measurement of the

technical efficiency inside the classrooms. Once we control for differences in student’ background

and school resources between classrooms within schools, the classroom technical efficiency reflects

the teacher’s global impact on students test scores. Our strategy lies on exploiting the exogenous

variation between classrooms that is produced within each school when students are randomly

assigned to classrooms, thus creating a natural experiment. (Schlotter et al., 2011).

To do this we use the ’General Diagnostic Assessment’ Database (Evaluación General de Di-

agnóstico in Spanish) that captures information about principals, teachers, parents and students

in their fourth grade of primary education in Spain during 2009. For half of schools assessed,

this database contains information about two classrooms inside the same school and it allows us

to know whether or not students were randomly assigned into classrooms in each school. Ran-

domization guarantees that on average students’ observable and non observable characteristics

are similar in both classrooms inside the same school. Parents can self-select in schools but they

cannot decide the classroom in which their children will be allocated within the school. Under

this framework the only difference between two groups at the starting school date is the teacher

that has been randomly assigned to the classroom. Differences on average students’ academic

results between two classrooms will be directly related with teachers’ differences in performance.

In this research we will measure teachers’ quality using the technical efficiency of the teacher in

producing education. We consider that each teacher seeks to maximize average students’ results

taking into account its inputs (school resources and students’ background) available.

Thus, in a first stage we estimate technical efficiency at classroom level using a Data Envel-

opment Analysis (DEA) model for those schools that randomly assign students to classrooms.

In the second stage we analyse classrooms’ efficiency differences within these schools, i.e. teach-

ers’ efficiency differences inside each school. As it was shown in Chapter 1, endogeneity due to

self-selection can bias the DEA efficiency scores obtained in the first stage However, this bias

can be mitigated if we analyze differences in efficiency between classrooms within each school.

Our results agree with previous works cited above and corroborate that there exist consider-

able differences in teachers’ quality in primary schools in Spain. Within school difference between

the most and the least efficient teacher is on average 4.4 efficiency points, which represents 0.82

standard deviations with respect the mean efficiency. Once this differences are computed, it is

possible to evaluate the average impact of having the most efficient teacher in the classroom

in terms of academic results. Randomization produces a natural experiment allocating efficient

and not so efficient teachers to similar classrooms. Therefore, we can conclude that the average

difference between the classroom with the most efficient teacher (treated group) and the less

efficient one (control group) is a measure of the impact of having the better teacher. Our estima-
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tion finds that for Spain this impact is even larger than the results found for the United States

in previous studies. In our case, students randomly assigned to the most efficient teacher obtain

on average 0.43 (0.44) standard deviations more in maths (reading) test scores. According to

Hanushek and Rivkin (2010, p. 269) these impacts vary between 0.11 and 0.36 (0.08 and 0.26)

standard deviations in maths (reading).

Last, but not least, we explore whether some observable variables can explain efficiency dif-

ferences between teachers, aiming to contribute to the debate about which educational policies

could be implemented to select and retain the best teachers. To answer this question we regress

the efficiency ratio between the most and the least efficient teacher in each school over some

observable teacher and classroom variables together with other environmental school variables

and students’ characteristics. Our results corroborate that neither teacher experience nor aca-

demic training explain teachers’ quality or efficiency (Rivkin et al., 2005; Hanushek y Rivkin,

2006; Kane et al., 2008). On the other hand, we find several factors significantly correlated with

teachers’ efficiency. For example, to be a female teacher, having worked more than five years

in the evaluated school and to repeat a second year with the same group of students positively

affects efficiency. Likewise, having fewer students per classroom positively impacts the results.

In sum, this research presents an original approach to evaluate teacher’s quality and its effect

on students, and has various contributions to the existing economics of education literature.

Firstly, this is the first work that analyses teachers’ quality through the measurement of technical

efficiency using a natural experiment, thus allowing to deal with the presence of endogeneity.

Secondly, most of previous works focused on the measurement of educational efficiency and its

explanatory factors cited in Chapter 2 used school or student level analysis. The only exceptions

that employ classrooms as production units in efficiency analysis are Cooper and Cohn (1997)

analysing 541 classrooms in South Carolina to explain the effect of teacher incentives on results;

De Witte and Rogge (2011) using Belgian data to measure teachers’ quality based on student’

evaluations and finally Klaveren y De Witte (2014) who carry out an efficiency study using

German data (second grade of secondary education) from TIMSS 2003 to examine what teaching

activities maximize students’ results. However, these works are far away in their aims from ours

and most of them do not consider the endogeneity problem. Finally, although there is a wide

agreement about the importance of investing educational resources at early ages (Heckman

and Kautz, 2013), most efficiency studies have focused their efforts in analyzing secondary and

tertiary education. There exist some works studying primary education for different countries

(Mancebón y Mar-Molinero, 2000; Grosskopf et al., 2001; Mizala et al., 2002; Thanassoulis,

2002; Banker et al., 2004; Blackburn et al., 2013; Casalprim et al., 2013), however, to the best

of our knowledge this is the first research about measuring the technical efficiency in primary

education for Spain.

The rest of Chapter 3 is organized as follows. Section 3.2 presents the main methodolog-

ical concepts and our identification strategy to measure teacher efficiency free of endogeneity

problems. Section 3.3 briefly describes the database and the variables included in the analysis.

Section 3.4 reports the estimation results. Finally, Section 3.5 discusses the conclusions of this
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research and their implications for educational policy makers.

3.2 Methodology

The theoretical approach used in this paper for linking resources to educational outcomes

at school level is based on the well-known educational production function proposed by Levin

(1974), Hanushek (1979) and Hanushek et al (2013):

Ai = f(Bi, Si) (3.1)

where subindex i refers to school, and Ai represents the educational output vector for school i.

This output is normally measured through the students’ average scores in standardized tests.

On the other hand, educational inputs are divided into Bi, which denotes average student

family and socio-economic background, and Si, which are the school educational resources. The

educational production function is frequently estimated considering the possible existence of

inefficient behaviours in schools following Equation 3.2,

Ai = f(Bi, Si).ui (3.2)

where 0 ≤ ui ≤ 1 denotes the efficiency level of school i. Values of ui = 1 imply that the

analysed schools are fully efficient, meaning that given the initial input endowment and the

existing technology, these schools are maximizing their outputs and managing correctly the

school. Values ui ≤ 1 would indicate that the school is inefficient. The estimation of Equation

3.2 assumes that inputs are exogenous or, in other words, that the efficiency term and the

educational inputs are uncorrelated E(ui|Bi, Si) > 0. However, this assumption frequently does

not hold in the production of education because students are not randomly assigned to schools

(Schlotter et al., 2011). Most motivated parents and those who give more value to education

put more effort and resources in selecting the best schools for their children. These parents

gather more formal and informal information about schools results and peer group in order

to choose the best available option for their children (Hoxby 2000; Sacerdote, 2001). As a

consequence, children from most motivated parents attending together the same schools will

obtain better results for two reasons. On one hand, because it is expected that these schools

will have a higher average socio-economic level Bi . On the other hand, because these schools

also have the students with most motivated parents, a variable that also influences students’

results. Since parents’ motivation is an unobservable variable, its effect over academic results

would be captured in Equation 3.2 by the efficiency term. To disentangle this effect we can

rewrite Equation 3.2 as follows:

Ai = f(Bi, Si).ui = f(Bi, Si).θi.γi (3.3)

where 0 ≤ θi ≤ 1 captures the managerial efficiency in school i and 0 ≤ γi ≤ 1 denotes the non-

observable students’ characteristics, particularly the average parental motivation of students
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attending at school i. When γi = 1 the school shows the maximum motivation of students’

parents, a value that progressively declines when γi moves away from one. As it was discussed

previously, parents’ motivation is positively correlated with the average school socio-economic

level E(γi|Bi) > 0 and for this reason the global average efficiency will be also correlated with

Bi, E(ui|Bi) > 0. This positive correlation implies the presence of positive endogeneity in

the estimation. From Chapter 1 we know that this endogeneity can turn into flawed efficiency

estimations for the term ui.

In short, the lack of randomization in allocating students to schools and the existence of non

observable variables implies that when we try to estimate ui we really estimate the confounding

term θi.γi that in practice cannot be decomposed and is a biased estimate of the true managerial

efficiency of schools. Although θi is exogenous, the presence of γi biases its estimation because

this term is positively correlated with Bi. Under these circumstances a direct estimation of ui

is biased, in order to deal with this problem we have to look for an identification strategy to

measure θi independently of γi. To do this we propose to employ impact evaluation insights

(Schlotter et al., 2011) as a way to improve performance measurements when the presence of

positive endogeneity affects our data. In this research we take advantage of a database of schools

from Spain in which we can identify those schools where students were randomly assigned to

classrooms. This randomization produces a natural experiment where by chance one classroom

has been assigned to the most efficient teacher and the other one to the least efficient teacher.

From Equation 3.4 we know that the average result of N students n = 1, 2, . . . , N distributed

in K classrooms k = 1, 2, . . . ,K in school i i = 1, 2, . . . .,M are determined through the following

production function:

Aik = f(Bik, Sik).uik = f(Bik, Sik).τik.ωik.γik (3.4)

where Aik denotes the educational output vector for classroom k at school i. This output

depends on a set of observable variables (Bik, Sik) and non observable variables captured by

the efficiency term 0 ≤ uik ≤ 1. Technical efficiency uik can be decomposed in three terms

at classroom level: average non observed characteristics of students 0 ≤ γik ≤ 1; the school

managerial efficiency τik, 0 ≤ τik ≤ 1 which is the same for all classrooms in the same school

τi1 = τi2 = ... = τiK = τi ; and the teacher efficiency 0 ≤ ωik ≤ 1 that captures the teacher’s

ability to deal with the educational process at his classroom. For τik and ωik a value equal to one

corresponds to the maximum level of performance, which declines when this value decreases. If

there exists randomization in the assignment of students into classrooms this three components

are expected to be independent of each other.

The direct efficiency estimation at classroom level uik suffers from the same endogeneity

problems discussed before and it would be biased. However, the fact that we have information

about two classrooms inside the same school allows us to work with the difference between both

groups to correct the bias produced in the direct estimation. Let assume that in every school
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that randomly assigns students to classes we have two groups k = 1, 21. If we estimate the

technical efficiency at each classroom in those schools using Equation 3.4 and we compute the

efficiency ratio between the two classrooms within each school, we have

E

(
ui1
ui2

)
= E

(
τi1.ωi1.γi1
τi2.ωi2.γi2

)
= E

(
τi1
τi2

)
E

(
ωi1
ωi2

)
E

(
γi1
γi2

)
(3.5)

Given that the school technical efficiency is the same for both classrooms, it is straightfor-

ward to conclude that E

(
τi1
τi2

)
= 1. Likewise, if students are randomly assigned to classrooms

inside every school (for example by alphabetical order), then it is expected that on average

students from both groups are similar not only in observed characteristics (e.g. socio-economic

level) but also in the non-observed ones (e.g. parents’ motivation). More motivated parents

can self-select into best schools but we assume that, because of the random allocation process

within schools, they cannot choose the best classroom inside the school. Randomization there-

fore guarantees that the expected value of the ratio of average non observable characteristics

(motivation) between both classrooms be equal to one, E

(
γi1
γi2

)
= 1 . Thus, we can conclude

that observed differences in the estimated efficiency between classrooms will be due to differences

between teachers. In this case we can derive that E

(
ui1
ui2

)
= E

(
ωi1
ωi2

)
2.

