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Abstract

In this work, we study optimal and suboptimal control strategies for the treat-
ment of a polluted water resource by using aside a continuous bioreactor. The
control consists in choosing the inlet volumetric flow rate for filling the bioreac-
tor with contaminated water from a considered resource (lake, reservoir, water-
table...). The treated outflow returns to the resource. We tackle an optimization
problem which aims to minimize the time needed to reach a prescribed mini-
mal value of contamination in the resource by choosing the input flow. Next,
we study the influence of inhomogeneities of concentrations in the bioreactor,
considering a system based on partial differential equations which describe its
dynamics. We show that applying the optimal feedback control derived for per-
fectly mixed bioreactor does not allow to reach the target with small diffusion
parameters as it drives the bioreactor to washout (the bioreactor equilibrium
with no biomass). In this case, a suboptimal feedback (which reaches the target
in finite time) is obtained with the help of a Hybrid Genetic Algorithm. Fur-
thermore, we consider that the fluid flow velocity of the water entering into the
bioreactor follows either a uniform or a nonuniform profile, showing that the
optimal volumetric flow rates obtained with the uniform profile are not optimal
if the profile is nonuniform, even when high diffusion coefficients are considered
in the model.
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1. Introduction

The decontamination of water resources is a major environmental issue in the
areas of prevention of eutrophication and wastewater treatment. Eutrophication
is a process whereby water resources becomes too rich in organic material and
mineral nutrients. Household products (phosphorus detergents) and products
used in agriculture (nitrate fertilizers) are the main causes of pollution of water
resources. As a result, some plants (in particular planktonic algae) can grow
rapidly and reduce the available oxygen of the aquatic ecosystem resulting, for
instance, in the death of local bio-organisms (such as fishes). The activated
sludge process is a way of eliminating eutrophication from water resources. The
process uses biomass (i.e., bacteria) to feed with substrate (i.e., the organic
contaminant) in wastewater, producing a high quality effluent for a reasonable
operating and maintenance cost. It consists of several interrelated components:

• A tank where the biological reaction occurs, called bioreactor. Bacteria
thrive as they travel through the bioreactor and they multiply rapidly
with sufficient food (substrate).

• A waste water source that feeds the bioreactor.

• A settler situated at the bottom of the bioreactor, separating bacteria from
the clearer water. This accumulated bacteria is called activated sludge.

• A means of collecting the activated sludge, either to return it to the biore-
actor or to remove it from the process.

Three modes of operation are very common in activated sludge bioreactor exe-
cution: batch, continuous and fed-batch. During batch operation no substrate
is added to the initial charge and the product is not removed until the end of the
process; in continuous operation the substrate is continually added and product
continually removed; in fed-batch operation the feed rate may be changed dur-
ing the process, but no product is removed until the end. One of the advantages
of the continuous mode regarding batch and fed-batch (see [1, 2]), is that it does
not require necessarily upstream tanks (i.e., tanks used to stock contaminated
water that cannot be treated immediately by the bioreactor).

The optimization of activated sludge processes has received a great attention
in the literature (see, e.g.,[3], [4] and [5] for reviews of the different optimization
techniques that have been used in bioprocesses). The objective is usually to con-
trol the inlet flow rate of the bioreactor for attaining a prescribed target (e.g., a
small prescribed amount of pollutant at the bioreactor outlet) in a finite given
time. Particularly, the maximization of bacteria production in a well mixed fed-
batch bioreactor has been studied using different optimization techniques, as
Pontryagin Maximum Principle (see [6]), Genetic Algorithms (see [7, 8, 9, 10])
or Hybrid Stochastic-Deterministic Methods (see [6], [11]). The effects of vary-
ing the inlet flow velocity and the substrate concentration input in continuous
bioreactors have been studied as well (see for instance [12], [13], [14] and [15]).
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The biological purification of waste water is an example of application of con-
tinuous bioreactors (see [16], [17] and [18]). Specifically, the influence of inho-
mogeneity was studied in [17] [19] [20], where the problem of water treatment
was tackled when considering non homogeneous substrate concentration in the
water resource.

Typically, introducing biomass in the resource is forbidden because of the
risk of having bacteria growing in competition with other populations that also
need oxygen. Therefore, we assume that the resource contains only undesirable
chemical substrate, that we assume to be distributed uniformly all the time.
Bacteria are present only in the bioreactor and filtered by a settler at the out-
put so that they do not enter the resource. The activity of the bacteria inside
the bioreactor induces a gradient of substrate concentration, which can be neg-
ligible or not, depending on the ratio between the advection and diffusion effects
of the physical system. We aim at studying the influence of this gradient on the
optimal inlet volumetric flow rate control problem. Following [17], we consider
a natural resource polluted with a substrate concentration Sr. The objective
of the treatment is to decrease Sr, as fast as possible, to a target value Slim,
with the help of a bioreactor. The bioreactor is fed from the resource with a
volumetric flow rate Q, and its output returns to the resource with the same
flow rate Q (we implicitly assume that the impact of the volume of the collected
biomass on the flow rate is negligible), after separation of biomass in a settler
(See Figure 1).

Figure 1: Connection of the bioreactor with the resource

The paper is organized as follows: Section 2 introduces an ODE model describ-
ing the behavior of the contamination in the water resource and two models
describing the dynamics of the bioreactor, using ODEs and PDEs, respectively.
In Section 3, we state the optimization problem, which aims to minimize the
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time needed to decontaminate the water resource. We also present the opti-
mization methods used in both ODE and PDE models. In Section 4 we explain
the numerical experiments carried out for the optimization problem and shows
the results. Section 5 draws the conclusions after the comparison between the
numerical results obtained with the ODE and PDE models.

2. Mathematical modeling

Here we detail the mathematical models used to describe the dynamics of
the bioreactor and the water resource. More precisely, in Section 2.1 we present
an ODE system under the assumption of uniform concentration of contaminant
in the resource. We justify such an assumption for very large resource volumes
for which the treatment takes long time. The output flow Q induces then a very
small dilution rate of the contaminant in the resource compared to the diffusion
of the contaminant, that maintains an (almost perfectly) homogeneous distri-
bution in the resource. As the bioreactor volume is much smaller, the induced
advection could make the assumption of homogeneous concentrations inside the
bioreactor questionable depending on the process characteristics (reactor shape,
agitation, diffusivity...). Then, in Section 2.2 we introduce two different models
which describe the behavior of the concentrations inside bioreactor.

2.1. Water resource model

Since we assume homogeneous distribution of substrate in the water resource,
its dynamics can be described as follows [17]:







dSr

dt = Q
V
(Sout − Sr) t > 0,

Sr(0) = Sr,0,
(1)

where Sr (mol/m3) is the concentration of substrate in the water resource; V
(m3) is the water resource volume; Q (m3/s) is the volumetric flow rate and Sout

(mol/m3) denotes the concentration of substrate concentration at the outlet of
the bioreactor, which is calculated differently depending on the mathematical
modeling considered for the bioreactor.
The explicit solution of (1) is

Sr(t) = e−
∫

t

0
Q(s)
V

ds

(
∫ t

0

Q(s)

V
Sout(s)e

∫
s

0
Q(τ)
V

dτds+ Sr,0

)

. (2)

2.2. Bioreactor Models

Section 2.2.1 presents an ODE system under the assumption of uniform
concentration of substances in the bioreactor and Section 2.2.2 introduces a
PDE system in order to study the influence of inhomogeneities in the tank.
In both sections, µ(·) (s−1) denotes the growth rate function, which refers to
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the growth rate of the biomass in function of the substrate concentration. We
assume that

µ(·) is increasing and concave with µ(0) = 0. (3)

An example of such a growth rate function is given by the Monod equation
(see, e.g., [17], [21] and [22]), which is used to relate microbial growth rates in
an aqueous environment to the concentration of a limiting nutrient. Its general
expression is:

µ(S) = µmax
S

K + S
, (4)

where µ is the specific growth rate of the microorganisms, S is the concentration
of limiting nutrient for growth, µmax is the maximum specific growth rate of the
microorganisms and K is the half-maximum kinetics constant, i.e, the value of
S for which µ(S) = µmax

2 . We observe that µmax and K are empirical coeffi-
cients, that differ between species and are based on the ambient environmental
conditions.

