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Let X be a locally compact metric absolute neighbourhood retract for metric spaces, UZX be an open
subset and f :UMNX be a continuous map. The aim of the paper is to study the fixed point index of the
map that f induces in the hyperspace of X. For any compact isolated invariant set, KZU, this fixed point
index produces, in a very natural way, a Conley-type (integer valued) index for K. This index is computed
and it is shown that it only depends on what is called the attracting part of K. The index is used to obtain
a characterization of isolating neighbourhoods of compact invariant sets with non-empty attracting part.
This index also provides a characterization of compact isolated minimal sets that are attractors.

1. Introduction and preliminary definitions

The problem of the construction of the Conley index for discrete dynamical

systems posed in Conley’s book [4] was solved by Robbin and Salamon in [19], using

shape theory, for isolated invariant sets of a diffeomorphism on a smooth manifold.

Mrozek, in [13], introduced a cohomological Conley index for isolated invariant sets

of homeomorphisms. Later, in [14], Mrozek presented a scheme for constructing

various Conley indices for locally defined maps that, in particular, extends the

previous works.

In order to assign an index to each isolated set, the notion of index pair is needed.

The independence of the choice of index pairs to introduce such indices is one of the

main themes of the above-mentioned papers.

The reader who is familiar with degree theory will note immediately that Conley

indices share similar properties with the fixed point index theory. In this paper we

shall construct, in a very general setting, an integer-valued index using the fixed point

index of the induced map on the hyperspace of X (endowed with the Hausdorff

metric). Our construction is quite natural and from the well-known properties of the

fixed point index, the independence of the choices we make for the definition will be

obvious. We will not need index pairs to introduce our index but a special class of

index pairs will be useful to compute it.

From now onwards X will denote a locally compact, metric absolute neighbour-

hood retract for metric spaces (ANR). Let us recall some notions that we will need;

most of the definitions below have been taken from [6, 14]. The reader is referred to

[3, 7, 18] for information about the fixed point index theory in ANRs.

Let UZX be an open set. By a (local ) semidynamical system we mean a locally

defined continuous map f :UMNX. A function σ ::MNX is said to be a solution to
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f through x in NZX if f(σ(i))¯σ(i1) for all i `:, σ(0)¯x and σ(i) `N for all

i `:. The in�ariant part of N, Inv(N, f ), is defined as the set of all x `N that admit

a solution to f through x in N.

A compact set KZX is in�ariant if f(K )¯K. An invariant compact set K is

isolated with respect to f if there exists a compact neighbourhood N of K such that

Inv(N, f )¯K. The neighbourhood N is called an isolating neighbourhood of K.

Given X, we will denote by 2X the hyperspace of non-empty compact subsets of

X endowed with the Hausdorff metric, d
H
, defined by

d
H
(C,D)¯ inf ²ε" 0:CZB(D, ε) and DZB(C, ε)´

where B(K, ε)¯²x `X :d(x,K )! ε´ for any compact set KZX.

A growth hyperspace Λ of X is any closed subspace of 2X satisfying the following

condition: if C `Λ and D ` 2X are such that CZD and every component of D meets

C, then D `Λ. 2X and the hyperspace C(X ) of non-empty compact connected subsets

of X are growth hyperspaces of X.

The following theorem, due to D. W. Curtis, is crucial in our construction.

T 1 [6, p. 141]. If X is locally continuum-connected (connected and locally

continuum-connected ), then e�ery growth hyperspace Λ of X is an ANR (absolute

retract for metric spaces (AR)). Con�ersely, if there exists a growth hyperspace Λ such

that C(X )ZΛ and Λ is an ANR (AR), then X is locally continuum-connected

(connected and locally continuum-connected ).

A semidynamical system f :UMNX induces in a natural way another one

2f :2U MN 2X.

Let KZU be a compact isolated invariant set. Let N be any isolating

neighbourhood of K. Consider an open set W such that KZWZN. Take

2fr
#
W :2W MN 2X. It is clear that Fix(2fr

#
W)Z 2K, then Fix(2fr

#
W) is a compact subset

of 2W. On the other hand, 2fr
#
W is a compact map because it admits an obvious

extension to 2N. Therefore the fixed point index of 2fr
#
W in 2X, i

#
X(2fr

#
W, 2W ), is well

defined.

D 1. We define the fixed compact index of the pair (K, f ) as

I
X
(K, f )¯ i

#
X(2fr

#
W, 2W ).

R 1. From the excision property of the fixed point index we obtain that

I
X
(K, f ) does not depend on the choice of the isolating neighbourhood N of K and the

open set W.

