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Abstract. In this work we develop new techniques to compute Koszul cohomology 
groups for several classes of varieties. As applications we prove results on projective 
normality and syzygies for algebraic surfaces. From more general results we obtain in 
particular the following: 

(a) Mukai’s conjecture (and stronger variants of it) regarding projective normality 
and normal presentation for surfaces with Kodaira dimension 0, and uniform bounds for 
higher syzygies associated to adjoint linear series, 

(b) effective bounds along the lines of Mukai’s conjecture regarding projective nor¬ 
mality and normal presentation for surfaces of positive Kodaira dimension, and, 

(c) results on projective normality for pluricanonical models of surfaces of general 
type (recovering and strengthening results by Ciliberto) and generalizations of them to 
higher syzygies. 

In addition, we also extend the above results to singular surfaces. 

Introduction 

In this article we develop new techniques to compute Koszul cohomology groups. 
Koszul cohomology is important because of its relation to Hodge Theory and to the com¬ 
putation of syzygies of projective varieties. In the present work we focus on the latter 
application. The topic of syzygies is interesting because it deals with the interplay between 
algebra and geometry: the algebra coming from the equations defining the variety and the 
geometry arising from the knowledge of what line bundles live on the variety. The earliest 

*) Partially supported by DGES Grant PB 96-0659. 
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result typical of this application we have in mind is the result of Castelnuovo, who showed 
that a curve of degree greater than 2g has a normal homogeneous coordinate ring (g 
denotes the genus of the curve). He also proved that if the degree was greater than 2g + 1, 
then the ideal of the curve was generated by quadratic equations. This result was redis¬ 
covered later by many people, among others Fujita, St. Donat, Mumford, Green, etc. 
Recently Mark Green threw new light on this connection between algebra and geometry 
by generalizing the study of homogeneous coordinate rings and ideals to the study of free 
resolutions. He linked the behavior of graded Betti numbers of the resolution of the homo¬ 
geneous coordinate ring to the cohomology groups of certain vector bundles on the variety 
(see [G1], [G2] and [G3]; for a particularly nice introduction to the subject see also [L] 
and for the precise statement used in this article see Theorem 1.2). Green generalized 
Castelnuovo's result proving that if the degree of the curve is greater than 2g +p, then 
the resolution is in addition linear until the p th stage. This property of the resolution is 
the so-called property Np. Connection between algebra and geometry is better seen in the 
case of the canonical curve. Here there are classical results by Nother and Petri on projective 
normality and normal presentation for canonical curves. The geometric part of the state¬ 
ments is summed up in the Clifford index of the curves. Green’s conjecture for canonical 
curves generalizes Nother and Petri’s results, claiming that the shape of the free resolution 
of the canonical ring is determined by the Clifford index of the curve (precisely, if the 
Clifford index is p + 1, then the resolution satisfies exactly the property Np). 

There are still many open questions regarding linear series on curves, but for surfaces 
and higher dimensional varieties the field is almost entirely open. Among the open questions 
for surfaces and higher dimensional varieties, the conjectures of Fujita on very ampleness 
and Mukai on higher syzygies of surfaces have attracted attention in recent years. Fujita 
conjectured that on an algebraic variety X of dimension n, if A is an ample line bundle 
on X, then $ should be very ample, where KX denotes the canonical bundle on 
X. Mukai’s conjecture says that if S is a surface, A is an ample line bundle on S, L is a 
line bundle on S equal to $, and $, then L satisfies property Np. This 
conjecture can be regarded as a two dimensional analogue of Green’s theorem for curves. 
Indeed, Green's theorem can be interpreted as follows: any line bundle L on a curve C 
which is at least as positive as $ satisfies property Np, where KC is the canonical 
bundle of C and A is an ample line bundle on C. Fujita’s conjecture has been proved for 
algebraic surfaces and it follows from a remarkable result of Reider (cf. [R]). For higher 
dimensional varieties some effective bounds have been obtained. Even though the bounds 
are far from what has been conjectured, they are considered an important step towards 
the goal of proving Fujita's conjecture. Mukai's conjecture has not yet been proved even 
for p = 0. Some progress has been made by Butler for ruled varieties (see [Bu]), Kempf 
for Abelian varieties (see [Ke]), and Ein and Lazarsfeld, who prove a beautiful, very 
general result on adjoint linear series associated to very ample line bundles (see [EL]). Y. 
Homma proved Mukai's conjecture for the case p = 0 for elliptic ruled surfaces (see [H1] 
and [H2]). One of the things we do here is to prove Mukai's conjecture in certain cases 
and obtain effective bounds towards it for all surfaces. 

In this article we pursue a new direction to study syzygies of algebraic surfaces. This 
direction can be summarized in the following meta-principle: 

(0.1) If L is the product of (p + 1) ample and base-point-free line bundles satisfying 
“certain cohomological” conditions, then L satisfies the condition Np. 
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With the meta-principle as a guiding light, we obtain the following as corollaries of 
our more general results: 

(1) We prove that Mukai’s conjecture regarding projective normality and normal 
presentation is true, lowering Mukai’s bound by one in the latter case, for all surfaces of 
Kodaira dimension 0 and show stronger variants of it (cf. Corollaries 2.6 and 4.5). 

(2) We obtain a uniform bound along the line of Mukai’s conjecture for higher 
syzygies associated to adjoint linear series for all surfaces of Kodaira dimension 0. 

(3) We find effective bounds along the lines of Mukai’s conjecture regarding projective 
normality and normal presentation for surfaces of positive Kodaira dimension. 

(4) We obtain results on projective normality, normal presentation and higher syzygies 
for pluricanonical models of surfaces of general type, recovering and strengthening results 
of Ciliberto (cf. [Ci]). 

(5) We find effective bounds regarding projective normality and higher syzygies for 
multiples of ample bundles for regular surfaces of positive Kodaira dimension. 

Result (3) can be interpreted as a higher syzygy analogue along the lines of Mukai’s 
of the effective results of Demailly, Ein and Lazarsfeld regarding Fujita’s conjecture. Result 
(5) is a higher syzygy analogue of the results of Siu and Fernandez del Busto regarding 
effective Matsusaka’s theorems on base-point-freeness and very ampleness. On the other 
hand, since an effective bound regarding Mukai’s conjecture was obtained by Butler for 
ruled surfaces, results (1), (2) and (3), coupled with Butler’s give the best bounds so far 
towards Mukai’s conjecture for all surfaces. 

Almost all known results on syzygies of algebraic surfaces (and several results on 
curves) fit into 0.1. For example, the normal presentation of line bundles of degree greater 
than 2g + 1 on curves, by Castelnuovo and others (see [GP1]), the result of Kempf referred 
to above (see Remark 4.6), and the result by Ein and Lazarsfeld. In [GP1], [GP2] and 
[GP3] we show the validity of 0.1 for surfaces of Kodaira dimension —∞and K 3 surfaces. 
We show in the present article that 0.1 holds for all other surfaces of Kodaira dimension 
0 and for adjoint linear series (more general than those involved in Mukai's conjecture) 
on surfaces of positive Kodaira dimension. We summarize here the results which give 
evidence of the above claims: 

For surfaces of Kodaira dimension —∞,the (p + l)-th power of an ample, free and 
nonspecial line bundle satisfies property Np ([GP2], Theorem 2.2, see also Lemma 2.8; 
our result is in fact more general as it is stated for surfaces with geometric genus 0). 
Theorem 1.3 of this paper generalizes this result and unifies among others Corollary 5.11 
for surfaces of general type and Corollary 1.6 for Calabi-Yau threefolds. Moreover, in 
[GP1] and [GP2] we prove finer versions ([GP1], Theorem 4.2 and [GP2], Theorem 
6.1) of the meta-principle for elliptic ruled surfaces, yielding among other things the fact 
that Mukai’s conjecture regarding normal presentation holds for such surfaces. For anti-
canonical rational surfaces we also prove finer versions of 0.1, in a modified version of 
[GP3]. 
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For surfaces with Kodaira dimension 0 we show precisely the following: 

Theorem 0.2. Let X be a minimal surface with Kodaira dimension 0 and let B1, ..., Bn 

be numerically equivalent, ample and base-point-free line bundles. Assume that the sectional 
genus of Bi is greater than or equal to 4 if X is an Enriques surface and greater than or equal 
to 3 if X is a K 3 surface. Then $ satisfies Np for all $ and $. 

The proof of Theorem 0.2 and stronger versions of the theorem can be found for 
Enriques surfaces in Section 2, for Abelian and bielliptic surfaces in Section 4 and for K 3 
surfaces in [GP3]. In the case of K3 surfaces we prove a stronger version of 0.1 imposing 
extra conditions on Bi (see [GP3]). As a consequence of Theorem 0.2 we obtain the 
following: 

Theorem 0.3. Let X be a minimal surface with Kodaira dimension 0, let B be an ample 
and base-point-free line bundle, and let A be an ample line bundle. If $ and $, 
then the bundle $ satisfies property Np and if $ and $, then the bundle 
$ satisfies property Np. 

