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Abstract

In this paper the Galilean, scaling and translational self–similarity con-

ditions for the AKNS hierarchy are analysed geometrically in terms of the

infinite dimensional Grassmannian. The string equations found recently by

non–scaling limit analysis of the one–matrix model are shown to correspond to

the Galilean self–similarity condition for this hierarchy. We describe, in terms

of the initial data for the zero–curvature 1–form of the AKNS hierarchy, the

moduli space of these self–similar solutions in the Sato Grassmannian. As

a byproduct we characterize the points in the Segal–Wilson Grassmannian

corresponding to the Sachs rational solutions of the AKNS equation and to

the Nakamura–Hirota rational solutions of the NLS equation. An explicit 1–

parameter family of Galilean self–similar solutions of the AKNS equation and

the associated solution to the NLS equation is determined.
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1 Introduction

Matrix models have been extensively used as a non–perturbative formulation of
string theory. In the Hermitian one–matrix model with even potentials [4], the dou-
ble scaling limit implies for the specific heat the Korteweg–de Vries hierarchy and an
additional constraint, the so called string equation. This is relevant in the Witten–
Kontsevich [27] description of the the intersection theory of the moduli space of
complex curves. Motivated by some anomalous behaviour of the solutions to the
string equation, a modification of it was proposed in [6], the 2D–stable quantum
gravity. The former string equation corresponds to invariance under Galilean trans-
formations and the later to invariance under scaling transformations. Further, it
was shown [20] that for the symmetric unitary matrix model with even potentials
and some boundary terms in the double scaling limit the specific heat satisfies the
modified Korteweg–de Vries hierarchy and a string equation, corresponding to the
self–similarity condition under scaling transformations.

The infinite–dimensional Grassmannian model of Sato [24] for the Korteweg–de
Vries hierarchy and the associated periodic flag manifold have been extensively used
in the analysis of these string equations, [15, 14].

The interplay of matrix models with different integrable systems is of great inter-
est. Very recently a non–scaling limit analysis of the Hermitian one–matrix model
not restricted to the even potential case has been given, [5]. It is found that the
Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy appears naturally in the model be-
sides a string equation. The Korteweg–de Vries hierarchy is contained in the AKNS
hierarchy as a reduction, and therefore appears in the model before one takes the
double scaling limit. The AKNS hierarchy is a complexified version of the Nonlin-
ear Schrödinger (NLS) hierarchy and also contains the modified Korteweg–de Vries
hierarchy. In [5] one can find a discussion of the topological field theory associated
with the AKNS hierarchy. The mentioned string equation corresponds, as we shall
show, to a Galilean self–similarity condition for the AKNS hierarchy.

Because the AKNS hierarchy is not so well–known as the Korteweg–de Vries and
that we shall deal with it along this paper, let us present now some facts about it.
In [2] this hierarchy was first used implicitly to solve a number of equations by a
multicomponent inverse scattering method or inverse spectral transform [1]. But the
hierarchy appeared explicitly in [12] where it was extensively studied [11, 18]. In [10]
the finite gap solutions were analysed and for the real version, the NLS hierarchy,
this was done in [22]. One can express these solutions in terms of theta functions
for the corresponding hiperelliptic curve. In the papers [7, 26] a detailed account of
the Grassmannian model, Baker and τ–functions can be found. In addition, in [3]
the Toda–AKNS hierarchy and its τ–functions were introduced from the point of
view of representation theory for affine Lie algebras and the Birkhoff factorization
method! . Notice also the similarity with the hierarchy appearing in [5].

In this paper we analyse the Sato Grassmannian geometry of the moduli space
of solutions to the string equation of the non–scaling limit of the one–matrix model,
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and more generally of self–similar solutions under any of the local symmetries of
the AKNS hierarchy. These are Galilean, scaling and translational transformations.
We give a parametrization of this moduli space in terms of the initial condition for
the zero–curvature 1–form of the AKNS hierarchy. As a byproduct we obtain the
points in the Segal–Wilson Grassmannian corresponding to the weighted scaling self–
similar rational solutions of [23, 17], and we find a 1–parameter family of Galilean
self–similar solutions to the AKNS hierarchy.

In the second section we introduce the AKNS and NLS± hierarchies. We prove
that a Galilean self–similar solution is self–similar under certain weighted scaling,
with the scaling weights determined by the initial data for some associated conserved
densities. We present also a zero–curvature type formulation of the string equations.

In the following section we consider the Birkhoff factorization problem for the
AKNS hierarchy and its relation with the Grassmannian. There we formulate the
two main results of the paper. The first one determines the stucture of the initial
conditions for which the Birkhoff factorization problem implies self–similar solu-
tions, and the second giving the structure of the set of points in the Grassmannian
associated with solutions to the string equations. That is, we analyse the moduli
space in the Grassmannian.

Finally, in section 4 we examine several examples. We consider the mixed
Galilean and translational self–similar condition, which corresponds to Galilean self–
similarity in appropriate shifted coordinates. We obtain points that do not belong to
the Segal–Wilson Grassmannian but to the Sato Grassmannian and can be expressed
in terms of Gaussian and Weber’s parabolic cylinder functions. We also give a fam-
ily of Galilean self–similar solutions of the AKNS equation and the corresponding
reduction to the NLS+ equation, an explode–decay non–localized wave. The scaling
case with different weights is also considered in shifted coordinates. Now, there
are some points that belong to the Segal–Wilson Grassmannian, they correspond to
the rational solutions of [23] for the AKNS equation, and some of them reduces to
the NLS+ equation giving the rational solutions of [17]. The subspaces in the Sato
Grassmannian can be expressed in terms of Tricomi–Kumm! er’s hipergeometric
confluent func tions that, in the mentioned rational case, are Laurent polynomials.

2 AKNS hierarchy and string equations

We begin this section with the definition of the integrable equations known as the
AKNS hierarchy, which is a complexified version of the NLS hierarchy. It is defined
in terms of a couple of scalar functions p, q that depend on an infinite number of
variables t := {tn}n≥0 ∈ C∞ which are local coordinates for the time manifold T .
In this convention we adopted t1 to be the space coordinate, usually denoted by x,
and tn with n > 1 corresponds to a time variable. The coordinate t0 as we shall see
below is associated to a symmetry of the standard AKNS hierarchy (n > 1).