R 2. It is easy to construct examples where I
X
(K, f )1 i

X
( f,W ). In fact, if

we consider any flow π in 2# with an attractor K which is a closed orbit, we can take

t" 0 such that the period of x `K is not a multiple of t. Let N `ANR be an isolating

neighbourhood of K. If f¯π
t
it follows that i2#

( f,W )¯ 0 because the set of fixed

points is empty but using Theorem 1, 2N is an AR (2N is homeomorphic to the Hilbert

cube, see [5] for example), then I2#
(K, f )¯ 1 (see Theorem 3).

R 3. If X is not locally compact we still can introduce our index if we

assume f to be compact. In this sense, the Rybakowski condition, see [12, 13, 15], is

introduced to define the Conley index when the local compactness of X is not

required.
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R 4. Note that similar indices can be defined if we restrict ourselves to a

particular growth hyperspace of X. In the last part of the paper we will present the

results we can obtain if we consider the growth hyperspace C
m
(X ) of the non-empty

compact subsets of X with at most m connected components.

On the other hand, using the fact that the spaces F
k
(X ) of all non-empty subsets

of X consisting of at most k points, are also ANRs (see [16]) we can introduce indices

which would measure the periodic points of f. In a forthcoming paper we will give

a detailed study of these indices.

D 2. Let f :UZXMNX be a semidynamical system. A compact

isolated invariant set KZU is said to be an attractor if there exists an open

neighbourhood U
!
ZU of K such that :

(i) f m(U
!
)ZU for every m& 1.

(ii) For every open neighbourhood V of K there is m(V ) `: such that

f n(U
!
)ZV for all n&m(V ).

When computing the classical fixed point index of a map f :WZ2n MN2n such

that Fix( f r
W
) is a finite subset of hyperbolic fixed points,

i2n( f,W )¯ 3
a`Fix( f r

W)

sign(J(Id®f ) (a))

where J denotes the Jacobian determinant. Then each attracting fixed point

contributes 1 in the above sum.

In this paper we show that the fixed point index in the hyperspace neglects all

compact invariant sets that are not attractors.

The next section of this paper will be devoted to presenting the main properties

of the fixed compact index of a compact invariant isolated set. Some examples of the

consequences of our main result (Theorem 6) are the following corollaries.

C 1. Let f :UZXMNX be a semidynamical system. A continuum

isolated in�ariant set K is an attractor if and only if I
X
(K, f )¯ 1.

C 2. Let f :UZXMNX be a semidynamical system. Let W be an

open set such that cl(W ) is an isolating neighbourhood with respect to f. Then the

attracting part of Inv(cl(W ), f ) is non-empty if and only if i
#
X(2fr

#
W, 2W )1 0. In

particular, i
#
X(2fr

#
W, 2W )1 0 implies that W contains an attractor. If Inv(cl(W ), f ) is

minimal, then i
#
X(2fr

#
W, 2W )1 0 if and only if Inv(cl(W ), f ) is an attractor.

C 3. Let f :UZXMNX be a semidynamical system. Let WZX be

an open subset, such that cl(W ) is an isolating neighbourhood with respect to f. If

i
#
X(2fr

#
W, 2W )¯ 2r®1 then 2f has at least r periodic attracting orbits in 2W.

C 4. Let f :UZ2MN2 be a semidynamical system. Let K be a

compact isolated in�ariant set with respect to f. If I2(K, f )¯ 2r®1 then K contains at

least r periodic orbits.

C 5. Let f :UZXMNX be a semidynamical system. Let K be a

compact isolated in�ariant set with respect to f whose components are cell-like. If

I
X
(K, f )¯ 2r®1 then K contains at least r periodic orbits.
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C 6. Let f :UZXMNX be a semidynamical system. Let WZX be an

open subset, such that cl(W ) is an isolating neighbourhood of a compact in�ariant set

K. If the shape index of (K, f ) is the shape of a pointed space (Y, n) (see [14, 19]) and

i
#
X(2fr

#
W, 2W )¯ I

X
(K, f )¯ 2r®1 then Y has at least r1 components.

2. Properties of the index and the main results

First of all we will state the main properties, analogous to the Conley index, of our

index. All of them follow from the corresponding properties of the fixed point index.

Only the additivity property is not obvious.

P 1 (Waz0 ewski property). I
X
(K, f )1 0 implies that K1W.

P 2 (additivity property). Let K be a compact isolated in�ariant set.

Assume that K is a disjoint sum of two compact in�ariant isolated sets K
"
and K

#
. Then,

I
X
(K, f )¯ I

X
(K

"
, f )I

X
(K

#
, f )I

X
(K

"
, f ) I

X
(K

#
, f ).

Proof. Take N¯N
"
eN

#
, an isolating neighbourhood of K such that N

"
f

N
#
¯W and N

j
is an isolating neighbourhood for K

j
, j¯ 1, 2.

Choose open neighbourhoods U
"
ZN

"
and U

#
ZN

#
of K

"
and K

#
respectively

such that f(U
i
)fU

j
¯W if i1 j.

