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Abstract: In this paper, we investigate the problem of the existence and multiplicity of periodic solutions
to the planar Hamiltonian system x󸀠 = −λα(t)f (y), y󸀠 = λβ(t)g(x), where α, β are non-negative T-periodic
coefficients and λ > 0. We focus our study to the so-called “degenerate” situation, namely when the set
Z := supp α ∩ supp β has Lebesgue measure zero. It is known that, in this case, for some choices of α and β,
no nontrivial T-periodic solution exists. On the opposite, we show that, depending of some geometric config-
urations of α and β, the existence of a large number of T-periodic solutions (aswell as subharmonic solutions)
is guaranteed (for λ > 0 and large). Our proof is based on the Poincaré–Birkhoff twist theorem. Applications
are given to Volterra’s predator-prey model with seasonal effects.
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1 Introduction
This paper studies the non-autonomous planar Hamiltonian system

{
x󸀠 = −λα(t)f (y),
y󸀠 = λβ(t)g(x), (1.1)

where λ > 0 is regarded as a real parameter, and given a real number T > 0, α and β are nonnegative T-peri-
odic continuous functions such that

A :=
T

∫
0

α > 0, B :=
T

∫
0

β > 0,

for which the set
Z := supp α ∩ supp β (1.2)

has Lebesgue measure zero, |Z| = 0. This is why model (1.1) is said to be degenerate.
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In (1.1), f, g ∈ C(ℝ) are locally Lipschitz continuous functions such that f, g ∈ C1(−ρ, ρ) for some ρ > 0
and

{{{
{{{
{

f (0) = 0, f (y)y > 0 for all y ̸= 0,
g(0) = 0, g(x)x > 0 for all x ̸= 0,
f 󸀠(0) > 0, g󸀠(0) > 0. (1.3)

Moreover, it is assumed that either f or g satisfies one of the following four conditions:

(f−) f is bounded inℝ−, (f+) f is bounded inℝ+,
(g−) g is bounded inℝ−, (g+) g is bounded inℝ+. (1.4)

This paper analyzes the existence of nT-periodic solutions of model (1.1) for any integer n ≥ 1. Those with
n ≥ 2 (and n minimal) are often referred to as subharmonics of order n.

Besides |Z| = 0, through this paper, we assume that, given two positive integers k, ℓ ≥ 1 such that
|k − ℓ| ≤ 1, there exist k + ℓ continuous functions in the interval [0, T], αi ⪈ 0, 1 ≤ i ≤ k, and βj ⪈ 0, 1 ≤ j ≤ ℓ,
such that α = α1 + α2 + ⋅ ⋅ ⋅ + αk, β = β1 + β2 + ⋅ ⋅ ⋅ + βℓ, with

supp αi ⊆ [ti0, t
i
1] and supp βj ⊆ [tj2, t

j
3] (1.5)

for some partition of [0, T],

0 ≤ t10 < t11 ≤ t12 < t13 ≤ t20 < t21 ≤ t22 < t23 ≤ ⋅ ⋅ ⋅ ≤ tk0 < t
k
1 ≤ t

k
2 < t

k
3 ≤ T if k = ℓ, or

0 ≤ t10 < t11 ≤ t12 < t13 ≤ t20 < t21 ≤ t22 < t23 ≤ ⋅ ⋅ ⋅ ≤ tk0 < t
k
1 ≤ T if k = ℓ + 1.

Similarly, we also consider the case when, instead of (1.5),

supp βj ⊆ [tj0, t
j
1] and supp αi ⊆ [ti2, t

i
3] (1.6)

for some partition of [0, T],

0 ≤ t10 < t11 ≤ t12 < t13 ≤ t20 < t21 ≤ t22 < t23 ≤ ⋅ ⋅ ⋅ ≤ tℓ0 < tℓ1 ≤ tℓ2 < tℓ3 ≤ T if ℓ = k, or
0 ≤ t10 < t11 ≤ t12 < t13 ≤ t20 < t21 ≤ t22 < t23 ≤ ⋅ ⋅ ⋅ ≤ tℓ0 < tℓ1 ≤ T if ℓ = k + 1.