Definition 2.1 The AKNS hierarchy for p, q is the following collection of com-
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patible equations






∂np = 2pn+1,

∂nq = −2qn+1,

where n ≥ 0, ∂n := ∂/∂tn and pn, qn and hn are defined recursively by the relations

pn =
1

2
∂1pn−1 + phn−1,

qn = −1

2
∂1qn−1 + qhn−1,

∂1hn = pqn − qpn, n ≥ 1

with the initial data
p0 = q0 = 0, h0 = 1.

From the recurrence relations one gets for example

p1 = p, q1 = q, h1 = 0

p2 =
1

2
∂1p, q2 = −1

2
∂1q, h2 = −1

2
pq

p3 =
1

4
∂2

1p−
1

2
p2q, q3 =

1

4
∂2

1q −
1

2
pq2, h3 =

1

4
(p∂1q − q∂1p).

The n = 0 flow is usually not considered in the standard AKNS hierarchy, but
its inclusion will prove quite convenient. The equations for that flow are







∂0p = 2p,

∂0q = −2q,

which means that

p(t0, t1, . . . ) = exp(2t0)p̃(t1, . . . ), q(t0, t1, . . . ) = exp(−2t0)q̃(t1, . . . ).

The functions (p̃, q̃) satisfy the standard AKNS hierarchy, and this t0–flow reflects
the fact that given a solution (p̃, q̃) to the standard AKNS hierarchy (n > 0) then
(ecp̃, e−cq̃) is a solution as well for any c ∈ C. The n = 1 flow is an identity.

For n = 2 the equations are






2∂2p = ∂2
1p− 2p2q,

2∂2q = −∂2
1q + 2pq2,

and for n = 3 one has






4∂3p = ∂3
1p− 6pq∂1p,

4∂3q = ∂3
1q − 6pq∂1q.

The principal reduction p = q = v implies the modified Korteweg–de Vries equation
4∂3v = ∂3

1v − 6v2∂1v, and the reduction defined by p = 1 and q = −u determines

4



the Korteweg–de Vries equation ∂3u = ∂3
1u+ 6u∂1u. Observe also that when p = 0

one obtains the heat equation 2∂2p = ∂2
1p, which is a particular case of the heat

hierarchy 2n−1∂np = ∂n
1 p.

From the recurrence relations one easily deduces that

∂1hn+1 = ∂nh2,

from where it follows that hn+1 = ∂n∂
−1
1 h2 and so

∂mhn+1 = ∂nhm+1, (2.1)

giving an infinity set of non–trivial local conservation laws [8].
Notice that the real reduction q = ∓p∗ and tn 7→ itn produces the NLS± hierarchy

for which the t2–flow is 2i∂2p = −∂2
1p± 2|p|2p, the NLS± equation, and the t3–flow

is 4∂3p = −∂3
1p± 6|p|2∂1p.

Definition 2.2 The NLS± hierarchy

i∂np = 2pn+1

is defined in terms of the recursion relations

pn =
i

2
∂1pn−1 + phn−1

∂1hn = ∓2Im pp∗n,

and p0 = 0, h0 = 1.

An essential feature of the AKNS hierarchy relies in its zero–curvature formula-
tion [2, 12, 18]. If {E,H, F} is the standard Weyl–Cartan basis for the simple Lie
algebra sl(2,C) of 2 × 2 complex, traceless matrices we define

Qn := pnE + hnH + qnF,

and denote by

Ln(λ) :=
n
∑

m=0

λmQn−m,

where λ is a complex spectral parameter. Introducing the differential 1–form

χ =
∑

n≥0

Lndtn,

one is allowed to formulate the AKNS hierarchy as the zero–curvature condition

[d− χ, d− χ] = 0,
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where d is the exterior derivative operator on the differential forms ΛT . This aspect
of the AKNS hierarchy is connected with the spectral problem

∂1Ψ =

(

λ p
q −λ

)

Ψ,

where

Ψ =

(

ψ1

ψ2

)

.

For the NLS± hierarchy one has also a zero–curvature formulation. Now the
Qn = pnE + ihnH ∓ p∗nF are maps from T into the real Lie algebras su(2) and
su(1, 1) respectively.

Let us now describe the local symmetries of the hierarchy. First we have the
shifts in the time variables, the infinite set of translational symmetries are isospectral
symmetries of the hierarchy in the sense that they preserve the associated spectral
problem. Let ϑ be

ϑ(t) := t + θ,

the action of translations, where

θ := {θn}n≥0 ∈ C
∞,

are the shifts of the time variables.
We have a local action of the abelian group C∞ on the time manifold T , then it

follows

Proposition 2.1 If (p, q) is a solution to the AKNS hierarchy then so is (ϑ∗p, ϑ∗q).

But there are also two local non–isospectral symmetries. One is the scaling symme-
try, and the other is the Galilean symmetry. Next we define both of them

Definition 2.3 The Galilean transformation t 7→ γa(t) is given by

γa(t)n :=
∑

m≥0

(

n+m

m

)

amtn+m

where a ∈ C.
The scaling transformation t 7→ ςb(t) is represented by the relations

ςb(t)n := enbtn

where b ∈ C.

We have two additive local actions of C over T . One can show that

Proposition 2.2 If (p, q) is a solution of the AKNS hierarchy then so are
(γ∗ap, γ

∗
aq) and (ebς∗b p, e

bς∗b q).
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It proves convenient to define

t(λ) :=
∑

n≥0

λntn.

Observe that for the isospectral symmetries we have

ϑ∗t(λ) = t(λ) + θ(λ)

where
θ(λ) :=

∑

n≥0

θnλ
n,

and that for the non–isospectral symmetries one has

γ∗at(λ) = t(λ + a), ς∗b t(λ) = t(ebλ).