Then,
I
X
(K, f )¯ i

#
X(2fr

#
U
"

eU
#
, 2U

"
eU

#)

and
I
X
(K

i
, f )¯ i

#
X(2fr

#
U
i
, 2Ui), i ` ²1, 2´.

Let W
"
¯ 2U

"
eU

#, W
#
¯ 2U

"h2U
#h(2U

"¬2U
#), X

"
¯ 2X and X

#
¯ (2X)

"
h(2X)

#
h

(2X¬2X).

Consider the map ik :W
"
MNW

#
defined in the following way: if K!

j
ZU

j
,

ik(K!
j
)¯K!

j
, j¯ 1, 2; on the other hand, for K « `W

"
such that K «fU

"
¯K!

"
1W and

K «fU
#
¯K!

#
1W, ik(K «)¯ (K!

"
,K!

#
) ` 2U

"¬2U
# ZW

#
.

It is easy to see that ik is a homeomorphism.

Let
Fk¯ 2fh2fh(2f¬2f ) :W

#
MNX

#

and
jk :X

#
MNX

"

be defined by jk(K!
j
)¯K!

j
if K!

j
` (2X)

j
and jk(K!

"
,K!

#
)¯K!

"
eK!

#
for (K!

"
,K!

#
) ` 2X¬2X.

It follows that 2f ¯ jk aFk a ik.

Now denote
f
"
¯ ia ik :W

"
MNX

#

where i :W
#
MNX

#
is the inclusion and

f
#
¯ 2f a i−"

$

:W
#
MNX

"
.

Then, S¯²x ` f−"
"

(W
#
) : ( f

#
a f

"
) (x)¯x´¯ ²x `W

"
:2f(x)¯x´ is a compact set.

Using the commutativity property of the fixed point index,

i
#
X(2f, 2U

"
eU

#)¯ i
X

"

( f
#
a f

"
, f−"

"
(W

#
))¯ i

X
#

( f
"
a f

#
, f−"

#
(W

"
))

¯ i
(#

X
)
"
h(#

X
)
#
h(#

X
×#

X
)
(ia ik a 2f a i−"

$

, (2f a i−"
$

)−" (2U
"
eU

#)),

since 2f ¯ jk aFk a ik,

ia ik a 2f a i−"
$

r
ik((#

f
)
−"

(W
"
))
¯ ia ik a jk aFkr

F
−"

$
( j

−"

$
(W

"
))
.
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On the other hand,

ia ik a jk aFkr
F

−"

$
( j

−"

$
(W

"
))
¯Fkr

F
−"

$
( j

−"

$
(W

"
))
.

Thus,

i
(#

X
)
"
h(#

X
)
#
h(#

X
×#

X
)
(ia ik a 2f a i−"

$

, (2f a i−"
$

)−" (2U
"
eU

#))

¯ i
(#

X
)
"
h(#

X
)
#
h(#

X
×#

X
)
(ia ik a jk aFk,F−"

$

( j−"
$

(W
"
)))

¯ i
(#

X
)
"
h(#

X
)
#
h(#

X
×#

X
)
(Fk,F−"

$

( j−"
$

(W
"
)))

¯ i
X

#

(Fk,F−"

$

( j−"
$

(W
"
)))¯ i

X
#

(Fk,W
#
)

¯ i
X

#

(Fkr
#
U
"
, 2U

")i
X

#

(Fkr
#
U
#
, 2U

#)i
X

#

(Fkr
#
U
"×#

U
#
, 2U

"¬2U
#)

¯ i
#
X(2fr

#
U
"
, 2U

")i
#
X(2fr

#
U
#
, 2U

#)i
#
X
×#

X(2f¬2fr
#
U
"×#

U
#
, 2U

"¬2U
#)

¯ i
#
X(2fr

#
U
"
, 2U

")i
#
X(2fr

#
U
#
, 2U

#)i
#
X(2fr

#
U
"
, 2U

") i
#
X(2fr

#
U
#
, 2U

#). *

P 3 (commutativity property). Let X,Y be locally compact metric

ANRs. Let

} :UZXMNY,

ψ :VZYMNX

be locally defined maps.

Take f¯ψa} and g¯}aψ. If KZX is an isolated in�ariant set with respect to

f then }(K ) is an isolated in�ariant set with respect to g and I
X
(K, f )¯ I

Y
(}(K ), g).

C 7. Let f :UZXMNX be a locally defined map. Assume that

f(X )ZY where YZX is a locally compact ANR. If K is a compact isolated in�ariant

set with respect to f then K is an isolated in�ariant set with respect to f r
Y

and

I
X
(K, f )¯ I

Y
(K, f r

Y
).

