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Abstract. We propose an algorihmic prescription to isolate degenerate multiplets in the
tensor product of irreducible su(3)-representations based on external labelling operators and
illustrate how to obtain empirical formulae for their eigenvalue spectrum, allowing a degeneracy
separation.
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1. Introduction
The decomposition of tensor products of irreducible representations of semisimple Lie algebras
s, also known as the Clebsch-Gordan series for s, belongs nowadays to the standard techniques
in group theoretical applications to physical phenomena, and has been widely studied in the
literature [1–7]. For the classical Lie algebras, quite generic results on the decomposition of
tensor products and the multiplicities of the representations have been obtained [8–12], which
are unfortunately not always of easy practical use, as most of the formulae use the root system
and the Weyl group of a simple Lie algebra. This has the inconvenience that for a non-
root based basis of the Lie algebra (as usually encountered in physics) these results are quite
unwieldy [13, 14]. Specially for the case of unitary groups, more explicit formulae suitable for
practical computations have been obtained by various authors [15–18] by other methods.

Due to its structural simplicity, the Clebsch-Gordan series for su(3) can also be directly analyzed
in terms of the so-called external labelling problem (see e.g. [19, 20]) corresponding to the non-
canonical embedding of Lie algebras su(3) ⊂ su(3)⊕ su(3). Using the trace method [21,22], one
admissible complete set of commuting labelling operators is obtained, from which appropriate
linear combinations suitable for separating degeneracies in the Clebsch-Gordan series of su(3)
are deduced. Using the explicit decomposition formula for the tensor product of su(3)-
representations developed in [15, 23], various properties of the spectrum of labelling operators
are analyzed, and explicit empirical formulae for their eigenvalues on tensor products of the form
[1, `]⊗ [1, k] and [1, `]⊗ [k, 1] are obtained for arbitrary `, k ≥ 1.



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012019

IOP Publishing

doi:10.1088/1742-6596/1194/1/012019

2

2. Missing label operators
We recall that for any semisimple Lie algebra s of rank N (s) = l the total number of labels to
specify (finite-dimensional) irreducible representations (IRs in short) unambiguously is given by

Ξ(s) =
1

2
(dim s +N (s)). (1)

From these, l labels correspond to the eigenvalues of the Casimir operators of s [24], so that
within an IR, the number of internal labels separating the states is

χ(s) =
1

2
(dim s−N (s)). (2)

It is often convenient to label irreducible representations Γ of s using some (semisimple)
subalgebra s′ corresponding to an internal symmetry [20]. In this situation, the subalgebra
will provide 1

2(dim s′ +N (s′)) − l0 labels, where N (s′) is the number of invariants of s′ and l0
denotes the number of common invariants of s and s′ [24]. It follows that to separate the IRs of
s′ appearing with multiplicity greater than one in the decomposition of Γ, additional

n =
1

2

(
dim s−N (s)− dim s′ −N (s′)

)
+ l0 (3)

operators, called either missing label operators or subgroup scalars (MLO in short), are required.
The total number of available operators of this kind is m = 2n. For n > 1, the labelling operators
must commute with each other to avoid non-trivial interactions [19].

3. The non-canonical embedding su (3) ⊂ su (3)⊕ su (3)
In order to construct a basis of su (3), we consider the three-dimensional quark representation
[1, 0] defined by the constraint

Tr M = 0, (4)

where M is a 3 × 3 complex matrix. If Eαβ denotes the elementary matrix with entries

(Eαβ)jk = δjαδkβ, we take Tαβ with 1 ≤ α 6= β ≤ 3 and the diagonal matrices T11 = E11 − E33

and T22 = E22 − E33 spanning the Cartan subalgebra as basis generators. For this choice of
generators, the commutator table is given by

[�, �] T11 T22 T12 T13 T23 T21 T31 T32

T11 0 0 T12 2T13 T23 −T21 −2T31 −T32

T22 0 −T12 T13 2T23 T21 −T31 −2T32

T12 0 0 T13 T11 − T22 −T32 0
T13 0 0 −T23 T11 T12

T23 0 0 T21 T22

T21 0 0 −T31

T31 0 0
T32 0

(5)

It is clear from this table that for any representation Γ of su (3), it will be sufficient to determine
the matrix elements for the generators {T13, T23, T31, T32}, as the remaining generators follow
from the commutators. Indeed,