Therefore, although the estimated efficiency scores for each classroom are biased due to self-

selection, taking efficiency ratios between classrooms within random class assignment schools

allows us to correctly identify the true differences in teachers’ performance. And if these differ-

ences are significant the next question that comes up is: what is the effect of these differences

on students’ test scores? As a consequence of the natural experiment, this impact can be com-

puted as the difference of the average results of treated classrooms (assigned to the most efficient

teacher) with the average results in the control classroom (assigned to the least efficient teacher).

Finally, we analyse which factors can explain the efficiency gap between teachers. In other

words, is it possible to relate some teachers’ observable characteristics to their efficiency? To

answer this question we regress the ratio of classrooms’ efficiency against a set of control variables

associated with students and schools characteristics and with observed teachers’ variables such

as gender, experience, academic training, etc.

Schematically, our methodological strategy in this research can be summarized in the fol-

lowing steps:

1. From a school sample that uses randomization to allocate students to classrooms within

schools we estimate the technical efficiency at the classroom level using the Data Envel-

1For the sake of simplicity the model is described for two groups. In the case of more groups the model
extension is trivial taking a group k as reference and calculating k − 1 differences.

2The use of ratios instead of differences is necessary to isolate the difference is teachers’ performance. Calcu-
lating ui1−ui2 = (τi1.ωi1.γi1)− (τi2.ωi2.γi2) = (γi1−γi2).ωi.τi where now the ωi.τi term is not the same for every
school and confounds again the difference in teachers’ performance.
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opment Analysis (DEA) method introduced by Charnes, Cooper and Rhodes (1978, 1981)

and Banker, Charnes and Cooper (1984). The technique implements a linear optimiza-

tion program to obtain a production frontier comprising all the efficient units and their

possible linear combinations. Thus, the estimated efficiency score for each Decision Mak-

ing Unit (DMU) is a relative measure calculated using all the production units that are

compared. The formulation of the output-oriented DEA program under variable returns

to scale (DEA-BBC model) for each analyzed unit is:

ϕi = max
λ,ϕ
{ϕi|ϕyi ≤ Y λ;xi ≥ Xλ;n1′λ = 1;λ ≥ 0} ∀i = 1, ..., n (3.6)

where, for the kth DMU in the ith school, (ϕik = 1
ûik
≥ 1 is the efficiency score, yik is

the output vector (q × 1) and xik is the input vector (p × 1), and thus X and Y are the

respective input (p × nk) and output (q × nk) matrices. The (nk × 1) vector λ contains

the virtual weights of each unit determined by the problem solution. When ϕik = 1, the

analysed unit belongs to the frontier (is fully efficient), whereas ϕik > 1 indicates that the

ith unit is inefficient, ϕik being the radial distance between the ith unit and the frontier.

In other words, ϕik indicates the equiproportional expansion over outputs needed to reach

the frontier. Therefore, the higher the score value ϕik, the greater the inefficiency level.For

example, ϕik = 1.2 suggest that this DMU is inefficient because it could obtain 20% more

output with its available inputs.

2. Once the efficiency uik is estimated for each group k = 1, 2 inside each school i, we identify

the most efficient teacher, that corresponds with the treated classroom (T ), and the least

efficient one, that corresponds with the control classroom (C), 0 ≤ ûiT ≤ ûiC ≤ 1. To

measure the impact of having been assigned to the most efficient teacher we compare

academic outcomes of both the treated and the control groups.

∆Y =
1

M

M∑
i=1

∆Ȳi =
1

M

M∑
i=1

(ȲiT − Ȳic) (3.7)

where ȲiT (ȲiC) is the impact, in terms of test scores, of having the most efficient teacher,

ȲiT is the average results of students assigned to the treated group and ȲiC is the average

result of students assigned to the control group.

3. Lastly, to isolate the teacher effect for the ’treated’ group at each school we compute the

efficiency ratio between both teachers as follows:

∆ûi =
ûiT
ûiC
≥ 1 ∀i (3.8)

Efficiency ratios ∆ûi are regressed over a set of observed teachers’ characteristics. The

regression model also includes other control variables related with the school and the

classroom that allow controlling for exogenous variables that may also be explaining the
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efficiency gaps. The model to be estimated is:

∆ûi = (αiT − αiC) + βP (PiT − PiC) + βZ(ZiT − ZiC) + βWWi + εi (3.9)

where (PiT − PiC) denotes differences in observed teachers’ characteristics; (ZiT − ZiC)

represents the vector of students’ differences between both classrooms and finally Wi is a

set of school variables to capture school and principal characteristics. Taking into account

that by construction ∆ûi ≥ 1, Equation 3.9 is estimated through a left-censored regression

model censored at value one.

Finally, in order to empirically quantify the impact that not controlling by the existence of

endogeneity would have in the estimates, we carry out an efficiency analysis considering all the

schools in the sample, as it is usually done in standard efficiency estimations. In other words,

we also include in the analysis those schools where students are not randomly assigned and

those with information only available for one group. In that case, the model to estimate is a

semi-parametric two-stage model proposed by Ray (1991) and McCarty and Yaisawarng (1993).

The first stage of this approach is to apply a DEA model that measures technical efficiency at

classroom level, whereas a regression analysis conducted in the second stage seeks out the main

explanatory factors of efficiency. Following Simar and Wilson (2007) in the second stage we

estimate a truncated regression model with bootstrap.

ûik = αik + βPPik + βZZik + βWWi + εik (3.10)

where in this case ûik is the technical efficiency estimated in the first stage by DEA (Equation

3.6); Pik are the observed teacher’s characteristics; Zik is a vector of observed students’ variables

that could affect efficiency and finally Wi are school characteristics common for all classrooms

belonging to the same school.

3.3 Data

3.3.1 The EGD Database

To carry out our estimations we use data from the ’General Diagnostic Assessment’ con-

ducted by the Spanish Ministry of Education, Culture and Sport applied during 2009 to a

sample of fourth-year primary students all over Spain (we will refer to this database as EGD

from now on)3. EGD focuses on measuring the knowledge, skills and attitudes acquired by

students in four core competencies: language, mathematics, social and civic education (social

studies) and knowledge and interaction with the physical world (science). Like other interna-

tional studies (PISA, TIMSS, PIRLS), a complementary questionnaire is also administered to

3A detailed description of this database including simple design and included variables can be found in INEE
(2010).
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students and their families, school principals and teachers to gather additional information on

contextual factors, resources and organizational processes that allows further analysis of the

students’ performance.

Primary education in Spain is organized so that students have the same teacher during almost

all of the school day and who teaches all four core subjects (reading, mathematics, science and

social studies). The rest of the school day students are taught by one of the discipline specialists

(for example, foreign language or physical education). In this work we evaluate the principal

teacher in charge of the classroom.

The EGD respondents totalled 27,125 students distributed in 1,295 classrooms from 882

schools. In 442 schools two complete fourth grade classrooms were evaluated. This is a novel fea-

ture of the EGD that distinguishes it from other national and international education databases.

Also, most interestingly, we can know how students were assigned to classrooms inside each

school. When students are randomly assigned in classrooms, differences in test scores are mainly

due to differences in teachers. Moreover, randomization of student allocation produces a natural

experiment: by chance, students from one classroom will receive the best teacher and students

from the other classroom the worst one.

In order to identify which schools randomly assign their students, EGD asks the school prin-

cipal how students were grouped in classrooms. Table 3.1 shows these criteria and classifies them

into random and not random criteria. Therefore, from 442 schools in which two classrooms were

originally evaluated, we have excluded schools that employed a non random criterion: ’linguis-

tic reasons’, ’academic performance’, ’looking for homogeneity of students’ characteristics’ and

’other criteria’. Finally, we analyse 213 schools4 (426 classrooms) that use randomization to

group students in classrooms. In this sample 66% are public schools while the remaining 34%

are government dependent private schools (private schools publicly funded).

3.3.2 Variables

In this section we define and provide a brief statistical description of the selected outputs

and inputs used to estimate classrooms’ technical efficiency (Equation 3.6) and of the contextual

variables used to explain differences between teachers (Equation 3.9).

The different cognitive and non-cognitive dimensions of the education received by an indi-

vidual make it difficult to measure educational output. Still, there is a general consensus in the

literature in favour of considering the results of standardized tests (for example the EGD) as

educational outputs. Hanushek (1997) reports that around two thirds of educational research

studies use test scores as output and Hoxby (1999) highlights that these tests are difficult to

forge and, above all, that they are taken into account by parents and politicians when making

decisions on education. Thus, for our study we have selected as output variables the average

4Initially, we identify 219 schools but we classify 6 schools as outliers, with extreme values in some of the
relevant variables included in the efficiency analysis.

Gabriela Sicilia 91



Essays on the estimation of educational thecnical efficiency under endogeneity

classroom result in reading (READ) and in maths (MATHS), which measure two vehicular and

complementary cognitive dimensions5.

The educational inputs were selected considering the classical educational production func-

tion (Equation 3.2), and they represent the inputs required to carry out the learning process:

students’ characteristics (raw material), teachers (human capital) and infrastructure (physical

capital)6. Thus, the following four variables were included in the first stage of the DEA:

• ISECS: Average index of social, economic and cultural status of students in the classroom.

This index was calculated by EGD analysts to measure student’s background, and reflects

the ’raw material’ to be transformed in the learning process. The variable was calculated

through a factor analysis considering four components: highest educational attainment of

parents; highest professional status of parents; number of books in the household and level

of domestic resources.

• PNAT: Percentage of native students in the classroom. This status also reflects the ’raw

material’ to be transformed in the learning process. Previous research in Spain shows

that to be an immigrant significantly affects test scores (Calero et al., 2009; Salinas and

Sant́ın, 2012; Zinovyeva et al., 2013). Therefore, the percentage of native students should

be considered to fairly compare classrooms.

• PCORR: Percentage of students in the correct grade within the classroom. Grade retention

is a predictor variable of education outcomes (Jimerson et al., 2002). As the socio-economic

background and the native status, the non-repeater status reflects the ’raw material’ to

be transformed in the learning process. For this reason we also must include this input in

the analysis to carry out a fair comparison.