P 4 (homotopy property). Let f :U¬ΛMNX be a map such that U

is an open subset of X and ΛZ2 is a compact inter�al. Assume that N is an isolating

neighbourhood for each partial map fλ :UMNX. Then I
X
(Inv(N, fλ), fλ) does not depend

on λ `Λ.

The next result is a first approximation to obtain the full meaning of our index.

The proof is based on the following theorem due to H. Steinlein ; see [18, 22] for

details.

T 2. Let f :UZXMNX be a locally defined map. Let HZU be an open

set such that f m is defined on H for m¯ pt with p prime. Assume that

Σ¯²x `H : f m(x)¯x´

is compact, f(Σ)ZΣ and f is compact in some neighbourhood of Σ. Then

i
X
( f m,H )3 i

X
( f,H ) (mod p).

T 3. Let f :UZXMNX be a locally defined map. If KZU is a compact

connected attractor for f then I
X
(K, f )¯ 1.

Proof. Take a connected open set U
!

as in the above definition. From

Theorem 1, 2U
! is an AR.

Consider a prime q and t such that p¯ qt &m(U
!
), then (2f )p ¯ 2f

p :2U
! MN 2U

!.
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It is easy to see that we are in the hypotheses of Steinlein’s theorem for H¯ 2U
!.

On the other hand,

i
#
X((2f )p, 2U

!)¯ i
#
U
!
((2f )p, 2U

!)¯Λ((2f )p)¯ 1

where Λ((2f )p) denotes the Lefschetz number of (2f )p (see [17]).

Therefore, for every prime q we have

1¯ i
#
X((2f )p, 2U

!)3 i
#
X(2f, 2U

!)¯ I
X
(K, f ) (mod q).

Then I
X
(K, f )¯ 1. *

From Theorem 3 and the additivity property we obtain the next corollary.

C 8. Let f :UZXMNX be a locally defined map. Let K be a compact

isolated in�ariant set with respect to f which is disjoint sum of n connected attractors

K¯K
"
eK

#
e…eK

n
. Then I

X
(K, f )¯ 2n®1.

Let K be a compact invariant set with respect to the semidynamical system

f :UZXMNX. Assume that K has a finite number of components K
"
,K

#
,… ,K

p
.

Since f(K )¯K, f produces a permutation of the elements of this decomposition of

K, we can order the components of K in the following way:

K¯K
","

eK
",#

e…eK
",k"

eK
#,"

eK
#,#

e…eK
#,k#

e…eK
r,"

eK
r,#

e…eK
r,kr

where k
"
k

#
…k

r
¯ p, and for i ` ²1, 2,… , r´ and j ` ²1, 2,… ,k

i
®1´ we have

f(K
i,j

)¯K
i,j+"

and f(K
i,ki

)¯K
i,"

.

D 3. In the above situation we say that f decomposes K in r cycles. For

each i ` ²1, 2,… , r´, the corresponding k
i
is called the length of the cycle i.

R 5. Assume K
!
to be a compact attractor of the semidynamical system

f :UZXMNX. Since X is locally connected, K
!
has a finite number of components.

Indeed, take an isolating neighbourhood N¯N
"
e…eN

p
for K

!
where N

i
is

connected and N
i
fK

!
1W for every i¯ 1,… , p. Consider n

!
`. such that for each

n& n
!
, f n(N )ZN. It is clear that for every i ` ²1,… , p´ there exists p(i) ` ²1,… , p´

such that ( f n
!)p(i) (N

i
)ZN

i
. If Ki

!
¯K

!
fN

i
then ( f n

!)p(i) (Ki

!
)¯Ki

!
and Ki

!
Z

Inv(N
i
, ( f n

!)p(i))ZN
i
. On the other hand, if x ` Inv(N

i
, ( f n

!)p(i)), since f n
!(N )ZN,

we have x ` Inv(N, f )¯K
!
. Therefore x `Ki

!
, Ki

!
¯ Inv(N

i
, ( f n

!)p(i)) and Ki

!
is

connected.

In general, it is known that there are non-locally connected, connected phase

spaces X that admit a global attractor with infinitely many connected components,

see [9].

T 4. Let f :UZXMNX be a semidynamical system. Let K be an

attractor. Then
I
X
(K, f )¯ 2r®1

where r is the number of cycles of K.

Proof. Consider the cycles decomposition of K

K¯K
","

eK
",#

e…eK
",k"

eK
#,"

eK
#,#

e…eK
#,k#

e…eK
r,"

eK
r,#

e…eK
r,kr

where for i ` ²1, 2,… , r´ and j ` ²1, 2,… ,k
i
®1´, f(K

i,j
)¯K

i,j+"
and f(K

i,ki

)¯K
i,"

.
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From the additivity property it is enough to show that

I
X
(K

i,"
eK

i,#
e…eK

i,ki

, f )¯ 1

for any i ` ²1, 2,… , r´.
Then we can assume that K has a single cycle K¯K

"
eK

#
e…eK

k
.