Tjk = [Tj3, T3k] , 1 ≤ j, k ≤ 2. (6)



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012019

IOP Publishing

doi:10.1088/1742-6596/1194/1/012019

3

The two primitive Casimir operators of su(3) are obtained from the (symmetrized) traces of the
matrix polynomial in the generators

L(T ) =

 (2T11 − T22)/3 T12 T13

T21 (−T11 + 2T22)/3 T23

T31 T32 −(T11 + T22)/3

 . (7)

Specifically, as invariants we consider the symmetrization of the polynomials

C2 = Tr L2 =
2

3

(
T 2

11 + T 2
22 + T11T22

)
+ 2 (T12T21 + T13T31 + T23T32) , (8)

C3 =
−Tr L3

3
= − 2

27

(
T 3

11 + T 3
22

)
+

1

9

(
T 2

11T22 + T11T
2
22

)
− 1

3
T11 (T12T21 + T13T31 − 2T23T32)

−1

3
T22 (T12T21 − 2T13T31 + T23T32)− T12T23T31 − T21T13T32. (9)

For any irreducible representation Γ = [λ, µ] of su (3) with λ, µ ≥ 0, the eigenvalues of the
Casimir operators are accordingly given by:

C2 (Γ) =
2

3

(
λ2 + λµ+ µ2 + 3λ+ 3µ

)
,

C3 (Γ) =
1

27
(µ− λ) (3 + 2λ+ µ) (3 + 2µ+ λ) . (10)

We now consider the Lie algebra su (3)⊕ su (3) with a basis
{
T 1
ij , T

2
ij

}
consisting of two copies

of the preceding basis {Tij}. To keep a unified notation, we formally write T a33 = − (T a11 + T a22).
Then the generators satisfy the commutators[

T aij , T
b
kl

]
= δba

(
δkj T

a
il − δliT bkj

)
, i, j, k, l = 1, 2, 3; a, b = 1, 2. (11)

It is straightforward to verify that the four Casimir operators of su (3)⊕su (3) are obtained from
a matrix of type (7) by replacing Tij by T aij for a = 1, 2. In order to describe the non-canonical
embedding su(3) ⊂ s = su (3)⊕ su (3), we consider the change of basis

Xαβ = T 1
αβ + T 2

αβ, Yαβ = T 1
αβ − T 2

αβ, 1 ≤ α, β ≤ 3. (12)

Over this basis, the brackets of s are given by

[Xαβ, Xγδ] =
[
T 1
αβ, T

1
γδ

]
+
[
T 2
αβ, T

2
γδ

]
= δγβXαδ − δδαXγβ,

[Xαβ, Yγδ] =
[
T 1
αβ, T

1
γδ

]
−
[
T 2
αβ, T

2
γδ

]
= δγβYαδ − δ

δ
αYγβ,

[Yαβ, Yγδ] =
[
T 1
αβ, T

1
γδ

]
+
[
T 2
αβ, T

2
γδ

]
= δγβXαδ − δδαXγβ. (13)

We observe that the operators {Xαβ} generate a subalgebra s′ isomorphic to su (3), while
the generators {Yαβ} transform as a representation of s′. This means in particular that the
subalgebra has no invariant in common with su (3)⊕ su (3) (see equation (3)).

States within irreducible representations of su (3)⊕ su (3) are characterized by 16+4
2 = 10 labels

according to formula (1), from which the values of the four Casimir operators determine the
representation. As we are using the subalgebra su(3) generated by the Xα,β, and this subalgebra
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provides five labels, an additional subgroup scalar must be determined in order to complete the
six internal labels required for su (3)⊕ su (3)-representations (see formulae (2) and (3))

Using the change of basis (12), the invariants of su (3)⊕ su (3) in the {Xαβ, Yαβ} basis are easily
obtained using the functional matrix (see also [22])

L±(X,Y ) =


2(X11±Y11)−(X22±Y22)

3 (X12 ± Y12) (X13 ± Y13)

(X21 ± Y21) −(X11±Y11)+2(X22±Y22)
3 (X23 ± Y23)

(X13 ± Y13) (X32 ± Y32) − (X11±Y11)+(X22±Y22)
3

 . (14)