• IQER: This index captures the quality of the educational resources in the school. It is

elaborated through a factor analysis of the teachers’ responses to four questions related to

the scarcity or lack of: educational materials, computers for teaching, instructional support

staff and other support staff. It is therefore associated with the human and physical capital

available resources to produce education. The higher the index, the better the quality of

the school’s resources.

To be considered as an input in an efficiency analysis, a variable has to be significantly and

positively correlated with all outputs. This monotonicity assumption implies that additional

units of an input7 will never decrease output. Table 3.2 presents the bivariate correlations of the

selected outputs and inputs, and all correlations are found positive and statistically significant.

5The other competencies ’science’ and ’social science’ were not considered because they provide little additional
information and are highly correlated with average results in Reading and mathematics as well.

6We focus on the quality rather than just the quantity of these inputs.
7We do not include the teacher-students ratio because it is negatively and significantly correlated with the

output, thus breaking the monotonicity assumption. This negative correlation can be associated with the self-
selection problem (Webbink, 2005. p.538). Best schools are more demanded and this raises classrooms sizes up to
the legal limits, distorting the true effect of this variable on test scores. To deal with this problem we will include
this variable in the second stage after controlling for the potential endogeneity.
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This fulfilment of the monotonicity assumption is valid for classrooms belonging to schools that

randomize and also for the whole pool of classrooms included in the EGD.

Regarding explanatory variables of teachers’ efficiency, we selected and included in the anal-

ysis (Equation 3.9) the following variables:

• TEACHgen. Teacher gender. A dummy variable which takes the value one when the

teacher is a female and zero when he is a male.

• TEACHcertified. A dummy variable which takes the value one when the teacher holds a

teaching diploma and zero otherwise.

• TEACHgraduated. A dummy variable which takes the value one when the teacher holds

a bachelor’s diploma and zero otherwise.

• TEACHexp5. A dummy variable which takes the value one when the teacher has less than

five years of teaching experience and zero otherwise.

• TEACHexp10. A dummy variable which takes the value one when the teacher has less

than ten years of teaching experience and zero otherwise.

• TEACHexp30. A dummy variable which takes the value one when the teacher has more

than thirty years of teaching experience and zero otherwise.

• TEACHschold. A dummy variable which takes the value one when the teacher has been

working in the school less than five years and zero otherwise.

• TEACHtutor. A dummy variable which takes the value one when the teacher has been the

teacher of the evaluated classroom in the last two academic years, i.e. third and fourth

grades, and zero otherwise (just the current fourth year).

From these dummy variables at classroom level we define, as Equation 3.9 shows, variables

taking differences between the most and least efficient teacher (PiT −PiC) within a given school.

These variables can take values equal to -1, 0 and 1. For example, recalling the TEACHgen

variable, when the most efficient teacher in the i-th school is a male (TEACHgeniT = 0) and

the least efficient is a female (TEACHgeniC = 1), then the difference between both groups

is ∆TEACHgen = (TEACHgeniT − TEACHgenic) = −1. If both teachers have the same

gender then ∆TEACHgen = 0. And finally if the most efficient teacher in the i-th school is

a female (TEACHgeniT = 1) and the least efficient is a male (TEACHgeniC = 0) , then the

difference between both groups is equal to 1. By contrast, note that the estimation of Equation

3.10 is performed at school level so the defined dummy variables are directly included with no

differences.

Furthermore, according to Equation 3.9 we include other variables related with classroom

composition (ZiT −ZiC) to control for the possibility that, by chance, most efficient classrooms

had better conditions that explained some of the efficiency differences between teachers:

• PCGIRLS. Percentage of girls students in the classroom.

• EARLYSCH. Number of years that on average students in the classroom attended pre-

primary education.
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• PMONOPARENTAL. Percentage of students in the classroom that lives in single-parent

families. The variable was built from students answers declaring not to live simultaneously

with both biological parents.

• PQUARTER4. Percentage of students in the classroom that were born in the fourth

quarter of the year.

• CLASSIZE. Number of student in the classroom.

Again, in Equation 3.9 we compute differences in these variables between the class of the

most efficient teacher (T) and the class of the least efficient one (C), while to estimate Equation

3.10 these variables are directly introduced.

Finally, to figure out if school variables can explain part of the efficiency gap between teachers

we also include the following Wi control variables in Equations 3.9 and 3.10:

• SCHpublic. Dummy variable which takes the value one when the school is public and zero

otherwise (private school publicly funded).

• SCHrural. A dummy variable which takes the value one when the school is located in a

less than 10,000 inhabitants area and zero otherwise.

• SCHcity. A dummy variable which takes the value one when the school is located in a city

with 500,000 or more inhabitants and zero otherwise.

• PPALfemale: Dummy variable which takes the value one when the school’s principal is a

woman and zero if he is a man.

• PPALexp5. A dummy variable which takes the value one when the school’s principal has

less than five years of experience as a principal and zero otherwise.

Tables 3.3 and 3.4 show, for schools with random assignment and for all classrooms that

participated in the EGD survey respectively, the main descriptive statistics of outputs, inputs

and explanatory variables of teachers’ efficiency at classroom level. We can observe a slight

advantage in results in favour of schools that use randomization but we do not appreciate large

differences in the composition of both samples.

3.4 Results

Prior to estimating classrooms’ efficiency, we check if students were actually assigned ran-

domly into classrooms within schools and thus, if both teachers received similar students. To

do that, we conduct a mean differences t-test between groups over the students’ observable vari-

ables. We also test for differences in teachers’ observable variables to verify that they have been

randomly assigned to each classroom. Results in Table 3.5 confirm the randomization hypothe-

sis. Differences in all variables are not significant and hence we cannot reject that both groups

have similar means. Since no significant differences have been found in observable variables, it

is also expected to find no differences in non observable variables between classrooms within

schools.
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Figure 3.1 shows the distribution of the estimated efficiency scores for each group in schools

with random assignment. The estimated average mean efficiency is 91.6 with a standard devia-

tion of 5.34. As we have exposed above, the estimated efficiency scores for each unit are biased

by the presence of self-selection and their direct analysis in a second stage regression would be

misleading. However, from these estimated efficiency scores we can compute the ratios between

the most and the least efficient teachers in each school
ûiT
ûiC
≥ 1. Figure 3.2 shows the distri-

bution of these efficiency ratios. One remarkable and straightforward finding is the presence of

considerably differences between the teachers’ efficiency within primary schools in Spain. The

average ratio between the most and the least efficient teachers is 1.05 with a standard deviation

of 0.04. In other words, the best teachers are on average 5% more efficient, which means 0.86

additional standard deviations from the estimated mean efficiency. Also, we find that more than

one third of the schools (36%) show differences in teachers’ efficiency greater than one standard

deviation from the estimated average efficiency. Moreover, differences in efficiency are greater

than 10% (almost two standard deviations) in 14% of schools.

Table 3.6 presents the mean differences in efficiency, outputs and inputs between classrooms

with the most efficient and the least efficient teacher. These results restate that, in terms of

initial educational inputs and students’ characteristics, both classrooms are on average indeed

similar. We only find differences in efficiency and therefore in the students’ academic results

(because for equal level of inputs, the greater the efficiency, the greater results). On average, the

difference between the most and the least efficient teachers is 4.4 efficiency points. While the

most efficient teachers have on average an estimated efficiency score of 93.8, this score decreases

to 89.4 for the least inefficient teachers.

How do these differences in efficiency translate into students’ academic outcomes? From

Table 3.6 we can observe that classrooms assigned to the most efficient teacher obtained on

average around 18 additional points in the reading and maths scores compared to students

in classrooms assigned to the least efficient teachers8. In other words, moving one standard

deviation up the distribution of teacher efficiency is expected to raise reading and maths test

scores by 0.53 and 0.54 standards deviations respectively. This impact is notably greater than

those found in previous studies for the United States, where the teacher quality impact ranges

from 0.08 and 0.36 standard deviations (Hanushek and Rivkin, 2010). These differences have

several potential explanations. First, a country effect, i.e. that in fact differences in teachers’

quality in Spain are translated in a greater impact on students academic results. Since this is

the first study of this type for the Spanish educational context we cannot check this intuition. A

second possibility is that part of this difference is due to the analysis level of the study, we use the

classroom level when most of previous studies are based on the student level. As the outcomes

variance in the second case is naturally higher than in the first case, the impact measured in

8As is shown in Table 3.3, the average results in reading and maths test in the 426 analysed classrooms are
507 and 508 respectively, with a standard deviation of 41.9 and 42.4 respectively.
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terms of standard deviations will be grater at the classroom level9. Thirdly, differences can

be explained by the methodological methods conducted to estimate the teachers’ quality as

all previous works are based on the estimation of Value Added Models. Finally, but not less

important, these differences could be explained by the fact that most of the analysis conducted

before do not take into account the possible non-random assignment of students into classrooms

(Rothstein, 2010), whereby the true impact of teacher’s quality in terms of students outcomes

in these studies could have been underestimated.

Regarding the explanatory factors of the differences in teacher’s efficiency, Table 3.7 summa-

rizes the main descriptive of the variables included in model 3.9 and Table 3.8 reports the main

results. The first important finding is that, once we control for self-selection, differences in stu-

dents’ characteristics between classrooms (that could have occurred by chance) do not explain

teachers’ efficiency. This evidence implies that when we control for the presence of endogeneity,

the estimated classroom efficiency only reflects the teacher efficiency, i.e. the way they manage

their classrooms. Similarly, contextual variables that characterize schools seem to not affect the

efficiency gap observed between teachers within schools.

Classroom size matters. The greater the class size, the lower the estimated relative efficiency

of the best teacher. Increasing the class size in one standard deviation (almost three students)10

is expected to reduce the teachers’ efficiency gap in 0.6 standard deviations. This impact in terms

of students’ outcomes means a reduction in 0.07 standard deviations in both reading and maths

scores. These findings disagree with some previous works who have found the relation between

the number of students in class and their performance not statistically significant (Hanushek,

2003). However, most of these findings have recently been questioned by the fact that they do

not account for the presence of endogeneity (Webbink, 2005). In fact, several studies that have

analysed the impact of reducing class size on student’s results through natural experiments or

quasi-experiments, i.e. controlling for endogeneity as we do here, have found significant positive

effects in reducing the number of students in classrooms11. In this sense, Angrist and Lavy

(1999) found that reducing in eight students the class size in Israeli primary fourth grade schools

increased students’ outcomes between 0.13 and 0.29 standard deviations. In our case, the same

reduction in class size would lead to an increase in the average result of 0.20 standard deviations

in both reading and maths scores. This evidence is highly relevant, as the modification of class

size has been (and still is) the focus of several educational policies implemented in different

countries. Particularly, in the Spanish context, where several budget cuts conducted in the last

years have led to an increment in the ratio of students per teacher.