Consider an isolating neighbourhood N of K as in Remark 5 and an open

WZN containing K. W is union of open components, W¯W
"
eW

#
e…eW

k
,

and

2W ¯ 5
AZ²

",
…,k´

W
A

where

W
A
¯²C ` 2W :CfW

j
1W for every j `A and CfW

j
¯W if j ¡A´.

Since W
A

is homeomorphic to the product 0
j`A

2Wj, the components of 2W are

ARs.

Now let m"k be any prime such that f m(W )ZW, then

i
#
X(2f

m, 2W)¯ i
#
W(2f

m, 2W)¯Λ(2f
m).

In order to compute Λ(2f
m) we just have to pay attention to

H
!
(2W)¯1G…G1 with 2k®1 generators.

Consider the generators of H
!
(2W) corresponding to the components of 2W and

assume that

f m(K
i
"

e…eK
ip

)¯K
i
"

e…eK
ip

where p!k.

Then ²K
i
"

,… ,K
ip

´ is a cycle or union of cycles for f m and

p!k, pm¯ nk

for some n `..

Since m is prime, m"k, we have n¯ n
"
m and p¯ n

"
k. Then n

"
¯ 1, n¯m and

p¯k which is a contradiction.

Consequently

²K
i
"

,… ,K
ip

´¯ ²K
"
,… ,K

k
´

and just the generator of H
!
(W²

",
…,k´) produces a non-trivial number in the trace of

the matrix of (2f
m)* which has the form

I

J

0

`
0

1

K

L

.

Then from Theorem 2,

i
#
X(2f

m, 2W)¯ i
#
W(2f

m, 2W)¯Λ(2f
m)¯ (®1)! tr(2f

m)*¯ 13 I
X
(K, f ) (modm).

Since m"k is arbitrary, we have I
X
(K, f )¯ 1. *

In order to compute the index in more general cases we will recall the notion of

index pair which is basic to construct the Conley index. A certain class of index pairs,

regular index pairs, will be useful.



198 . .     . . 

D 4 [12]. Let N be a compact isolating neighbourhood with respect to

f :UZXMNX and K¯ Inv(N ). Let (P
"
,P

#
) be a pair of closed subsets of N such that

P
#
ZP

"
. The pair (P

"
,P

#
) is called an index pair for K if the following conditions are

satisfied:

(i) P
"
ff(P

#
)ZP

#
;

(ii) f(P
"
cP

#
)ZP

"
;

(iii) K¯ Inv(P
"
cP

#
, f )Z Int(P

"
cP

#
).

We will say that the index pair (P
"
,P

#
) is regular if

(a) there exists a set V, open in P
"
, such that P

#
ZV and f(VcP

#
)ZP

#
;

(b) cl( f(P
#
)cP

"
)fcl(P

"
cP

#
)¯W.

Let f :UZXMNX be a semidynamical system and consider the induced

semidynamical system 2f :2U Z 2XMN 2X.

If K is a compact invariant isolated set with respect to f and N is an isolating

neighbourhood for K then 2N is an isolating neighbourhood for Inv(2N, 2f )¯ 2K.

The next proposition can be easily checked.

P 5. Let f :UZXMNX be a semidynamical system. Let P¯ (P
"
,P

#
)

be a compact pair of subsets of X.

Let
4P

#
¯²K ` 2P

" :KfP
#
1W´.

If (P
"
,P

#
) is an index pair (regular index pair) for a compact in�ariant isolated set

K then (2P
",4P

#
) is an index pair (regular index pair) for 2K.

P 6. Under the assumptions of Proposition 5, if P
"
is locally continuum-

connected then 2P
" and 4P

#
are finite sums of ARs.

Proof. For 2P
" apply the arguments of Theorem 4 for 2W.

The case of 4P
#

is based on the fact that 4P
#

is a growth hyperspace of P
"
.

Indeed, if P
"
¯P

""
eP

"#
e…eP

"k
, P

"j
connected for every j ` ²1, 2,… ,k´ then

2P
" ¯ 5

AZ²
",

…,k´

P
"A

where

P
"A

¯²C ` 2P
" :CfP

"j
1W for every j `A and CfP

"j
¯W if j ¡A´

and
4P

#
¯ 5

AZ²
",

…,k´

P
"A

f4P
#
. *

Let K
!
be a compact isolated invariant set, P¯ (P

"
,P

#
) be an index pair for K

!
such

that P
"

is a finite sum of connected components.

We can order them as follows,

P
"
¯P"

"
e…ePk

!