We will refer to an α-interval (resp. β-interval) as the maximal interval I, where |supp β|I | = 0 and
|supp α|I | > 0 (resp. |supp α|I | = 0 and |supp β|I | > 0). So the total number of α-intervals and β-intervals
in [0, T] is k + ℓ. However, ascertaining the total number of α and β-intervals in [0, nT]when n ≥ 2 is slightly
more subtle, as it depends onwhether k = ℓ or |k − ℓ| = 1. If k = ℓ, it is apparent that the number of α-intervals
is nk, whereas the number of β-intervals is nℓ. Thus, the total number of α and β-intervals in this case equals

n(k + ℓ) = 2nk. (1.7)

Now, assume that |k − ℓ| = 1. Then, in case k = ℓ + 1, there are nℓ + 1 α-intervals and nℓ β-intervals in
[0, nT]. Indeed, as for every i ∈ {0, 1, . . . , n − 2} the last α-interval of [iT, (i + 1)T] and the first one of
[(i + 1)T, (i + 2)T] produce a unique α-interval in [0, nT], the total number of α-intervals in [0, nT] is given by
n(ℓ + 1) − (n − 1) = nℓ + 1. Obviously, the number of β-intervals in [0, nT] is nℓ. Thus, the total number of α
and β-intervals equals nℓ + 1 + nℓ = 2nℓ + 1. Similarly, in case ℓ = k + 1, the total number of α and β-intervals
in [0, nT] is nk + 1 + nk = 2nk + 1. Therefore, setting m := min{k, ℓ}, the total number of α and β-intervals
in [0, nT] in case |k − ℓ| = 1 is

2nm + 1. (1.8)

Figure 1 shows a series of examples satisfying the previous requirements. Note that the support of αi and
βj on each of the intervals [tir , tir+1], 1 ≤ i ≤ k, and [tjr , tjr+1], 1 ≤ j ≤ ℓ, might not be connected.

On each of the intervals [tsr , tsr+1], s ∈ {i, j}, r ∈ {0, 2}, the structure of the support of αi or βj might be
rather involved topologically, as illustrated by Figure 2, wherewe have plotted a sketch of the graph of a func-
tion αi or βj, vanishing on the tertiary Cantor set of the interval [tsr , tsr+1] and being positive on the interior of
its complement.
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Figure 1: Some admissible distributions of α and β.

Figure 2: The internal complexity of the weights on each of their support intervals.

Note that the caseswhen k + ℓ ̸= 2, or k + ℓ = 2 under condition (1.6), were not dealt with in any previous
references. In particular, they stay outside the general scope of [13, 14, 16]. Themain result of this paper can
be stated as follows. (Subsequently, for every r ∈ ℝ, we are denoting by [r] the integer part of r.)

Theorem 1. Assume nm ≥ 3 for some integer n = 3h + i, with i ∈ {0, 1, 2}, where m := min{k, ℓ}. Then there
exists λn > 0 such that, for every λ > λn, (1.1) possesses at least

σ(n) := 2(hm + [ im3 ])

periodic solutions with period nT. Moreover, setting

γ(n) := min{γ ≥ 0 : gcd(n, σ(n)2 − γ) = 1},

it turns out that, for every λ > λn, (1.1) has at least σ(n) − 2γ(n) periodic solutions with minimal period nT.

Themain technical device to prove Theorem 1 is the Poincaré–Birkhoff twist theorem collected in Theorem 2.
Theorem 1 deals with a degenerate case in the context of Hamiltonian systems not previously studied in the
literature, because neither the monotonicity of α(t)f (y) or β(t)g(x) for all t, nor the non-degeneration of α(t)
and β(t) are required (see [5, 10, 12, 18], and [15, § 1]).

In Section 2, we state the version of the Poincaré–Birkhoff theorem invoked in the proof of Theorem 1
andmake sure that it can be applied to deal with the degenerate model (1.1). Then, in Section 3, the proof of
Theorem 1.1 is delivered. We refer to [3, 9] for a general discussion about the applications of the Poincaré–
Birkhoff theorem to non-autonomous equations.
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2 The Poincaré–Birkhoff Theorem in a Degenerate Setting
In this section, we adapt the Poincaré–Birkhoff theorem to deal with problem (1.1) in the degenerate case
when |Z| = 0 (see (1.2), if necessary). The Poincaré–Birkhoff theorem has been applied, very successfully, to
study some non-degenerate Volterra predator-prey models of type (1.1) (see, e.g., [1, 4, 5, 7, 10, 12, 18] and
the recent paper by the authors [15]).

According to [15, Theorem 2.2], as soon as |Z| > 0, system (1.1) possesses at least two nT-periodic solu-
tions for every integer n ≥ 1 and sufficiently large λ > 0. The main result of this section, Theorem 3, provides
with some general sufficient conditions on the coefficients α(t) and β(t) for the validity of the same result in
the case when |Z| = 0.