2.2.1. Homogeneous distribution in the bioreactor

We consider the following bioreactor model to describe the dynamics of the
bioreactor (see [17]):























dSb

dt = −µ(Sb)Bb

Y
+ Q

Vb
(Sr − Sb) t > 0,

dBb

dt = µ(Sb)Bb − Q
Vb

Bb t > 0,

Sb(0) = Sb,0 Bb(0) = Bb,0,

(5)

where Sb (mol/m3) and Bb (mol/m3) denote the concentration inside the biore-
actor of substrate and biomass, respectively, Vb (m3) is the volume of the biore-
actor and Y is a yield coefficient, which can be set to 1 without loss of generality
(see for instance [22]).
If Q and Sr are constant, classical equilibria analysis for the bioreactor (see [22])
shows that system (5) has two equilibria, E1 = (Sr, 0) and E2 = (Sqs

b (Q), Sr −
Sqs
b (Q)), where Sqs

b (Q) fulfills Q = Vbµ(S
qs
b (Q)). Moreover, E1 is unstable and

E2 is globally asymptotically stable (excluding the case where Bb,0 = 0) when
Q < Vbµ(Sr).

Definition 2.1. We call washout to the equilibrium state E1, i.e., the bioreactor
equilibrium with no biomass.

A nondimensionalization analysis of systems (1) (see [23]) and (5) (see [22])
provides us with a time scale for the bioreactor, τb = 1

‖µ‖∞

(‖µ‖∞ = µmax if

the Monod function (4) is considered), and for the water resource τr = V
Vb

τb.
Since a reasonable hypothesis is to assume that the volume of the resource is
much larger than that of the bioreactor, i.e, V >> Vb, one has that τr >> τb.
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Thus, one can consider that the dynamics of (5) is faster than that of (1) and
then make the quasi-steady state approximation, setting

Sout(t) = Sqs
b (Q(t)) (6)

in system (1). We point out that the hypothesis Q(t) < Vbµ(Sr(t)) can be
rewritten as Sqs

b (Q(t)) ∈ [0, Sr(t)). We observe that, when τr >> τb, the model
given by (1),(5) is not needed and we can use (1),(6) instead. Furthermore,
according to (2), when Q is constant the explicit solution of system (1),(6) is
given by

Sr(t) = Sqs
b (Q) + (Sr,0 − Sqs

b (Q))e−
Vb
V

µ(Sqs
b (Q))t. (7)

Remark 2.2. Since the mapping Q → Sqs
b (Q) given by Q = Vbµ(S

qs
b (Q)) is

a bijection from [0,+∞) to [0, Vb‖µ‖∞) we can use as the ODE model for the
water resource







dSr

dt (t) =
Q
V
(µ−1( Q

Vb
)− Sr(t)) t > 0,

Sr(0) = Sr,0,

(8)

or, equivalently







dSr

dt (t) =
Vb

V
µ(Sqs

b )(Sqs
b − Sr(t)) t > 0,

Sr(0) = Sr,0.
(9)

Due to the bijection mentioned above we will use the notation Q = Q(Sqs
b ) and

Sqs
b = Sqs

b (Q). Giving a function Sqs
b is equivalent to give a function Q, and

viceversa.

2.2.2. Inhomogeneities in the bioreactor

Many works available in the literature consider non perfectly mixed biore-
actors, such as tubular bioreactors with one dimensional spatialization (see for
instance [24], [25], [26], [27], [28], [29]). It is of interest to consider tubular
reactors with two spatial variables in order to study radial inhomogeneities of
concentrations in the bioreactor. Two dimensional spatialization bioreactors are
introduced, for instance, in the book of Dochain and VanRolleghem [30]. Partic-
ularly, model (2.154)-(2.159) presented in page 56, describes the behavior of the
substrate and biomass concentrations in the bioreactor by using an advection-
diffusion-reaction equation and a reaction equation, respectively. Moreover,
Dochain and VanRolleghem consider Dankwerts boundary conditions for the
substrate concentration, which are typical for continuous flow bioreactors (see,
e.g., [28, 31]). Here, we modify model (2.154)-(2.159) presented in [30], by using
and advection-diffusion-reaction equation together with Danckwerts boundary
conditions also for the biomass.
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Remark 2.3. A typical representation of a bioreactor is a tank as depicted in
Figure 2-(a), with a small inlet aperture at its top (through which polluted water
enters the reactor) and a small outlet aperture at its bottom (through which the
treated water leaves the reactor). In Section 2.2.2, following the model developed
in [32] for fluidic mixers and for the sake of model simplification, we neglect the
possible effects coming from the size and collocation of these apertures. To do
that, we only model an intermediate part of the bioreactor, denoted by Ω∗ (dark
part of Figure 2-(a)), assuming that the volume of the removed part is negligible
compared to the total bioreactor volume.

Let the vertical cylinder denoted by Ω∗ be the domain used for modeling the
bioreactor. A typical outline of Ω∗ is depicted in Figure 2-(b). At the beginning
of the process, there is a certain amount of biomass inside Ω∗ that reacts with the
polluted water entering the reactor through the inlet Γ∗

in (the upper boundary of
the cylinder). Treated water leaves the reactor through the outlet Γ∗

out (the lower
boundary of the cylinder). Taking into account that the device’s geometry (see

(a) 3D Reactor (b) 3D Reactor simplification (c) 2D Reactor simplification

Figure 2: Typical domain representation of the bioreactor geometry.

Figure (2)-(b)) is an empty solid of revolution, it can be simplified and described
by using a 2D domain Ω (see Figure (2)-(c)) using cylindrical coordinates. Thus,
in the simplified model the domain is the rectangle Ω = [0, L] × [0, H], where
Γsym = {0}×(0, H) is the axis of symmetry; Γin = (0, L)×{H} is the bioreactor
inlet; and Γout = (0, L) × {0} is the bioreactor outlet. We denote Γwall =
δΩ \ (Γin ∪ Γout ∪ Γsym), where null flux is assumed.

We consider the following advection-diffusion-reaction model to describe the
dynamics in the bioreactor:















































∂Sb

∂t
= 1

r
∂
∂r
(rDS

∂Sb

∂r
) + ∂

∂z
(DS

∂Sb

∂z
)− uz

∂Sb

∂z
− µ(Sb)Bb in (0,+∞)× Ω,

∂Bb

∂t
= 1

r
∂
∂r
(rDB

∂Bb

∂r
) + ∂

∂z
(DB

∂Bb

∂z
)− uz

∂Bb

∂z
+ µ(Sb)Bb in (0,+∞)× Ω,

Sb(0, r, z) = Sb,0 in Ω,

Bb(0, r, z) = Bb,0 in Ω,

(10)
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where (r, z) are the cylindrical coordinates; DS (m2/s) and DB (m2/s) are
the diffusion coefficients of substrate and biomass, respectively, when diffus-
ing throughout the water in the vessel, and u = (0, uz(t, r, z)) is the fluid flow
velocity field, where uz (m/s) is its vertical component (radial components of
the velocity field are neglected).