Theorem 0.3 recovers Kempf’s result for Abelian surfaces and implies the already 
mentioned result (1) regarding Mukai’s conjecture. 

For surfaces of positive Kodaira dimension we prove results in the spirit of 0.1 for 
adjoint linear series and for powers of ample and base-point-free line bundles (see Theorems 
5.1, 5.8 and 5.14). We apply these results to obtain the above mentioned results (3) and 
(5) regarding effective bounds for projective normality, normal presentation, and property 
Np, and (4) on pluricanonical models of surfaces of general type (see Theorem 5.12 and 
Theorem 5.16). Our results on projective normality, normal presentation and higher syzygies 
of pluricanonical models recover and strengthen results of Ciliberto on projective normality. 
In particular, we show the following, which answers a question posed by Bombieri (in [Bo]): 

Let X be a surface of general type such that $ or $. If $, then the image 
of X by $ is projectively normal. 

Moreover we improve results of [Ci] in the case of regular surfaces (Corollary 5.6). 

In other works, we apply the techniques developed in this article to study syzygies 
of higher dimensional varieties. We show results in the spirit of 0.1 for Fano varieties in 
[GP3] and for Calabi-Yau threefolds. In [GP4] we prove optimal results on very ample-
ness, projective normality and higher syzygies for Calabi-Yau threefolds. These results are 
similar in spirit to the well known results of St. Donat for K 3 surfaces and Lefschetz for 
Abelian varieties. 

Another very interesting problem in this area is the relation between normal presen¬ 
tation and the Koszul property of coordinate rings. We show that whenever a line bundle 
on the variety under consideration (in this article) is normally presented then it embeds 
the variety with a Koszul homogeneous coordinate ring. This gives further evidence to the 
following (to paraphrase Arnold): Any homogeneous coordinate ring which has a serious 
reason for being quadratically presented is Koszul. In Section 3 we develop the necessary 
tools to tackle this problem and restrict ourselves to Enriques surfaces. In the subsequent 
sections we apply these tools to prove the result for other surfaces. 
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A basic obstacle one encounters in the kind of problems we have been talking about 
in the previous paragraphs is the scarcity of techniques to compute Koszul cohomology 
groups of surfaces and higher dimensional varieties — as Green put it, there are more 
reasons to compute them than ways of computing them. In our experience, this is especially 
so if the adjoint linear series involves base-point-free or ample line bundles, to mention 
the case of Mukai’s conjecture. In this article and in previous ones we have developed 
techniques to compute these cohomology groups. Firstly in the proofs of the vanishings 
leading to results on higher syzygies we use induction on the number of ample and base-
point-free line bundles composing the line bundle we are studying. To prove the vanishings 
which correspond to the first step of the induction we have found it necessary to use the 
intrinsic geometric properties of the varieties under consideration. We make here a distinc¬ 
tion between two classes of varieties: those with irregularity $ and those with 
irregularity $. In the former case we use arguments involving Castelnuovo-
Mumford regularity and the existence of enough homologically trivial line bundles to show 
the surjectivity of certain multiplication maps of vector bundles on the variety. In the latter 
case (comprising among other K 3 surfaces, Fano varieties, Enriques surfaces, anticanonical 
rational surfaces and Calabi-Yau threefolds) we give uniform proofs using induction on 
the dimension of the variety. Precisely we choose a suitable divisor on the variety (we 
point out to the reader that it is not a hyperplane section; such a choice would lead us to 
line bundles of low degree on curves, which would be of little use for us). Then we restrict 
the vector bundles on the surface arising in the context of Koszul cohomology to the 
divisor, construct a filtration of the restricted bundle (which happens to be the Harder-
Narasimhan filtration) and play the game in lower dimension. Doing this, we reduce the 
question of the surjectivity of multiplication maps on the ambient variety to a question 
of surjectivity of multiplication maps on the divisor. This allows us to use eventually results 
on surjectivity of multiplication maps of vector bundles on curves, like the technical (and 
beautiful) results by Butler and Pareschi, [Bu], Proposition 2.2 and [P2], Corollary 4. 

The article is organized as follows. In the first section we introduce the Koszul 
cohomology basics used in the article and Castelnuovo-Mumford regularity in connection 
with surjectivity of multiplication maps of vector bundles. The goal of this section is to 
prove a general result, Theorem 1.3, which demonstrates how far we can go using a general 
technique like Castelnuovo-Mumford regularity. In fact, this theorem becomes our start 
line in the quest we pursue throughout the rest of the paper to obtain more precise, sharper 
results which cannot be proved by means of these general arguments. 

Section 2 deals with very ampleness, projective normality, and higher syzygies on 
Enriques surfaces. Here we introduce the methods we develop to work with surfaces with 
irregularity 0. In subsequent sections similar arguments are dealt with in a less detailed way. 

Section 3 is devoted to the study of the Koszul property on Enriques surfaces. A 
great amount of machinery is developed which is later used in the remaining sections when 
studying the same problem on other surfaces. 

Section 4 deals with Abelian and bielliptic surfaces, completing the picture of surfaces 
with Kodaira dimension 0. 

Section 5 deals with surfaces of positive Kodaira dimension. Among other things we 
carry out the study of pluricanonical series on surfaces of general type. 
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Finally, in the appendix, we show that our main results go through for singular sur¬ 
faces, obtaining in Kodaira dimension 0 the same bounds towards Mukai's conjecture that 
we obtain for smooth surfaces. 

Convention. Throughout this article we work over an algebraically closed field of 
characteristic 0. Except in the appendix, for us surface will always mean minimal and 
smooth algebraic surface. We will denote numerical equivalence of divisors by ≡. 

Definition. Let X be a projective variety and let L be a very ample line bundle on 
X. We say that L is normally generated or that satisfies the property N0, if |L| embeds X 
as a projectively normal variety. We say that L is normally presented or that L satisfies 
the property N1 if L satisfies property N0 and, in addition, the homogeneous ideal of the 
image of X by | L | is generated by quadratic equations. We say that L satisfies the property 
Np for p > 1, if L satisfies property A^ and the free resolution of the homogeneous ideal 
of Xembedded by |L| is linear until the p th-stage. 

1. A general result on syzygies of algebraic varieties 

As we mentioned in the introduction, Green interpreted the Betti numbers of the 
minimal free resolution of the coordinate ring of an embedded projective variety in terms 
of Koszul cohomology. Concretely, let X be a projective variety, and let F be a globally 
generated vector bundle on X. We define the bundle MF as follows: 

(1.1) $. 

If L is an ample line bundle on X and all its positive powers are nonspecial one has the 
following characterization of the property Np: 

Theorem 1.2. Let L be an ample, globally generated line bundle on a variety X. If 
the group $ vanishes for all $ and all $, then L satisfies the 
property Np. If in addition $, for all $, then the above is a necessary and 
sufficient condition for L to satisfy property Np. 

We will obtain our results on syzygies using the previous lemma. For the proof of it 
we refer to [EL], Section 1. Recall that we are working over an algebraically closed field 
of characteristic 0, thus in our proofs we will check the vanishings of $ 
rather than see directly the vanishings of $. 

The purpose of this section is to prove a general result about Koszul cohomology 
and, by the above lemma, about syzygies of varieties of arbitrary dimension. 

Theorem 1.3. Let X be a projective variety. Let B be a base-point-free line bundle on 
X with regularity r.If $ and $, then 

$ for all $. 

In particular, $ and if B is ample and $, then 
$ satisfies the property Np. 
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To prove the theorem we will need the following 

Lemma 1.4. Let X and B be as in Theorem 1.3. If $ and $, then 

$. 

In particular, if B is ample, then $ satisfies the property N0. 

Proof. Since $. Thus, tensoring the sequence (1.1) relative 
to $ with $ and taking global sections one sees that it is enough to check that the 
multiplication map 

$ 

surjects. To see that, we use the following useful observation: 

Observation 1.4.1. Let E and L1, ..., Lr be coherent sheaves on a variety  X. Consider 
the map $ and the maps 

$. 

If α l 5 . . . , α, are surjective then ψ is also surjective. 

In our case, we set  Li = B and $, and to see that the maps αi are surjective 
we use the following generalization by Mumford of a lemma of Castelnuovo (see [Mu]; 
note that the assumption of ampleness is unnecessary): 

(1.4.2) Let L be a base-point-free line bundle on a variety X and let $! be a coherent 
sheaf on J . If $ for all i ^ 1, then the multiplication map 

H° {3F® L®{) ® H° {L) -» H°(^®L®i + l) 

is surjective for all / ^ 0. 

Finally, the vanishings required according to (1.4.2) follow from our assumption on 
regularity. □ 

(1.5) Proof of Theorem 1.3. The proof is by induction on p. We prove the result for 
p = 1. First we show that 

H1(M%®B®n + l) = 0 for all m^r, 1 and all/i ^ r - 1 , 1 . 
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We will use (1.4.2) and Observation 1.4.1 to prove this statement. Observe that tensoring 
the sequence (1.1) with $ and taking global sections yields the following long 
exact sequence: 

$. 