Subsequently, for any given nontrivial solution (x(t), y(t)) with initial data z0 := (x(0), y(0)) ̸= (0, 0),
we denote by θ(t) the angular polar coordinate so that, on any interval [0, nT], the rotation number of the
solution can be defined through

rot(z0; [0, nT]) :=
θ(nT) − θ(0)

2π .

To obtain the main result of this section, we need the following version of the Poincaré–Birkhoff twist theo-
rem. It is, essentially, an application of Ding’s version of the twist theorem for planar annuli (see [6]), as
presented in [17, Theorem A] (see also [2] for another application).

Theorem 2. Assume that, for some 0 < r0 < R0 and an integer ω ≥ 1, the next twist condition holds:

rot(z0; [0, nT]) > ω if ‖z0‖ = r0 and rot(z0; [0, nT]) < ω if ‖z0‖ = R0. (2.1)

Then system (1.1) has at least 2 nontrivial nT-periodic solutions belonging to different periodicity classes with
rotation number ω.

As observed in [5, § 3], given any nT-periodic solution (x, y) with n ≥ 2, for every j ∈ {1, 2, . . . , n − 1}, also
xj(t) := x(t + jT), yj(t) := y(t + jT) is an nT-periodic solution. In Theorem2, all these solutions are considered
to be equivalent, and it is said that they belong to the same periodicity class.

Remark 1. The information on the rotationnumber provided by Theorem2 is very relevant. First, because the
solutions with different rotation numbers are essentially different since, as paths in ℝ2 \ {(0, 0)}, they have
a different fundamental group. Moreover, because Theorem 2, as stated, does not guarantee the minimality
of the period nT, except in the special case when gcd(n, ω) = 1. Indeed, if (x(t), y(t)) is ℓT-periodic for some
integer ℓ < n, then the rotation number in the interval [0, ℓT] must be an integer, say ω1 ≥ 1. Thus, by the
additivity property of the rotation numbers, it becomes apparent that rot(z0; [0, nℓT]) = ℓω = ω1n, where
z0 = (x(0), y(0)), which contradicts the fact that gcd(n, ω) = 1. Consequently, Theorem 2 is providing uswith
solutions of minimal period nT if ω = 1.

Remark 2. By the continuous dependence of the solutions of (1.1) with respect to the initial conditions, for
every ε > 0, λ > 0 and any integer n ≥ 1, there exists δ ≡ δ(n, λ, ε) > 0 such that the unique solution of (1.1),
(x(t), y(t)), satisfies (x(t), y(t)) ∈ Dε for all t ∈ [0, nT] if (x(0), y(0)) ∈ Dδ (see [15, Proposition 2.1]). For every
R > 0, we are denoting by DR the disk of radius R > 0 centered at the origin.

According to (1.7) and (1.8) and recalling thatm = min{k, ℓ}, throughout the rest of this paper,wewill assume
that 2nm ≥ 6 if k = ℓ, and 2nm + 1 ≥ 7 if |k − ℓ| = 1. Thus, unifying both conditions, throughout the rest of
this paper, we will actually assume that

nm ≥ 3. (2.2)

This condition entails, essentially, at least five alternations between the components of the supports of α(t)
and β(t), as illustrated in Figure 3.

The main result of this paper reads as follows.

Theorem 3. Assume nm ≥ 3. Then there exists λn > 0 such that, for every λ > λn, the twist condition (2.1) in
model (1.1) holds for ω ≥ 1.
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Figure 3: An example of five alternations between the supports of α and β.

This theorem analyzes a degenerate case for Hamiltonian systems of the form of (1.1), through the Poincaré–
Birkhoff twist theorem,which had not been previously studied in this context, for as neither themonotonicity
of α(t)f (y) or β(t)g(x) for all t, nor the non-degeneration of α(t) and β(t) are required (see [5, 10, 12, 18] and
[15, § 1]).

The technical details of the proof will be given in the special case when α and β satisfy (1.5), as the case
when (1.6) holds follows similarly. By (1.3),

min{f 󸀠(0), g󸀠(0)} > η
for some constant η > 0. Thus, for sufficiently small |ζ| ≤ ε,

f (ζ)ζ ≥ ηζ 2, g(ζ)ζ ≥ ηζ 2. (2.3)

Hence, since up to an additive constant,

θ(t) = arctan y(t)
x(t)

,

differentiating with respect to t and using the fact that (x(t), y(t)) solves (1.1) yields

θ󸀠(t) = y󸀠(t)x(t) − x󸀠(t)y(t)
x2(t) + y2(t)