Notice that for the corresponding solutions (p̃, q̃) of the standard AKNS hierar-
chy the Galilean action is (exp(2t(a))γ∗ap̃, (exp(−2t(a))γ∗a q̃), the exponential factors
are a result of the flow in t0 induced by the Galilean transformation. The related fun-
damental vector fields, infinitesimal generators of the action of translation, Galilean
and scaling transformations are given by

∂n, n ≥ 0, γ =
∑

n≥0

(n+ 1)tn+1∂n, ς =
∑

n≥1

ntn∂n,

respectively. They generate the linear space C{∂n, ς,γ}n≥0 which is the Lie algebra
of local symmetries of the AKNS hierarchy, the non–trivial Lie brackets are

[∂n, ς] = n∂n, [∂n+1,γ] = (n + 1)∂n, [ς,γ] = 2γ.

Consider the following vector field belonging to this Lie algebra,

X := ϑ + aγ + bς ,

with
ϑ =

∑

n≥0

θn∂n,

defining a superposition of translations, Galilean and scaling transformations.
If (p, q) is a solution of the AKNS hierarchy then there is a 1–parameter family

of solutions (pτ , qτ ) generated by the vector field X. We have the important notion

Definition 2.4 A self–similar solution under any of the mentioned symmetries
is a solution which remains invariant under the corresponding transformation.

Then we have,
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Proposition 2.3 A solution (p, q) of the AKNS hierarchy is self–similar un-
der the action of the vector field X if and only if it satisfies the generalized string
equations







Xp+ bp = 0,

Xq + bq = 0,
(2.2)

Notice that when X = γ+
∑

n≥0 θn∂n one can perform the coordinate transformation
tn+1 7→ tn+1 + θn/(n+1). Thus, the coefficient θn is equivalent to a shift in the time
coordinate tn+1.

Now, if X = ς +
∑

n≥0 θn∂n we can define the transformation tn+1 7→ tn+1 +
θn+1/(b(n + 1)) and obtain in the new coordinates a vector field corresponding to
scaling and a term of type θ0∂0. This last term can be understood as follows. Given
a solution (p, q) to the AKNS hierarchy then (exp(b(1+2θ0))ς

∗
b p, (exp(b(1−2θ0))ς

∗
b q)

is a solution as well. So solutions self–similar under the vector field X correspond in
adequate coordinates, to self–similarity under this particular scaling, that we shall
call (1 + 2θ0, 1 − 2θ0) weighted scaling.

Now we shall prove that Galilean self–similarity implies scaling self–similarity.
We have,

Proposition 2.4 If (p, q) is a solution to the AKNS hierarchy self–similar un-
der the action of the vector field

γ +
∑

n≥0

θn∂n,

then it is also self–similar under the action of the vector field

ς +
∑

n≥0

θn∂n+1 − (
∑

n≥1

θnhn+1 |t=0 )∂0.

This proposition simply says that the L−1–Virasoro constraint implies the L0–
Virasoro constraint.

Proof: We have

(γ +
∑

n≥0

θn∂n)p = (γ +
∑

n≥0

θn∂n)q = 0.

Therefore, we obtain the relations

(γ +
∑

n≥0

θn∂n)pn+1 = −npn, (γ +
∑

n≥0

θn∂n)qn+1 = −nqn,

where, for example, we have used the fact that 2pn+1 = ∂np, p is killed by γ +
∑

n≥0 θn∂n and the commutation relation of this vector field and ∂n. One can equally
deduce

(γ +
∑

n≥0

θn∂n)hn+1 = −nhn.
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Because






∂n+1p = (1
2
∂n + 2hn+1)p

∂n+1q = −(1
2
∂n + 2hn+1)q

it follows






(ς +
∑

n≥0 θn∂n+1)p = 1
2
(γ +

∑

n≥0 θn∂n)p+ 2(
∑

n≥1(ntn + θn−1)hn)p

(ς +
∑

n≥0 θn∂n+1)q = −1
2
(γ +

∑

n≥0 θn∂n)q − 2(
∑

n≥1(ntn + θn−1)hn)q.

Observe that

∂n

∑

m≥1

(mtm + θm−1)hm = nhn + (γ +
∑

m≥0

θm∂m)hn+1,

as follows from (2.1). Hence, when (p, q) is self–similar under γ +
∑

m≥0 θm∂m we
have

∑

n≥1

(ntn + θn−1)hn =
∑

n≥0

θnhn+1 |t=0 .

This implies






(ς +
∑

n≥0 θn∂n+1)p− 2(
∑

n≥0 θnhn+1 |t=0 )p = 0

(ς +
∑

n≥0 θn∂n+1)q + 2(
∑

n≥0 θnhn+1 |t=0 )q = 0,

and the proposition follows.2
If we denote by p = exp(s) and q = −u exp(−s) then the AKNS hierarchy

transforms in the hierarchy appearing in [5] for the fields u = R and S = ∂1s,
and the string equation is the one above with t0 = 0 and b = θn = 0. This
hierarchy appears in that papers as a result of a non–scaling limit analysis of the
Hermitian one–matrix model. The first conserved density of the AKNS hierarchy is
proportional to the specific heat

2h2 = −pq = ∂2
1 lnZ.

If a = b = 0 one is led to the translational self–similar solutions of the AKNS
hierarchy, that is, the finite–gap solutions of the integrable equation in the spirit of
Novikov. The solutions of that type can be constructed in terms of Riemann surfaces,
in particular hiperelliptic curves, and the corresponding τ and Baker functions can
be expressed in terms of theta functions of such curves (see [10, 7] for the AKNS
equation and [22] for the NLS equation). The Galilean self–similarity condition in
the KdV case is considered by Novikov [19] as a quantized version of the finite gap
solutions.

In general the self–similarity condition can be reformulated as a zero–curvature
type condition. We define the outer derivative

δ := (a + bλ)
d

dλ
, (2.3)
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and

M := 〈χ,X〉, (2.4)

Here 〈·, ·〉 is the standard pairing between 1–forms and vector fields. Then one has,

Theorem 2.1 The zero–curvature type condition

[d− χ, δ −M ] = 0 (2.5)

is equivalent to the string equation (2.2).