The last term in the above sequence is zero by Lemma 1.4. Thus it is enough to prove 
that y surjects. By Observation 1.4.1 it is enough to show that the multiplication map 

$ 

surjects for all $ and all $. Since B is base-point-free, by (1.4.2) we need 
to check the vanishings $ for all $ and $. 
For $, we tensor the sequence (1.1) corresponding to $ with $ and take 
global sections. The vanishings then follow from our assumption on the regularity of  B. 
Since $ and $ it follows in particular that $, hence the 
vanishing required for  i= 1 is equivalent to the vanishing of $, which 
follows in turn from Lemma 1.4. 

The vanishings of $ for all $, all $ and all $ follow 
from (1.1), Lemma 1.4, and the assumption on regularity. 

Let us now assume that the desired vanishings occur for p — 1. We therefore have: 

$ for all $, 

all $ and all $. 

We first prove the desired vanishing for p and i = 1. By tensoring the sequence (1.1) with 
$ and taking global sections one sees that the desired vanishing can be 
obtained by showing the surjectivity of the multiplication map d sitting in the long exact 
sequence 

$. 

The last term is zero by induction assumption. In order to prove the surjectivity of δ we 
use Observation 1.4.1. By Observation 1.4.1 it suffices to show the surjectivity of the map 

$ 

for all $ and all $, 1. To prove the surjectivity of e we use (1.4.2). 
According to it, it suffices that the groups $ vanish, which follows by 
induction. 

Brought to you by | Swets (Swets)
Authenticated | 172.16.1.226

Download Date | 4/12/12 10:49 AM



Gallego and Purnaprajna, Projective normality and syzygies of algebraic surfaces  153 

Finally, to show that $, for all $ we consider again 
sequence (1.1) associated to $, tensor it with $ and take global sections. 
Then the vanishings follow again from induction hypothesis. 

The fact that $ satisfies the property Np follows from the vanishing of 
$ for all $ and all $, from Lemma 1.4 and from Theorem 
1.2. □ 

The theorem just proven, which might seem at first glance somehow vague, holds 
however the power to unify several results for different kinds of varieties: it yields infor¬ 
mation about pluricanonical embeddings of surfaces of general type (Corollary 5.11). It 
also implies the following corollary concerning varieties of arbitrary dimension and cano¬ 
nical divisor numerically trivial, an example of which are Calabi-Yau n-folds: 

Corollary 1.6. Let X be a smooth variety of dimension m with Kx ≡ 0 and let B be 
ample and a base-point-free line bundle. Let $. If $, then L satisfies 
property Np. In particular, if X is a Calabi-Yau threefold, B is an ample and base-point-free 
line bundle on $ and $, then $ satisfies property Np. 

Proof. The result is a straightforward consequence of Theorem 1.3, since by Kodaira 
vanishing Theorem, B is (n + l)-regular. □ 

Theorem 1.3 also implies a result for surfaces with $ (among them elliptic ruled 
surfaces, Enriques surfaces and bielliptic surfaces): 

Theorem 2.2 ([GP2]). Let X be a surface with $. Let B be a nonspecial, ample, 
and base-point-free line bundle. Then $ satisfies the property Np for all $. 

Therefore Theorem 1.3 and its corollaries are a good starting point for our study of 
syzygies of varieties. However, if one focuses on the particular examples and uses the 
specific geometry of the varieties in question, one can expect to obtain sharper and more 
complete results. Precisely this was done for elliptic ruled surfaces in [GP2] and is done 
for Enriques surfaces in Section 2, for bielliptic surfaces in Section 4, for surfaces of general 
type in Section 5. 

2. Syzygies of Enriques surfaces 

In Section 1 we proved a general theorem, Theorem 1.3, which unifies a number of 
results for different kinds of varieties. In this section we focus on Enriques surfaces. The 
geometric genus of an Enriques surface is 0 and, in characteristic 0, a globally generated 
line bundle over an Enriques surface has null higher cohomology, hence it is 2-regular. 
Therefore the starting point of our study of syzygies of Enriques surfaces is the following 
theorem, corollary of Theorem 1.3, which fits indeed in (0.1): 

Theorem 2.1 (cf. [GP2], Corollary 2.7.1). Let X be an Enriques surface. Let B be 
a base-point-free line bundle. Then the image of X by $ satisfies property Np, for all 
$. If in addition B is ample then $ is very ample and satisfies the property Np, for 
all $. 
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Our intention now is to study a more general class of line bundles (namely, tensor 
products of p + 1 different base-point-free line bundles), and in particular, adjoint line 
bundles. For that we need to follow a different approach: roughly, we are going to use 
“induction on the dimension”, in the sense explained in the introduction. This approach 
will unfold throughout this section and the machinery developed along the way will be 
used for other results of this article, concretely in Sections 3 and 5. We now resume with 
a result about normal generation: 

Theorem 2.2. Let X be an Enriques surface. Let B1, $, B2 and $ be ample and 
base-point-free line bundles on X, such that $ and, either $, 
and $. Let $ and $. If $, and $, 
then the map $ surjects and 

$. 

In particular, L is very ample and satisfies property N0. 

Before we go on with the proof of Theorem 2.2, we isolate for convenience three 
ingredients of the argument, which will be used in many other instances. The first is an 
observation on the relation between the surjectivity of multiplication maps, and the sur-
jectivity of its restrictions to divisors. The other two are a result do Butler and another 
one due to Pareschi, about the surjectivity of multiplication maps of vector bundles on 
curves. 

Observation 2.3. Let X be a regular variety (i.e., a variety such that $). 
Let E be a vector bundle on X, let C be a divisor such that $ is a globally 
generated line bundle and $. If the multiplication map 

$ 

surjects, then the map $ also surjects. 

Proof. We construct the following commutative diagram: 

$. 

The surjectivity of the left hand side vertical map is obvious. The surjectivity of the right 
hand side vertical map follows by hypothesis. The exactness of the top horizontal sequence 
follows from the fact that X is regular. The claim is the surjectivity of the middle vertical 
map. □ 

Proposition 2.4 ([Bu], Proposition 2.2). Let E and F be semistable vector bundles 
over a curve C such that E is generated by its global sections. If 

Brought to you by | Swets (Swets)
Authenticated | 172.16.1.226

Download Date | 4/12/12 10:49 AM



Gallego and Purnaprajna, Projective normality and syzygies of algebraic surfaces  155 

(1) μ (F )>2g , and 

(2) μ(F) > 2g + rank(E)(2g — μ(E)) — 2h 1 E ) , 

then the multiplication map $ surjects. 

Proposition 2.5 ([P2], Corollary 4; see also [EKS], Theorem 2). Let N and L be 
two base-point-free line bundles on C such that: 

(a) at least one of them is very ample; 

(b) $ and 

(c) $. 

Then the multiplication map 

$ 

is surjective. 

(2.6) Proof of Theorem 2.2. Note first that, since we are working over a field of 
characteristic 0, any base-point-free line bundle on X has null higher cohomology. If we 
twist the sequences (1.1) relative to L and L′ by L′ and L respectively and take global 
sections, we see at once that $ and equal to the cokernel of 

$. 

To see that α indeed surjects, we use Observation 1.4.1. According to it we want to check 
that several (possibly more than one) multiplication maps surject. We check here the first 
one; the surjectivity of the rest can be seen in the same way. The map in question is 

$. 

To see the surjectivity of β, we consider a smooth irreducible curve C in $ (such curve 
exists by Bertini’s Theorem because $ is ample and base-point-free) and use Observation 
2.3. It is therefore enough to check that 

$ 

surjects. For that, if $, we may apply Proposition 2.4. Indeed, the line bundle 
$ is globally generated, and by adjunction 

$. 

If B1 · B2 = 4 and $, then $ and, since C is irreducible, it follows that it is 
non-hyperelliptic (cf. [CD], Proposition 4.5.1). Then the surjectivity of γ follows from 
Proposition 2.5. □ 

Brought to you by | Swets (Swets)
Authenticated | 172.16.1.226

Download Date | 4/12/12 10:49 AM



156 Gallego and Purnaprajna, Projective normality and syzygies of algebraic surfaces 

As a corollary of Theorem 2.2 we prove a stronger version of the conjecture of 
Mukai, in the case of Enriques surfaces and for the property N0. To see that we use the 
following 

Lemma 2.7. Let A1 and A2 be two ample divisors on a surface X with Kodaira 
dimension 0. Then $ is base-point-free. 

Proof. Since $. By hypothesis $ is ample. If $ 
were not base-point-free, it would follow from Reider’s theorem that there would exist an 
effective divisor E such that one of the following holds: 

(a) $ and E2 = —1 

or 

(b) $ and E2 = 0. 

N o n e o f t h e t w o p o s s i b i l i t i e s c a n o c c u r s i n c e ,  Ai b e i n g a m p l e , $. □ 

Corollary 2.8. Let X be an Enriques surface and A1, ..., An ample line bundles on X. 
Let $. If $, then L satisfies property N 0. 

Proof. By Lemma 2.7, $ and $ are base-point-free line 
bundles. There are furthermore ample, and, by adjunction, 

$ and $. 