=
λβ(t)g(x(t))x(t) + λα(t)f (y(t))y(t)

x2(t) + y2(t)

for every t ∈ [0, nT]. So, owing to (2.3), we have that

θ󸀠(t) ≥ λη[β(t) x2(t)
x2(t) + y2(t)

+ α(t) y2(t)
x2(t) + y2(t)

] = λη[β(t) cos2 θ(t) + α(t) sin2 θ(t)] ≥ 0 (2.4)

for every t ∈ [0, nT]. In particular, θ(t) is non-decreasing. Moreover, by Remark 2, for every integer n ≥ 1,
there exists δ > 0 such that (x(t), y(t)) ∈ Dε for all t ∈ [0, nT] if (x0, y0) := (x(0), y(0)) ∈ Dδ. This condition
will be kept throughout the next lemmas and the proof of Theorem 3 in order to guarantee that the solution
cannot escape from Dε. Naturally, the bigger λ is, the smaller is δ.

Based on (2.4) andRemark 2, the next result holds. Essentially, it establishes that each of the components
of the support of αi pushes the solutions of (1.1) from the first quadrant towards the second one, as well as
from the third towards the fourth.

Lemma 1. Assume that there exists (ρ0, ρ1) ⊊ supp α such that θ(ρ0) ∈ [ω0, π − ω0] for some ω0 ∈ (0, π2 ).
Then there exists λ1 > 0 such that θ(ρ1) > π − ω0 for all λ > λ1. Similarly, if θ(ρ0) ∈ [π + ζ0, 2π − ζ0] for some
ζ0 ∈ (0, π2 ), then θ(ρ1) > 2π − ζ0 for sufficiently large λ.

Proof. Since we are dealing with small solutions, it is apparent from (2.4) that

θ(ρ1) = θ(ρ0) +
ρ1

∫
ρ0

θ󸀠(s) ds ≥ θ(ρ0) + λη ρ1

∫
ρ0

α(s) y2(ρ0)
x2(s) + y2(ρ0)

ds

because β = 0 on (ρ0, ρ1) and, hence, y(s) ≡ y(ρ0) therein. Thus, setting

ν := ηy
2(ρ0)
ε2

ρ1

∫
ρ0

α(s) ds
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and taking into account that (x(s), y(s)) = (x(s), y(ρ0)) ∈ Dε for all s ∈ (ρ0, ρ1), it follows that

θ(ρ1) ≥ θ(ρ0) + λν ≥ ω0 + λν > π − ω0 provided λ > π − 2ω0
ν
=: λ1.

Note that the bound λ1 remains invariant if either θ(ρ0) or y2(ρ0) increases. Moreover, θ(ρ1) increases
with λ for any given (fixed) θ(ρ0) and y2(ρ0). Similarly, we have θ(ρ1) > 2π − ζ0 for sufficiently large λ if
θ(ρ0) ∈ [π + ζ0, 2π − ζ0] for some ζ0 ∈ (0, π2 ). This ends the proof.

Analogously, the next result establishes that each of the components of the support of βi pushes the solutions
of (1.1) from the fourth quadrant towards the first,while itmoves them from the second towards the third one.

Lemma 2. Assume that there exists (σ0, σ1) ⊊ supp β such that θ(σ0) ∈ [− π2 + τ0,
π
2 − τ0] for some τ0 ∈ (0,

π
2 ).

Then there exists μ1 such that θ(σ1) > π
2 − τ0 for all λ > μ1. Similarly, θ(σ1) >

3π
2 − ξ0 for sufficiently large λ

if θ(σ0) ∈ [ π2 + ξ0,
3π
2 − ξ0] for some ξ0 ∈ (0,

π
2 ).

Proof. As in Lemma 1, from (2.4), it follows that

θ(σ1) = θ(σ0) +
σ1

∫
σ0

θ󸀠(s) ds ≥ θ(σ0) + σ1

∫
σ0

β(s) x2(σ0)
x2(σ0) + y2(s)

ds

because α = 0 on (σ0, σ1) and, hence, x(s) ≡ x(σ0) therein. Thus, denoting

ς := ηx
2(σ0)
ε2

σ1

∫
σ0

β(s) ds

and arguing as in Lemma 1, it is apparent that

θ(σ1) ≥ θ(σ0) + λς ≥ τ0 + λς >
π
2 − τ0 provided λ > π − 4τ02ς =

: μ1.

As highlighted in the proof of Lemma 1, the value of μ1 does not vary if either θ(σ0) or x2(σ0) increases.
Similarly, θ(σ1) increases with λ, and the second assertion of the lemma holds. This ends the proof.