Proof: This follows from the condition

δχ = LXχ,

where LX denotes the Lie derivative along the vector field X. But

LXχ = (iXd+ diX)χ,

and recalling the zero–curvature condition for χ, we obtain the desired result. 2

This theorem plays a key rôle for the analysis of the moduli space of the string
equation and it is associated with the isomonodromony method.

All results regarding symmetries can be reduced to the NLS± hierarchy with
θn = iθ̃n and θ̃n, a, b ∈ R.

3 Grassmannians and the moduli space for the

string equations

In this section we use the Grassmannian manifold Gr(2) to describe the AKNS flows,
and to characterize geometrically the string equations for the self–similar solutions
of the AKNS hierarchy. This manifold appears when one considers the Birkhoff
factorization problem.

Recall that χ defines a 1–form with values in the loop algebra Lsl(2,C) of smooth
maps from the circle S1 := {λ ∈ C : |λ| = 1} to the simple Lie algebra sl(2,C). We
define an infinite set of commuting flows in the corresponding loop group LSL(2,C)

ψ(t, λ) := exp(t(λ)H) · g(λ)

where g is the initial condition. Denote by L+SL(2,C) those loops which have a
holomorphic extension to the interior of S1 [21], and by L−

1 SL(2,C) those which
extend analitically to the exterior of the circle and are normalized by the identity
at ∞.

10



The Birkhoff factorization problem for a given ψ(t) consists in finding the rep-
resentation

ψ = ψ−1
− · ψ+, (3.1)

where ψ− ∈ L−
1 SL(2,C) and ψ+ ∈ L+SL(2,C), and is connected with the AKNS

hierarchy. The element ψ− can be parametrized by functions (p, q) in such a way
that ψ− is a solution to the factorization problem if and only if (p, q) is a solution
to the AKNS hierarchy [13]. To this end one factorizes ψ− as follows

ψ− = u · φ

where
ln u =

∑

n≥1

λ−nUn, φ = exp(
∑

n≥1

Φnλ
−nH)

here Un(t) ∈ Im adH and ∂mΦn can be expressed as polynomials on (p, q) and its
∂1–derivatives. For the elements of Sec. 2 we have the relation

Qn =
∑

i1+···+im=n
1≤m≤n

1

m!
adUi1 · · · adUimH,

and an infinite set of non–trivial local conservation laws given by

∂n(∂1Φm) = ∂1(∂nΦm),

for the evolution generated by the vector field ∂n. This conservation laws where first
found in [9] and are equivalent to the hn of [8] as is shown in [3].

The n = 0 flow is trivial, ∂0Φn = 0 and (∂0 − adH)Un = 0.
One also has that

χ := dψ+ · ψ−1
+ = P+Adψ− (Hdt(λ)) (3.2)

is the zero–curvature 1–form for the AKNS hierarchy [13]. Here id = P+ +P− is the
resolution of the identity related to the spliting

Lsl(2,C) = L+
sl(2,C) ⊕ L−

1 sl(2,C).

Observe that

Adψ−H =
∑

n≥0

λ−nQn. (3.3)

One can conclude from these considerations that the projection of the commuting
flows ψ(t) on the Grassmannian manifold [21, 25]

LSL(2,C)/L+SL(2,C) ∼= Gr(2),
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can be described in terms of the AKNS hierarchy [13, 26].
The element g determines a point in the Grassmannian manifold up to the gauge

freedom g 7→ g · h, where h ∈ L+SL(2,C). A solution of the AKNS hierarchy does
not change when g(λ) 7→ exp(β(λ)H) · g(λ) if exp(βH) ∈ L−

1 SL(2,C). We can say
that the moduli space for the AKNS hierarchy contains the double coset space

M := Γ−\LSL(2,C)/L+SL(2,C)

where Γ− is the abelian subgroup with Lie algebra C{λnH}n<0.
This makes a connection with the Grassmannian description for the AKNS hi-

erarchy given in [7, 26]. The Baker function w(t) ∈ LSL(2,C) corresponds to

w = ψ− · exp(tH) = ψ+ · g−1.

If we introduce the notation

g =

(

ϕ1 ϕ̃1

ϕ2 ϕ̃2

)

,

then we have the associated subspace

W = C {λn (ϕ̃2, −ϕ̃1) , λ
n (ϕ2, −ϕ1)}n≥0 ,

with λW ⊂ W , in the Grassmannian Gr(2), [21, 25]. The Baker function is the
unique function with its rows taking its values in W such that P+(w ·exp(−tH)) = 1.
Obviously we have

∂1w = L1w

and also
∂nw = Lnw.

The rows of the adjoint Baker function w∗ = (w−1)t are maps into the subspace

W ∗ = C

{

λnΦ, λnΦ̃
}

n≥0
∈ Gr(2),

where
Φ := (ϕ1, ϕ2), Φ̃ := (ϕ̃1, ϕ̃2).

We shall adopt this subspace as a representative of the coset g · L+SL(2,C).
Let us now try to find for which initial conditions g one gets self–similar solutions,

i.e. points in the Grassmannian that are connected to self–similar solutions of the
AKNS hierarchy.

Recall that we have the derivation δ ∈ DerL+
sl(2,C) defined in (2.3) and the

vector M(t) ∈ L+
sl(2,C) defined in (2.4). One has the

Theorem 3.1 If the initial condition g satisfies the equation

δg · g−1 + AdgK = (θ + f)H, (3.4)

for some K ∈ L+
sl(2,C) and some f ∈ L−

1 C, then the corresponding solution to the
AKNS hierarchy satisfies the string equation (2.2).
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Proof: For χ = dψ+ ·ψ−1
+ we observe that the equation (2.5) holds if and only if

M = δψ+ · ψ−1
+ + Adψ+K, (3.5)

for some K ∈ L+
sl(2,C). This, together with the factorization problem (3.1),

implies the relation

M = δψ− · ψ−1
− + Adψ−

(

(a+ bλ)
dt

dλ
H + Ad exp(tH)(δg · g−1 + AdgK)

)

.