"
e…ePk

"
e…eP l

"

where

(a) P j

"
fK

!
1W and P j

"
fP

#
¯W if j ` ²1, 2,… ,k

!
´ ;

(b) P j

"
fP

#
1W if j&k.

L 1. Under the abo�e assumptions we ha�e the following:

(1) If x `P i

"
, k% i% l and f(x) `P j

"
then k% j% l.

(2) If x ` P i

"
, 1% i%k

!
then f(x) `P j

"
, 1% j%k

!
.
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Proof. (1) If f(P i

"
)ZP j

"
then f(y) `P j

"
fP

#
for any y `P i

"
fP

#
.

If P i

"
cf −"(P j

"
)1W since P i

"
is connected there is p ` cl

P
i
"

(P i

"
c f −"(P j

"
))f( f −"

(P j

"
)fP i

"
).

It is easy to see that p `P
#
ff −"(P j

"
). Then f(p) `P

#
fP j

"
.

(2) Assume P i
!

"
, 1% i

!
%k

!
, such that f(P i

!

"
)ZP j

!

"
with j

!
` ²k,… , l ´. From (1) there

is i
"
%k

!
such that (P i

"

"
fK

!
)ff(P

"
)¯W. This is a contradiction. *

R 6. In the hypotheses of Lemma 1,

(P!

"
,P!

#
)¯ (P"

"
e…ePk

!

"
ePk

"
e…eP l

"
,P

#
)

is also an index pair (regular if so is (P
"
,P

#
)),

K
!
¯ [K

!
f(P"

"
e…ePk

!

"
)]e[K

!
f(Pk

"
e…eP l

"
)]

and
f(K

!
f(P"

"
e…ePk

!

"
))¯K

!
f(P"

"
e…ePk

!

"
),

f(K
!
f(Pk

"
e…ePl

"
))¯K

!
f(Pk

"
e…eP l

"
).

Denote K
!
f(P"

"
e…ePk

!

"
)¯KA

!
, K

!
f(Pk

"
e…eP l

"
)¯K

!
cKA

!
.

KA

!
and K

!
cKA

!
are compact isolated invariant sets. We will call KA

!
the attracting

part of K
!
.

T 5. Let f :XMNX be a semidynamical system. Assume that 2f is of

compact attraction. Let K
!

be a compact isolated in�ariant set with respect to f that

admits a regular index pair P¯ (P
"
,P

#
) such that P

"
is locally continuum-connected.

Then,
I
X
(K

!
, f )¯ I

X
(KA

!
, f )¯ 2q®1

where q is the number of cycles of KA

!
.

Proof. We maintain the notation of Remark 6. Using the additivity property it

is enough to show that I
X
(K

!
cKA

!
, f )¯ 0.

P«¯ (P!

"
,P!

#
)¯ (Pk

"
e…eP l

"
,P

#
) is a regular index pair for K

!
cKA

!
.

Then (2P!

",4P!

#
) is a regular index pair associated with the compact invariant

isolated set 2K
!
cKA

! with respect to 2f :2U MN 2X.

2P!

" and 4P!

#
are compact ANRs and finite sums of ARs.

Consider the singular homology sequence of the pair (2P!

",4P!

#
)

…MNH
p 04P!

#1MNH
p
(2P!

")MNH
p 02P!

",4P!

#1MNH
p−" 04P!

#1MN

…MNH
" 04P!

"1MNH
"
(2P!

")MNH
" 02P!

",4P!

#1
MNH

! 04P!

#1MNH
!
(2P!

")MNH
! 02P!

",4P!

#1MN 0.

Since H
p
(2P!

")¯H
p
(4P!

#
)¯ 0 for every p& 1, we have H

p
(2P!

",4P!

#
)¯ 0 for

every p" 1.

Another point of view is that 2P!

"}4P!

#
is an AR because it is a pointed sum of

ARs, then 0¯H
"
(2P!

"}4P!

#
, n)3H

"
(2P!

",4P!

#
).

Analogously 0¯Hc
!
(2P!

"}4P!

#
)3H

!
(2P!

"}4P!

#
, n)3H

!
(2P!

",4P!

#
).

Now, from [12, Theorem 4],

I
X
(K

!
cKA

!
, f )¯ i

#
X(2f, int(2P!

"c4P!

#
))¯Λ(I

#
P!

",4P!

#

)¯ 0. *

If Q¯0¢

n="
[0, 1}n] denotes the Hilbert cube, we have the following corollary.
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C 9. Let f :UZQMNQ be a semidynamical system. Let K
!

be a

compact isolated in�ariant set with respect to f that admits a regular index pair P¯
(P

"
,P

#
) such that P

"
is locally continuum-connected.

Then,
I
X
(K

!
, f )¯ I

X
(KA

!
, f )¯ 2q®1

where q is the number of cycles of KA

!
.