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. The proof is based on the version of the Poincaré–Birkhoff theorem collected in Theo-
rem 2. First, we will prove that all small solutions in the disk Dε, where ε is chosen sufficiently small so that
(2.3) holds, have a rotation number greater than one. To prove this feature, wewill distinguish between three
different cases according to the precise location of their initial values, (x0, y0).

Case 1: Assume that x0y0 > 0. Then (x0, y0) lies either in the first or in the third quadrant. Both cases being
similar, wewill pay attention only to the casewhen x0 > 0 and y0 > 0. Then θ(t10) ∈ (0, π2 ). Thus, by Lemma1,
there exists λ1 > 0 such that θ(t11) > π − θ(t10) for all λ > λ1. Since α = β = 0 in [t11, t12], this implies that

θ(t12) = θ(t
1
1) > π − θ(t

1
0).

Thus, by Lemma 2, there exists λ2 > 0 such that θ(t13) > π + θ(t10) as soon as λ > max{λ1, λ2}. Also by
Lemma 1, there exists λ3 > 0 such that θ(t21) > 2π − θ(t10) for every λ > max{λ1, λ2, λ3}, and due to Lemma 2,
there is λ4 > 0 such that θ(t23) > 2π + θ(t10) for all λ > max{λ1, λ2, λ3, λ4}. Therefore, the solution with initial
values (x0, y0) completes an entire turn in the interval [0, t23] for every λ > max{λ1, λ2, λ3, λ4}. In order to
apply Theorem 2, it remains to show the existence of a uniform bound, Λ1 > 0, such that the solutions with
initial data in the sector of the circumference of radius r0 within the first quadrant,

S1 := {z = (x, y) ∈ ℝ2 : ‖z‖ = r0 and x > 0, y > 0},

have a rotation number greater than one for all λ > Λ1 if 0 < r0 < ε. To prove it, we consider an angle
ω̃0 ∈ (0, π2 ) and the sectors of S1 defined by

S+1,ω̃0
:= {z = (x, y) ∈ ℝ2 : ‖z‖ = r0, r0 cos ω̃0 ≥ x > 0, y > 0}, S−1,ω̃0

:= S1 \ S+1,ω̃0
.
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Using recursively Lemmas 1 and 2 as above, it becomes apparent that there existsM1 > 0 such that the solu-
tions with initial data in S+1,ω̃0

complete an entire turn in the interval [0, t23] for every λ > M1. For every t > 0,
let us denote by Φt the Poincaré map at time t of system (1.1), if defined. Then, by Lemma 2, there exists
ω1 > 0 such that

Φt13 (S
−
1,ω̃0
) ⊂ {(r, θ) : 0 < r ≤ ε, 0 < ω1 ≤ θ <

3π
2 }.

Therefore, as for S+1,ω̃0
, there is M2 such that S−1,ω̃0

completes one turn in [0, t33] for all λ > max{M1,M2}.
Adapting the previous argument, it readily follows the existence of M̃1, M̃2 > 0 such that the solutions

of (1.1) with initial data in

S3 := {z = (x, y) ∈ ℝ2 : ‖z‖ = r0 and x < 0, y < 0}

have a rotation number greater than one for all λ > max{M̃1, M̃2}. Consequently, for every z0 ∈ S1 ∪ S3, it is
apparent that rot(z0; [0, nT]) > 1 for all λ > Λ1 := max{M1,M2, M̃1, M̃2}.

Case 2: Assume that x0y0 < 0. Most of the attention will be focused to the special case when x0 < 0 and
y0 > 0, as the case x0 > 0and y0 < 0 is analogous.Obviously, in this case, θ(t10) ∈ ( π2 , π). As in case 1, it should
beproved the existence of auniformbound, Λ2, such that the solutionswith initial data in the quadrant sector

S2 := {z = (x, y) ∈ ℝ2 : ‖z‖ = r0 and x < 0, y > 0}

have rotation number greater than one for all λ > Λ2 if 0 < r0 < ε. By Lemma 1, there exists ω2 > π
2 such that

Φt11 (S2) ⊂ {(r, θ) : 0 < r ≤ ε,
π
2 < ω2 ≤ θ < π}.

Thus, as in case 1, we have already proven that, once the solution reaches the second quadrant, being sepa-
rated away from π

2 , it must have a rotation number greater than one for sufficiently large λ (whichwas a direct
consequence fromLemmas 1 and 2), there exists Λ2 > 0 such that the solutionwith θ(t11) = ω2 > π

2 completes
one turn for all λ > Λ2. Moreover, by themonotonicity properties of Lemmas 1 and2, the solutionswith initial
data in S2 have rotation number greater than one for all λ > Λ2. Since the previous argument can be easily
adapted to deal with

S4 := {z = (x, y) ∈ ℝ2 : ‖z‖ = r0 and x > 0, y < 0},

it becomes apparent that, for every z0 ∈ S2 ∪ S4, rot(z0; [0, nT]) > 1 for all λ > Λ2.