Like before, we extract the Casimir operators from the (symmetrized) traces of the matrix, for
both signs:

C
(1)
2 = Tr (L+)

2
, C

(2)
2 = Tr (L−)

2
, C

(1)
3 = −1

3
Tr (L+)

3
, C

(2)
3 = −1

3
Tr (L−)

3
. (15)

The Casimir operators can thus be seen as homogeneous polynomials in the generators
{Xαβ, Yαβ}. Denoting by Θ[p,q] a homogeneous polynomial of degree p in Xαβ and degree q
in Yαβ, it is immediate to verify that the following decomposition holds (a = 1, 2):

C
(a)
2 =

1

4

(
Θ[2,0] ±Θ[1,1] + Θ[0,2]

)
, (16)

C
(a)
3 =

1

8

(
Θ[3,0] ±Θ[2,1] + Θ[1,2] ±Θ[0,3]

)
, (17)

where the operators Θ[2,0] and Θ[3,0] can be identified with the Casimir operators of the
subalgebra su(3) [25]. The expressions (16)-(17) provide the two further relations

C
(1)
2 + C

(2)
2 =

1

2

(
Θ[2,0] + Θ[0,2]

)
; C

(1)
2 − C(2)

2 =
1

2
Θ[1,1], (18)

C
(1)
3 + C

(2)
3 =

1

4

(
Θ[3,0] + Θ[1,2]

)
; C

(1)
3 − C(2)

3 =
1

4

(
Θ[2,1] + Θ[0,3]

)
. (19)

This implies that the Casimir operators can be expressed in terms of the seven subgroup scalars

S =
{

Θ[2,0],Θ[0,2],Θ[1,1],Θ[3,0],Θ[2,1],Θ[1,2],Θ[0,3]
}
. (20)

Using the analytical counterpart O[p,q] of these operators (see e.g. [26]), their independence can
be shown by means of the Jacobian matrix

det(J) =
∂
{
O[2,0], O[1,1], O[0,2], O[3,0], O[2,1], O[1,2], O[0,3]

}
∂ {x11, x22, x12, x13, y12, y13, y23}

= x2
11x

2
23y23x31y

3
31y

2
32 + · · · 6= 0, (21)

where {xij , yij} are the coordinates in (su(3)⊕ su(3))∗ corresponding to the generators. As can

be further easily shown either from the Berezin bracket for the operators O[p,q] or directly
using the commutation relations (5), the operators Θ[p,q] commute with each other. As a
consequence, one admissible complete set of labelling operators for the multiplicity separation
of the components in su(3) ⊕ su(3)-representations can be extracted from S. Discarding the
invariants of the Lie algebra and the subalgebra su(3), we can choose among Θ[2,1] and Θ[0,3] as
the missing label operator [22]. For computational purposes, it is convenient to take the latter,
so that a possible set of labelling operators is given by

S0 =
{
C

(1)
2 , C

(2)
2 , C

(1)
3 , C

(2)
3 ,Θ[2,0],Θ[3,0],Θ[0,3]

}
. (22)

To these, three additional inner operators that are taken in the subalgebra su(3) are required,
used for the separation of states within each su(3)-representation (see e.g. [19, 26]).
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4. Clebsch-Gordan series for su(3)
As irreducible representations of su(3) ⊕ su(3) correspond to the tensor products of IRs of
su(3) [27], it follows that the operators (22) will enable us to separate the appearing degeneracies,
i.e., the irreducible representations in a tensor product with multiplicity greater than one.
For the description of tensor products of (complex) IRs of su(3) there exists an explicit formula
due to O’Reilly [15] that also allows to determine the multiplicity of the su(3)-representations
intervening in the decomposition. We recall that, given two IRs [λ, µ] and [ρ, σ], the tensor
product R = [λ, µ]⊗ [ρ, σ] decomposes as

R =

min {λ+µ,σ}∑
k=0

min {µ,λ+µ−k,ρ}∑
j=0

min {λ,k+ρ−j}∑
max {0,j+k−µ}

[λ+ ρ+ k − j − 2i, µ+ σ + i− j − 2k] . (23)