Now, M(t) ∈ L+
sl(2,C) and Eq.(3.4) gives

M = P+Adψ−

(

(a + bλ)
dt

dλ
+ θH

)

.

Taking into account Eq.(3.2) we recover (2.4) and therefore the string equation is
satisfied. 2

Notice that the function f can be transformed into

f(λ) 7→ f(λ) + (a+ λb)
dβ

dλ
(λ),

where β ∈ L−
1 C. If b 6= 0 then one transforms f 7→ 0, but when b = 0, a 6= 0 one is

only allowed to do f 7→ cλ−1, finally if a = b = 0 we can not remove f .
The Sato Grassmannian [24] contains much more self–similar solutions than the

Segal–Wilson one [25]. In fact, only the finite gap solutions —pure translational self–
similarity— and the scaling self–similar rational solutions of Sachs [23] for the AKNS
equation, and the corresponding Nakamura–Hirota solutions for NLS+ equation [17],
are found in this Grassmannian. Therefore, we shall consider the Sato Grassmannian
Gr(2). The statements above, which are rigorous in the Segal–Wilson case, can
be extended to the Sato frame if the formal group L−

1 SL(2,C) is considered only
when acting by its adjoint action or by gauge transformations in the Lie algebra
sl(2,C)[[λ−1, λ]. In this context Eqs.(2.5,3.5,3.4) still hold.

Notice that for each equivalence class in M an element g can be taken such that
ln g ∈ sl(2,C)[[λ−1), and that any element in the coset g ·L+SL(2,C) gives the same
point in the Grassmannian. One has the

Theorem 3.2 The subspace

W ∗ = C

{

λnΦ, λnΦ̃
}

n≥0
,

with Φ(λ), Φ̃(λ) ∈ C
2, corresponds to a self–similar solution of the AKNS hierarchy

under the action of the vector field X = aγ + bς +
∑

n≥0 θn∂n, if Φ, Φ̃ have the
asymptotic expansion

Φ(λ) ∼
(

1 + ϕ11λ
−1 + · · · , ϕ21λ

−1 + ϕ22λ
−2 + · · ·

)

, λ→ ∞
Φ̃(λ) ∼

(

ϕ̃11λ
−1 + ϕ̃12λ

−2 + · · · , 1 + ϕ̃21λ
−1 + · · ·

)

, λ→ ∞,

and satisfy
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1. When b 6= 0 the ordinary differential equations

(a+ bλ)
dΦ

dλ
+ (

∑

n,m≥0

λnθn+mhm,0)Φ + (
∑

n,m≥0

λnθn+mqm,0)Φ̃ = θ(λ)ΦH,

(a+ bλ)
dΦ̃

dλ
− (

∑

n,m≥0

λnθn+mhm,0)Φ̃ + (
∑

n,m≥0

λnθn+mpm,0)Φ = θ(λ)Φ̃H.

2. When b = 0, a 6= 0 the ordinary differential equations

a
dΦ

dλ
+ (

∑

n,m≥0

λnθn+mhm,0)Φ + (
∑

n,m≥0

λnθn+mqm,0)Φ̃ = (θ(λ) − λ−1
∑

n≥0

θnhn+1,0)ΦH,

a
dΦ̃

dλ
− (

∑

n,m≥0

λnθn+mhm,0)Φ̃ + (
∑

n,m≥0

λnθn+mpm,0)Φ = (θ(λ) − λ−1
∑

n≥0

θnhn+1,0)Φ̃H,

3. And when a = b = 0 the algebraic relations

(
∑

n,m≥0

λnθn+mhm,0)Φ + (
∑

n,m≥0

λnθn+mqm,0)Φ̃ = (θ(λ) + f(λ))ΦH,

−(
∑

n,m≥0

λnθn+mhm,0)Φ̃ + (
∑

n,m≥0

λnθn+mpm,0)Φ = (θ(λ) + f(λ))Φ̃H,

where

f(λ) =
√

−det(
∑

n≥0

θnLn,0(λ)) − θ(λ) =
√

√

√

√

−det(
∑

n>0
m≥0

θmQn+m,0λ−n),
(3.6)

has the asymptotic expansion

f(λ) ∼
∑

n>0

fnλ
−n, λ→ ∞

with the recursion relation

fn = −
n−2
∑

m=1

hn−m,0fm −
∑

m≥0

θmhn+m,0.

Here we denote F0 = F |t=0 .
Proof: Since exp(tH) |t=0 = id it follows from (3.1) that ψ+ |t=0 = id (formally

g−1 = ψ− |t=0 ) and Eq.(3.5) gives

K = M |t=0 .

But, from (2.4) we have
K = 〈χ |t=0 ,ϑ〉,

14



where we have taken into account that

X |t=0 = ϑ.

Observe that

K =
∑

n≥0

θnLn |t=0 = Adg−1(θH) − P−Adg−1θH, (3.7)

where we have used (ψ− |t=0)
−1 = g. Therefore, we have

AdgK = θH − AdgP−Adg−1θH, (3.8)

When b 6= 0 we can remove the function f , and from (3.4) one gets the desired
result. When b = 0, a 6= 0 we have a contribution from f of type cλ−1. This can be
handled as follows. With the aid of Eq.(3.8) the equation (3.4) can be written as

a
dg

dλ
· g−1 − AdgP−Adg−1θH = cλ−1H.

Now, because the residue at λ = 0 of the first term on the left hand side of the
equation above vanishes we have

−resλ=0Adg−1θH = cH,

or
−
∑

n≥0

θnQn+1,0 = cH,

thus
c = −

∑

n≥0

θnhn+1,0.