Concerning the significance of teachers’ characteristics we find, in line with earlier research,

that neither teacher’s experience nor their academic training impacts teachers’ efficiency or

quality (Kane et al., 2008). However, we find that other observable factors do affect teachers’

9In fact, the outcome variance at the student level in our sample doubles the observed at the classroom level.
10On average, classrooms in our sample have 24 students with a standard deviation of 2.87 (Table 3.3).
11Krueger (1999), Angrist and Lavy (1999), Akerhielm (1995), Boozer and Rouse (2001), Case and Deaton

(1998) and Lindahla (2001).
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efficiency. Firstly, female teachers are more efficient than their male colleagues. The fact of

being a female instead of a male increases the teacher’s efficiency in 0.11 standard deviations,

which implies that classrooms assigned to a female teacher obtain on average 0.08 additional

standards deviations in both reading and maths compared to classrooms with male teachers.

These results are consistent with previous works that have found a positive effect of female

teachers in students’ results in primary education (Krieg, et al., 2005; Chudgar and Sankar, 2008)

and also in Spanish secondary education (Escard́ıbul y Mora, 2013). Although literature about

this issue is not conclusive, several countries (e.g. United States, United Kingdom or Finland)

have promoted the male participation in teaching profession in primary education in the last

decade. Our empirical results suggest that these kinds of policies seem to be inappropriate for

the Spanish primary education. In this case, it would be recommendable to further investigate

what attitudes characterize female teachers to try to compensate and reinforce male teachers’

attitudes and their relation with the students.

Teachers’ seniority in the school positively affects their efficiency. Having less than five years

in the school reduces the teacher’s efficiency in 0.13 standard deviations, which implies a de-

crease of 0.09 standard deviations in students’ academic results. This effect can be explained

by different factors. Firstly, due to the entrance costs that entails to enter in a new school. The

first years teachers have to acknowledge the school work dynamics, the colleagues, etc. and that

can affect their performance until they can be fully adapted to the school. Another potential

explanation could be related to the current mechanisms for selecting, hiring and retaining teach-

ers, which would operate differently in the private and the public sector. In the private sector

hiring and firing teachers is relatively flexible, so our results evidence that efficient teachers are

correctly identified and retained into the system while, conversely, inefficient teachers may be

fired and have to start in a new school.

In the Spanish public sector things are not so flexible, and although the principal could

detect the most inefficient teachers, he/she would be practically unable to let them go. In this

sector, seniority and efficiency can be related through the teacher’s selection criteria based on an

entrance examination. International evidence shows that, in systems where exists this type of

entrance examinations, the score that teachers obtain is positively related to their effectiveness in

terms of student outcomes (Clotfelter et al. 2007). In Spain, the score obtained in the entrance

examination determines not only the access to a permanent position in the public school system,

but also the preference to choose the precise school to work in. The best teachers tend to obtain

better scores and are able to choose the school they actually prefer to work in, being more likely

to remain in this schools longer throughout their teaching career. On the contrary, teachers who

do not achieve a minimum score to access to a permanent position will have accept a temporary

position or try teach in the private sector. Even among those who obtain the minimum score

to access the public system, the ones with lower scores will have to work in schools that were

not there first choice and will be more likely to leave them when other preferable position opens

up. So, the greater the score obtained in the entrance examination, the higher likelihood of

remaining more years in the same school.
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Finally, we find that having been with the same students two consecutive years increases

teachers’ efficiency. Teachers who have been the classroom teacher the last two academic years

(third and fourth grade) are on average 0.14 standard deviations more efficient than those wo

only have been the current teacher one year. This effect implies in terms of students educational

results an increase of 0.10 standard deviations in reading and maths test scores. Therefore, it

seems that the current Spanish organizational system of primary education in two-years academic

cycles (first and second grades, third and fourth grades, five and sixth grades) is an effective

policy. By working two consecutive years with the same group, teachers can know more about

their pupils and have a more flexible medium-term planning, which according to this evidence

seem to have positive effects on the students’ results at the end of the academic cycle.

It must be noted that these findings must be cautiously interpreted. They are a first at-

tempt to estimate teacher quality in Spanish primary education by the estimation of technical

efficiency. Clearly further research is needed in this direction to deeply explore the channels

through which these findings operate. Indeed, the fact that the constant in Equation 3.9 results

highly significant in the estimates reinforces the idea that there are other (observable or not)

factors behind the teachers’ efficiency.

Finally, to empirically assess the impact of not controlling for the self-selection problem in

Table 3.9 we present the results of the estimation of Equation 3.10 including all the classrooms

evaluated in the EGD (i.e., including also those schools where students were not randomly

assigned) to explain teachers’ efficiency. Results significantly differ from those in Table 3.8.

When we do not take into account the endogeneity problem, some teachers characteristics are

no longer significant and vice-versa. But, even more relevantly, some of the students’ and schools’

characteristics are now significant (due to the presence of non-observable characteristics). These

results provide strong evidence that not taking into account the self-selection in the estimations,

i.e. the endogeneity, can bias the results and lead to inaccurate conclusions about which factors

explain the teachers’ efficiency and to inappropriate educational public policy recommendations.

3.5 Conclusions

In this chapter we study the effect of teachers’ efficiency on students’ academic achievement

in Spanish primary schools controlling by the presence of endogeneity due to educational self-

selection. From the ’General Diagnostic Assessment’ Database administered to students in their

fourth grade of primary education in Spain during 2009, we can identify those schools with two

classrooms where students and teachers were randomly assigned.

The results evidence the presence of significant differences between teachers’ efficiency, i.e.

teachers’ quality, in primary schools, which also have a large impact on students outcomes. The

best teachers are on average 5% more efficient than the worst teachers within schools. In terms of

students’ results, this difference in efficiency implies that students assigned to the most efficient

teacher obtain on average 0.43 and 0.44 additional standard deviations on reading and maths

test scores compared to students assigned to the least efficient teacher. This impact is notably
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greater than that found in previous studies for the U.S., where the teacher quality impact ranges

from 0.08 to 0.36 standard deviations (Hanushek and Rivkin, 2010). These differences can have

several potential explanations, but perhaps the most relevant is the fact that most of those

previous analysis do not take into account the possible non-random assignment of students into

classrooms (Rothstein, 2010), whereby, the true impact of teacher’s quality in terms of student

outcomes could result underestimated.

We also explored potential explanatory factors of teachers’ efficiency. The first relevant

finding is that, once we have controlled for the presence of self-selection, there is no statistically

significant relationship between the estimated teacher’s efficiency differences and the variables

that characterized students and schools. In other words, the estimated efficiency scores actually

reflect only issues related to teachers and how they manage their classroom. A second significant

result with important implications for education policy is that class size matters. The smaller

the class size, the grater the teacher’s efficiency. This evidence is consistent with earlier studies

that have analyzed the impact on students’ outcomes of reducing the class size through natural

experiments or quasi-experiments (e.g. Angrist and Lavy, 1999). Finally, neither teacher’s

experience nor their academic training impacts teachers’ efficiency. Conversely, we find three

teacher’s characteristics to be positively associated with their performance: being female teacher,

having more than five years in the school and having been the teacher of the group for two

consecutive years improves teacher’s efficiency. These findings suggest that the current methods

for selecting and retaining teachers in primary schools are effective in both public and private

sector. Also, the existing organizational academic system based on two-year cycles seems to be

a useful educational policy to increase teachers’ performance.

This chapter provides robust empirical evidence about the importance of teacher’s efficiency

on students’ outcomes and about the existence of significant differences between teachers inside

Spanish primary schools. The measurement of the channels through which these effects operate

is not so straightforward. While we found some features that explain part of these differences in

teachers’ efficiency, a great part still remains to be explained. This part is probably associated

with hardly measurable characteristics such as the attitudes of teachers toward students or the

teaching practices conducted in class by each teacher. Unfortunately we do not have objective

information about these variables in this study to further analyse how to improve classroom

management by teachers, and this is a future line of research that we would like to address

in the near future. Also, another limitation of this research is that we measured teacher’s

efficiency based solely on the effect on the cognitive skills of students. It would therefore be an

interesting contribution to incorporate non-cognitive skills for a broader measure of the teachers’

performance and to compare the results with those obtained in this chapter.
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3.7 Figures and Tables

Table 3.1: Criteria for grouping students in primary schools (Principal’s questionnaire)

Question Grouping criteria adopted in the school Random 

PD26A Surnames alphabetical order or other random criteria YES 

PD26B Balance between girls and boys YES 

PD26C Linguistic reasons NO 

PD26D According to academic performance NO 

PD26E Looking for homogeneity of student’s characteristics  NO 

PD26F Pursuing heterogeneity among students YES 

PD26G Other criteria NO 

 

Table 3.2: Bivariate correlations between inputs and outputs
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Table 1Criteria for grouping students in primary schools (Principal’s questionnaire) 

Question Grouping criteria adopted in the school Random 

PD26A Surnames alphabetical order or other random criteria YES 

PD26B Balance between girls and boys YES 

PD26C Linguistic reasons NO 

PD26D According to academic performance NO 

PD26E Looking for homogeneity of students’ characteristics  NO 

PD26F Pursuing heterogeneity among students YES 

PD26G Other criteria NO 

 

 

Table 2 Bivariate correlations between inputs and outputs 

 

Classrooms with random assignment All classrooms EGD 

ISECS PNAT PCORR IQER ISECS PNAT PCORR IQER 

READ 0.646** 0.200** 0.483** 0.150** 0.665** 0.205** 0.490** 0.079** 

MATHS 0.627** 0.204** 0.454** 0.142** 0.634** 0.171** 0.467** 0.093** 

Note: ** Correlation is significant at 1%  // Sample size: classrooms in schools with random assignment =  
426// All classrooms evaluated in EGD = 1,295 

 

 

  

Notes: ** Correlation is significant at 1% // Sample size: Groups in schools with random assignment =
426// All groups evaluated in EGD = 1,295
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Figure 3.1: Classrooms estimated efficiency distribution in schools with random assignment
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Table 5 Differences of means in students and teachers characteristics between classrooms in schools with 

random assignment  

  

GROUP A GROUP B Diff_mean t p-value 
Mean Std.  Mean Std.  

READ 509.2 42.7 506.7 42.2 2.58 0.628 0.530 
MATHS 506.4 41.4 506.8 42.5 -0.41 -0.100 0.920 
ISECS 2.868 0.547 2.841 0.526 0.03 0.536 0.592 
PNAT 0.907 0.120 0.902 0.121 0.00 0.424 0.672 
PREPEAT 0.094 0.087 0.100 0.083 -0.01 -0.787 0.432 
PCGIRLS 0.482 0.112 0.492 0.115 -0.01 -0.922 0.357 
PEARLYSCH 3.771 0.391 3.780 0.382 -0.01 -0.242 0.809 
PMONOPARENTAL 0.133 0.092 0.147 0.097 -0.01 -1.561 0.119 
PQUARTER4 0.226 0.090 0.234 0.100 -0.01 -0.863 0.388 
CLASSIZE 24.221 2.797 24.033 2.945 0.19 0.675 0.500 
TEACHgen* 0.765 0.425 0.732 0.444 0.03 0.781 0.435 
TEACHcertified* 0.779 0.416 0.761 0.428 0.02 0.460 0.646 
TEACHgraduated* 0.183 0.388 0.197 0.399 -0.01 -0.370 0.712 
TEACHexp5* 0.080 0.272 0.075 0.264 0.00 0.181 0.857 
TEACHexp10* 0.164 0.371 0.197 0.399 -0.03 -0.880 0.379 
TEACHexp30* 0.399 0.491 0.366 0.483 0.03 0.697 0.486 
TEACHschold* 0.263 0.441 0.286 0.453 -0.02 -0.542 0.588 
TEACHtutor* 0.770 0.422 0.742 0.439 0.03 0.675 0.500 

Note: Sample size 426 (213 in each group).  