Case 3: Assume x0y0 = 0, i.e., (x0, y0) lies on some coordinate axis. Without loss of generality, we can
assume that x0 > 0 and y0 = 0, as the remaining cases can be treated similarly. Then, since y0 = 0 and β = 0
on [t10, t11], integrating (1.1) yields θ(t10) = θ(t12) = 0. Thus, by Lemma 2, for every ω ∈ (0, π2 ), there exists
μ1 := μ1(ω) such that θ(t13) > ω for all λ > μ1. Thus, much like in case 1, owing to Lemmas 1 and 2, there
exist μ2, μ3, μ4, μ5 > 0, depending on ω, such that

θ(t21) > π − ω if λ > max{μ1, μ2},
θ(t23) > π + ω if λ > max{μ1, μ2, μ3},
θ(t31) > 2π − ω if λ > max{μ1, μ2, μ3, μ4},
θ(t33) > 2π if λ > max{μ1, μ2, μ3, μ4, μ5} =: Λ3,1.

Therefore, the solution completes one turn in the time interval [0, t33] for all λ > Λ3,1. Similarly, it can be easily
shown that the solutions complete a turn in each of the remaining three cases when x0 = 0 and y0 > 0, x0 < 0
and y0 = 0, or x0 = 0 and y0 < 0, for λ > Λ3,2, λ > Λ3,3 and λ > Λ3,4, respectively. Thus, taking

Λ3 := max{Λ3,1, Λ3,2, Λ3,3, Λ3,4},

it becomes apparent that rot(z0; [0, nT]) > 1 provided λ > Λ3 and

z0 ∈ S0 := {z = (x, y) ∈ ℝ2 : ‖z‖ = r0 and xy = 0}.
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Subsequently, we set
λn := max{Λ1, Λ2, Λ3}.

By Remark 2 and the analysis already done in the proof of the theorem, it is apparent that, for every λ > λn,
there exists 0 < r0 < δ(n, λ, ε) such that, for every z0 = (x0, y0) with ‖z0‖ = r0,

(x(t), y(t)) ∈ Dε for all t ∈ [0, nT]

and
rot(z0; [0, nT]) > 1. (2.5)

In order to apply Theorem 2, it remains to prove that, for sufficiently large λ > 0, the large solutions do
not rotate. As the proof of this feature follows the general scheme of the proof of [15, Theorem 2.1], we will
simply sketch it here. Being analogous the remaining cases, the proof will be delivered in the special case
when condition (g−) holds in (1.4).

We proceed by contradiction assuming that, regardless the size of the initial data (x0, y0), the solution
(x(t), y(t)) completes at least one turn for sufficiently large λ. Thus, without loss of generality, changing the
initial data if necessary, we can assume that (x(t), y(t)) goes across the entire third quadrant. In such a case,
there is an interval [s0, s1] ⊂ [0, nT] such that y(s0) = 0 = x(s1) and x(t) < 0, y(t) < 0 for every t ∈ (s0, s1).
Thus, by (g−), it becomes apparent that, setting B := ∫T0 β(s) ds,

|y(t)| = λ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

t

∫
s0

β(s)g(x(s)) ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ λM

nT

∫
0

β(s) ds = λMnB

for every t ∈ [s0, s1]. Hence, defining N := max{|f (y)| : |y| ≤ λMnB}, it follows that, for every t ∈ [s0, s1],

|x(t)| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
λ
s1

∫
t

α(s)f (y(s)) ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ λN

nT

∫
0

α(s) ds = λNnA,

where A := ∫T0 α(s) ds. Suppose that, for some ̃t ∈ [0, nT],

x2( ̃t) + y2( ̃t) > λ2n2(M2B2 + N2A2) ≡ R2

with x( ̃t) < 0 and y( ̃t) < 0. Then the solution (x(t), y(t)) cannot cross entirely the third quadrant. At this stage,
the proof follows almost mutatis mutandis the steps of the proof of [15, Theorem 2.1], where the reader is
sent for any further details. According to it, there exists a radius R0 ≥ R such that, for every solution with
z0 = x20 + y

2
0 ≥ R0,

rot(z0; [0, nT]) < 1. (2.6)

By (2.5) and (2.6), the twist condition holds, and hence, by Theorem 2, system (1.1) admits at least two
nontrivial nT-periodic solutions belonging to different periodicity classes with rotation number ω ≤ n for
sufficiently large λ. This concludes the proof.