Then the result follows from Theorem 2.2. □ 

We now generalize these results to higher syzygies. To do so, we need another two 
lemmas. In the case in which q is a curve C, the former allows us to pass from a multiplication 
map involving non-semistable bundles (note that $ is unstable if 

$ 

to a multiplication map involving semistable bundles. This situation is of course easier to 
handle. The latter lemma deals with positivity and semistability of bundles on curves. They 
will not only be used for the arguments in the remaining of this section but also in Section 
3 and 5. 

Lemma 2.9. Let X be a projective variety, let q be a nonnegative integer and let Fi 

be a base-point-free line bundle on X for all  $. Let Q be an effective line bundle on 
X and let  $ be a reduced and irreducible member of |Q|. Let R be a line bundle and G a 
sheaf on X such that 
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1. $, 

2. 

$. 

Then, for all $ and any subset $ with $ and for all $, 

$ 

surjects. 

Proof. We prove the result by induction on q". For q" = 0 the corresponding state¬ 
ment is just Condition 2 when q = 0. Assume that the result is true for q" — 1. In order 
to prove the result for q" we will use induction on k'. If k' = 0, the statement is again just 
Condition 2. Assume that the result is true for k' — 1. Now for any F globally generated 
vector bundle and for any effective divisor q such that $, for $, we 
have this commutative diagram: 

$. 

We are interested in the left hand side vertical exact sequence: 

(2.9.1) $. 

By Condition 1, F can be taken to be $. Tensoring (2.9.1) by 

$, 

taking global sections and tensoring by H0(G) we obtain this commutative diagram: 

$ 

11 Journal für Mathematik. Band 506 
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where 

$, 

$, 

$, 

$, 

and 

$. 

The top horizontal exact sequence is certainly surjective: this follows from chasing the 
diagram after having taken cohomology. The left hand side vertical sequence surjects by 
the induction hypothesis on q" and the right hand side exact sequence surjects by induction 
on k' (we have assumed the result to be true for q" — 1 and k' — 1). Therefore we obtain 
the surjectivity of the vertical sequence sitting in the middle of the commutative diagram. □ 

Lemma 2.10. Let E be a semistable vector bundle with μ(E) > 2g and F a vector 
bundle on a curve C of genus g. 

(1) If $, then $. 

(2) If $,then $. 

Moreover, if F is in addition semistable, then $ is semistable. 

Proof. Since E is semistable and μ(E) > 2g, E is globally generated and h1(E) = 0, 
hence the vector bundle ME is defined and has slope 

$. 

Then, for (1), $. Thus if $ we 

are done, but that inequality is equivalent to μ(E) > 2g. The proof of (2) is analogous. 
Now, if F is semistable by [Bu], Theorem 1.12 and [Mi], Corollary 3.7, $ is also 
semistable. □ 
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Theorem 2.11. Let X be an Enriques surface. Let B1, $, B2 and $ be two ample 
and base-point-free divisors such that $, $ and $. Let $ 
and $. If $, then $. In particular, L′ satisfies 
property N1. 

Proof. The cohomology group $ sits in the long exact sequence 

$, 

obtained by tensoring (1.1) relative to L with $ and taking global sections. The last 
term is zero by Theorem 2.2, thus it is enough to prove that a is surjective. To show the 
surjectivity of α we use Observation 1.4.1. According to it we need to check the surjectivity 
of several maps. Here we will only show the surjectivity of the first of them, since the rest 
are analogous: 

$. 

Let C be a smooth member of |B1|. From Theorem 2.2 it follows that 

$, 

therefore we may apply Observation 2.3 to reduce the question of surjectivity of β to the 
surjectivity of the following multiplication map on C: 

$. 

By Lemma 2.9 it is enough to check that the following multiplication maps on C are 
surjective: 

$, 

$. 

The surjectivity of the first map was already seen within the course of proving Theorem 
2.2. For γ, we use Proposition 2.4. Since $ and $ are both greater 
than or equal to 2g + 4, it follows from Lemma 2.10 that the bundle $ is 
semistable with slope strictly bigger than 2g + 2. Then it follows from Proposition 2.4 that 
γ is surjective and we are done. Now, since L′ is ample, it follows from the vanishing of 
$ for all $, Theorem 2.2 and Theorem 1.2, that L′ satisfies property 
N1. □ 

We obtain the following corollary, which proves Mukai’s conjecture (and when con¬ 
sidering powers of the same ample bundle, improves his bound), regarding property N1 

for Enriques surfaces. 

Corollary 2.12. Let X be an Enriques surface. Let A, A1, . . . , A n b e ample line bundles. 
Then the line bundles $ and $ satisfy property N1 if $ and 
$ respectively. 
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Proof. For the former case, let $ and $. For the latter, let 
$ and $. In both cases, B1 and B2 are ample, and 
base-point-free by Lemma 2.7. Furthermore, $, consequently the result follows 
from Theorem 2.11. □ 

To finish this section we show a result for higher syzygies of adjoint bundles. Before 
that we state a useful lemma dealing with the numerical nature of the property of base-point-
freeness. 

Lemma 2.13. Let X be a surface with nonnegative Kodaira dimension and let B be an 
ample and base-point-free line bundle such that  $. If B' ≡ B, then $ is ample 
and base-point-free. In particular, if κ(X) = 0, B' is ample and base-point-free for all B' ≡ B. 

Proof. The line bundle B' is ample because ampleness is a numerical condition and 
has self-intersection greater than or equal to 5. If $ has base points, by Reider’s 
theorem there is an effective divisor  E such that: 

(a) B'∙ E = 0 and E2 = —1 

or 

(b) B'∙ E=1 and E2 = 0. 

The former cannot happen because B' is ample. We will also rule out (b). The divisor E 
must be irreducible and reduced because  B' is ample and B'∙ E =1. On the other hand, 
the arithmetic genus of  E is greater than or equal to 1. Now B ∙ E = B'∙ E=1 so 
$. Since B is base-point-free, E should be a smooth rational curve and this 
is a contradiction. □ 

Theorem 2.14. Let X be an Enriques surface. Let B be an ample and base-point-free 
line bundle such that $ and let N, N' be line bundles numerically equivalent to 0 (i.e., 
they are either trivial or equal to KX). Let $, $ for $. 
Then $ vanishes for all k , $. In particular L satisfies property Np. 

Proof. Since $, by Lemma 2.13 the line bundle $ is also ample and 
base-point-free. The proof is by induction. The result is true for  p = 1 by Theorem 2.11. 
We assume now the result to be true for  p — 1. In particular we have $. 
Tensoring the sequence (1.1) with $ and taking global sections yields therefore the 
following long exact sequence: 

$, 

thus it is enough to prove that the multiplication map α is surjective. Then by Observa¬ 
tion 1.4.1 it is enough to see the surjectivity of 

$, 
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where B' is either B or $. Now to complete the proof one can argue in two ways. 
One of them is using (1.4.2). The path to follow is shown in the proof of Theorem 1.3 but 
we outline here the steps to be taken. The first cohomology vanishing required, 

(2.14.1) $ 

follows directly by induction. For the second cohomology vanishing one may observe that, 
after iteratively chasing the cohomology sequence, it follows by induction, from Theorem 
2.2 and Kodaira Vanishing Theorem. The other way to argue is as for the surjectivity of 
β in the proof of Theorem 2.11: one uses and apply Lemma 2.9 to reduce the problem to 
checking the surjectivity of multiplication maps on a curve. 

Finally since L is ample, Theorem 1.2 implies that L satisfies Np. □ 

Corollary 2.15. Let X be an Enriques surface, let A be an ample line bundle and B 
an ample and base-point-free line bundle on X. If $, then $ satisfies pro¬ 
perty Np. If $, then $ satisfies property Np. 

Proof. The first statement is a straightforward consequence of the theorem. By 
Lemma 2.7, the line bundle $ is base-point-free, so if n is even the second statement 
follows from the first. If n is odd the result follows from a slight variation of the argument 
in the proof of Theorem 2.14: we break up $ as tensor product of n — 1 copies 
of $ and $, which is base-point-free by Lemma 2.7. When applying Ob¬ 
servation 1.4.1 we take the last map among the αi to be precisely the map involving B'. 
The reader can easily verify that the vanishings needed in order to apply (1.4.2) follow by 
induction or, eventually, by Kodaira Vanishing Theorem. □ 

3. Koszul rings of Enriques surfaces 

We have devoted Section 2 to the study of syzygies of embeddings of Enriques 
surfaces. We show in particular a result, Theorem 2.11, about normal presentation of line 
bundles which were the tensor product of two base-point-free line bundles. Recall that the 
normal presentation property means that the homogeneous ideal of the (projectively nor¬ 
mal) variety is generated by forms of degree 2. As already pointed out in the introduction, 
an interesting algebraic property that many normally presented rings have is the Koszul 
property. There exist many significant examples: canonical rings of curves (cf. [FV], [PP]), 
rings of curves of degree greater than or equal to 2g + 2 (cf. [Bu], [GP1]), elliptic ruled 
surfaces (cf. [GP1], Theorem 5.8) and those line bundles on Enriques surfaces which are 
normally presented according to Theorem 2.1 (cf. [GP1], Corollary 5.7). This section 
provides yet one more case in favor of this philosophy: we will show in Theorem 3.5 that 
those line bundles on an Enriques surface which are normally presented according to 
Theorem 2.11 also satisfy the Koszul property. Moreover, in the course of proving the 
result, it can be seen how the property N1 is one of the first conditions required for the 
ring to be Koszul. 