 

 

Figure 1Classrooms estimated efficiency distribution in schools with random assignment 

 

Note: Sample size = 426. Efficiency scores were estimated at classroom 
level in schools where students were randomly assigned (213 schools).  
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Figure 2 Distribution of teacher’s efficiency ratios within schools with random assignment 

 
Note: Ratios were computed between the most efficient and the least 
efficient teacher. Sample size = 213 schools.  

 

 

Table 6 Differences in estimated efficiency scores, academic results students’ characteristics between 

classrooms with the most and the least efficient teacher in schools with random assignment  

  
GROUP T GROUP C 

Diff_mean t p-value 
Mean Std.  Mean Std.  

SCORE 93.78 5.10 89.40 4.72 4.38 9.283 0.000 
READ 517.3 41.4 498.6 44.9 18.72 4.664 0.000 
MATHS 515.6 39.6 497.6 45.1 18.06 4.548 0.000 
ISECS 2.842 0.533 2.867 0.557 -0.03 -0.494 0.622 
PNAT 0.901 0.118 0.908 0.122 -0.01 -0.651 0.516 
PREPEAT 0.102 0.079 0.092 0.098 0.01 1.264 0.207 
PCGIRLS 0.490 0.113 0.484 0.113 0.01 0.474 0.635 
PEARLYSCH 3.794 0.405 3.757 0.372 0.04 0.986 0.325 
PMONOPARENTAL 0.146 0.094 0.134 0.095 0.01 1.299 0.195 
PQUARTER4 0.225 0.098 0.235 0.092 -0.01 -1.179 0.239 
CLASSIZE 24.122 2.906 24.131 2.845 -0.01 -0.034 0.973 

Note: Sample size 426 (213 in each group). // Group T and Group C are defined as the group with the most and 
the least efficient teacher respectively. 
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Table 3.3: Descriptive statistics of outputs, inputs and teacher’s efficiency explanatory variables
for classrooms in schools with random assignment

Variables Mean Std. Dev. Min Max 

READ 508.0 42.4 354.6 599.9 

MATHS 506.6 41.9 375.4 635.7 

ISECS 2.85 0.54 1.21 3.99 

PNAT 0.90 0.12 0.30 1.00 

PCORR 0.90 0.08 0.45 1.00 

IQER 3.29 0.91 1.00 4.73 

TEACHgen* 0.75 0.43 0.00 1.00 

TEACHcertified* 0.77 0.42 0.00 1.00 

TEACHgraduated* 0.19 0.39 0.00 1.00 

TEACHexp5* 0.08 0.27 0.00 1.00 

TEACHexp10* 0.18 0.39 0.00 1.00 

TEACHexp30* 0.38 0.49 0.00 1.00 

TEACHschold* 0.27 0.45 0.00 1.00 

TEACHtutor* 0.76 0.43 0.00 1.00 

CLASSIZE 24.13 2.87 12.00 34.00 

PGIRLS 0.49 0.11 0.00 0.82 

PEARLYSCH 3.78 0.39 2.32 4.73 

PMONOPARENTAL 0.14 0.09 0.00 0.57 

PQUARTER4 0.23 0.10 0.00 0.50 

SCHpublic** 0.66 0.48 0.00 1.00 

SCHrural** 0.14 0.35 0.00 1.00 

SCHcity** 0.08 0.26 0.00 1.00 

PPALfemale** 0.46 0.50 0.00 1.00 

PPALexp5** 0.24 0.43 0.00 1.00 
 

Notes: Sample size = 426 classrooms in schools with random assignment // *Reference categories for
teacher’s dummies variables are: teacher gender male, non certified, non graduated, more than 5 year
experience, more than 10 years experience, less than 30 years experience, more than 5 years in the school,
non tutor respectively. // **Reference categories for school dummies variables are: private school, non
rural, non big city, principal gender male and principal experience more than five years respectively.
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Table 3.4: Descriptive statistics of outputs, inputs and classroom’s efficiency explanatory vari-
ables in all evaluated classrooms in EGD

Variables Mean Std. Dev. Min Max 

READ 500.8 45.9 278.0 625.8 

MATHS 500.9 44.8 323.8 641.8 

ISECS 2.78 0.55 1.00 4.03 

PNAT 0.89 0.13 0.17 1.00 

PCORR 0.90 0.10 0.26 1.00 

IQER 3.42 0.91 1.00 4.73 

TEACHgen* 0.74 0.44 0.00 1.00 

TEACHcertified* 0.80 0.40 0.00 1.00 

TEACHgraduated* 0.17 0.37 0.00 1.00 

TEACHexp5* 0.10 0.30 0.00 1.00 

TEACHexp10* 0.22 0.42 0.00 1.00 

TEACHexp30* 0.35 0.48 0.00 1.00 

TEACHschold* 0.33 0.47 0.00 1.00 

TEACHtutor* 0.69 0.46 0.00 1.00 

CLASSIZE 22.89 4.39 5.00 36.00 

PGIRLS 0.49 0.12 0.00 1.00 

PEARLYSCH 3.74 0.43 1.60 4.93 

PMONOPARENTAL 0.14 0.09 0.00 0.57 

PQUARTER4 0.23 0.10 0.00 0.83 
SCHpublic** 0.69 0.46 0.00 1.00 

SCHrural** 0.24 0.43 0.00 1.00 

SCHcity** 0.09 0.29 0.00 1.00 

PPALfemale** 0.48 0.50 0.00 1.00 

PPALexp5** 0.34 0.47 0.00 1.00 
 Notes: Sample size = 1,295 (all classrooms evaluated in EGD) // *Reference categories for teacher’s

dummies variables are: teacher gender male, non certified, non graduated, more than 5 year experience,
more than 10 years experience, less than 30 years experience, more than 5 years in the school, non tutor
respectively.**Reference categories for school dummies variables are: private school, non rural, non big
city, principal gender male and principal experience more than five years respectively.
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Table 3.5: Differences of means in students and teachers characteristics between classrooms in
schools with random assignment

  

GROUP A GROUP B Diff_mean t p-value 
Mean Std.  Mean Std.  

READ 509.2 42.7 506.7 42.2 2.58 0.628 0.530 

MATHS 506.4 41.4 506.8 42.5 -0.41 -0.100 0.920 

ISECS 2.868 0.547 2.841 0.526 0.03 0.536 0.592 

PNAT 0.907 0.120 0.902 0.121 0.00 0.424 0.672 

PREPEAT 0.094 0.087 0.100 0.083 -0.01 -0.787 0.432 

PGIRLS 0.482 0.112 0.492 0.115 -0.01 -0.922 0.357 

PEARLYSCH 3.771 0.391 3.780 0.382 -0.01 -0.242 0.809 

PMONOPARENTAL 0.133 0.092 0.147 0.097 -0.01 -1.561 0.119 

PQUARTER4 0.226 0.090 0.234 0.100 -0.01 -0.863 0.388 

CLASSIZE 24.221 2.797 24.033 2.945 0.19 0.675 0.500 

TEACHgen* 0.765 0.425 0.732 0.444 0.03 0.781 0.435 

TEACHcertified* 0.779 0.416 0.761 0.428 0.02 0.460 0.646 
TEACHgraduated* 0.183 0.388 0.197 0.399 -0.01 -0.370 0.712 
TEACHexp5* 0.080 0.272 0.075 0.264 0.00 0.181 0.857 
TEACHexp10* 0.164 0.371 0.197 0.399 -0.03 -0.880 0.379 
TEACHexp30* 0.399 0.491 0.366 0.483 0.03 0.697 0.486 
TEACHschold* 0.263 0.441 0.286 0.453 -0.02 -0.542 0.588 
TEACHtutor* 0.770 0.422 0.742 0.439 0.03 0.675 0.500 

 
Notes: Sample size 426 (213 in each group). // Group A and Group B are randomly defined.// *Reference
categories for teacher’s dummies variables are: teacher men, non certified, non graduated,more than 5
year experience, more than 10 years experience, less than 30 years experience, more than 5 years in the
school, non tutor respectively.

Table 3.6: Differences in estimated efficiency scores, academic results and students’ character-
istics between classrooms with the most and the least efficient teacher in schools with random
assignment

  
GROUP T GROUP C 

Diff_mean t p-value 
Mean Std.  Mean Std.  

SCORE 93.78 5.10 89.40 4.72 4.38 9.283 0.000 
READ 517.3 41.4 498.6 44.9 18.72 4.664 0.000 
MATHS 515.6 39.6 497.6 45.1 18.06 4.548 0.000 
ISECS 2.842 0.533 2.867 0.557 -0.03 -0.494 0.622 
PNAT 0.901 0.118 0.908 0.122 -0.01 -0.651 0.516 
PREPEAT 0.102 0.079 0.092 0.098 0.01 1.264 0.207 
PGIRLS 0.490 0.113 0.484 0.113 0.01 0.474 0.635 
PEARLYSCH 3.794 0.405 3.757 0.372 0.04 0.986 0.325 
PMONOPARENTAL 0.146 0.094 0.134 0.095 0.01 1.299 0.195 
PQUARTER4 0.225 0.098 0.235 0.092 -0.01 -1.179 0.239 
CLASSIZE 24.122 2.906 24.131 2.845 -0.01 -0.034 0.973 

 
Notes: Sample size 426 (213 in each group). // Group T and Group C are defined as the group with the
most and the least efficient teacher respectively.
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Table 3.7: Descriptive statistics of efficiency ratios and explanatory variables in schools with
random assignment

 

 

Variables Mean Std. Dev. Min Max t p-value 

Efficiency Ratio 1.05 0.04 1.00 1.162 17.78 0.000 

d_TEACHgen* 0.02 0.58 -1.00 1.00 0.59 0.554 

d_TEACHcertified* 0.05 0.60 -1.00 1.00 1.15 0.252 

d_TEACHgraduated* -0.02 0.57 -1.00 1.00 -0.60 0.548 

d_TEACHexp5* -0.05 0.38 -1.00 1.00 -1.99 0.048 

d_TEACHexp10* -0.09 0.49 -1.00 1.00 -2.65 0.009 

d_TEACHexp30* 0.08 0.64 -1.00 1.00 1.83 0.068 

d_TEACHschold* -0.07 0.57 -1.00 1.00 -1.82 0.071 

d_TEACHtutor* 0.10 0.55 -1.00 1.00 2.75 0.006 

d_CLASSIZE* -0.01 1.95 -13.00 13.00 -0.07 0.944 

d_PGIRLS* 0.01 0.11 -0.35 0.37 0.66 0.508 

d_PEARLYSCH* 0.04 0.30 -1.02 1.13 1.80 0.073 

d_PMONOPARENTAL* 0.01 0.11 -0.34 0.30 1.56 0.121 

d_PQUARTER4* -0.01 0.13 -0.41 0.29 -1.21 0.227 
 Notes: Sample size = 213 schools with random assignment // *Variables in differences were computed

as the difference between the group with the most efficient teacher and the group with the least efficient
teacher.
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Table 3.8: Explanatory factors of teacher’s efficiency ratios in schools with random assignment

 

 

Ratio score Coef. 
Robust 

P>z p-value 
Marginal 

effects dy/dx 
Std. Err. 