In order to apply Theorem 2, the distribution of the weight functions settled by (2.2) is optimal. Indeed, if
αi = 0 or βi = 0 for some i ∈ {1, 2, 3}, then each of the points (−r0, 0) and (r0, 0), for sufficiently small r0 > 0,
have rotation number less than one in the interval [0, T].

Remark 3. As already observed in [15, Remark 3], without any significant change in the proof, a slightlymore
general version of Theorem 2 can be proven by assuming f, g only continuous (and not locally Lipschitz) and
replacing the condition on the derivatives in (1.3) with the following one:

0 < lim inf|y|→0 f (y)
y
≤ lim sup|y|→0 f (y)

y
< ∞, 0 < lim inf|x|→0 g(x)

x
≤ lim sup|x|→0 g(x)

x
< ∞.

To this aim, instead of Theorem 2, one can apply the generalized version of the Poincaré–Birkhoff theorem
due to Fonda and Ureña [11] for Hamiltonian systems where the uniqueness of the solutions of the initial
value problems is not required (see also [8, Theorem 10.6.1] for the precise statement).
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3 Counting T -Periodic Solutions and Subharmonics of (1.1)
This section applies Theorem 3 to model (1.1) when condition (2.2) holds. Recall that either k = ℓ, or
|k − ℓ| = 1 and m = min{k, ℓ}. Based on Theorem 3, the next result holds.

Theorem 4. Assume that nm ≥ 3 for some integer n ≥ 1. Then there exists λn > 0 such that, for every λ > λn,
(1.1) possesses at least σ(n) periodic solutions with period nT, where

σ(n) :=
{{{
{{{
{

2hm if n = 3h,
2(hm + [m3 ]) if n = 3h + 1,
2(hm + [2m3 ]) if n = 3h + 2.

Moreover, setting
γ(n) := min{γ ≥ 0 : gcd(n, σ(n)2 − γ) = 1},

it turns out that, for every λ > λn, (1.1) has at least σ(n) − 2γ(n) periodic solutions with minimal period nT.

Proof. Suppose k = ℓ. Then m = k = ℓ. Hence, according to (1.7), the total number of α and β-intervals in
[0, nT] equals

2nk = 2nm. (3.1)

Thus, if n = 3h for some integer h ≥ 1, the sumof α-intervals and β-intervals in [0, nT] is 6hk. Hence, by Theo-
rem3, there exists λn > 0 such that, for every λ > λn, the solutions of (1.1)with sufficiently small z0 = (x0, y0)
complete hk turns, whereas the solutions with sufficiently large z0 cannot complete any. Therefore, by Theo-
rem 2, (1.1) has at least two nT-periodic coexistence states with rotation number j ∈ {1, 2, . . . , hk}. Conse-
quently, (1.1) possesses at least 2hk = σ(n) coexistence states with period nT.

Now, assume that n = 3h + 1 for some integer h ≥ 0. Then there are a total of

2mn = 2k(3h + 1) = 6hk + 2k = 6(hk + k3)

α and β-intervals in [0, nT]. Thus, by Theorem 3, there exists λn > 0 such that, for every λ > λn, the solutions
of (1.1) with sufficiently small z0 complete hk + [ k3 ] turns, while the solutions with large initial data cannot
rotate. Therefore, thanks to Theorem 2, (1.1) possesses at least

2(hk + [ k3]) = σ(n)

periodic coexistence states of period nT.
Similarly, according to Theorems 2 and 3, when n = 3h + 2 for some integer h ≥ 0, there exists λn > 0

such that, for every λ > λn, (1.1) possesses at least

2(hk + [2k3 ]) = σ(n)

coexistence states with period nT.
The last assertion of the theorem will be derived from the fact that, owing to Remark 1, any nT-periodic

coexistence state of (1.1) such that, for some 0 < r0 < R0, it satisfies

{
{
{

rot(z0; [0, nT]) > ω if ‖z0‖ = r0,
rot(z0; [0, nT]) < ω if ‖z0‖ = R0,

(3.2)

has minimal period nT if gcd(n, ω) = 1. In all the cases covered by Theorem 4, we have actually proven the
existence of 0 < r0 < R0 such that

{
{
{

rot(z0; [0, nT]) > σ(n)
2 if ‖z0‖ = r0,

rot(z0; [0, nT]) < 1 if ‖z0‖ = R0,
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by the definition of σ(n). Thus, (3.2) holds for the choice ω = σ(n)
2 . In the case gcd(n, σ(n)2 ) = 1, by Remark 1,

problem (1.1) possesses at least σ(n) coexistence states with minimal period nT. This ends the proof in this
case because we can take γ = 0 in (3.1), and hence, γ(n) = 0.