System (10) is completed with the following boundary conditions:






































DS
∂Sb

∂z
− uzSb = −uzSr(t) on (0,+∞)× Γin,

DB
∂Bb

∂z
− uzBb = 0 on (0,+∞)× Γin,

∂Sb

∂r
= ∂Bb

∂r
= 0 on (0,+∞)× (Γwall ∪ Γsym),

∂Sb

∂z
= ∂Bb

∂z
= 0 on (0,+∞)× Γout.

(11)

Notice that some physical effects have been disregarded in system (10)-(11)
(i.e, more general flow fields, oxygen supply, bubbling...) in order to focus in
the differences between homogeneous and inhomogeneous environments without
using a more complex model.

Remark 2.4. If Sb,0 ≥ 0 in Ω, Sb,0, Bb,0 ∈ L∞(Ω), Sr ∈ L∞(0,∞), µ is
lipschitz, µ(0) = 0 and µ(z) ≥ 0 for z ≥ 0, then system (10)-(11) has a unique
solution (Sb, Bb) ∈ (C([0,+∞);L2(Ω)) ∩ L∞((0,∞)× Ω))2 (see [33]).

We compute the variable Sout(t) to be used in system (1) as the substrate con-
centration at the outlet of the bioreactor at time t. When considering general
flow velocity fields, we have to take into account that both substrate concentra-
tion and outlet flow velocity may depend on the position of the exiting particle.
Thus, we considered an average value of the exiting substrate concentration
weighted by the flow velocity and computed as

Sout(t) =

∫

Γ∗

out
uz(t, x, y, 0)Sb(t, x, y, 0) dxdy
∫

Γ∗

out
uz(t, x, y, 0) dxdy

.

When expressed in cylindrical coordinates is calculated as

Sout(t) =

∫ 2π

0

∫ L

0
ruz(t, r, 0)Sb(t, r, 0) drdθ

∫ 2π

0

∫ L

0
ruz(t, r, 0) drdθ

=

∫ L

0
ruz(t, r, 0)Sb(t, r, 0) dr
∫ L

0
ruz(t, r, 0) dr

. (12)

We consider two types of flow velocity fields, which do not change along the
z-axis (more general fields can be considered by using the Navier-Stokes equa-
tions).

• Homogeneous flow velocity field: As a first approach, we consider that
the vertical component of the flow velocity field is taken as uz(t, r, z) =
uz(t) = −Q(t)/A, where Q (m3/s) is the volumetric flow rate defined in
Section 2.1 and A (m2) is the area of the basis of the cylinder. In this

case, Sout(t) =
2
L2

∫ L

0
rSb(t, r, 0)dr.
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• Ellipsoidal flow velocity field: As a second approach, we consider that
the flow velocity field has the shape of an ellipsoid of revolution, which is
classical in Fluid Dynamics (see, for instance [34]) and more realistic than
the previous homogeneous flow velocity profile. More precisely, the verti-
cal component of the flow velocity field is taken as uz(t, r, z) = uz(t, r) =
−C

√
L2 − r2, where C is chosen so that the volume covered by half of

the ellipsoid of revolution is equal to Q (m3/s). Since the volume gener-

ated is V = C 2
3πL

3, we conclude that C(t) = 3Q(t)
2πL3 and thus uz(t, r) =

− 3Q(t)
2πL3

√
L2 − r2. In this case, Sout(t) =

3
L3

∫ L

0
r
√
L2 − r2Sb(t, r, 0)dr.

Remark 2.5. A nondimensionalization analysis of system (10)-(11) (see [35])

provides us with a time scale for the bioreactor, that is τb = max(H
2

DS
, H2

DB
,

H
umax

, 1
‖µ‖∞

), where umax is a suitable scale for the flow velocity component uz.

For the water resource, the time scale is τr =
V
Vb

1
‖µ‖∞

(see Section 2.2.1). For

the cases where τr >> τb (for instance, when the volume of the resource is much
larger than the volume of the bioreactor), one can consider that the dynamics
of (10)-(11) is faster than that of (1), i.e, for a reasonable process time for
the bioreactor, the changes in the entering substrate and the fluid flow velocity
are negligible (therefore, they can be treated as constants). Consequently, when
dealing with time intervals of the order of τr, we consider that the bioreactor is
in quasi-steady state.

Under this hypothesis, system (10)-(11) can be changed, at each time t ∈ (0,+∞),
by















































































1
r

∂
∂r
(rDS

∂S
qs
b

∂r
) + ∂

∂z
(DS

∂S
qs
b

∂z
)− uz

∂S
qs
b

∂z
= µ(Sqs

b )Bqs
b in Ω,

1
r

∂
∂r
(rDB

∂B
qs
b

∂r
) + ∂

∂z
(DB

∂B
qs
b

∂z
)− uz

∂B
qs
b

∂z
= −µ(Sqs

b )Bqs
b in Ω,

DS
∂S

qs
b

∂z
− uzS

qs
b = −uzSr on Γin,

DB
∂B

qs
b

∂z
− uzB

qs
b = 0 on Γin,

∂S
qs
b

∂r
=

∂B
qs
b

∂r
= 0 on Γwall ∪ Γsym,

∂S
qs
b

∂z
=

∂B
qs
b

∂z
= 0 on Γout,

(13)

where uz(t, ·) and Sr(t) are time dependent and (Sqs
b (t, r, z), Bqs

b (t, r, z))
(mol/m3) are the substrate and biomass concentrations of the bioreactor in
quasi-steady state, respectively. A usual way to solve numerically nonlinear sys-
tem (13) is to solve numerically (10)-(11) (which is usually easier) and then take
the solution corresponding to large values of t as the solution of (13) (see [36]).
Therefore, computing numerically the solution of system (13) could be very
heavy. This is why in the following we consider and solve system (1),(10)-(12),
also for the cases where τb << τr .
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3. Optimization problem

We consider the optimization problem consisting in making decrease the
substrate concentration of the water resource, to a prescribed value Slim > 0
(mol/m3), in a minimal amount of time by choosing a suitable control strategy
for the input variable Q.

Definition 3.1. We denote by Σ0 and Σ the initial state and the state at an
arbitrary time, respectively. Therefore, when considering system (8) Σ0 = Sr,0

and Σ = Sr ∈ [0,+∞); and when considering system (1),(10)-(12) we have
Σ0 = (Sr,0, Sb,0, Bb,0) and Σ = (Sr, Sb, Bb) ∈ [0,+∞)× (L∞(Ω))2.

Definition 3.2.

1. For each initial state Σ0 we consider the set of admissible time-dependent
control functions given by QOL = {Q : [0,+∞) → [0,+∞) Lebesgue mea-
surable such that Q(0) < Vbµ(Sr,0), where Sr,0 is initial state of system (8)
(or system (1) coupled with (10)-(12))}. A functional Q(·) = Q(Σ0; ·) ∈
QOL is called an open loop-control and in the following is denoted by QOL.

2. We consider the set of admissible state-dependent control functions given
by QFB = {Q : [0,+∞) → (0,+∞) (resp. Q : [0,+∞) × (L∞(Ω))2 →
[0,+∞)) such that system (8) (resp. (1),(10)-(12)) admits a unique ab-
solutely continuous solution for any initial condition Σ0 and Q(Σ) <
Vbµ(Sr)}. A functional Q ∈ QFB is called a feedback control and in the
following is denoted by QFB. 1

Remark 3.3. The stability analysis of the ODE system (5), presented in Sec-
tion 2.2.1, stated that in order to avoid washout (see Definition 2.1) a suitable
condition for the flow rate Q is Q(Σ) ∈ (0, Vbµ(Sr)). When using the ODE-
PDE system (1),(10)-(12), we have presented two possible effects which may
cause inhomogeneities in the bioreactor: small diffusion of substances and non-
homogeneous fluid flow velocity profile. In the first case, the entering substrate
diffuses slowly through the tank and thus, smaller flow rates are needed in order
to guarantee that the biomass has enough time to be in contact with the substrate
and decontamination occurs. In the second case, a nonhomogeneous profile may
produce that in some regions of the bioreactor, the liquid is ejected faster than if
we use the homogeneous flow velocity profile, and hence, smaller flow rates are
needed in order to assure that the substrate and biomass react in the whole tank
(see Remark 4.2 for better explanation of the second case). Consequently, one
can conclude that the bound Q(Σ) ∈ (0, Vbµ(Sr)) is also suitable when using the
ODE-PDE system (1),(10)-(12).