Std. Err. 

Constant 1.048 0.005 0.000 0.000 --- --- 

d_TEACHgen* 0.009 0.004 0.043 0.043 0.006 0.003 

d_TEACHcertified* 0.013 0.012 0.279 0.279 0.009 0.008 

d_TEACHgraduated* 0.004 0.013 0.770 0.770 0.003 0.009 

d_TEACHexp5* -0.004 0.010 0.713 0.713 -0.003 0.007 

d_TEACHexp10* 0.010 0.008 0.227 0.227 0.007 0.006 

d_TEACHexp30* -0.004 0.005 0.345 0.345 -0.003 0.003 

d_TEACHschold* -0.011 0.006 0.071 0.071 -0.008 0.004 

d_TEACHtutor* 0.012 0.005 0.026 0.026 0.008 0.004 

d_CLASSIZE -0.003 0.001 0.024 0.024 -0.002 0.001 

d_PGIRLS -0.007 0.026 0.779 0.779 -0.005 0.018 

d_EARLYSCH 0.008 0.011 0.436 0.436 0.006 0.007 

d_PMONOPARENTAL -0.016 0.025 0.515 0.515 -0.011 0.018 

d_PQUARTER4 -0.029 0.024 0.212 0.212 -0.020 0.016 

SCHpublic** 0.005 0.006 0.403 0.403 0.003 0.004 

SCHrural** 0.008 0.009 0.403 0.403 0.006 0.007 

SCHcity** 0.007 0.008 0.355 0.355 0.005 0.006 

PPALfemale** -0.008 0.006 0.180 0.180 -0.005 0.004 

PPALexp5** -0.010 0.007 0.162 0.162 -0.007 0.004 

/sigma 0.039 0.002         

 Notes: Sample size = 213 schools // Dependent variable: -teacher efficiency ratio ∆ûiT /ûiC ≥ 1 // Tobit
regression model with 9 left-truncated observations at value 1. // dy/dx = Marginal effects computed
at covariates value equal to zero// *Variables in differences were computed as the difference between
the group with the most efficient teacher and the group with the least efficient teacher // **Reference
categories for school dummies variables are: private school, non rural, non big city, principal gender male
and principal experience more than five years respectively.
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Table 3.9: Explanatory factors of classrooms efficiency for all classrooms evaluated in EGD

 

 

  Coef. Bootstrap z P>z 
Std. Err. 

constant 90.80 2.52 35.97 0.000 

TEACHgen* 0.926 0.380 2.440 0.015 

TEACHcertified* 0.794 1.024 0.780 0.438 

TEACHgraduated* 1.327 1.111 1.190 0.233 

TEACHexp5* 0.541 0.696 0.780 0.437 

TEACHexp10* 0.139 0.591 0.240 0.814 

TEACHexp30* 0.807 0.392 2.060 0.039 

TEACHschold* -0.782 0.498 -1.570 0.116 

TEACHtutor* 0.892 0.401 2.230 0.026 

CLASSIZE -0.097 0.048 -2.040 0.042 

PGIRLS -0.846 1.390 -0.610 0.543 

EARLYSCH -0.055 0.459 -0.120 0.905 

PMONOPARENTAL -6.675 1.774 -3.760 0.000 

PQUARTER4 -5.855 1.595 -3.670 0.000 

SCHpublic** -0.043 0.419 -0.100 0.919 

SCHrural** -0.052 0.435 -0.120 0.905 

SCHcity** 2.271 0.606 3.750 0.000 

PPALfemale** 0.083 0.343 0.240 0.809 

PPALexp5** 0.009 0.352 0.030 0.979 

/sigma 5.429 0.121 44.98 0.000 

 Notes: Sample size = 1,295 (all classrooms evaluated in EGD) // Dependent variable: Classroom esti-
mated efficiency scores.// Truncated regression model with 64 right-truncated observations at value 100.
// Bootstrap replications = 2000.// *Reference categories for teacher’s dummies variables are: teacher
men, non certified, non graduated,more than 5 year experience, more than 10 years experience, less than
30 years experience, more than 5 years in the school, non tutor respectively. // **Reference categories for
school dummies variables are: private school, non rural, non big city, principal gender male and principal
experience more than five years respectively
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Concluding Remarks and Future

Research

“One never notices what has been done;

one can only see what remains to be done.”

Marie Curie

This section summarizes and discusses the general contributions of this Ph.D. dissertation

and exposes some possible future research directions.

The three chapters included in this research provide new insights about how endogeneity

affects the estimation of educational technical efficiency and suggest some approaches to deal

with this problem. Although this is a very well-known and widespread econometrics problem

frequently observed in numerous economic processes, its presence has been overlooked in the

context of technical efficiency estimation, partly due to the inexistence of easy alternatives to

deal with it. In this regard, this research makes a novel contribution not only by investigating

the potential effects of this problem on DEA estimates, but also by providing methodological

solutions to tackle this issue in empirical research.

Chapter 1 presented strong evidence to conclude that, although DEA is robust to negative

endogeneity (Bifulco and Bretshneider, 2001, 2003 and Ruggiero, 2003), the existence of sig-

nificant positive endogeneity severely impairs DEA performance. This evidence takes greater

significance since, unfortunately, high positive endogenous scenarios are likely to be found in

several public sector production processes, especially in education provision. Furthermore, the

Monte Carlo simulations revealed that this decline in DEA performance is further driven by the

misidentification of the most inefficient units with low level of the endogenous input. As tech-

nical efficiency estimates are relative measures, the most efficient units (from which we should

learn the best practices) are also misidentified.

It is worth noting that, in the education sector, this misidentification not only has consider-

able effects on the design of educational policies, but it also reinforces the educational inequalities

already associated with the endogeneity problem. The most inefficient schools operate in the
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most disadvantaged contexts and it is crucial that they are correctly identified so effective poli-

cies and practices can be implemented to correct their inefficient behaviour and reverse their

current situation.

Drawing on this evidence, as practitioners we wondered how we could deal with this problem

in an empirical application when we suspect the presence of endogeneity. This requires both to

identify the problem and to correct it. From the Monte Carlo simulations we provided a simple

heuristic method to identify the presence of endogenous inputs, which performs correctly in all

simulated scenarios. The power of this heuristic relies on the DGP used in the Monte Carlo

experiments. Although we try to simulate a simple and flexible DGP that replicates a general

production setting, more research would be necessary to generalize the validity of the heuristic

method. In addition to the identification of endogenous environments, getting insights from

the Instrumental Variable approach in econometrics, we proposed a novel strategy to tackle the

endogeneity problem in the estimation of technical efficiency: the ’Instrumental Input DEA’.

The Monte Carlo simulations actually showed that this strategy could accurately deal with the

presence of endogenous inputs in the estimation of technical efficiency, therefore allowing us to

correctly identify the most inefficient units.

In addition to the theoretical analysis, this research also provides evidence from two em-

pirical applications where the endogeneity problem is present. In Chapter 2 we applied the

strategies proposed in Chapter 1 to data from Uruguayan public secondary schools. Using the

heuristic method we detected that the socio-economic background of the school was positive and

highly correlated with schools’ efficiency, and consequently we performed the II-DEA strategy

to estimate schools technical efficiency. In Chapter 3, based on the impact evaluation literature,

we dealt with the endogeneity problem from an alternative approach. We used data from a nat-

ural experiment in Spanish primary schools to estimate teacher’s efficiency. Based on a random

assignment of students into classrooms within schools we exploited the exogenous variation in

technical efficiency between teachers to assess their performance.

Beyond the particular empirical findings for each educational context discussed in chapters

2 and 3, both analysis provide strong evidence that taking or not into account the endogeneity

problem can lead to radically different educational public policy recommendations to improve

the provision of schooling.

To conclude, this Ph.D. dissertation provides novel answers to important questions but

naturally, it also raises other questions and opens the door to new lines of future research. First,

the most immediate extension would be to analyse the effects of endogeneity in parametric

frontier techniques. Secondly, although the experimental Monte Carlo design tried to replicate

a general production setting that is in line with several previous studies, the effectiveness of

the proposed heuristic method and the II-DEA strategy depend on the parameters and the

functional form assumed. In this vein, to derive the asymptotic properties of both strategies

could be a potential contribution.

Third, from the pioneer work of Charnes et al. (1978) and Banker et al. (1981) several
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extensions of the DEA model have been developed to improve its robustness (for example to

deal with the presence of outliers, special types of data or non-discretionary inputs in the model).

In this sense, it is expected that the same problems affecting the DEA performance could affect

the performance of these extensions. Thus, a natural and attractive future line of research

could be to extent the analysis conducted in this research to other non-parametric efficiency

techniques (Free Disposal Hull, order-m, order-alpha, total factor productivity indexes based on

DEA, conditional efficiency models and so on).

Finally, both strategies to tackle the endogeneity problem proposed in this research are rooted

in the causal inference literature. In this direction, it would be a promising future research line to

attempt to combine other existing impact evaluation techniques (e.g. differences in differences,

discontinuity regressions or propensity score matching) with non-parametric frontier methods

to measure efficiency.
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Abstract

Essays on the estimation of educational technical

efficiency under endogeneity

Introduction

The evaluation of technical efficiency in the Public Sector has gained growing attention over

the last decades. Public services providers have a natural interest in efficiency assessments since

they face up increasing demands of quantities and quality together with financial constraints.

Within this framework, the measurement of educational technical efficiency is one of the current

major concerns as the education expenditure is one of the largest public budget items and the

public sector is usually the main provider of education in most modern countries.