This expression can be briefly summarized as

[λ, µ]⊗ [ρ, σ] =

s0∑
k=1

αkΓk, (24)

where the Γk = [ηk, ξk] are mutually non-isomorphic su (3)-representations for k 6= k′ and the
scalar α ≥ 1 denotes the multiplicity of Γk. Now, using a well-known property of su(3)-tensor
products (see [27])

[λ, µ]⊗ [ρ, σ] ' [λ, µ]⊗ [ρ, σ] = [µ, λ]⊗ [σ, ρ] ,

it follows from (24) that

[λ, µ]⊗ [ρ, σ] =

s0∑
k=1

αkΓk, (25)

and thus the multiplicities of Γk and Γk are the same. Further, as can be easily deduced from
formula (23), a necessary and sufficient condition for the tensor product [λ, µ] ⊗ [ρ, σ] to be
multiplicity free is that the constraint λµρσ = 0 is satisfied (see e.g. [17, 22] and references
therein). Multiplicities greater than one thus appear for any product such that λ, µ, ρ, σ ≥ 1.

Let Γ = [λ, µ]⊗ [ρ, σ] be a given IR of su(3)⊕ su(3). We now inspect the action of the operators

in S0 on Γ. As
{
C

(1)
2 , C

(2)
2 , C

(1)
3 , C

(2)
3

}
are the Casimir operators of su(3) ⊕ su(3), it follows

from the relations in (18) and (19) that

C
(1)
k (Γ) = Ck ([λ, µ]) , C

(2)
k (Γ) = Ck ([ρ, σ]) , k = 2, 3. (26)

The operators
{

Θ[2,0],Θ[3,0]
}

correspond to the Casimir operators of the subalgebra su(3),
implying that acting on Γ, the result is a block matrix

Θ[p,0](Γ) =

 Θ[p,0](Γ1)Idα1 dim Γ1

. . .

Θ[p,0](Γs0)Idαs0 dim Γs0

 , (27)

with p = 2, 3 and the corresponding eigenvalue Θ[p,0](Γk) is given by formula (10). So far, the

operators
{
C

(1)
2 , C

(2)
2 , C

(1)
3 , C

(2)
3 ,Θ[2,0],Θ[3,0]

}
characterize the su(3)-representations appearing

in the decomposition (24), but do not separate the degenerate representations with αk > 1.
This will be the function of the missing label operator Θ[0,3]. Although this operator acts
diagonally on su(3) representations, it is not an invariant of the subalgebra, and its eigenvalue
for a representation will explicitly depend on the tensor product where it appears as a component.
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4.1. Computation of the eigenvalues of Θ[0,3]

Let R = [λ, µ] ⊗ [ρ, σ] =
∑s0

k=1 αkΓk and suppose that the multiplet Γk0 has multiplicity (or
degeneracy index) αk0 > 1 in R. Let d = dim [λ, µ] dim [ρ, σ] and denote by V the carrier space
of the representation R. The algorithm to isolate such a degenerate multiplet and compute the
eigenvalues of the labelling operators can be summarized in the following five steps:

(i) Compute the eigenvalues λ2 = Θ[2,0] (Γ0) and λ3 = Θ[3,0] (Γ0) of the su(3)-Casimir operators
on the representation Γ0 using formula (10).

(ii) Set S0 = V and define

S1 =
{
w ∈ S0 :

[
Θ[2,0] − λ2 Idd

]
w = 0

}
, (28)

S2 =
{
w ∈ S1 :

[
Θ[3,0] − λ3 Idd

]
w = 0

}
. (29)

The subspace S2 ⊂ V is easily seen to correspond to the vectors in R having the eigenvalues
(λ2, λ3), thus S2 equals the representation Γ0 in R along with its multiplicity α0.

(iii) Take an arbitrary basis B = {wi : 1 ≤ i ≤ d0 = α0 dim Γ0} of S2 and consider the following
linear system:

Θ[0,3].wk =

d0∑
j=1

µjγ,k wj , 1 ≤ k ≤ d0. (30)

(iv) Solve the system (30) and define the coefficient matrix MΘ with entries

(MΘ)kj = µjγ,k. (31)

(v) Compute the roots of the corresponding characteristic equation

χ (T ) = det [MΘ − T.Idd0 ] = 0. (32)

We observe that this prescription is by no means exclusive of the Lie algebra su(3), as it can be
generalized to any rank l simple Lie algebra and any admissible labelling operator. This general
approach to Clebsch-Gordan series will be reported elsewhere.