Remark 3.4. A particular case of open-loop is when Q is constant, which in
the following we will be denote by QC. For each initial state Σ0 we consider

1The definition of QFB will be modified in Remark 3.6 for a special case that we will
studied in this paper
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the set of admissible constant control functions given by QC = {Q : [0,+∞) →
[0,+∞) : Q(t) ≡ c with c ∈ [0, Vbµ(Sr,0))}. Furthermore, since the objective
is to decrease the substrate concentration of the water resource to a prescribed
value Slim in minimal time, the set of admissible constant control functions is
reduced to QC = {Q : [0,+∞) → [0,+∞) : Q(t) = c for all t ≥ 0, with c ∈
[0, Vbµ(Slim))}.

Remark 3.5. For an initial state Σ0, we call open-loop representation of the
feedback QFB to the time function QFB(·) = QFB(Σ(·)) where Σ(·), is the solu-
tion of the system (either (8) or (1),(10)-(12)) with initial state Σ0.

Remark 3.6. For cases where τb << τr, we can assume that system (1),(10)-
(12) is in quasi-steady state (see Remark 2.5). In this situation, we can ap-
proximate the state of the system by Σ = Sr and open-loops and feedbacks can
be assumed, respectively, functionals of the form QOL(·) = QOL(Sr,0; ·) and
Sr 7→ QFB(Sr), where QFB ∈ QFB = {Q : [0,+∞) → (0,+∞) such that sys-
tem (1),(10)-(12) admits a unique absolutely continuous solution for any initial
condition Σ0 and Q(Sr) < Vbµ(Sr)}.

Given an initial state Σ0, the optimization problem when using open-loops can
be formulated as follows:

{

Find QOL,opt(·) ∈ QOL, such that

T (Σ0, Q
OL,opt(·)) = min

QOL(·)∈QOL
T (Σ0, Q

OL(·)), (14)

where T (Σ0, Q
OL(·)) denotes the time required to achieve Sr(T (Σ0, Q

OL(·))) =
Slim when solving system (8) (or system (1),(10)-(12)) with the flow rate Q =
QOL(·). If the target is not achieved we set T (Σ0, Q

OL(·)) = +∞.

The optimization problem when using feedback controls can be formulated
as follows:

{

Find QFB,opt ∈ QFB, such that for every initial state Σ0

T (Σ0, Q
FB,opt(·)) = min

QFB∈QFB
T (Σ0, Q

FB(·)), (15)

where T (Σ0, Q
FB(·)) denotes the time required to achieve Sr(T (Σ0, Q

FB(·))) =
Slim when solving system (8) (or system (1),(10)-(12)) with the flow rate Q =
QFB. If the target is not achieved we set T (Σ0, Q

FB(·)) = +∞.

In Section 3.1 we solve these problems considering ODE model (8) and in
Section 3.2 we use ODE-PDE system (1),(10)-(12).

3.1. Optimization problem with ODE model (8)

When using ODE model (8), we assume τr >> τb. We distinguish between
the cases in which Q is a constant open-loop control or a feedback control. The
case where Q is a time-varying open loop is derived from the case in which Q
is a feedback control (as explained in Remark 3.11).
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3.1.1. Case 1: Constant open-loop control

Given an initial state Σ0 = Sr,0 ∈ [0,+∞) we look for an optimal constant
QC,opt ∈ QC solution of (14). Under assumption (3), if control variable Q is
equivalently replaced by control variable Sqs

b (see Remark 2.2) and if we denote

Sqs,C
b = {Sqs

b = Sqs
b (Q) such that Q ∈ QC}, then problem (14) becomes







Find Sqs,C,opt
b ∈ Sqs,C

b such that

T (Sr,0, S
qs,C,opt
b ) = min

S
qs,C
b ∈Sqs,C

b

T (Sr,0, S
qs,C
b ), (16)

where T (Sr,0, S
qs,C
b ) denotes the time required to achieve Sr(T (Sr,0, S

qs,C
b )) =

Slim when solving system (9) with the control variable Sqs
b = Sqs,C

b . We now
present some theoretical results that are proved in [17], about problem (16).

Lemma 3.7. If Q is constant (i.e., Sqs
b is constant),

T (Sr,0, S
qs,C
b ) =

1
Vb

V
µ(Sqs,C

b )
ln

(

Sr,0 − Sqs,C
b

Slim − Sqs,C
b

)

. (17)

Lemma 3.8. Assuming Sr,0 > Slim, optimization problem (16) has a unique
solution.

We approximate the solution of problem (16) by computing

Sqs,C,opt
b = arg min

S
qs,C
b ∈Sqs,C,N

b

T (Sr,0, S
qs,C
b ), (18)

where Sqs,C,N
b = {Sqs

b,i}Ni=1, with N ∈ N large enough and Sqs
b,i =

i
N+1Slim.

3.1.2. Case 2: Feedback control

In this case, we look for an optimal feedback QFB,opt ∈ QFB solution of (15).
Under assumption (3), if control variable Q is equivalently replaced by control

variable Sqs
b and if we denote Sqs,FB

b = {Sqs
b = Sqs

b (Q) where Q ∈ QFB}, then
Sqs,FB,opt
b = Sqs

b (QFB,opt) is called an optimal feedback. As proven in [17], we
have the following result.

Lemma 3.9. An optimal feedback Ssb,FB,opt
b : [0,+∞) → R must fulfill

Sqs,FB,opt
b = arg min

S
qs,FB
b ∈Sqs,FB

b

Vb

V
µ(Sqs,FB

b )(Sqs,FB
b − Sr) (19)

or, equivalently,

µ′(Sqs,FB,opt
b )(Sr − Sqs,FB,opt

b ) = µ(Sqs,FB,opt
b ). (20)

Moreover, QFB,opt(·) (see Remark 3.5) is decreasing along any optimal trajec-
tory.
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If the Monod equation (4) is used we can solve explicitly equation (20) with

Sqs,FB,opt
b (Sr) =

√
K2 +KSr −K.

Remark 3.10. The fact that the open loop realization of the feedback QFB,opt

is decreasing along time can be interpreted physically as follows: as time goes
on, the substrate in the water resource is decreasing and the water that enters
the bioreactor is less polluted. Therefore, if Q(·) does not decrease, the biomass
has not enough time to be in contact with the substrate in order to grow, and
eventually becomes extinct. Mathematically, when Q

Vb
> µ(Sr), biomass goes

asymptotically to the washout equilibrium (see Definition 2.1).

Remark 3.11. If QFB,opt is solution of problem (15) when using model (8),
given an initial state Σ0 = Sr,0 ∈ [0,+∞), the open-loop representation of
QFB,opt (see Remark 3.5) is solution of problem (14).

3.2. Optimization problem with ODE-PDE model (1),(10)-(12)

In the case where inhomogeneities are considered, we recall that Sout is
computed as described in (12). As in Section 3.1, we consider the cases in
which Q is chosen as an open-loop control or as a feedback control.