To begin we recall some notation and some basic definitions: given a line bundle L 

on a variety X, we set $. 
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Definition 3.1. Let $ ... be a graded ring and k a field. R is a 
Koszul ring iff $ has pure degree i for all i. 

We recall now a cohomological interpretation, due to Lazarsfeld, of the Koszul 
property for a coordinate ring R(L). Let L be a globally generated line bundle on a variety 
X. We will denote $ and $ is globally gener¬ 
ated, we denote $. We repeat the process and define inductively 
$, if Mh—1,L is globally generated. Now we are ready to state the 
following slightly modified version of [P1], Lemma 1: 

Lemma 3.2. Let X be a projective variety over an algebraic closed field k. Let L be 
an ample and base-point-free line bundle on X. Then R(L) is Koszul iff Mh,L exists, is glo¬ 
bally generated and $ is surjective for all 
$, $. If, in addition, $ for every $, then R(L) is Koszul iff 
$ and every $. 

The proof of Theorem 3.5 will follow the same strategy of Section 2, i.e., we will 
translate the problem in terms of a question about vector bundles over a suitable curve 
C of X. For that purpose we need now a way to relate M(h),L to $. We carry this 
out link by link: 

Definition 3.3. Let X be a variety, let L be a line bundle on X and let $ be a (smooth) 
effective divisor on X. Assume that Mh′,L is defined for all $ (i.e., inductively, 
Mh′—1,L is defined and globally generated). We then define, for all $, 

$. 

Then $ is globally generated and we define $. If $ is again 
globally generated we define $ and so on . 

Lemma 3.4. Let X be a variety, let $ be a (smooth) effective divisor on X and let 
$. Let L be a base-point-free line bundle on X such that Mh′,L is globally generated 
and $ for all $, and $ is Koszul. Then, 

(1) $ is globally generated for all $, 

(2) $ for all $, 

(3) $. 

Proof. The proof is by induction on h. If h = 0, the result is part of the hypotheses. 
If h = 1, the exact sequence in (3) is (2.9.1) when we set F= L and twist by L. Let us write 
$. Since $ and $ is Koszul, $, therefore using (3) we 
obtain indeed that $. The bundle $ is globally generated because $ is 
Koszul. Finally the fact that $ is globally generated follows again from (3): we have 
the following exact commutative diagram 
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$ 

in which the vertical side arrows are surjective because $ and $ are both 
globally generated. Let us now assume the result to be true for h — 1 and prove it for h. 
We again prove (3) first. If h = h', again (3) is nothing but (2.9.1), setting F = Mh—1,L 
(which we know by induction hypothesis to be globally generated) and twisted by L. If 
h > h', by induction on h we have the sequence 

$. 

Call $. Taking global sections, we build this exact commutative 
diagram: 

S. 

The top horizontal sequence is exact at the right because $, by induction 
hypothesis. The vertical arrows are surjective because the vector bundles involved are 
globally generated by induction hypothesis on h. The short exact sequence of kernels is 
then, after tensoring by $, the sequence wanted for (3). To prove (2), we use induction 
on h'. If h' = 0 both (1) and (2) follow from the fact that $ is Koszul and $. 
Now assume that (1) and (2) hold for h' — 1. Condition (2) is a straightforward consequence 
of already proven (3) and induction hypothesis on both h and h'. For (1) we use induction 
on both h and h' and (3) just proven. If h = 0 the surjectivity just follows from the fact 
that $ is Koszul, hence normally generated. If h' = 0 the surjectivity just follows from the 
fact that $ is Koszul. Assume now that the claim holds for h′ — 1. The surjectivity of the 
map for h' follows then by chasing the commutative diagram of multiplication maps, built 
upon (3), having in account the vanishing of $, which follows from (2), and 
the surjectivity of the vertical side maps, which follows from induction hypothesis on h 
and h'. Then the fact that $ is ample implies the global generation of $ as wished. □ 

We are now ready to prove the main theorem of this section: 

Theorem 3.5. Let X be an Enriques surface. Let B1 and B2 be ample and base-point-free 
line bundles, such that $. If $, then R(L) is Koszul. 

Proof. According to Lemma 3.2 we need to show that Mh,L is globally generated 
and that 

$ 

surjects for all $ and $. To better carry out the argument, is convenient to also 
prove $. The proof is by induction on h. If h = 0 the 
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result is the projective normality of $, which follows from Theorem 2.2, and 
Kodaira vanishing. Now assume the result for h — 1. Since L is ample, the surjectivity of 
a implies the global generation of Mh,L, hence we can assume that Mh,L is globally generated 
for all $ and we need only to prove that a surjects and that 

$. 

We start proving the former and in the course of the proof we will also obtain the desired 
vanishings. According to Observation 1.4.1 we are done if we prove that certain collection 
of multiplication maps surject. We prove the surjectivity of the first of them, which is 

$. 

The argument to prove the surjectivity of the rest is analogous. We prove it using again 
induction on h. We proved the statement for h = 0 in the course of proving the projective 
normality of L in Theorem 2.2. Assume the statement to be true for h — 1 (we may also 
assume the surjectivity of the map β for h — 1 if we substitute in the formula B1 by B2, 
since the roles of B1 and B2 are interchangeable. Consider the sequence 

$. 

The multiplication map γ is surjective by induction hypothesis. The group H1(Mh—1,L) 
vanishes also by induction hypothesis, therefore $. On the other hand 
$, so in order to see the surjectivity of β it is enough to check the surjectivity of 

$, 

where $ is a smooth irreducible curve in |B1|. To see the surjectivity of δ we will use 
Lemma 3.4 inductively on h′. More precisely we want to prove that 

$ 

surjects for all $. If h' = 0, $ is semistable with slope strictly bigger than 
2g + 2 by Lemma 2.10, hence by Proposition 2.4 the multiplication map in question is 
surjective. Now assume the statement to be true for h' — 1. We take global sections in the 
sequence in part (3) of the statement of Lemma 3.4 and tensor with $ to 
obtain the following exact commutative diagram: 

$ 

where $. The surjectivity of the left hand side vertical map and the 
exactness at the right of the top horizontal sequence follow both from Proposition 2.4 and 
Lemma 2.10. The surjectivity of the right hand side vertical map follows by the induction 
hypothesis on h'. □ 
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4. Abelian and bielliptic surfaces 

In this section we deal with the remaining classes of surfaces with Kodaira dimension 
0, namely, those with nonzero irregularity. For the techniques employed we return to those 
used in the arguments of Section 1. The main theorem we will prove is 

Theorem 4.1. Let X be an Abelian or a bielliptic surface. Let B be an ample and 
base-point-free line bundle with $ and let N be a numerically trivial line bundle on X. 
Let $ and $. If $, then 

$. 

In particular, if $, then $ satisfies the property Np. 

Before we prove Theorem 4.1 we need the following 

Lemma 4.2. Let X be a surface with Κ = 0. Let B be an ample and base-point-free 
line bundle. Let $, where $ are base-point-free line bundles and $ 
and $, where $ and $. If either 

(1) l1 or l2 are greater than or equal to 3 or, 

(2) l1 = 2, l2 = 1 or 2 and $ or, 

(3) X is Abelian or bielliptic surface, $, and l1 = l2 = 2, 

then $. 

Proof. In cases (1) and (2) the result follows from iteratively applying (1.4.2) using 
Observation 1.4.1 and Kodaira vanishing. In case (3), let us write  L1 as $ with 
E1 ≡ 0. We can find E ≡ 0 with $, because not all elements in Pic 0(X) have 
order 2. Then, by Lemma 2.13, we can assume that $. Then 

$, 

which follows from our choice of E, and we are in case (2). □ 

(4.3) Proof of Theorem 4.1. The vanishing of $ is a consequence of 
Lemma 4.2. The proof of the vanishings of $ is by induction. As usual 
the key step is the first:  p = 1. We need to prove that $ if $ 
and $ and $. Using the sequence (1.1) we obtain 

$. 
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The group $ vanishes by Lemma 4.2. Therefore the sought vanishing is 
equivalent to the surjectivity of α. If $, let $. If r1 = 2, let $. 
Analogously, if r2 = 2, let $. We may now assume if $, by Lemma 2.13, 
that $ with E ≡ 0 but $ and, if in addition r2 = 2, that 
$ 

also. We can always find such an E if not all elements in Pic0(X) have order 2, 4 or 6. 
This is the case for Abelian and bielliptic surfaces, which possess numerically trivial line 
bundles of infinite order. Then, to see that α surjects, by (1.4.2) and Observation 1.4.1 it 
suffices to check that 

(4.3.1) $, 

(4.3.2) $, 

(4.3.3) $ for all $ and $, 

(4.3.4) $ for all $ and $. 