4.2. An empirical formula for the products [1, 1]⊗ [`, k]

In the following, we will apply the preceding procedure to establish empirical formulae providing
the eigenvalues of the missing label operator Θ[0,3] for some types of IRs of su(3)⊕ su(3). In this
context, the most elementary tensor product of IRs of su(3)⊕ su(3) that presents a degenerate
multiplet is given by R = [1, 1]⊗ [`, k] with `, k ≥ 1, where in the decomposition into irreducible
components only the multiplet [`, k] is degenerate with multiplicity two for each `, k ≥ 1.1 Tables
1 and 2 list the values of α`,k and β`,k respectively for the range 1 ≤ `, k ≤ 10, corresponding to
the first hundred tensor products presenting degeneracy. Basing on these tables, the numerical
analysis of the eigenvalues λ1,2 of Θ[0,3] on the degenerate multiplet [`, k] suggests to write λ1,2

generically in the following form:

λ1,2 =
α`,k
27
±
√
β`,k. (33)

Separation of the degeneracy is therefore equivalent to the condition β`,k 6= 0. With the purpose

of deriving an empiric formula for the eigenvalues of the MLO Θ[0,3] valid for all values `, k ≥ 1,
we now look for recurrence relations between these eigenvalues.
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Table 1. Values of α`,k for 1 ≤ ` ≤ k ≤ 10 and R = [1, 1]⊗ [`, k].

[l, k] 1 2 3 4 5 6 7 8 9 10

1 0 -56 -160 -324 -560 -880 -1296 -1820 -2464 -3240
2 56 0 −110 −286 −540 −884 −1330 −1890 −2576 −3400
3 160 110 0 −182 −448 −810 −1280 −1870 −2592 −3458
4 324 286 182 0 −272 −646 −1134 −1748 −2500 −3402
5 560 540 448 272 0 −380 −880 −1512 −2288 −3220
6 880 884 810 646 380 0 −506 −1150 −1944 −2900
7 1296 1330 1280 1134 880 506 0 −650 −1456 −2340
8 1820 1890 2491 1748 1512 1150 650 0 −812 −1798
9 2464 2576 2592 2500 2288 1944 1456 812 0 −992
10 3240 3400 3458 3402 3220 2900 2340 1798 992 0

Table 2. Values of β`,k for 1 ≤ ` ≤ k ≤ 10 and R = [1, 1]⊗ [`, k].

[l, k] 1 2 3 4 5 6 7 8 9 10

1 45 73 109 153 205 265 333 409 493 585
2 73 105 145 193 249 313 385 465 553 649
3 109 145 189 241 301 369 445 529 621 721
4 153 193 241 297 361 433 513 601 697 801
5 205 249 301 361 429 505 589 681 781 889
6 265 313 369 433 505 585 673 769 873 985
7 333 385 445 513 589 673 765 865 973 1089
8 409 465 529 601 681 769 865 969 1081 1201
9 493 553 621 697 781 873 973 1081 1197 1321
10 585 649 721 801 889 985 1089 1201 1321 1449

As follows from inspection of Table 1, the leading term α`,k is skew-symmetric. It is

straightforward to verify that it actually coincides with −Θ[3,0]([`, k]), i.e., it is given by the
eigenvalue of the su(3) cubic Casimir operator (9) on the representation [`, k]. Therefore

α`,k = (k − l) (3 + 2k + l) (3 + 2l + k) , `, k ≥ 1. (34)

Now, inspecting Table 2, we see that the discriminant β`,k is symmetric, i.e., satisfies β`,k = βk,`
for any values. Fixing the index `, we find the following relations

β1,k+1 − β1,k = 20 + 8k, β2,k+1 − β2,k = 24 + 8k, β3,k+1 − β3,k = 28 + 8k, · · · . (35)

Due to the symmetry, an analogous relation holds when replacing the index ` by k. A short
computation shows that following identities hold:

β`,k+1 − β`,k = 16 + 4`+ 8k, β`+1,k − β`,k = 16 + 8`+ 4k, `, k ≥ 1. (36)

This provides the pattern for the discriminant when moving in each row and column respectively.
Moving now in the diagonals of Table 2, starting from the main diagonal, we get the differences