3.2.1. Case 1: Constant open-loop control

Given an initial state Σ0 ∈ [0,+∞)×(L∞(Ω))2 (or Σ0 ∈ [0,+∞) for the cases
where τb << τr, see Remark 3.6), we look for an optimal constant QC,opt ∈ QC

solution of problem (14), that we approximate by taking N equidistant points
in the interval (0, Vbµ(Slim)) proceeding as in problem (18).

3.2.2. Case 2: Time varying open-loop control

Given an initial state Σ0 ∈ [0,+∞) × (L∞(Ω))2 (or Σ0 ∈ [0,+∞) for the
cases where τb << τr, see Remark 3.6), we look for a time variable function
QOL,opt ∈ QOL close to a solution of (14). With that aim, we consider a family
of time varying functions with 5 optimization parameters, denoted by Q0, Q1,
Q2, Q3 and Q4. Those optimization parameters correspond to the value of the
flow rate QOL(·) at five different given fixed times t0, t1, t2, t3 and t4, starting
from time t0 = 0, so that function QOL is given by:

QOL(t) =























Q0 if t = 0,
Q1 if t = t1,
Q2 if t = t2,
Q3 if t = t3,
Q4 if t > t4

and QOL(t) is calculated with the monotone piecewise cubic hermite interpola-
tion, with null derivatives at t0 and t4 (see for instance [37]), for t ∈ (ti, ti+1)
(i = 0, . . . , 3).
Following Remark 3.10, we only consider decreasing time functions Q(·). Thus,
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we compute the optimization parameters Q0, Q1, Q2, Q3 and Q4 with the
following constraints

Q0 > Q1 > Q2 > Q3 > Q4.

To that end, we consider the optimization parameter Q0 ∈ [0, Vbµ(Sr,0)) and
we define new optimization parameters α1, α2, α3 and α4 in [0, 1] such that the
interpolation data are given by

Q1 = α1Q0, Q2 = α2Q1, Q3 = α3Q2, Q4 = α4Q3.

Therefore, we approximate QOL,opt(·) by a function defined by interpolation, as
explained above, and where the corresponding vector γopt = (Qopt

0 , αopt
1 , αopt

2 ,
αopt
3 , αopt

4 ) is solution of

{

Find γopt ∈ (0, Vbµ(Sr,0))× (0, 1)4 such that

T (Σ0, Q
OL,opt(·)) = min

γ∈(0,Vbµ(Sr,0))×(0,1)4
T (Σ0, Q

OL(·)), (21)

where T (Σ0, Q
OL(·)) denotes the time required to achieve Sr(T (Σ0, Q

OL(·))) =
Slim when solving (with any suitable solver; see e.g. Section 4.1) system (1)
coupled with (10)-(12) with the flow rate Q = QOL(·). We solve problem (21)
with the Hybrid genetic algorithm (and its parameters) presented in [32].

Remark 3.12. We have used other approaches for computing time varying
open-loop solutions of problem (14), for instance Q(t) = 1

(At+B)p , where A,B, p

are in a suitable search space. Nevertheless, in the following we do not present
the optimization results obtained with this approach since they are not better
than those obtained with the approach explained above.

3.2.3. Case 3: Feedback Approximation

In this case, we look for an optimal feedback QFB,opt ∈ QFB solution of
problem (15). To this end, proceeding similarly as done in Lemma 3.9 for
perfectly mixed bioreactors, we perform a suboptimal strategy as a greedy policy
that consists in choosing a control maximizing the instantaneous decrease of the
contaminant concentration in the resource.
For cases where τb << τr, we assume that the feedback only depends on Sr, i.e.,
Σ = Sr (see Remark 3.6) and we approximate the feedback function that we are
looking for by solving the following optimization problem: Given an arbitrary
resource substrate concentration S ∈ [0,+∞) and a small time interval ∆t > 0
(chosen of the order of the water resource time scale τr in order to assure that
the bioreactor is in quasi-steady state during the time interval ∆t)







Find QFB,opt(S) ∈ [0, Vbµ(S)) such that

Sr(S,Q
FB,opt; ∆t) = minQFB∈[0,Vbµ(S))Sr(S,Q

FB; ∆t),
(22)

where Sr(S,Q
FB; ∆t) is the solution (computed with any suitable solver; see e.g

Section 4.1) of system (1) coupled with (10)-(12) at time ∆t, with S = S0 and
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Q = QFB(S). Since τb << τr the bioreactor is in quasi-steady state and the
choice of the concentration values Sb,0 and Bb,0 does not have influence on the
solution of problem (22). Particularly, we take Sb,0 = Bb,0 = S. We estimate
the solution of problem (22) by taking N equidistant points in the interval
(0, Vbµ(S)) and proceeding as in problem (18). Then, in order to obtain a
function of the form

QFB,opt : [Slim, Sr,0] −→ [0, Vbµ(Sr,0))

S → QFB,opt(S),
(23)

we solve problem (22) for a range of concentration values S ∈ S = {Si}I+1
i=1 ,

where I ∈ N is large enough and Si = Sr,0− i−1
I
(Sr,0−Slim). Finally, Q

FB,opt(S)
is calculated with the monotone piecewise cubic hermite interpolation with null
derivatives at Slim and Sr,0 (see [37]) for S /∈ S.

For cases where τb << τr is not satisfied, we approximate the feedback function
that we are looking for by solving the following optimization problem: Given
arbitrary concentration values (S, sb, bb) ∈ [0,+∞)×(L∞(Ω))2 and a small time
interval ∆t > 0







Find QFB,opt(S, sb, bb) ∈ [0, Vbµ(S)) such that

Sr(Σ, Q
FB,opt; ∆t) = minQFB∈[0,Vbµ(S))Sr(S,Q

FB; ∆t),
(24)

where Sr(S,Q
FB; ∆t) is the solution (obtained with a suitable numerical solver;

see e.g. Section 4.1) of system (1) coupled with (10)-(12) at time ∆t, with
Σ0 = (S, sb, bb) and Q = QFB(S, sb, bb). We estimate the solution of problem
(24) by taking N equidistant points in the interval (0, Vbµ(S)) and proceeding
as in problem (18).
Then, in order to obtain a function of the form

QFB,opt : [Slim, Sr,0]× (L∞(Ω))2 −→ [0, Vbµ(Sr,0))

(S, sb, bb) → QFB,opt(S, sb, bb),
(25)

we solve problem (24) for a range of concentration values (S, sb, bb) in the set
M = {(S, sb, bb) : ∃i ∈ {1, . . . , I + 1} such that S = Si ∈ S, sb ∈ Sb,i and
bb ∈ Bb,i} where Si = Sr,0 − i−1

I
(Sr,0 − Slim), Sb,i = Bb,i = {Si,j}j∈J with

J ⊂ N and Si,j = Si

j
. If (S, sb, bb) /∈ M, we compute the mean value of the

concentrations sb and bb in the bioreactor (which we denote by sb and bb) by

sb =

2

∫ L

0

∫ H

0

rsb(r, z) dzdr

L2H
, bb =

2

∫ L

0

∫ H

0

rbb(r, z) dzdr

L2H
,

and QFB,opt(S, sb, bb) is approximated by QFB,opt(S, sb, bb), which is given by
spatial interpolation. More specifically, QFB,opt(S, sb, bb) is calculated with a
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suitable trilinear or neighbor interpolation method depending if (S, sb, bb) is or
not inside the convex hull of M.

Remark 3.13. Set M has been chosen following the stability analysis of the
ODE system (5), presented in Section 2.2.1, which shows that the value of con-
centration of both substrate and biomass at their equilibria state is below the
substrate concentration in the resource. Nevertheless, in order to obtain a func-
tion of the form (25), the same methodology can be applied with more general
sets M.

Remark 3.14. Solution of problems (22) and (24) are approximations of the
solution of problem (15) which, as shown in Section 4.3, provide satisfactory
results.