Given that the investment in quality education is essential to ensure sustainable development

and economic growth (Barro and Lee, 1996, 2012; Hanushek and Kimbo, 2000; De la Fuente,

2011; Hanushek and Woessmann, 2012a, 2012b), several countries in the last decades have

significantly increased their public educational budget. However, these efforts have not always

been translated into better academic achievements. This fact has led researchers and policy-

makers to wonder why these additional investments in educational resources do not lead to

improvements in the quality of education. Although the answer is not evident, this fact alerts

about the presence of great inefficiencies in schooling production and has spurred the interest

in measuring these inefficiencies and explaining their main sources, with the ultimate goal of

correcting these behaviours.

The educational production has, like most public sector production processes, some special

characteristics that complicate the estimation of accurate efficiency measures (i.e. the completely

unknown production technology, the lack of prices information or the frequent use of multiple

proxy variables to approximate the real output). In this sense, non-parametric techniques and

particularly the DEA model proposed by Charnes, Cooper and Rhodes (1978) and Banker,

Charnes and Cooper (1984) are the most commonly applied methods for measuring educational

technical efficiency (Worthington, 2001). This is mainly because of two reasons: its flexibility
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allows to adapting it to the stated particularities of this sector, and the results of this technique

can be easily translated to stakeholders and politicians.

However, there is a major concern frequently observed in educational production processes

which has been overlooked in the context of the technical efficiency estimation: the endogeneity

problem. In statistical terms, this phenomenon implies the presence of a significant correlation

between one input and the error term, and it can arise as the result of multiple sources (e.g.

measurement errors, unobserved heterogeneity, the omission of relevant variables in the model

specification or the presence of simultaneity). In the context of the estimation of technical effi-

ciency with frontier techniques, this problem of endogeneity implies the presence of a significant

correlation between at least one input and the efficiency term (Peyrache and Coelli, 2009).

In the education provision framework, the most common source of endogeneity is the ed-

ucational self-selection. Students are not exogenously assigned to schools but their allocation

depends on decisions made by parents, teachers and schools’ principals. Indeed, this problem has

been one of the focuses of attention in econometrics along the last three decades. Endogeneity

has been argued to be the basis for multiple theoretical and empirical critiques of traditional

findings and multiple methods have been developed in the literature to deal with this problem

(Webbink 2005, Schlotter et al. 2011).

However, this widespread acknowledgement in the context of econometrics of the existence

of the self-selection or the endogeneity problem is ignored when we move into the world of

the efficiency estimation. There are only a handful of studies that using alternative simulation

strategies have tested the performance of DEA under some kind of endogeneity (Gong and

Sickles, 1992; Orme and Smith, 1996; Bifulco and Bretschneider, 2001, 2003; Ruggiero, 2003,

2004). Consequently, this problem is still an unknown and incipient issue in the literature of the

estimation of frontiers using DEA and thus it is frequently overlooked when practitioners apply

this technique.

Objectives and Results

Based on this background, the present Ph.D. dissertation aims to contribute theoretically

and empirically to understand the extent to which the endogeneity problem, a major concern

frequently observed in educational production processes, affects the estimation of technical ef-

ficiency using the Data Envelopment Analysis (DEA) technique. Furthermore, this research

combines insights from impact evaluation literature and non-parametric frontier techniques in

order to provide potential solutions to deal with this problem in educational empirical applica-

tions and obtain more accurate efficiency estimates.

Chapter 1 analyses theoretically to which extent does the presence of endogeneity in the

production process affect DEA estimates in finite samples, so practitioners performing this tech-

nique can be aware of the accuracy of their estimates. To do this, we firstly illustrate the

endogeneity problem and its implications for the efficiency estimation from a conceptual per-
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spective. Secondly, using synthetic data generated in a Monte Carlo experiment we evaluate how

different levels of positive and negative endogeneity can affect DEA performance. We conclude

that, although DEA is robust to the negative endogeneity (Bifulco and Bretshneider, 2001, 2003

and Ruggiero, 2003), a significant positive endogeneity severely impair DEA performance.

Building upon this evidence, the question that arises is: how can we deal with this problem

in an empirical application if we suspect for the presence of endogeneity? This requires both to

identify the problem and to correct it. From the Monte Carlo simulations we provided a simple

heuristic method to identify the presence of endogenous inputs, which performs correctly in all

simulated scenarios. In addition, getting insights from the Instrumental Variable approach in

econometrics, we proposed a novel strategy to tackle the endogeneity problem in the estimation

of technical efficiency: the ’Instrumental Input DEA’. The Monte Carlo simulations actually

showed that this strategy could accurately deal with the presence of endogenous inputs in the

estimation of technical efficiency, therefore allowing us to correctly identify the most inefficient

units.

In Chapter 2 we applied the strategies proposed in Chapter 1 to data from Uruguayan public

secondary schools. Using the heuristic method we detected that the socio-economic background

of the school was positive and highly correlated with schools’ efficiency, and consequently we

performed the II-DEA strategy to estimate schools technical efficiency. Beyond estimating

the efficiency potential improvements for each school and identifying the better and the worst

performers, we aim to explore the explanatory factors of the efficient behaviours. Thus, once

we have estimated the II-DEA efficiency scores we regress them on several contextual variables

related to students and schools characteristics. The results of this second stage allow us to draw

conclusions about which educational policies and practices would be desirable to design and

promote in order to improve the quality of education.

The II-DEA strategy proposed in the first chapter and implemented in Chapter 2 requires

finding a good instrument. This is not an easy task and, in some contexts, it may not even be

possible to find one. In the third chapter, taking again insights from the impact evaluation liter-

ature we provide an alternative strategy to deal with the endogeneity problem in the estimation

of educational technical efficiency.

In Chapter 3, based on the impact evaluation literature, we dealt with the endogeneity

problem from an alternative approach. We used data from a natural experiment in Spanish

primary schools to estimate teacher’s efficiency. Based on a random assignment of students into

classrooms within schools we exploited the exogenous variation in technical efficiency between

teachers to assess their performance. This strategy allows us to obtain an unbiased measure

of the true teacher’s effect on students’ achievement and to explore the main drivers of teach-

ers’ efficiency. As in the previous chapter, we also perform the analysis without taking into

account the presence of self-selection to empirically quantify the effect of this problem in terms

of educational public recommendations.
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Conclusions

In conclusion, this research provides new insights about how endogeneity affects the estima-

tion of educational technical efficiency and suggests some approaches to deal with this problem.

Chapter 1 presented strong evidence to conclude that, although DEA is robust to negative endo-

geneity (Bifulco and Bretshneider, 2001, 2003 and Ruggiero, 2003), the existence of significant

positive endogeneity severely impairs DEA performance. This evidence takes greater significance

since, unfortunately, high positive endogenous scenarios are likely to be found in several public

sector production processes, especially in education provision. Furthermore, the Monte Carlo

simulations revealed that this decline in DEA performance is further driven by the misidentifica-

tion of the most inefficient units with low level of the endogenous input. As technical efficiency

estimates are relative measures, the most efficient units (from which we should learn the best

practices) are also misidentified.

Furthermore, the Monte Carlo simulations revealed that this decline is further driven by the

misidentification of the most inefficient units with low level of the endogenous input. As technical

efficiency estimates are relative measures, the most efficient units (from which we should learn

the best practices) are also misidentified. It is worth to note, that in the education sector

this misidentification has not only considerable effects on the design of educational policies but

also it reinforces the educational inequalities already caused by the endogeneity problem. The

most inefficient schools operate in most disadvantaged context and thus, they should implement

effective policies and practices to correct their inefficient behaviour and reverse their current

situation.

In addition to the theoretical analysis, this research also provides evidence from two em-

pirical applications where the endogeneity problem is present. Beyond the particular empirical

findings for each educational context discussed in chapters 2 and 3, both analysis provide strong

evidence that taking or not into account the endogeneity problem can lead to radically different

educational public policy recommendations to improve the provision of schooling.

To conclude, this Ph.D. dissertation provides novel answers to important questions but

naturally, it also raises other questions and opens the door to new lines of future research. First,

the most immediate extension would be to analyse the effects of endogeneity in parametric

frontier techniques. Secondly, although the experimental Monte Carlo design tried to replicate

a general production setting that is in line with several previous studies, the effectiveness of

the proposed heuristic method and the II-DEA strategy depend on the parameters and the

functional form assumed. In this vein, to derive the asymptotic properties of both strategies

could be a potential contribution.

Third, from the pioneer work of Charnes et al. (1978) and Banker et al. (1981) several

extensions of the DEA model have been developed to improve its robustness (for example to

deal with the presence of outliers, special types of data or non-discretionary inputs in the model).

In this sense, it is expected that the same problems affecting the DEA performance could affect

the performance of these extensions. Thus, a natural and attractive future line of research
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could be to extent the analysis conducted in this research to other non-parametric efficiency

techniques (Free Disposal Hull, order-m, order-alpha, total factor productivity indexes based on

DEA, conditional efficiency models and so on).

Finally, both strategies to tackle the endogeneity problem proposed in this research are rooted

in the causal inference literature. In this direction, it would be a promising future research line to

attempt to combine other existing impact evaluation techniques (e.g. differences in differences,

discontinuity regressions or propensity score matching) with non-parametric frontier methods

to measure efficiency.

Gabriela Sicilia 121





Resumen

Ensayos sobre la estimación de la eficiencia

técnica bajo la presencia de endogeneidad

Introducción

El estudio de la medición de la eficiencia técnica en el sector público ha crecido notoriamente

en las últimas décadas. Los proveedores de servicios públicos tienen un interés natural en medir

la eficiencia, producto de las crecientes demanda de servicios y restricciones presupuestarias que

éstos enfrentan diariamente. En este contexto, la medición de la eficiencia técnica educativa

es una de las principales preocupaciones actuales dado que el gasto en educación es una de las

mayores partidas del presupuesto público y que el sector público por lo general es el principal

proveedor de la educación en la mayoŕıa de los páıses modernos.

Teniendo en cuenta que la inversión en educación de calidad que realiza un páıs es esen-

cial para asegurar su desarrollo y crecimiento económico sostenible (Barro y Lee, 1996, 2012;

Hanushek y Kimko, 2000; De la Fuente, 2011; Hanushek y Woessmann, 2012a, 2012b), varios

páıses en las últimas décadas han aumentado considerablemente su presupuesto público educa-

tivo. Sin embargo, estos esfuerzos no siempre se han traducido en mejores logros académicos.

Este hecho ha llevado a los investigadores y los responsables poĺıticos a preguntarse por qué

estas inversiones adicionales en recursos educativos no dan lugar a mejoras en la calidad de

la educación. A pesar de que la respuesta no es evidente, este hecho alerta sobre la presen-

cia de ineficiencias en la producción educativa. Por tanto, no sorprende el gran interés en la

medición de estas ineficiencias y en intentar explicar sus principales fuentes para corregir estos

comportamientos.