When a = b = 0 the Eqs.(3.4,3.7 ) implies the form of f in the first equal-
ity of (3.6), the second expression follows from (3.8,3.3). With this the proof is
completed.2

This theorem provides us with a parametrization of the moduli space of self–
similar solutions of the AKNS hierarchy under the action of the vector field X in
terms of initial conditions for the zero–curvature 1–form χ. Notice that the equation
characterizing g depends on K =

∑

n≥0 θnLn |t=0 . Thus, if θ is a polynomial of
degree N the matrix K depends on 3N constants {pn, qn, hn}N

n=1, but the hn can be
expressed as polynomials of {pm, qm}n−1

m=1. When a or b do not vanish we have an
inclusion of this 2N–dimensional algebraic variety into the Sato Grassmannian, but
one of the parameters can be supressed because the freedom (p, q) 7→ (ecp, e−cq).
Thus, there is an inclusion of a 2N − 1–dimensional algebraic variety into the Sato
Grassmannian providing us with a description of the moduli space. When a = b = 0
one has the additional dependence on f which is a function of K only, and therefore
one has an inclusion of that algebraic variety into the Segal–Wilson Grassmannian,
the finite–gap solutions associated with hiperelliptic curves.
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4 Examples

We give in this section a concrete analysis of the ODE’s characterizing the points in
the Grassmannian associated with self–similar solutions. We start with the Galilean
case and then we study the weighted scaling case. For the Galilean case we see
that the points corresponding to self–similar solutions can be expressed in terms
of Gaussian and Weber’s parabolic cylinder functions, and that they never belong
to the Segal–Wilson Grassmannian but to the Sato Grassmannian. We give the
analytic expression of the solution for the AKNS system when tn = 0 for n > 2.
In the weighted scaling case we find that the points in the Grassmannian can be
constructed with the aid of Tricomi–Kummer’s confluent hipergeometric functions.
We see that for certain cases, when the rows of g are Laurent polynomials of different
degrees and therefore define points in the Segal–Wilson Grassmannian, these points
are associated to the rational solutions of the AKNS equation found in [23] and! to
the corresponding rational sol utions of the NLS+ equation of [17].

4.1 Galilean self–similarity

We are going to consider the string equation defined by the vector field X = γ+θ1∂1.
As we have already discussed this corresponds to self–similar solutions under the
Galilean symmetry in the shifted coordinates t2 7→ t2 + θ1/2 and tn 7→ tn for n 6= 2.
This shift allows us to avoid the singularities of the solution at t2 = 0.

The form of the initial condition is

g = id + λ−1X1 + · · · ,

which corresponds to a self–similar solution under the vector field X if it satisfies

dg

dλ
+ gθ1(p0E + λH + q0F ) = θ1

(

λ+
p0q0
2
λ−1

)

Hg (4.9)

that for Xn reads

−
(

n+ θ1
p0q0
2
H
)

Xn + θ1Xn+1(p0E + q0F ) = θ1[H,Xn+2].

If we introduce the notation

Xn =

(

An X+
n

X−
n Bn

)

(4.10)

it results

X+
n+2 = − 1

2θ1

(

n+ θ1

2
p0q0

) (

n+ 1 + θ1

2
p0q0

)

n+ 1
X+

n

X−
n+2 =

1

2θ1

(

n− θ1

2
p0q0

) (

n+ 1 − θ1

2
p0q0

)

n+ 1
X−

n
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and

An =
θ1q0

n+ θ1

2
p0q0

X+
n

Bn =
θ1p0

n− θ1

2
p0q0

X−
n

that together with X+
1 = p0/2 and X−

1 = −q0/2 gives us the matrix g. Observe
that X+

2n = X−
2n = 0 and A2n+1 = B2n+1 = 0. The expansion never converges,

we can choose p0q0 such that the first row of g is polynomial in λ−1 but the the
second row does not converge. We conclude that this solution belongs to the Sato
Grassmannian and not to the Segal–Wilson one.

Now, writing

g =

(

A X+

X− B

)

(4.11)

Eq.(4.9) for A,B reads

λ2d
2A

dλ2
− 2θ1λ

2
(

λ+
p0q0
2

)

dA

dλ
+
θ1
2
p0q0

(

1 +
θ1
2
p0q0

)

A = 0, (4.12)

λ2d
2A

dλ2
+ 2θ1λ

2
(

λ+
p0q0
2

)

dA

dλ
− θ1

2
p0q0

(

1 − θ1
2
p0q0

)

A = 0, (4.13)

and for X+, X− gives

X+ = − 1

θ1q0

(

dA

dλ
− θ1

2
p0q0λ

−1A

)

, (4.14)

X− = − 1

θ1p0

(

dB

dλ
+
θ1
2
p0q0λ

−1B

)

. (4.15)

Equations (4.12,4.13) can be transformed into confluent hipergeometric equations.
Recall that the Tricomi–Kummer’s confluent hipergeometric function U(a, c, z), [16],
is a solution of

z
d2U

dz2
+ (c− z)

dU

dz
− aU = 0

and has the asymptotic expansion [16]

U(a, c, z) ∼ z−a
∑

n≥0

(−1)n (a)n(a+ 1 − c)n

n!
z−n, z → ∞, −3

2
π < argz <

3

2
π,

where (α)n = Γ(α + n)/Γ(n). One can show that

A(λ) = (θ1λ
2)µU

(

µ

2
,
1

2
, θ1λ

2
)

17



where

µ :=
θ1
2
p0q0.

Thus,

A(λ) ∼
∑

n≥0

(−1)n (µ
2
)n(µ+1

2
)n

n!
(θ1λ

2)−n, λ→ ∞.

For B one only needs to replace in the expression for A the parameters θ1 7→ −θ1
and µ 7→ −µ. Hence

B(λ) ∼
∑

n≥0

(−µ
2
)n(−µ+1

2
)n

n!
(θ1λ

2)−n, λ→ ∞.