In order to give the complete meaning of our index we will show that it is always

possible to find regular index pairs in the Hilbert cube. On the other hand, we will also

prove, using the commutativity property, that for the computation of the index, for

an arbitrary compact isolated invariant set in an arbitrary locally compact ANR, we

can always assume that our semidynamical system is defined in Q.

We shall extend, to our context, the techniques of [23, Lemma 5.1]. Let

f :QMNQ be a continuous map. Given ε" 0, we consider

!(ε)¯ (AfQ,A¯0
¢

i="

A
i
: for all i there exists k `. with

A
i
¯kε or A

i
¯ [kε, (k1) ε]* .

Define the following multivalued maps Tε,Fε :QMN0(Q), by

Tε(x)¯5 ²A `!(ε) :x `A´
and

Fε(x)¯ (Tε a f aTε) (x).

L 2. Consider F :I¬Q¬:MN0(Q) defined as

F(ε,x, n)¯Fn
ε (x).

Then F is a compact �alued upper semicontinuous map and for e�ery ε ` I,

Fε :Q¬:MN0(Q) is a discrete multi�alued dynamical system in the sense of

Kaczynski and Mrozek [11].

Proof. First we will prove that F"
ε :QMN0(Q) is a proper compact valued

upper semicontinuous map and then it generates a discrete multivalued dynamical

system (see [11]).

For any ε" 0 there exists n(ε) `. such that 1}n(ε)% ε! 1}(n(ε)®1).

Then

Tε(x)¯P¬QZ 0
n(ε)−"

n="

90,
1

n:¬Q

with P a finite polyhedron. Therefore, for all x `Q, Tε(x) is a prism (see [2, page 104]).

Analogously for every x `Q,

Fε(x)¯ (P
"
e…eP

k
)¬QZ 0

n(ε)−"

n="

90,
1

n:¬Q

where P
i
is a finite polyhedron for every i¯ 1,… ,k. Moreover since k is finite, for

every x `Q, Fε(x) is a prism.

In particular Tε and Fε are compact valued maps. It is easy to see that both maps

are upper semicontinuous.

Then, F"
ε :QMN0(Q) is a compact valued proper upper semicontinuous

multivalued map generating a discrete multivalued dynamical system.
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In order to check the upper semicontinuity of F, take an open subset UZQ.

The set

²(ε,x, n) ` I¬Q¬: :F(ε,x, n)ZU ´3 5
n`:

²(ε,x, n) ` I¬Q¬n :F(ε,x, n)ZU ´

must be an open subset of I¬Q¬:.

Then it is enough to see that

F ",F−" :I¬QMN0(Q)

are upper semicontinuous.

The proof for F " is obvious because T :I¬QMN0(Q), where T(ε,x)¯Tε(x), is

upper semicontinuous.

On the other hand, for (ε
!
,x

!
) ` ²(ε,x) ` I¬Q :F−"(ε,x)ZU ´ it follows that

F−"
ε (x)ZU when ε! ε

!
and x!x

!
.

Indeed, otherwise there exist sequences ²ε
n
´
n
, with ε

n
! ε

!
, ²x

n
´
n
!x

!
and

²y
n
´
n
! y

!
, with y

n
¡U for every n and such that y

n
`F−"

ε
n

(x
n
).

Since x
n
`F"

ε
n

(y
n
) for every n `. and F " is upper semicontinuous,

Sup
y`F"

ε
n
(yn)

²d(y,F"
ε
!

(y
!
))´! 0 if n!¢.

Consequently, d(x
!
,F"

ε
!

(y
!
))% d(x

!
,F"

ε
n

(y
n
))Sup

y`F"ε
n(yn)

²d(y,F"
ε
!

(y
!
))´! 0 if

n!¢, x
!
`F"

ε
!

(y
!
) and y

!
`F−"

ε
!

(x
!
)ZU which is a contradiction. *

P 7. Let f :QMNQ be a semidynamical system. Then, e�ery compact

isolated in�ariant set K, with respect to f, admits a regular index pair (Q
"
,Q

!
) such that

Q
"

and Q
!

are prisms.

Proof. The proof is based on that of [23, Lemma 5.1], using Lemma 2 and [11,

Lemmas 2.5 and 2.6]. It is enough to follow the construction of [23] with a slight

modification of the definition of the Q
i
. Taking

Q
i
¯5 (A `!(ε}d ) :AZP

i
,A¯P¬QZ 0

n(ε/d)−"

n="

90,
1

n:¬Q*
where P is a finite polyhedron, the result follows. *

T 6. Let f :UZXMNX be a semidynamical system. Let K be a compact

isolated in�ariant set with respect to f. Then

I
X
(K, f )¯ I

X
(KA, f )¯ 2q®1

where q is the number of cycles of KA.

Proof. Consider X to be embedded as a closed subset of a normed space B. Let

N be a compact isolating neighbourhood of K. Take a retraction r :UXZBMNX

where UX is an open neighbourhood of X in B. From [8], there is a compact ANR

AN such that NZANZUX.