The vanishing (4.3.4) follows from (1.1) and Kodaira Vanishing Theorem. The vanishing 
(4.3.2) follows from (1.1), Kodaira Vanishing Theorem and the way in which we have 
chosen E. The vanishing in (4.3.3) follows from Lemma 4.2. Finally, (4.3.1) follows from 
Lemma 4.2 once we see that if r1 = r2 = 2, 

$, 

which follows from the way in which we have chosen E. 

Assume the result true for p — 1 and p > 1. We have the following sequence: 

$. 

The last term is zero by induction hypothesis, so the desired vanishing is equivalent to the 
surjectivity of β. This follows from Observation 1.4.1 and (1.4.2). In fact, the required 
vanishings follow by induction, Kodaira Vanishing Theorem and Lemma 4.2. 

For the last conclusion of the theorem, note that 

$. 

Then, by Theorem 1.2, L satisfies property Np. □ 

Either as straightforward consequence of Theorem 4.1 or from the same ideas we 
have been using we obtain results for adjoint linear series: 
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Corollary 4.4. Let X be an Abelian or bielliptic surface. Let B be an ample and 
base-point-free line bundle such that $. Then $ satisfies property Np if $, 

Corollary 4.4 implies Mukai's conjecture for Abelian and bielliptic surfaces and p = 0, 
and for p = 1 (in the latter case, our result improves Mukai's bound): 

Corollary 4.5. Let X be an Abelian or a bielliptic surface. Let A be an ample line 
bundle and $. If $ and $, then L satisfies property Np. In particular, 
if $, L satisfies property N1. 

Proof. $ is base-point-free by Lemma 2.7 (for Abelian surfaces this also follows 
from Lefschetz’s Theorem) and since K ≡ 0, $ and $. Then, if n is even the 
result is a straightforward consequence of Corollary 4.4. If n is odd the situation is the 
same as that of Corollary 2.15 and we proceed analogously. □ 

Remark 4.6. If X is an Abelian surface the above result was proven by Kempf (cf. 
[Ke]). However, the results proven in this chapter are more general: for instance, since 
on an Abelian surface a polarization of type (1, 3) is base-point-free, Corollary 4.4 implies 
that a line bundle of type (p + 1, 3p + 3) satisfies property Np. This fact does not follow 
from Kempf’s result. 

To end this section we carry out a study analogous to the one realized for Enriques 
surfaces in Section 3: the following theorem proves in particular that the line bundles 
satisfying property N1 according to Theorem 4.1 have also a Koszul coordinate ring. 

Theorem 4.7. Let X be an Abelian or a bielliptic surface. Let B1 and B2 be numerically 
equivalent ample and base-point-free line bundles with self-intersection bigger than or equal 
to 5. If $, then R(L) is Koszul. In particular L satisfies property N1. 

In order to prove the theorem we use the following result which is basically a re¬ 
formulation of [GP1], Theorem 5.4 for the case of surfaces with Κ = 0: 

Lemma 4.8. Let X be a surface with Κ = 0, let B1 and B2 be two ample and base-point-
free line bundles. If $, then the following properties are 
satisfied for all $: 

(1) Mh,L is globally generated, 

(2) $ for all $, 

(3) $ where j = 1,2, 

(4) $ where i = 1, 2 and j = 2,1, 

(5) $ where i = 1, 2 and j = 2,1. 

In particular $ for all $, and R(L) is a Koszul k-algebra. 
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Proof. For the proof of the lemma we refer to [GP1]. Since now B1 and B2 are 
ample and  KX ≡ 0, we obtain all the vanishings of the groups $ when $ 
and $ needed in the proof, by Kodaira Vanishing Theorem, making therefore 
unnecessary to assume the vanishings of  H1(B1), H1(B2) and $. □ 

(4.9) Proof of Theorem 4.7. The result follows from Lemma 4.8. If X is bielliptic, 
the only problem we might have is if $ or if $. In the former case, 
choose a line bundle $ such that $ and $. In the latter case 
choose E such that $ and $. Let then $ and $. 
The desired result follows if we apply Lemma 4.8 to $ and $ instead. 

If X is an Abelian surface, KX is trivial, so the only problem applying Lemma 4.8 
would appear when B1 = B2. This is solved analogously considering $ and 
$, where now  E is taken to have nontrivial square. □ 

5. Surfaces of positive Kodaira dimension 

In this section we focus on the study of adjoint linear series of surfaces of positive 
Kodaira dimension. We find sufficient conditions for the normal generation and the normal 
presentation of the adjoint linear series and of the powers of an ample and base-point-free 
line bundle. For the latter case we also generalize the results to higher syzygies. One can 
look upon these results as an analogue for projective normality and higher syzygies of the 
results of Kawamata and Shokurov (see [Ka] and [Sh]) for base-point-freeness and ef¬ 
fectiveness, viewed in the special context of algebraic surfaces. They deal with nef bundles 
L for which $ is nef and big and conclude the freeness and effectiveness of multiples 
of L. We start with an ample and base-point-free bundle  B which satisfies certain inequalities 
(see Theorems 5.1 and 5.8) which are immediate if one assumes that $ is nef and 
big and go on to prove projective normality and higher syzygy results for powers of B 
and for adjunction bundles associated to B. 

We obtain two interesting consequences from our study. The first is finding sufficient 
conditions for projective normality and quadratic generation of pluricanonical embeddings 
of surfaces of general type (Corollary 5.6, Remark 5.7 and Corollary 5.9). Bombieri asked 
in [Bo] whether | $ | maps S as a projectively normal variety. This question was answered 
affirmatively by Ciliberto in [Ci] (under basically the same assumptions of Theorem 5.5 
below). Thus the above mentioned corollaries recover, and in the case of regular surfaces, 
improve Ciliberto’s result. The second consequence is an effective bound along the lines 
of Mukai’s conjecture using a result by Fernandez del Busto. In the case of pluricanonical 
models of regular surfaces of general type we further our study to higher syzygies. Ein 
and Lazarsfeld’s results in [EL] together with Del Busto’s give effective bounds (slightly 
weaker than ours) along the lines of the Mukai's conjecture, but for regular surfaces, the 
bounds we obtain are better. We also obtain as a corollary of Theorem 5.1 (4) effective 
bounds for property Np for the multiples of ample line bundles on regular surfaces. 

Theorem 5.1. Let S be a regular surface of positive Kodaira dimension and $. 
Let B be an ample and base-point-free line bundle such that H 1(B) = 0. Let $ 
and $. Let $ and $. 
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(1) If Κ(S ) = 1  and B 2 >K S ∙ B, and if $, then 

$. 

In particular, $ satisfies property N1, for all $. 

(2) If Κ(S) = 2  and $, and if $, then $. In particular, 
$ satisfies property N0, for all $. 

(3) If Κ(S) = 2  and $, and if $, then 

$; 

and if $, then $. In particular $ and $ 
satisfy property N1, for all $. 

(4) If Κ(S) = 2  and $, and if  $, then 

$. 

In particular if $, $  satisfy property Np, for all $. 

To prove Theorem 5.1 we will need these two lemmas: 

Lemma 5.2. Let S be a surface and B an ample and base-point-free line bundle with 
H1(B) = 0 and B2 > B∙KS if $, and $ if κ(S) = 2. Then $ 
for all $. 

Proof. Let C be a smooth curve in |B|. Since $ when 
$, we only have to prove $. If B2 > B ∙ KS or $, then 
$, hence $ because H1(B) = 0. If $, then 
$. Consider the sequence 

$. 

Since in this case  S is a surface of general type, $, therefore $ 
is effective and since  B is ample, it must be $. Hence 

$. □ 

Lemma 5.3. Let S be an algebraic surface with nonnegative Kodaira dimension and 
let B be an ample line bundle. Let $. If $, then $. 

Proof. We assume the contrary, i.e., that $, and get a contradiction. 
Let $. We have that L2 > 0. By Riemann-Roch 

$. 
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If B2 > mKs∙ B, $, for n large enough, and since B is ample, $ 
is not effective, so finally $ is effective for n large enough. But in that case $ 
because KS is nef, contradicting our assumption. 

Now if B2 = mKS ∙ B, we have that L2 > 0, B2 > 0 (because B is ample), and L ∙ B = 0, 
but this is impossible by the Hodge index theorem. □ 

(5.4) Proof of Theorem 5.1. We start proving that $ if B satisfies 
the conditions of (1) and (2). By Observation 1.4.1 it suffices to show that 

$, 

$, for all $ 

surject. We want to show now that $ is base-point-free. Let $ smooth. From 
the arguments of the proof of Lemma 5.2, we see that $ with equality if and only 
if B = Ks and S of general type. Since S is regular we have 

$. 