From (4.14,4.15) one gets the corresponding asymptotic expansions for X+, X−. In
terms of the Weber’s parabolic cylinder functions [16] one has for example

A(λ) = 2−
µ

2

(

√

2θ1λ
)2µ

exp

(

θ1
2
λ2

)

D−µ

(

√

2θ1λ
)

,

and an analogous expression for B is obtained once θ1 and µ are multiplied by −1.
Notice the appearence of the Hermite polynomials Hn and the error function Erf,
[16], when µ ∈ Z. For example when µ+ 1 = −N with N ∈ N we have

A(λ) =
(

√

2θ1λ
)−2(N+1)

HN+1

(

√

θ1λ
)

,

so that the first row of g is a polynomial, but the second is not as we already
observed. For example, we have

B(λ) = KN exp(−θ1λ2)
dN

dλN

(

exp(θ1λ
2)Erfc

(

√

−θ1λ
))

where KN is some normalization constant and Erfc = 1 − Erf is the complement to
the error function,

Erf(z) =
2√
π

∫ z

0
dt exp(−t2)

which is not a polynomial. As we have remarked before, the Galilean self–similar
solutions are always associated to subspaces in the Sato Grassmannian which never
belongs to the Segal–Wilson Grassmannian.

For the NLS± reduction we need q = ∓p∗, therefore

J ±g(λ∗)†J ± = g(λ)−1

where J + = id and J − = H . Taking into account the Eqs.(4.12,4.13,4.14,4.15) this
is fulfilled when θn = iθ̃n, θ̃n ∈ R, the initial condition q0 = ∓p∗ and A(λ∗)∗ = B(λ).
Therefore, µ = ∓iθ̃1/2 |p0|2 ∈ R.

18



Now, we analyse the Galilean invariant solutions of the AKNS equation, thus we
suppose tn = 0 for n > 2, and b = θn = 0 for n ≥ 0. This corresponds to a Galilean
self–similar solution of the AKNS hierarchy evaluated at tn = 0 for n > 2. It will
turn out to be singular in t2 = 0. So we need to shift t2 in order to avoid it.

The string equation is






t1∂0p+ 2t2∂1p = 0

t1∂0q + 2t2∂1q = 0.

Now
p(t0, t1, t2) = exp(2t0)p̃(t1, t2), q(t0, t1, t2) = exp(−2t0)q̃(t1, t2),

with






2t1p̃+ 2t2∂1p̃ = 0

−2t1q̃ + 2t2∂1q̃ = 0.

The solutions to these equations are

p̃(t1, t2) = exp

(

− t21
2t2

)

p̂(t2), q̃(t1, t2) = exp

(

t21
2t2

)

q̂(t2)

where the functions p̂, q̂ must be fixed in order to have solutions to the AKNS
equation, thus







2∂2p̂ = − 1
t2
p̂− 2p̂2q̂

2∂2q̂ = − 1
t2
q̂ + 2p̂q̂2.

Finally, one finds

p̃(t1, t2) = exp

(

− t21
2t2

)

at
−ab−1/2
2 , q̃(t1, t2) = exp

(

t21
2t2

)

bt
ab−1/2
2 .

This is a two parameter family of Galilean self–similar solutions to the AKNS hier-
archy. In fact, when one performs the shift t2 → t2 + θ1/2 one finds µ = ab, that
together with p0 (or q0) parametrizes the solution. One can see that µ is the unique
non trivial parameter recalling that if (p, q) is a solution of the AKNS then so is any
(ecp, e−cq). We have for the specific heat

∂2
1 lnZ(t1, t2, 0, . . . ) = −µ

t2
.

This is the solution corresponding to the point in the Grassmannian we have found
above.

The corresponding Galilean self–similar solution to the NLS± is of the form

p̃(t1, t2) = exp

(

i
t21
2t2

)

p̂(t2),

19



where p̂ satisfies

2∂2p̂ = − 1

t2
p̂∓ 2i|p̂|2p̂.

Writing p̂ = |p̂| exp(iargp̂) one obtains the equations

∂2|p̂| = − 1

2t2
|p̂|,

∂2argp̂ = ∓|p̂|2.

Therefore

p̃(t1, t2) = eia

√

∣

∣

∣

∣

µ

t2

∣

∣

∣

∣

exp

(

i

(

t21
2t2

∓ |µ|sgnt2 ln |t2|
))

.

Here a ∈ R is an arbitrary phase that can be removed. We have a 1–parameter
family of Galilean self–similar solutions to the NLS± defined for t2 6= 0, with

|p| =

√

∣

∣

∣

∣

µ

t2

∣

∣

∣

∣

,

so that it vanishes at t2 → ±∞ and generates a singular behaviour at t2 = 0, an
explode–decay phenomena for a non–localized wave.

4.2 Scaling self–similarity

We are going now to consider the string equation corresponding to the vector field
X = ς + θ0∂0 + θ1∂1. As we have already discussed this corresponds to self–similar
solutions under a (1 + 2θ0, 1− 2θ0) weighted scaling in the shifted coordinates t1 7→
t1 + θ1 and tn 7→ tn for n > 1. This last shift allows us to avoid possible singularities
of the solution at t1 = 0.

Let
g = id + λ−1X1 + · · ·

be the initial condition for the commuting flows ψ(t). In order to have self–similar
solutions under the vector field X, it must satisfy

λ
dg

dλ
+ g(θ1p0E + (θ0 + θ1λ)H + θ1q0F ) = (θ0 + θ1λ)Hg (4.16)

which implies for the matrix coefficients Xn of the Laurent expansion of g

−nXn − θ0[H,Xn] + θ1Xn(p0E + q0F ) = θ1[H,Xn+1].

With the use of (4.10) one finds the recurrence laws

X+
n+1 =

1

2θ1

(

−n− 2θ0 +
θ2
1p0q0
n

)

X+
n

X−
n+1 = − 1

2θ1

(

−n + 2θ0 +
θ2
1p0q0
n

)

X−
n
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and

An =
θ1q0
n
X+

n

Bn =
θ1p0

n
X−

n

that together with X+
1 = p0/2 and X−

1 = −q0/2 give us the matrix g. There are
cases for which this expansion is a polynomial in λ−1 and represents therefore not
only an asymptotic expansion but also a well defined function. We require

θ2
1p0q0 = (N+ + 2θ0)N

+ = (N− − 2θ0)N
− (4.17)

with N± ∈ N ∪ {0}, so that

X+
n , An = 0, n > N+

and
X−

n , Bn = 0, n > N−.