4. Numerical Experiments

In this section, we first introduce the numerical solvers used for computing
the solutions of systems (9) and (1),(10)-(12). Then, in Sections 4.2 and 4.3 we
present the numerical results obtained when looking for constant and feedback
controls, respectively. Notice that in order to shorten the presentation of this
work, the results obtained when looking for time varying open-loop controls has
been included in Section 4.3.

4.1. Numerical solvers used for systems (9) and (1),(10)-(12)

The solution of system (9) was computed numerically by using a fourth-order
Runge-Kutta method and the solution of system (1),(10)-(12) was computed
numerically by coupling a fourth-order Runge-Kutta method with a Finite Ele-
ment Method (see [38]). The computational experiments were carried out with
a 2.8Ghz Intel i7-930 64bits computer with 12Gb of RAM. We used a triangular
mesh with around 600 elements. A numerical simulation of system (1),(10)-
(12) with time step ∆t = 100s and final time 105s, computed using MATLAB
(mathworks.com) and COMSOL Multyphisics 4.4 (www.comsol.com), takes ap-
proximately 12 seconds.

Model parameters were taken following [17, 19]: µ(·) was the Monod Func-
tion (see (4)) with µmax = 1 (s−1) and K = 1 (mol/m3). For the bioreactor and
water resource volumes we took Vb = 1 (m3) and V = 1000 (m3), respectively.
In order to obtain a cylinder of volume Vb = 1 (m3), we used a 2D bioreactor
domain with H = L = 0.68 (m). We considered a case for which the time scale
of the bioreactor was comparable to the time scale of the water resource by using
diffusion coefficients DS = DB = 0.01 (m2/s). We also consider a case where the
time scale for the bioreactor was much smaller than the time scale of the water
resource by using diffusion coefficients DS = DB = 100 (m2/s). When comput-
ing a constant open loop control (see Section 3.2.1), N = 100 was chosen to solve
problem (18). When computing a time-varying open loop (see Section 3.2.2), the
interpolation times were t0 = 0 (s), t1 = 20000(s), t2 = 40000(s), t3 = 60000(s)
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and t4 = 80000(s). Those values where taken equidistant and having estimated
experimentally that the time needed to achieve the prescribed value in the re-
source is around 105s. Finally, when computing a feedback (see Section 3.2.3),
problems (22) and (24) were solved by using the MATLAB functions interp1
and interp3 (see https://www.mathworks.com/moler/interp.pdf), respec-
tively, with ∆t = 100 s.

Remark 4.1. The model parameters considered here were chosen as in [17] in
order to obtain a straightforward comparison between the methodologies proposed
in this article and the ones introduced here. Of course, they could be replaced
by other values found in the literature.

4.2. Constant Open-Loop Control

In this Section, we solve numerically the optimization problem (14) when
the volumetric flow rate Q is considered a constant. More specifically, Section
4.2.1 shows the numerical results for the ODE model (9), obtained by solving
problem (18), and Section 4.2.2 shows the numerical results for the ODE-PDE
system (1),(10)-(12), obtained as explained in Section 3.2.1. Then, in Section
4.2.3 we make a comparison of the results obtained in Sections 4.2.1 and 4.2.2
in terms of the optimal constant open-loop controls and the time needed to
achieve the prescribed value of substrate concentration in the water resource,
Slim. We also compare models (9) and (1),(10)-(12) in terms of the minimum
substrate concentration achieved in the water resource if the constant flow rate
obtained for system (9) is used in system (1),(10)-(12). Simulations were done
with initial substrate concentration in the resource Sr,0 = 5 and 10 (mol/m3)
and with Slim = 0.1 (mol/m3).

4.2.1. ODE model (9)

In this Section we solve the optimization problem (18) using model (8) with
N = 200. Table 1 shows the results.

Sr,0 (mol/m3) QC,opt
ODE (m3/s) T (Sr,0, Q

C,opt
ODE )(s)

5 0.0776 74090
10 0.0790 81830

Table 1: ODE model: Value of the optimal constant open-loop Q
C,opt
ODE

and the corresponding
decontamination time for two different initial values Sr,0.

4.2.2. ODE-PDE model (1),(10)-(12)

In this Section we solve the optimization problem (14) using the model given

by system (1),(10)-(12). We denote QC,opt
HOM and QC,opt

ELL the optimal constant flow
rates when considering the homogeneous and the ellipsoidal flow velocity fields,
respectively. Equivalently, we denote SHOM

r,ach and SELL
r,ach the minimum substrates

concentrations achieved in the water resource ifQC,opt
ODE is used in system (1),(10)-

(12). For these concentration values, the flow rate QC,opt
ODE is high enough to drive
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system (1),(10)-(12) to washout (see Definition 2.1), i.e, the biomass become ex-
tinct and no more reaction is produced.

We distinguish between the cases where the time scale of the bioreactor is
much smaller than the time scale of the water resource (i.e., τb << τr) and the
case where that condition is not satisfied.

• Case τb << τr:
Table 2 shows optimal constant open loops and the corresponding decon-
tamination times and Table 3 shows the substrate concentrations achieved
in the resource.

Sr,0 QC,opt
HOM T (Sr,0, Q

C,opt
HOM) QC,opt

ELL T (Sr,0, Q
C,opt
ELL )

(mol/m3) (m3/s) (s) (m3/s) (s)
5 0.0758 72750 0.0658 87040
10 0.0778 81840 0.0666 97770

Table 2: ODE-PDE model: case τb << τr. Values of the optimal constant open-loops QC,opt
HOM

and Q
C,opt
ELL

and the corresponding decontamination times for two initial values Sr,0.

Sr,0 (mol/m3) SHOM
r,ach (mol/m3) SELL

r,ach (mol/m3)

5 0.08404 0.1006
10 0.08569 0.1026

Table 3: ODE-PDE model: case τb << τr. Substrate concentrations achieved if the constant
flow rate Q

C,opt
ODE

is used in system (1),(10)-(12) for two initial values Sr,0.

• Case τb ≈ τr:
In this case, the optimal constant open loop also depends on the initial
state at the bioreactor. Since we aim to compare the optimal constant
open-loop controls obtained for the ODE model (8) and the ODE-PDE

model (1),(10)-(12), we estimate a function of the form Sr,0 → QC,opt
HOM(Sr,0)

by solving problem (14) for a range of initial states in the set M defined

to solve problem (24) with I = 1 and J = {1, 2, 4, 10}. Then, QC,opt
HOM is

approximated by computing the mean value of the set of optimal constant
open-loop controls obtained for the different initial states. This procedure
is also used to obtain the optimal constant QC,opt

ELL and the substrate con-
centrations SHOM

r,ach and SELL
r,ach.

Table 4 shows the optimal constant flow rates and the corresponding
decontamination times, and Table 5 shows the substrate concentrations
achieved in the resource.

4.2.3. Discussion

An interesting study is to check if the optimization results obtained in Sec-
tions 4.2.1 and 4.2.2 are similar. We make the comparison for both flow velocity

18



Sr,0 QC,opt
HOM T (Sr,0, Q

C,opt
HOM) QC,opt

ELL T (Sr,0, Q
C,opt
ELL )

(mol/m3) (m3/s) (s) (m3/s) (s)
5 0.0540 89260 0.0467 103160
10 0.0547 102190 0.0470 118790

Table 4: ODE-PDE model: case τb ≈ τr. Values of the optimal constant open-loops Q
C,opt
HOM

and Q
C,opt
ELL

and the corresponding decontamination times for two different initial values Sr,0.

Sr,0 (mol/m3) SHOM
r,ach (mol/m3) SELL

r,ach (mol/m3)

5 0.14811 0.1754
10 0.1524 0.1802

Table 5: ODE-PDE model: case τb ≈ τr. Substrate concentration achieved if the constant
Q

C,opt
ODE

is used in system (1),(10)-(12) for two different initial values Sr,0.

fields, described in Section 2.2.2.