Thus it follows from this and from Riemann-Roch that $ (again, with 
equality if and only if B = Ks and S of general type). Now by Clifford’s bound, $ 
except if B = KS and S of general type. It is well known (cf. Theorem 5.5) that $ is 
base-point-free under the hypothesis of the theorem. Now, if $, $ is base-point-
free by Lemma 2.13. Take now $, also a smooth curve. Since $ and 
by Lemma 5.2 and Kodaira Vanishing Theorem, we may apply Observation 2.3 and 
conclude that it is enough to check that 

$, 

$ 

surject for all $, $. This follows from Proposition 2.4 or Proposition 2.5. We check 
this explicitly for the first family of maps. Let $ and $. It is 
enough to show that degG > 2g(C) and that deg G + degG' > 4g — 2h1(G'). For the first 
inequality, note that $ and that $. For the second, 

(5.4.1) $. 

On the other hand $ and since B is ample, the inequality 

$ 

implies $. By the bound on $ we therefore have $. 
The reasoning for the second family of maps is similar. 
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We go on now to prove (3). The proof of the vanishing of $ uses the 
same above arguments and we will not repeat them here. We now prove the vanishings of 
$ and $. By Observation 1.4.1 it is enough to show that the 
following maps 

$, 

$, 

$ 

surject. We only sketch in some detail the proof of the surjectivity of  α1, as the proof for 
the other two maps are analogous. We will use Observation 2.3 and Lemma 2.9. For that 
we need to check that $. This follows from the surjectivity of 

$, 

$. 

The surjectivity of  β1 has already been shown previously in this proof. We show now the 
surjectivity of  β2. Let $. By the vanishing of H1(B) from the hypothesis and 
Kodaira vanishing the surjectivity of  β2 follows from the surjectivity of 

$ 

by Observation 2.3. We want to apply Proposition 2.5. Note that 

$ 

and $. Since $, by Lemma 5.3, 

$. 

Finally $, so the inequalities needed to apply Proposition 2.5 are 
satisfied and the surjectivity of  γ follows. Returning to the proof of the surjectivity of  α1, 
we may now apply Observation 2.3 and Lemma 2.9 and therefore it suffices to check the 
surjectivity of 

$, 

which follows from Proposition 2.4. Indeed, let $ and $. We 
need to check that μ(F) > 2g(C) and that μ(F) > 2 g + rank(E)(2g(C)—μ(E))—2h1(E). 
For the former inequality, $ and this is bigger than 2g(C) 
since 2g(C) = KS ∙ B + B2 + 2 and $. The latter inequality follows from 

$, 

as $ and $. 
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Finally the proof of the vanishing of $ follows by the same 
arguments and it is left to the reader. 

The proof (4) is built upon (3), using induction on p and (1.4.2). □ 

We want now to apply this theorem to the study of pluricanonical models of surfaces 
of general type (regular, for the moment; we will complete the picture when we have at 
our disposal Theorem 5.8 which deals with irregular surfaces). The idea is to find a smallest 
power of KS which is base-point-free, for it would play the role of B. It is known that 
under certain mild conditions $ is base-point-free if $. The precise result, which is 
due to Bombieri, Francia, Reider and others, can be found in [Ca]: 

Theorem 5.5 ([Ca], Theorem 1.11 (i)). Let S be a surface of general type. Assume 
that either 

(1) $ or 

(2) $ and $, but it does not happen that $ and $ or 4. 

If $, then $ is base-point-free. 

With this we are ready to obtain the following 

Corollary 5.6. Let S be a regular surface of general type with ample canonical bundle 
and $. Then 

(1) $ for all $, and 

(2) $ for k=l = 0,for all $, and for all $. 

In particular, if $ embeds S as a projectively normal variety with homogeneous 
ideal generated by quadratic equations. 

Proof. The result is a straightforward consequence of Theorem 5.1 if $, setting 
$. However we can take advantage of the fact that we are dealing with base-point-
free line bundles of particularly nice shape. If one goes through the steps of the proof of 
Theorem 5.1, one sees that one of the places when we use $ is to prove that $ 
is base-point-free. In this setting we know this to be true by Theorem 5.5. The other place 
where we use the bound on $ is when checking the inequalities needed to apply Proposition 
2.5 and Proposition 2.4. The reader can see that in this particular case $ suffices for 
such a purpose. □ 

Remark 5.7. Some hypothesis of Corollary 5.6 can be dropped or relaxed. If we 
don't require KS to be ample, we obtain essentially the same result: the image of S by 
$ is a projectively normal variety with homogeneous ideal generated by quadratic 
equations. Indeed, note that the ampleness of B was used in Theorem 5.1 to obtain 
cohomology vanishings and the base-point-freeness of $. Those are taken care now 
by Theorem 5.5 and Kawamata-Viehweg Vanishing Theorem. On the other hand we can 
relax the hypothesis on $ to obtain a weaker result, proven by the same techniques: 
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(5.7.1) Let S be a regular surface of general type with either $ and $ or 
$. If $, then the image of S by the complete linear series $ is a projectively 
normal variety. 

We now complete the picture with the nonzero irregularity case: 

Theorem 5.8. Let S be an irregular surface of positive Kodaira dimension. Let B be 
an ample line bundle such that $ and B' is base-point-free and H1(B') = 0 for all B' 
homologous to B (respectively numerically equivalent). Let L homologous to $ (re¬ 
spectively numerically equivalent) and L' homologous to $ (respectively numerically 
equivalent). 

(1) If Κ(S) = 1 and B2>KS∙B, and if $, then $; if $, 
then $. In particular L satisfies propertyN 0if $, and L satisfies property 
N1 if $. 

(2) If κ(S) =  2 and $, and if $, then $. In particular, 
L satisfies property N0 if $. 

(3) If Κ(S) = 2 and $, and if $, then 

$. 

In particular , L satisfies propertyN 1if $. 

Sketch of proof . The proof uses Lemma 5.2, the intersection number inequalities 
in our hypothesis and arguments similar to those in Section 4. We will outline the argument 
to show (1). Assume for simplicity’s sake that $. The vanishing of $ 
is equivalent (because of Kodaira Vanishing Theorem) to the surjectivity of 

$. 

Now we break up L′ as the tensor product $ where 
$ where $ and $. Clearly, if L′ is homologous to $, Bi 

is homologous to B and in any case numerically equivalent, hence by hypothesis and 
Lemma 2.13, Bi is base-point-free and so is $. By Observation 1.4.1 it would suffice 
to show the surjectivity of several multiplication maps. The first one would be 

$. 

This follows from (1.4.2), the required vanishings being obtained from Kodaira Vanishing 
Theorem and, if n = 2, from our choice of E. The possible intermediate maps are surjective 
by (1.4.2) and Kodaira. The last of the maps is surjective by (1.4.2), Kodaira Vanishing 
Theorem and our hypothesis. Indeed, the required vanishings of H1 follow from Lemma 
5.2 (here we use the condition B2 > B ∙ KS), using the divisibility of Pic 0. We also need the 
vanishings of H2(N), where $ and $ which certainly occur because S is 
an elliptic surface. 

12 Journal für Mathematik. Band 506 
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Now we prove $ under the hypothesis in (1). This vanishing is 
equivalent to the surjectivity of 

$ 

by virtue of the vanishing just shown. If we break L as tensor product of KS and base-point-
free line bundles homologous or numerically equivalent to B depending on the case, we 
can use Observation 1.4.1 and (1.4.2). The vanishings we need to check have already been 
shown in the first part of the proof. □ 

Corollary 5.9. Let S be an irregular surface of general type with $. If $, 
then the image of S by the complete linear series $ is a projectively normal variety. 

Proof. The observation about ampleness made in Remark 5.7 also applies here. 
Having that in account, the result follows from the arguments of the proof of Theorem 
5.8 if n is odd, and for n even we argue as in Corollary 2.15. □ 

Another quite interesting consequence of Theorems 5.1 and 5.8, and of a result by 
Fernandez del Busto is the following effective bound along the lines of Mukai’s conjecture: 

Corollary 5.10. Let S be an algebraic surface of positive Kodaira dimension, let A be 

an ample line bundle and let  $. Let $. If $, 

then L satisfies property N 0. If $, then L satisfies property N 1. If S is a regular surface 
of general type and  $, then L satisfies property N 1. 

Sketch of proof. The key observation is the fact that if $ then it follows from 
[FdB], Section 2 that $ is base-point-free and $. Then we take $ as the 
base-point-free line bundle B in Theorems 5.1 and 5.8. One can easily verify that the 
numerical conditions in the statements are satisfied. Note that Pic 0(S) is divisible, so if S 
is irregular, Fernandez del Busto’s result applies also to  B' in the statement of Theorem 
5.8. There is however one hypothesis of Theorem 5.1 which we have not assumed in this 
corollary, and which in fact does not occur in general under the hypothesis of our statement. 
That is the assumption of $. This hypothesis was used in the proof of Theorem 5.1 
to check the inequalities needed to apply Proposition 2.4 or Proposition 2.5. Under our 
current hypothesis B2 is much larger than KS ∙ B and in any case, large enough to render 
the mentioned assumption unnecessary (see for instance (5.4.1)). Therefore the theorem is 
either a direct consequence of Theorems 5.1 and 5.8 or follows from slight modifications 
of the arguments involved in proving those theorems, for we are in a situation similar to 
Corollary 2.15. □ 

Remark 5.10.1. With the notation of Corollary 5.10, using the above methods one 
can show that if X is a regular surface of positive Kodaira dimension then L satisfies N1 

for all $. 