Let V be an open subset of X such that KZVZN and f(V )ZN.

Define W¯ r−"(V )fAN and consider the map

f
"
¯ f a rrW

:WZANMNAN.

Using the commutativity property we have I
X
(K, f )¯ I

A
N(K, f

"
).
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Now we can assume that ANZQ. Take a retraction

r
"
:UA

N ZQMNAN

where UA
N is an open neighbourhood of AN in Q.

Let Z¯ r−"
"

(W )ZUA
N and define

g¯ f
"
a r

"
rZ
:ZZQMNQ.

Using again the commutativity property we have I
A
N(K, f

"
)¯ I

Q
(K, g). Then, from

Theorem 5 and Proposition 7,

I
X
(K, f )¯ I

Q
(K, g)¯ I

Q
(KA, g)¯ 2q®1. *

R 7. Using Proposition 7 and the proof of Theorem 6 it can be proved

that the shape index (see [14]) of any compact isolated invariant set in any locally

compact ANR is always the shape of a P-like compactum Y. More precisely, Y is the

inverse limit of a sequence ²(P
n
, g

n
)´

n`. where, for every n `., P
n

is a single finite

polyhedron P and g
n

is a single continuous map g :PMNP (see [20] for a proof).

C 10 (product property). Let f :UZXMNX, g :VZYMNY be two

semidynamical systems. Let K
!

and L
!
be compact isolated in�ariant sets with respect

to f and g respecti�ely.

Then, K
!
¬L

!
is a compact isolated in�ariant set with respect to f¬g :U¬VZ

X¬YMNX¬Y and

I
X×Y

(K
!
¬L

!
, f¬g)¯ 2pq®1

where p and q are the number of cycles of KA

!
and LA

!
, respecti�ely.

Now let us take another growth hyperspace of X that we can use to introduce

analogous indices.

Let C
m
(X ) be the set of all non-empty compact subsets of X having at most m

connected components. It is easy to see that C
m
(X ) is a growth hyperspace of X.

If f :UZXMNX is a semidynamical system, then f induces another one

C
m
( f ) :C

m
(U )ZC

m
(X )MNC

m
(X ).

Let KZU be a compact isolated invariant set. Let N be any isolating

neighbourhood of K. Consider an open set W such that KZWZN.

Take C
m
( f ) :C

m
(W )MNC

m
(X ). It is clear that Fix(C

m
( f ) r

Cm(W)
)ZC

m
(K ).

Then the fixed point index of C
m
( f ) in C

m
(X ), i

Cm(X)
(C

m
( f ),C

m
(W )), is well

defined.

D 5. We define the m-fixed compact index of the pair (K, f ) as

Im

X
(K, f )¯ i

Cm(X)
(C

m
( f ) r

Cm(W)
,C

m
(W )).

R 8. The properties of these indices are similar to the properties of the

fixed compact index of the pair (K, f ) listed in Propositions 1–4 except for the

additivity property. In this case we can obtain the next result for m¯ 1, 2.

P 8 (additivity property). Let K be a compact isolated in�ariant set.

Assume that K is a disjoint sum of two compact in�ariant isolated sets K
"

and K
#
.
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Then,
I"
X
(K, f )¯ I"

X
(K

"
, f )I"

X
(K

#
, f )

and
I#
X
(K, f )¯ I#

X
(K

"
, f )I#

X
(K

#
, f )I"

X
(K

"
, f ) I"

X
(K

#
, f ).

Even though we do not have an additivity property for all m `. we can compute

those indices to obtain the corresponding results analogous to the I
X
(K, f ).

We now present the main results.

T 7. Let f :UZXMNX be a semidynamical system. Let K be a compact

attractor.

Then
Im

X
(K, f )¯ l

m

where l
m

is the number of unions of cycles of K whose lengths sum%m.

T 8. Let f :UZXMNX be a semidynamical system. Let K be a compact

isolated in�ariant set with respect to f.

Then,
Im

X
(K, f )¯ Im

X
(KA, f )¯ l

m

where l
m

is the number of unions of cycles of KA whose lengths sum%m.

R 9. From Theorems 6 and 8, if we have a compact isolated invariant set

K with respect to a semidynamical system f :UZXMNX, there is m
!
`. such that

Im

X
(K, f )¯ I

X
(K, f ) for every m&m

!
.

R 10. Let f :UZXMNX and g :VZYMNY be two semidynamical

systems and K
"

and K
#

be compact isolated invariant sets with respect to f and g

respectively. Then, Im

X
(K

"
, f )¯ Im

Y
(K

#
, g) for m% r if and only if the number of cycles

of length m, for m% r, of KA

"
and KA

#
coincide.
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