• Homogenous flow velocity field: We can observe from Tables 1 and
2 that the volumetric flow rates QC,opt

ODE and QC,opt
HOM (obtained with the

ODE-PDE system (1),(10)-(12) when τb << τr) are significantly close
and the decontamination times are comparable (the difference is below
1% for both values of Sr,0). Nevertheless, from Tables 1 and 4 one notice

that the flow rate QC,opt
HOM (obtained with the ODE-PDE system (1),(10)-

(12) when τb ≈ τr) is around 70% of the value of QC,opt
ODE . Furthermore,

from Table 5 we conclude that if the constant QC,opt
ODE is applied in system

(1),(10)-(12) in the case where τb ≈ τr, the bioreactor is driven to washout
(see Definition 2.1) before the decontamination target is achieved. These
results seem to indicate that when high diffusions are considered, the op-
timal constant controls obtained with the ODE model are similar to those
obtained with the ODE-PDE model, whereas for low diffusion coefficients
the ODE-PDE model exhibits better results, in the sense that it provides
smaller volumetric flow rates which favor that the biomass does not be-
come extinct in the bioreactor before the target is achieved (see Remark
3.3).

• Ellipsoidal flow velocity field: We can observe from Tables 1, 2 and 4
than the volumetric flow ratesQC,opt

ELL , obtained with the ODE-PDE system
(1),(10)-(12) in the cases where τb << τr and τb ≈ τr, are around 84%

and 60% of the value of the flow rate QC,opt
ODE , respectively. Furthermore,

from Tables 3 and 5 we conclude that if the constant QC,opt
ODE is used in

the ODE-PDE system (1),(10)-(12), the bioreactor is driven to washout
(see Definition 2.1) before the decontamination target is achieved. These
results seem to indicate that when the ellipsoidal flow velocity field is
considered, model (1),(10)-(12) exhibits better results, in the sense that it
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provides smaller volumetric flow rates which favor that the biomass does
not become extinct in the bioreactor before the target is achieved (see
Remark 3.3). The influence of the ellipsoidal flow velocity field in the
washout phenomena is explained in Remark 4.2.

Remark 4.2. We recall from Section 2.2 that the washout phenomena (see
Definition 2.1) is produced when Q(t) ≥ Vbµ(Sr(t)). It is reasonable to assume
that for high diffusion coefficients DS and DB, the substrate and biomass con-
centrations become homogeneous in the bioreactor so that the ODE-PDE model
(1),(10)-(11) approaches the ODE model (9), and consequently, the washout
is also produced when Q(t) ≥ Vbµ(Sr(t)). Nevertheless, this analogy only takes
place when using the homogeneous flow velocity field in system (1),(10)-(12). As
detailed in Section 2.2.2, the ellipsoidal flow velocity field is taken as uz(r, t) =

− 3Q(t)
√
L2−r2

3L3 , so it attains its maximum depth at r = 0. This maximum depth
is 3

2 the maximum depth if the homogeneous profile is taken, so we can conclude
that when using the ellipsoidal flow velocity field, washout occurs for Q(t) ≥
Qmax(t), where Qmax(t) is some value in the interval [ 23Vbµ(Sr(t)), Vbµ(Sr(t))].
In order to find a physical explanation, we observe Figure 3-(a), pointing out
that if the ellipsoidal flow velocity field is used, the liquid located in region 1 is
ejected from the bioreactor faster than if we use the homogeneous flow velocity
field. Thus, the substrate is in contact with the biomass less time and conse-
quently the water remains polluted in this region when going out from the reactor.
Furthermore, due to diffusion, the particles situated in the regions 1 and 2 are
mixed and the resulting contamination value is higher than the required thresh-
old. Figure 3-(b) shows the difference in terms of decontamination time between
using the homogeneous and the ellipsoidal flow velocity fields when Q (m3/s) is
considered constant (Q ∈ QC). Particularly, taking Sr,0 = 5 (mol/m3) and the
objective value Slim = 0.5 (mol/m3), one obtains that in order to avoid washout
Q should be in the interval [0, 0.33). We observe that the washout phenomena
starts at the value Q ≈ 0.33 in the case of considering the homogeneous flow
velocity field, but starts earlier if we use the ellipsoidal flow velocity field.

4.3. Feedback

In this Section, we look for an optimal feedback, denoted by QFB,opt solution
of problem (15). More specifically, Section 4.3.1 shows the results for the ODE
model (9), obtained using Lemma 3.9 and Section 4.3.2 shows the feedback ap-
proximations for the ODE-PDE system (1),(10)-(11), obtained when solving the
suboptimal problems (22) and (24). Section 4.3.2 also shows the feedback syn-
thesis (see definition below) of the optimal time varying open-loops, obtained
when solving (21). Then, in Section 4.3.3 we make a comparison of the results
presented in Sections 4.3.1 and 4.3.2 in terms of the feedback control. Fur-
thermore, we compare models (9) and (1),(10)-(12) in terms of the minimum
substrate concentration achieved in the water resource if the optimal feedback
obtained for system (9) is used in system (1),(10)-(12).
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(b) Decontamination times obtained by us-
ing the homogeneous flow velocity field (de-
picted by a solid line) or the ellipsoid flow
velocity field (depicted by a dashed line).
Notice that the vertical lines are allocated
at the value of Q for which washout starts.

Figure 3: Scheme of the washout phenomena when using the homogeneous and the ellipsoidal
flow velocity fields.

4.3.1. ODE model (9)

As detailed in Section 3.1.2 if the Monod equation (4) is taken, the optimal

feedback, denoted by QFB,opt
ODE , fulfills

QFB,opt
ODE = Vbµ(S

qs,FB,opt
b ) = Vbµ(

√

K2 +K · Sr −K).

4.3.2. ODE-PDE model (1),(10)-(11)

As a first approach, we solve problem (15) by solving optimization problems
(22) and (24) (considering a feedback approximation, as described in Section
3.2.3), for both homogeneous and ellipsoidal flow velocity fields, denoting the

solution by QFB,opt
HOM and QFB,opt

ELL , respectively.
In order to compare with time varying open-loop controls (see Section 3.2.2),
as a second approach we solve problem (15) by solving the optimization prob-
lem (21) and then taking the feedback synthesis of the time varying open-loop,
i.e, for any time t with corresponding values Q(t) and Σ(t), we can reconstruct
the map Σ(t) → Q(t), that can be seen as a state-dependent control function,

which in the following we denote by QOL,opt
HOM (Σ) and QOL,opt

ELL (Σ), for the homo-
geneous and the ellipsoidal flow velocity fields, respectively. Equivalently, we
denote SHOM

r,ach and SELL
r,ach the minimum substrate concentrations achieved in the

water resource if QFB,opt
ODE is used in system (1),(10)-(12). For these concentra-

tion value, the flow rate QODE
FB,opt is high enough to drive system (1),(10)-(12)

to washout (see Definition 2.1), i.e, the biomass become extinct and no more
reaction is produced.
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Simulations have been conducted for substrate concentration Sr,0 = 10
(mol/m3) Slim = 0.1 (mol/m3).

• Case τb << τr
Figure 4 shows the similarities between the feedbacks obtained with the
two approaches described above. More precisely, Figure 4-(a) shows the

feedbacks QFB,opt
HOM and QOL,opt

HOM (Σ) and Figure 4-(b) shows the feedbacks

QFB,opt
ELL and QOL,opt

ELL (Σ).
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Figure 4: ODE-PDE model: case τb << τr. Comparison between the feedback approximations
QFB,opt (depicted with solid lines) and QOL,opt (depicted with dashed lines).