We focus now on the study of higher syzygies of pluricanonical models of surfaces 
of general type. Recall that one can obtain a result regarding them from Theorem 1.3: 
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Corollary 5.11. Let S be a surface of general type satisfying the assumptions of 
Theorem 5.5. If $, then the image of S by $ is projectively normal, its ideal 
is generated by quadrics and the resolution of its homogeneous coordinate ring is linear until 
the pth stage. 

Proof. The line bundle $ is base-point-free by Theorem 5.5. On the other hand, 
$ is 3-regular by the Kawamata-Viehweg Vanishing Theorem. Hence from Theorem 
1.3 the result follows for n even. If n is odd we argue as in Corollory 2.15, writing $ 
as $, where $ and $, which are base-point-free by Theorem 5.5. □ 

This result can be improved for regular surfaces if we impose the hypothesis of 
Corollary 5.6: 

Theorem 5.12. Let S be a regular surface of general type with$. Let 

$ 

and $. 

(1) If $ for all $, and 

(2) if $,k = l = 0 forall $, and for all $. 

In particular, if $ and $, then the image of S by  $ is projectively 
normal, its ideal is generated by quadrics and the resolution of its homogeneous coordinate 
ring is linear until the pth stage. 

Proof. The proof is by induction on p. The statement for p = 1 is Corollary 5.6 (2), 
having in account the observation on ampleness made in Remark 5.7. Let us assume the 
result to be true for  p — 1 and prove the vanishing for  p. Tensoring (1.1) with $ 
and taking global sections yields the following long exact sequence 

$. 

The last term is zero by induction assumption, thus the vanishing is equivalent to showing 
the surjectivity of the multiplication map  η. Let $ and $. By Observation 
1.4.1 it suffices to show the surjectivity of several maps: 

$, for all $ 

and, 

$, for all $. 

The surjectivity of η" follows by (1.4.2), the vanishings required following by induction, 
from (1.1) and Kawamata-Viehweg. The surjectivity of  η' also follows from (1.4.2) by the 
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same reasons, but as in the proof of Theorem 2.14 we could alternatively argue restricting 
to a smooth curve C in |B|. We would have to eventually use Proposition 2.4 and the fact 
that the needed inequalities hold follows from adjunction and the assumption on $, having 
in account that $. 

Finally, the statement on the coordinate ring of the image of the pluricanonical maps 
follows from Corollary 5.6, the vanishings just proven and Theorem 1.2. □ 

As a corollary of Theorem 5.1 (4) and Del Busto's result we obtain an effective bound 
for a power of an ample line bundle to satisfy property Np: 

Corollary 5.13. Let S be a regular surface of general type, let A be an ample line 
bundle and let m be as in Corollary 5.10. Let $. If $, then L satisfies 
property Np. 

We state now a result for normal presentation and Koszul property of adjoint linear 
series on regular surfaces of general type with base-point-free canonical bundle: 

Theorem 5.14. Let S be a regular surface ofgeneral type with $ and base-point-free 
canonical bundle. Let B be an ample and base-point-free line bundle on S with H1(B) = 0 
and let $. Let $ and $. If $, then 

$. 

In particular, if $, then $ satisfies property N1, and in addition, the Koszul 
property. 

Proof. Cohomology vanishings: First we check the vanishing of $. By 
Kodaira Vanishing Theorem, it suffices to check the surjectivity of 

$. 

Recall that both B and KS are base-point-free. By Observation 1.4.1 it suffices to check 
the surjectivity of 

$ for all $, 

$ for all $. 

Let C be a smooth curve in |KS|. The surjectivity of β follows by (1.4.2), Lemma 5.2 and 
the inequality $. To see the surjectivity of α, let us set $. Using 
Observation 2.3 it suffices to show the surjectivity of 

$. 

Note that $. Since by the 
inequality $ and the ampleness of B, $, and $, the 
surjectivity of γ follows from Proposition 2.5. 
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To prove the vanishing of $, by the vanishing just proved, it suffices to 
see the surjectivity of 

$. 

Using Observation 1.4.1 it is enough to prove the surjectivity of 

$, 

$. 

The surjectivity of the second family of maps follows by (1.4.2) and the same arguments 
used for the cohomology vanishing already proven. For the first family we argue restricting 
to C. By Observation 2.3, Lemma 2.9, and having in account the already proven surjectivity 
of γ, we see that it suffices to check the surjectivity of 

$, 

where $ and $. Now $ and $ by 
Lemma 5.3 and Nöther’s inequality, hence MG is semistable. Then δ surjects by Proposi¬ 
tion 2.4. 

Koszul: According to Lemma 3.2 we need to show that Mh,L is globally generated 
and that 

$ 

surjects for all $ and $. Let $, ample and base-point-free by Lemma 
2.13. By Observation 1.4.1, it suffices to prove the surjectivity of 

$ for all $, 

$ for all $, $. 

We explain in some detail one of the border cases: 

$ 

and leave the others to the reader. The proof of the surjectivity of β goes by induction 
and as in Theorem 3.5, it is convenient to prove the vanishing of $ at the 
same time. If h = 0, the surjectivity follows from the arguments sketched in the first part 
of the proof. Assume the statement to be true for h — 1. Consider the sequence 

$. 
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The multiplication map δ is surjective by induction hypothesis. The group H1(Mh—1,L) 
vanishes also by induction hypothesis, therefore $. Now since 
$, in order to see the surjectivity of β we proceed as in Theorem 3.5, B playing 
the role B1 plays there and restricting to a smooth curve $, which plays the same 
role as $. In order to obtain the inequalities needed to apply Lemma 2.10 and Proposition 
2.4, note that $ and recall that $ and $ 
by Noether’s formula. □ 

As a corollary we obtain an improvement on another result by Ciliberto (cf. [Ci]). 
As in Remark 5.7 and Corollary 5.9 the hypothesis on the ampleness of KS can be removed, 
and we state the corollary without it: 

Corollary 5.15. Let S be a regular surface of general type with KS base-point-free. 
Let $. Let $. Then, if $, the image of S by |L| is projectively normal, 
its ideal is generated by quadratic equations and the homogeneous coordinate ring is Koszul. 

We end up the section with a generalization to higher syzygies of Corollory 5.15: 

Theorem 5.16. Let S be a regular surface of general type with KS base-point-free. Let 
$. Let $ and $. Then, if $, 

$ for all $. 

Moreover, if $ the image of S by |L| is projectively normal, its ideal is generated by 
quadratic equations and the resolution of the homogeneous coordinate ring is linear until the 
pth stage. 

Sketch of proof . If KS is ample, the vanishings of $ and $ 
follow from Theorem 5.14 and if KS is not ample, they follow by the same reasoning used 
for Theorem 5.14, arguing as in Remark 5.7. The proof for p > 1 follows now by induction. 
We argue as in the proof of Theorem 5.12. We use Observation 1.4.1, Observation 2.3, 
Lemma 2.9, and Proposition 2.4 in similar fashion. 

Lastly, the statement about the syzygies of the resolution of the pluricanonical models 
follows from Theorem 1.2 and from the vanishings just proven. □ 

Appendix. Singular surfaces 

We want to point out that the main theorems proved so far in this article also go 
through for normal surfaces. On smooth surfaces Mukai’s conjecture is a natural gene¬ 
ralization of the results of Reider on base point freeness and very ampleness to higher 
syzygies. Recently Kawachi, Maşek and Sakai have extended Reider’s theorem to normal 
surfaces and it is natural to ask for higher syzygy results. Even though there are no Mukai 
type conjectures on normal surfaces, our results yield Mukai type bounds for higher 
syzygies. In fact, the bounds obtained for property Np on smooth surfaces also hold for 
normal surfaces and, in particular, results (1) to (4) in the introduction, remain true. 
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More precisely, let X be a surface with canonical singularities. Then Theorems 2.2, 
2.11, 2.14, 3.5, 4.1, 4.7 (for surfaces with KX≡0), and Theorems 5.1, 5.8, 5.12, 5.14, 5.16 
(for surfaces of positive Kodaira dimension) hold for X since the same proofs go through. 
Indeed the delicate points to keep in mind when extending our arguments to the singular 
case are the use of Kodaira vanishing, Bertini’s theorem and the Reider’s theorem. The 
first two hold for surfaces with canonical singularities. The role of the third is played by 
the results of Kawachi and Maşek (cf. [KM]) and Sakai (cf. [Sa]). Accordingly, Corollaries 
2.8, 2.12, 2.15, 4.4, 4.5, 5.6, 5.9, 5.11 and 5.15 follow from the corresponding theorems 
and [KM]. Finally, Theorems 2.2, 2.11, 2.14, 3.5,4.1,4.7 and weaker versions of Theorems 
5.1 and 5.8 also go through for surfaces with at worst log terminal singularities. 
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