β`+1,`+1 − β`,` = 36 + 24`, β`+1,`+2 − β`,`+1 = 48 + 24`, β`+1,`+3 − β`,`+2 = 60 + 24`, · · · (37)

Taking into account that the indices are symmetric, solving the latter recurrence equation for k
leads to the expression

β`+1,k+1 − β`,k = 36 + 12 (`+ k) , `, k ≥ 1. (38)

1 It can be shown that this is actually the only type of tensor product with only one degenerate representation.
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The recurrence relations (36) and (38) contain the necessary information to find an explicit
formula for β`,k, that is found after some computation to be

β`,k = 4
(
`2 + k2

)
+ 12 (`+ k) + 4`k + 9, `, k ≥ 1. (39)

In conclusion, the eigenvalues for the MLO Θ[0,3] in the degenerate multiplet [`, k] within the
tensor product [1, 1]⊗ [`, k] are given by

λ1,2 =
1

27
(k − `) (3 + 2k + `) (3 + 2`+ k)±

√
4 (`2 + k2) + 12 (`+ k) + 4`k + 9. (40)

We observe that self-conjugate degenerate representations [`, `] are separated by the roots of the
discriminant, as the cubic Casimir operator has always eigenvalue zero.

4.3. The tensor products [1, `]⊗ [1, k]

In contrast with the previous case, for the IRs [1, `] ⊗ [1, k] with `, k > 1 of su(3) ⊕ su(3) the
number of degenerate multiplets in the tensor product is not fixed, but is determined by the
index `. Using formula (23), it can be easily verified that degenerate multiplets can be described
by

[1, `]⊗ [1, k] ⊃
∑̀
q=1

[q, k + `+ 1− 2q]2 , (41)

with all of them having a degeneracy index two. Due to the latter relation, any formula describing
the eigenvalues of Θ[0,3] must depend on the three indices q, `, k appearing in (41). In analogy
with (33), we suppose without loss of generality that the eigenvalues of the labelling operator
Θ[0,3] adopt the form

λ1,2 =
αq,`,k

27
±
√
βq,`,k, (42)

where the first subindex q makes reference to the degenerate multiplet [q, k + `+ 1− 2q] in
formula (41). Hence, in order to derive an empirical formula, we have to compute numerical
tables for varying values of `, k and a fixed value 1 ≤ q ≤ `, and then looking for auxiliary
relations satisfied by αq,`,k and βq,`,k when varying the indices `, k and q. Proceeding like this,
the following recurrence relations are found for the leading term and the discriminant when
`, k, q ≥ 1:

αq,`+1,k+1 − αq,`,k = 18(k − `)(1 + q), αq+1,`,k − αq,`,k = 9(k − `)(1 + k + `− 2q), (43)

βq,`+1,k+1 − βq,`,k = 4q(2 + q)(4 + k + `− q), βq,`,k+1 − βq,`+1,k = 4(k − `). (44)

Solving these recurrence expressions, we find explicit expressions for αq,`,k and βq,`,k as

λ1,2 (q, l, k) =
1

27
(k − l)

(
2
(
k2 + l2

)
+ 9 (k + l) (q + 1)− 4k l − 9 (q − 1)2

)
±
{
q4 − 4q3

+4q2 + 16q +
{

(q + 1)2 (k2 + l2
)

+ 2q
(
6 + q − q2

)
(k + l) + 2l k

(
q2 + 2q − 1

)} 1
2
. (45)

In this case, when k = ` holds, the degenerate multiplet [q, 2`+ 1− 2q] is separated by the roots
of the discriminant.
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4.4. The tensor products [1, `]⊗ [k, 1]

We finally consider the IRs [1, `]⊗ [k, 1] of su(3)⊕ su(3), that exhibit a behavior similar to the
previous type considered, in the sense that there are exactly ` degenerate multiplets, all of them
having multiplicity two. The degenerate su(3)-representations are in this case described by

[1, `]⊗ [k, 1] ⊃
∑̀
q=1

[k + q − l, q]2 . (46)

Again, basing on tables of eigenvalues computed for all values 1 ≤ q, `, k ≤ 10, the following
recurrence relations are found:

αq,`+1,k − αq,`,k+1 = 18(5 + k + `)(1 + q), αq+1,`,k − αq,`,k = 9(4 + k + `)(3 + k − `+ 2q), (47)