Subsequently, we assume that gcd(n, σ(n)2 ) ̸= 1 and consider the unique integer j ≥ 1 such that
gcd(n, σ(n)2 − j) = 1 and gcd(n, σ(n)2 − i) ̸= 1 for all 0 ≤ i < j. (3.3)

In such a case, we can make the choice ω = σ(n)
2 − j. By (3.3), gcd(n, ω) = 1. Moreover, as soon as ‖z0‖ = r0,

we have that
rot(z0; [0, nT]) >

σ(n)
2 >

σ(n)
2 − j = ω.

And due to (3.3), it is apparent that, whenever ‖z0‖ = R0,

rot(z0; [0, nT]) < 1 ≤
σ(n)
2 − j = ω.

Indeed, if σ(n)
2 − j < 1, then there exists 0 ≤ i < j such that

σ(n)
2 − i = 1, and hence,

gcd(n, σ(n)2 − i) = gcd(n, 1) = 1,

contradicting the minimality of j. Therefore, by Remark 1, it becomes apparent that (1.1) has at least

2ω = 2(σ(n)2 − j) = σ(n) − 2j = σ(n) − 2γ(n)

coexistence states with minimal period nT. The proof is complete when k = ℓ.
Now, assume that k = ℓ + 1. Then m = ℓ. Thus, according to (1.8), the total number of the α and β-

intervals in [0, nT] is nm + 1 + nm = 2nm + 1. As the integers 2nm + 1 and 2nm, going back to (3.1), have
the samedivisibility properties by6, the resultwhen k = ℓ + 1 follows the samepatterns as for k = ℓ. Similarly,
the same result holds when ℓ = k + 1. This concludes the proof.

Remark 4. As far as it concerns the cases not treated in this paper when n(k + ℓ) ≤ 5, so far, it is known that if
n(k + ℓ) ≤ 3, then (1.1) does not admit any nT-periodic solutions because the condition |Z| = 0 ensures that
no solution of (1.1) different from (0, 0), say (x(t), y(t)), can complete one turn around the origin. Thus, it
cannot satisfy (x(0), y(0)) = (x(nT), y(nT)) for some n ≥ 1. The cases when n(k + ℓ) = 4, 5 remain outside the
general scope of this paper and will be analyzed elsewhere.

4 An Application to a Class of Predator-Prey Models
The non-autonomous planar Hamiltonian system (1.1) covers a large number of mathematical models of
physical and biological nature. In particular, for the special choice f (y) = ey − 1 and g(x) = ex − 1, system
(1.1) can be written, through the change of variables x = log u and y = log v, as

{
u󸀠 = λα(t)u(1 − v),
v󸀠 = λβ(t)v(−1 + u), (4.1)

which is a non-autonomous T-periodic predator-prey model of Volterra type. As shown in [1, Section 5] and
in [15, Introduction], system (4.1) can be obtained from the Volterra system with periodic coefficients

{
p󸀠 = λp(a(t)p − b(t)q),
q󸀠 = λq(−c(t) + d(t)p),

after a suitable change of variables. It is clear that the (nontrivial) nT-periodic solutions of (1.1) are the nT-
periodic coexistence states of (4.1). By a coexistence state, it ismeant a component-wisepositive solutionpair.
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This model was introduced in a degenerate setting in [13, 16] and later analyzed in [14] in the very special
case when supp α ⊂ [0, T2 ] and supp β ⊂ [

T
2 , T]. Since the functions f (y) = e

y − 1, g(x) = ex − 1 satisfy (1.3)
and (1.4), according to Theorems 2, 3 and 4, system (4.1) has at least σ(n) coexistence states with period nT
provided n(k + ℓ) ≥ 6, among them, σ(n) − 2γ(n)with minimal period nT. By Remark 4, system (4.1) cannot
admit any nT-periodic coexistence state if n(k + ℓ) ≤ 3.

Funding: This paper has been written under the auspices of the Ministry of Science, Technology and Uni-
versities of Spain, under Research Grant PGC2018-097104-B-100, and of the IMI of Complutense University.
The work of FZ is under the auspices of INDAM-GNAMPA (section “Differential Equations and Dynamical
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