• Case τb ≈ τr:
In this case, time varying open loops and feedbacks depend on the bioreac-
tor state. Since we aim to compare the optimal feedback obtained for ODE
model (8) with the two feedback schemes obtained for ODE-PDE model

(1),(10)-(12), we approximate functions of the form Sr → QFB,opt
HOM (Sr) and

Sr,0 → QOL,opt
HOM (Sr,0; ·). In order to compute QFB,opt

HOM (Sr) (or Q
FB,opt
ELL (Sr))

we solve problem (24) for (S, sb, bb) in the set M, defined to solve prob-
lem (22), with I = 20 and J = {1, 2, 4, 10}. Thus, for each S ∈ S,
QFB,opt(S) is approximated by computing the mean value of the set of
optimal feedbacks QFB,opt(S, sb, bb) with (S, sb, bb) ∈ M. Similarly, in

order to compute QOL,opt
HOM (Sr,0; ·) we solve problem (21), taking Σ0 ∈ M

with I = 1 and J = {1, 2, 4, 10}. Then, each component of vector γopt

is approximated by computing the mean value of the set of its optimal
values obtained for the different initial states. This procedure is also used
to obtain the average optimal time varying open loop QC,opt

ELL (Sr,0; ·) and
substrate concentrations SHOM

r,ach and SELL
r,ach.

Figure 5 shows the similarities between the feedbacks obtained with the
two approaches described above. More precisely, Figure 5-(a) shows the

feedbacks QFB,opt
HOM and QOL,opt

HOM (Σ), obtained when considering the homo-

geneous flow velocity field. Figure 5-(b) shows the feedbacks QFB,opt
ELL and
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QOL,opt
ELL (Σ), obtained when considering the ellipsoidal flow velocity field.

Table 6 shows the substrate concentrations achieved in the resource.
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Figure 5: ODE-PDE model: Case τb ≈ τr. Comparison between the feedback approximations
QFB,opt (depicted with solid lines) and QOL,opt(Σ) (depicted with dashed lines).

Sr,0 (mol/m3) SHOM
r,ach (mol/m3) SELL

r,ach (mol/m3)

10 9.9888 10.1841

Table 6: ODE-PDE model: Case τb ≈ τr. Substrate concentration achieved if the feedback
Q

FB,opt
ODE

is used in System (1),(10)-(12).

4.3.3. Discussion

An interesting study is to check if both approaches, described in Sections
3.2.2 and 3.2.3, present similar numerical results. From Figure 4 and Figure 5
one can observe significant similarities between the two volumetric flow rates
QFB,opt and QOL,opt(Σ), being the first one a bit faster than the second one in
most of the cases. This result is not surprising, since the open-loop approach
takes into account the concentrations only at initial time, while the feedback
strategy is intrinsically more robust.

Another interesting study is to check if the optimization results obtained in
Sections 4.3.1 and 4.3.2 are similar. We make the comparison for both flow
velocity profiles, described in Section 2.2.2.

• Homogenous flow velocity field: In order to analyze the similarities
between the obtained optimal controls QFB,opt

ODE , QFB,opt
HOM and QOL,opt

HOM (Σ),
we plot them in Figure 6. It is easy to observe that the volumetric
flow rates QFB,opt

HOM and QOL,opt
HOM (Σ) (obtained with the ODE-PDE system

(1),(10)-(12) in the case where τb << τr) are significantly close to the flow

rate QFB,opt
ODE . Nevertheless, the flow rates QFB,opt

HOM and QOL,opt
HOM (Σ) (ob-

tained with the ODE-PDE system (1),(10)-(12) when τb ≈ τr) are much
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slower than QFB,opt
ODE . For instance, for Sr = 10 (mol/m3) the values of

QFB,opt
HOM and QOL,opt

HOM (Σ) are around 35% the value of QFB,opt
ODE . Further-

more, from Table 6, we conclude that if the constant control QFB,opt
ODE is

used in system (1),(10)-(12) the bioreactor is driven to washout (see Def-
inition 2.1) before the decontamination target is achieved. These results
seem to show that when high diffusions are considered, the optimal con-
trols obtained with the ODE and ODE-PDE models are similar, whereas
for low diffusion coefficients the ODE-PDE model exhibits better results,
in the sense that it provides smaller volumetric flow rates that favor that
the biomass does not become extinct before the target is achieved.

• Ellipsoidal flow velocity field: In order to analyze the similarities be-
tween the obtained optimal controls QFB,opt

ODE , QFB,opt
ELL and QOL,opt

ELL (Σ), we
plot them in Figure 7. It is easy to observe that the volumetric flow rates
QFB,opt

ELL and QOL,opt
ELL (Σ), obtained with the ODE-PDE system (1),(10)-

(12) when τb << τr and τb ≈ τr, are respectively around 75% and 35% the

value of the flux QFB,opt
ODE . As a result we can conclude that the ODE-PDE

systems exhibits better results when computing the optimal feedback, in
the sense that it provides smaller volumetric flow rates that favor that the
biomass does not become extinct before the target is achieved.
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Figure 6: Homogeneous flow velocity field: Comparison between the feedback obtained for the
ODE model (depicted with solid line), the feedback obtained for the ODE-PDE model when
τb << τr (depicted with dashed lines) and the feedback obtained for the ODE-PDE model
when τb ≈ τr(depicted with dotted lines).

5. Conclusion

In this work, we have focused on the modeling of the problem of water
treatment by using continuous bioreactors. We have presented two mathemat-
ical models, assuming homogeneity or inhomogeneity of substrate and biomass
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Figure 7: Ellipsoidal flow velocity field: Comparison between the feedback obtained for the
ODE model (depicted with solid line), the feedback obtained for the ODE-PDE model when
τb << τb(depicted with dashed lines) and the feedback obtained for the ODE-PDE model
when τb ≈ τr(depicted with dotted lines).

concentrations in the bioreactor. We have also made a difference between con-
sidering that the fluid flow velocity in the bioreactor is homogeneous through
the inlet, or follows an ellipsoidal profile.

We have tackled an optimization problem which aims to minimize the time
needed to clean the polluted resource, by choosing an optimal bioreactor volu-
metric inflow rate. In the case of considering homogeneity of the contaminant
in the bioreactor, it is possible to obtain an optimal flow rate from previous
theoretical results. In the case of considering inhomogeneity of the contaminant
in the bioreactor, we show here how to obtain an optimal flow rate using an
hybrid genetic algorithm. The results show in the cases where the time scale in
the bioreactor is comparable with the time scale of the resource (for instance,
by using DS = DB = 0.01 (m2/s)), the optimal flow rates are smaller than
the optimal flow rates obtained for the mathematical model which considers
homogeneity in the bioreactor.

Our goal was to compare the numerical optimization results obtained for the
ODE and ODE-PDE models presented for coupled system between the biore-
actor and the water resource. The results show that when the time scale of the
bioreactor is much smaller than the one of the water resource, (for instance, by
using DS = DB = 100 (m2/s)), the ODE-PDE system with homogeneous flow
velocity field approaches the ODE system. Contrarily, the ODE-PDE system
with ellipsoidal flow velocity field does not approach the ODE system in the
sense that, when using the control strategy that is optimal under the homoge-
neous assumption in the bioreactor, the biomass becomes extinct and it is not
able to make the substrate in the water resource decrease to the objective value.
Let us notice that the ellipsoidal flow velocity field has been presented in order
to approach a more realistically behavior of the reactor (see [34]). An important
conclusion is that an optimal feedback derived for perfectly mixed bioreactor
can lead a bioreactor with non negligible diffusion terms to washout, prevent-
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ing the desired decontamination objective, while a simple open loop control,
obtained with the method presented in this work, can solve the problem.
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