βq,`+1,k+1 − βq,`,k = 4(5 + k + `), βq,`+1,k − βq,`,k+1 = 4q(2 + q)(1 + k − `+ q).(48)

The explicit eigenvalue formula obtained from these recurrence relations is given by:

λ1,2 (q, l, k) =
1

27
(k + `+ 4)

(
2(`2 + k2) + k(4`− 9q + 7) + (25 + 9q)`− (9q2 + 18q + 13)

)
±

{
(q + 1)2 (k2 + l2

)
+
(
2q3 + 6q2 + 4q

)
(k − l) + 8 (k + l)− l k

(
2q2 + 4q − 2

)
+q4 + 4q3 + 4q2 + 16

} 1
2 . (49)

In contrast with the other types inspected, it is a noticeable fact that the leading term αq,`,k
appearing in (49) does not vanish for indices `, k ≥ 2. This clearly indicates that a given
representation can have radically different eigenvalues for the MLO Θ[0,3], depending on the
tensor product where it appears as a component in the decomposition (24).

5. Conclusions

Explicit formulae for the eigenvalues of the missing label operator Θ[0,3] to separate the
degenerate representations of the su(3)-tensor products [1, 1]⊗ [k, `], [1, `]⊗ [1, k] and [1, `]⊗ [k, 1]
for `, k ≥ 1 have been obtained. All the cases treated have the same constant degeneracy
index equal to two and a number of degenerate multplets that always coincides with `. As a
consequence, the degenerate multiplets can be described adding a third continuously increasing
index q, a fact that allows to deduce recurrence relations between the eigenvalues of the MLO
depending exclusively on q, ` and k, and from which the empirical formulae are obtained. We
observe that for all the considered types of tensor products, the eigenvalues for the other
admissible missing label operator Θ[2,1] are immediately deduced from those of Θ[0,3] using
formula (19). As a consequence, the procedure described allows to compute the spectrum for an
arbitrary linear combination a1Θ[2,1] + a2Θ[0,3] that may be the appropriate labelling operator
in some application [22,28].

Some of the patterns observed suggest that similar rules should work for the generic case,
although the computational difficulties increase considerably due to the dimension of the
resulting representation of su(3) ⊕ su(3) and the number of degenerate multiplets in the
decomposition (23). Formally the same procedure based on finding recurrence relations and
deriving explicit formulae for the eigenvalues of Θ[0,3] in other tensor products can be established,
in spite of the various computational complications arising when looking for generic formulae.
The first difficulty concerns a unified description of degenerate multiplets, as its number in the
product [j, `] ⊗ [k,m] depends on the specific values of j, `, k,m, and thus a generic formula
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must contain these four indices, as well as those specifying the degenerate representation. In
addition, within a given tensor product [j, `] ⊗ [k,m], the multiplicities are varying, implying
some difficulties in establishing a unified formula for the eigenvalues and all possible indices.

However, basing on further numerical computations for other types of tensor products for
which an empirical formulae for the Θ[0,3] eigenvalues has still not been fully established, some
additional patterns concerning the distribution of these eigenvalues have been observed. So,
for example, if a representation [p, q] has an odd degeneracy index ν0 in the tensor product
[j, `]⊗ [k,m], then the eigenvalue ξ0 = 0 always appears. From this fact it can be inferred that
the characteristic polynomial of Θ[0,3] restricted to a degenerate multiplet [p, q] has the following
generic structure

χ (T ) =

[ ν02 ]∏
s=1

(
T 2 − 2

27
αsT +

α2
s − 729βs

729

)
T ε, (50)

where ε = 1−(−1)ν0

2 and λs = 1
27αs ±

√
βs for s = 0, · · ·

[
ν0
2

]
are the nonvanishing eigenvalues

of Θ[0,3] on [p, q]. A currently unsolved problem is how to incorporate the degeneracy index to
the eigenvalue formula, in order to obtain a unified expression for all degenerate representations
within a tensor product. Progress in this direction is expected to be reported in future work.
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[12] Krämer M 1978 Reports Math. Phys. 13 295
[13] Patera J and Sankoff D 1973 Tables of Branching Rules for Representations of Simple Lie Algebras (Montréal:
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