La producción educativa, al igual que la producción del sector público, tiene caracteŕısticas

especiales (por ejemplo, el desconocimiento de la tecnoloǵıa de producción, falta de información

de los precios o el carácter multidimensional de la producción) que dificultan la estimación

de la eficiencia (Bowlin, 1986). En este sentido, las técnicas no paramétricas y en particular

el modelo DEA propuesto por Charnes, Cooper y Rhodes (1978) y Banker, Charnes y Cooper

(1984) han sido los métodos más comúnmente aplicados para medir la eficiencia técnica educativa
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(Worthington, 2001). La razón principal radica en su flexibilidad que permite adaptarse a las

particularidades del sector mencionadas anteriormente, y que los resultados de esta técnica puede

ser fácilmente traducido a los diversos agentes y poĺıticos involucrados en el proceso educativo.

Sin embargo, existe un problema mayor observado en los procesos de producción educativa y

que ha sido pasado por alto en el contexto de la estimación de la eficiencia técnica: la presencia de

endogeneidad. En términos estad́ısticos, este fenómeno implica la presencia de una correlación

significativa entre uno de los inputs y el término de error. En el contexto de la estimación

de la eficiencia técnica, el problema de endogeneidad implica la presencia de una correlación

significativa entre uno de los inputs y el término de eficiencia (Peyrache y Coelli, 2009).

En el ámbito educativo la causa más frecuente de endogeneidad está asociada a la auto-

selección escolar. En general los alumnos no son asignados aleatoriamente a los colegios, sino que

por el contrario, su distribución depende de las decisiones de padres, profesores y directores. En

efecto, este problema ha sido uno de los principales focos de atención principal de la econometŕıa

en las últimas tres décadas. El problema de la endogeneidad ha sido la base de múltiples cŕıticas

teóricas y emṕıricas a los resultados tradicionales en economı́a de la educación y múltiples

métodos han sido desarrollados en la literatura para poder hacer frente a este problema (Webbink

2005, Schlotter et al. 2011).

Sin embargo, este amplio reconocimiento de la existencia de la auto-selección escolar o el

problema de endogeneidad es ignorado cuando nos movemos al mundo de la estimación de la

eficiencia. Existen escasos estudios previos que utilizando estrategias de simulación alternativas

han testeado el desempeño de DEA bajo la presencia de algún tipo de endogeneidad (Gong y

Sickles, 1992; Orme y Smith, 1996; Bifulco y Bretschneider, 2001, 2003; Ruggiero, 2003, 2004).

Por tanto, este problema sigue siendo un tema desconocido e incipiente en la literatura de la

estimación de fronteras utilizando DEA y por ende es un problema frecuentemente ignorado por

los investigadores al aplicar esta técnica.

Objetivos y Resultados

En base a estos antecedentes, la presente Tesis Doctoral tiene como objetivo contribuir,

teórica y emṕıricamente, a entender hasta qué punto el problema de endogeneidad, uno de

los principales problemas observado frecuentemente en los procesos de producción educativos,

afecta a la estimación de la eficiencia técnica mediante el Análisis Envolvente de Datos (DEA).

Asimismo, esta investigación combina ideas de la literatura de evaluación de impacto con las

técnicas de medición de eficiencia no paramétricas con el fin de aportar potenciales soluciones

para hacer frente a este problema en aplicaciones emṕıricas educativas y obtener aśı estimaciones

de la eficiencia más precisas.

El Caṕıtulo 1 analiza teóricamente en qué medida la presencia de endogeneidad en el proceso

de producción puede afectar a las estimaciones DEA en muestras finitas, de modo que los

investigadores que aplican esta técnica conozcan la precisión de sus estimaciones. Para ello, en
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primer lugar se ilustra desde un punto de vista conceptual el problema de la endogeneidad y sus

implicaciones en la estimación de la eficiencia. En segundo lugar, utilizando datos generados en

un experimento de Monte Carlo evaluamos cómo diferentes niveles de endogeneidad positiva y

negativa pueden afectar al desempeño de DEA.

A partir de los resultados hallados previamente, la siguiente pregunta que surge es ¿Cómo

podemos hacer frente a este problema en una aplicación emṕırica cuando sospechamos de la

presencia de endogeneidad? Esto implica responder dos cuestiones: cómo identificar el prob-

lema y cómo enfrentarlo. A partir de las simulaciones de Monte Carlo se propone un método

heuŕıstico sencillo que permite identificar correctamente la presencia de inputs endógenos en

todos los escenarios simulados. Además, a partir de la técnica de Variables Instrumentales (VI)

ampliamente utilizada en econometŕıa, ofrecemos una nueva estrategia para abordar el prob-

lema de endogeneidad en la estimación de la eficiencia técnica: el ”Instrumental Input DEA”.

Las simulaciones de Monte Carlo evidencian que esta estrategia propuesta permite abordar ade-

cuadamente la presencia de los inputs endógenos en la estimación de la eficiencia técnica ya que

identifica correctamente las unidades más ineficientes.

En el caṕıtulo 2 se aplican las estrategias propuestas en el Caṕıtulo 1 a datos de colegios

públicos de educación secundaria en Uruguay. Utilizando el método heuŕıstico detectamos que

el nivel socio-económico medio de los colegios está alta y positivamente correlacionado con la

eficiencia técnica de los mismos, y por lo tanto aplicamos la estrategia II-DEA para estimar la

eficiencia técnica de los colegios controlando por endogeneidad. Más allá de la estimación de

las potenciales mejoras de eficiencia para cada colegio y de identificar a los mejores y peores,

el objetivo es explorar los factores explicativos de los comportamientos eficientes. Por lo tanto,

una vez que han sido estimados los ı́ndices de eficiencia II-DEA éstos se regresan sobre diversas

variables contextuales que caracterizan a los estudiantes y a los colegios. Los resultados de esta

segunda etapa permiten extraer conclusiones acerca de cuáles poĺıticas y prácticas educativas

seŕıan deseables de diseñar y promover con el fin de mejorar la calidad de la educación.

La estrategia II-DEA propuesta en el primer caṕıtulo e implementada en el caṕıtulo 2 requiere

encontrar un buen instrumento lo cual no es una tarea fácil y en algunos contextos, incluso no

es posible encontrar uno. En el tercer caṕıtulo, tomando nuevamente ideas de la literatura

de evaluación de impacto se proporciona una estrategia alternativa para tratar el problema de

endogeneidad en la estimación de la eficiencia técnica educativa.

En el caṕıtulo 3 se utilizan datos de un experimento natural en las escuelas de educación

primaria en España para estimar la eficiencia de los maestros. En base a la asignación aleatoria

de los estudiantes a las clases dentro de los colegios explotamos la variación exógena de la

eficiencia técnica entre los maestros para evaluar su desempeño. Esta estrategia nos permite

obtener una medida objetiva del verdadero efecto del maestro sobre los logros de los estudiantes

y explorar los principales factores que explican la eficiencia de los docentes.

Conclusiones
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En conclusión, esta investigación proporciona nuevos conocimientos sobre cómo el problema de la

endogeneidad afecta la estimación de la eficiencia técnica educativa y provee algunas estrategias

para hacer frente a este problema.

El Caṕıtulo 1 evidencia que a pesar de que DEA es robusto a la presencia de endogeneidad

negativa (Bifulco y Bretshneider, 2001, 2003 y Ruggiero, 2003), la existencia de una endogenei-

dad positiva y significativa perjudica gravemente el desempeño de DEA. Estos resultados tienen

especial relevancia, ya que, lamentablemente, los escenarios de endogeneidad positiva y alta son

los que se encuentran con mayor probabilidad en varios procesos de producción del sector público

y sobre todo en la provisión de educación.

Por otra parte, las simulaciones de Monte Carlo revelan que este deterioro en la técnica

es impulsado principalmente por la identificación errónea de las unidades más ineficientes con

bajos niveles del input endógeno. Dado que las estimaciones de la eficiencia técnica son medidas

relativas, esta correcta identificación implica que también se identifiquen incorrectamente a

las unidades más eficientes (de las que debeŕıamos aprender las mejores prácticas). Vale la

pena destacar, que en el sector de la educación esta identificación errónea no sólo tiene efectos

considerables en el diseño de poĺıticas educativas sino que también refuerza las desigualdades

educativas ya causadas por la presencia de endogeneidad. Los centros educativos más ineficientes

operan en contextos más desfavorecidos y, por tanto, debeŕıan ser los primeros en implementar

poĺıticas y prácticas educativas efectivas para corregir sus comportamientos ineficientes y revertir

su situación actual.

Adicionalmente a este ejercicio teórico, los caṕıtulos 2 y 3 proporcionan evidencia de dos

aplicaciones emṕıricas en el que el problema de endogeneidad está presente. Más allá de los

resultados concretos de cada contexto educativo analizado (que se discuten en cada caṕıtulo),

ambos análisis proporcionan evidencia robusta de que el tomar o no en consideración el problema

de endogeneidad conduce a resultados radicalmente diferentes en términos de las recomenda-

ciones de poĺıtica educativa pública para mejorar la calidad de la enseñanza.

Para finalizar, esta Tesis Doctoral proporciona nuevas respuestas a preguntas relevantes,

pero, naturalmente, también plantea nuevas interrogantes y abre las puertas a diversas ĺıneas de

investigación futuras. En primer lugar, la contribución más inmediata seŕıa extender el análisis

de los potenciales efectos de la endogeneidad sobre las técnicas de frontera paramétricas. En

segundo lugar, aunque el diseño experimental de las simulaciones Monte Carlo intenta replicar

un contexto de producción general y está en ĺınea con la mayoŕıa de los estudios previos, la

eficacia del método heuŕıstico propuesto y la estrategia II-DEA depende de los parámetros y

la forma funcional asumidos. En este sentido, derivar las propiedades asintóticas de ambas

estrategias seŕıan contribuciones prometedoras ya que permitiŕıan generalizar las conclusiones

de la presente investigación.

En tercer lugar, desde el trabajo pionero de Charnes et al. (1978) y Banker et al. (1981) se

han desarrollado diversas extensiones del modelo DEA para mejorar su robustez (por ejemplo,

ante la presencia de valores at́ıpicos, de datos con caracteŕısticas especiales o para incluir inputs

126 Gabriela Sicilia



Resumen

no discrecionales en el modelo). En este sentido, es de esperar que los mismos problemas que

afectan el desempeño de DEA pudieran afectar el desempeño de estas extensiones. Por lo

tanto, una ĺınea de investigación futura natural y atractiva seŕıa extender el análisis realizado

en esta investigación a otras técnicas de eficiencia no paramétricas (por ejemplo FDH, orden-m,

orden-alfa, ı́ndices de productividad total de factores basados en DEA, modelos de eficiencia

condicionada).

Por último, ambas estrategias propuestas en esta investigación para abordar el problema de

endogeneidad están basadas en la literatura inferencia causal. En este sentido, seŕıa interesante

hacer el esfuerzo de adaptar otras técnicas de evaluación de impacto existentes (diferencias en

diferencias, regresiones de discontinuidad, Propensity Score Matching, etc.) al contexto de la

medición de la eficiencia utilizando métodos de frontera no paramétricos.
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