Hence, we get a polynomial g in λ−1 of degree N+ in the first row and degree N−

in the second one. Eqs.(4.17) imply

2θ0 = N− −N+ ∈ Z

θ2
1p0q0 = N+N− ∈ N ∪ {0}.

This gives points in Segal–Wilson Grassmannian associated with solutions of the
AKNS hierarchy (p, q) which are self–similar under the (1+N+−N−, 1−N+ +N−)
weighted scaling symmetry.

Using (4.11), Eq.(4.16) for A,B reads

λ2d
2A

dλ2
+ ((1 − 2θ0)λ− 2θ1λ

2)
dA

dλ
− θ2

1p0q0A = 0, (4.18)

λ2d
2B

dλ2
+ ((1 + 2θ0)λ+ 2θ1λ

2)
dB

dλ
− θ2

1p0q0B = 0, (4.19)

and for X+, X− we obtain the expressions

X+ = − λ

θ1q0

dA

dλ
, (4.20)

X− = − λ

θ1p0

dB

dλ
. (4.21)

Equations (4.18,4.19) are equivalent to confluent hipergeometric equations. Consider
the roots (µ+, µ−) of

µ2 − 2θ0µ− θ2
1p0q0 = 0,
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we get for θ0 the value

2θ0 = µ+ + µ−, µ+µ− = −θ2
1p0q0.

If we define
A(λ) = λµ+U(2θ1λ),

then U(z) satisfies

z
d2U

dz2
+ (1 + µ+ − µ− − z)

dU

dz
− µ+U = 0,

thus we are dealing with the Tricomi–Kummer’s confluent hipergeometric function
U(a, c, z) with a = µ+ and c = 1 + µ+ − µ−, and we deduce for A(λ) the behaviour

A(λ) ∼
∑

n≥0

(−1)n (µ+)n(µ−)n

n!
(2θ1λ)−n, λ→ ∞.

For B the analysis is the same, we only need to replace 2θ0 and 2θ1 by −2θ0 and
−2θ1 respectively in the formulas above. So the asymptotic expansion for B is

B(λ) ∼
∑

n≥0

(−µ+)n(−µ−)n

n!
(2θ1λ)−n, λ→ ∞.

From formulas (4.20,4.21) we obtain the asymptotic expansions for X+ and X−. We
have

X+(λ) ∼ 1

θ1q0

∑

n≥1

(−1)n (µ+)n(µ−)n

(n− 1)!
(2θ1λ)−n, λ→ ∞

X−(λ) ∼ 1

θ1p0

∑

n≥1

(−µ+)n(−µ−)n

(n− 1)!
(2θ1λ)−n, λ→ ∞.

Let us notice that when µ+ + µ− = 0 the function U can be expressed in terms
of the Macdonalds–Basset function [16], for example if z = 2θ1λ we have

A(λ) =

(

1 + µ+ − d

dz

)

√

z

π
exp(z/2)Kµ+−1/2(z/2).

For the NLS± reduction we need that µ+, µ− be solutions of

µ2 − 2iθ̃0 ± |θ̃1p0|2 = 0.

In the polynomial case of the AKNS hierarchy we must have (or the other way
around)

µ+ = −N+, µ− = N−.

Again, from the asymptotic expansions, we see that A,X+ and B,X− are a poly-
nomials in λ−1 of degree N+ and N− respectively. The solutions in the polynomial
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case are the rational solutions of the AKNS hierarchy appearing in [23]. To con-
nect with the notation of that paper we notice that 1 + p − q = N+ − N− and
that p = N+N− where p,q are the degree of the polynomials corresponding to
the tau functions σ, τ for the AKNS hierarchy defined in that paper. This implies
that q = (N+ − 1)(N− + 1), and so n − k = N+ and k + 1 = N− or viceversa
(n + 1 = N+ +N−), where n, k are those of [23].

One can easily see that the polynomial case described above is the only case for
which the asymptotic series converges and defines a function in a neighbourhood
of λ = ∞. Therefore, they are the only points in the Segal–Wilson Grassmannian
corresponding to weighted scaling self–similar solutions, generically we have points
in the Sato Grassmannian. Observe that for the NLS± hierarchies one arrives to
the condition 2θ0 = N− − N+ with θ0 ∈ iR, so θ0 = 0. Then µ± = ±|θ̃1p0| in
the NLS+ case and µ± = ±i|θ̃1p0| for the NLS− case. So that none of the Sachs
rational solutions for the AKNS system reduces to the NLS− equation, furthermore
it is known that this equation does not have rational solutions. Only for the NLS+

hierarchy we have points in the Segal–Wilson Grassmannian corresponding to the
reduced Sachs solutions, the Nakamura–Hirota rational solutions for NLS+ equation,
[17]. Now, N+ = N− and n = 2k + 1. Notice that in [17] it is considered not only
n = 2k, when they analyse the Boussinesq system, as was claimed in [23] but also
n = 2k + 1, when they study the NLS+ equation.

Summing, for the Segal–Wilson case we have

Proposition 4.1 The (n, k) rational solution for the AKNS hierarchy found
in [23] corresponds to the point in the Segal–Wilson Grassmannian associated to
the coset g · L+SL(2,C) where g ∈ L−

1 SL(2,C) is given by the following Laurent
polynomial

g(λ/2θ1) =





∑N+

n=0
(−N+)n(N−)n

n!
(−λ)−n 1

q0

∑N+

n=1
(−N+)n(N−)n

(n−1)!
(−λ)−n

1
p0

∑N−

n=1
(N+)n(−N−)n

(n−1)!
(λ)−n ∑N−

n=0
(N+)n(−N−)n

n!
(λ)−n



 ,

where n+ 1 = N+ +N− and k + 1 = N−. These are the only weighted scaling self–
similar solutions with a corresponding point in the Segal–Wilson Grassmannian.
None of these reduce to the NLS− hierarchy and only when N+ = N−, (n = 2k+1),
−p∗0 = q0 they reduce to solutions of the NLS+ hierarchy.
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